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Turbulent flow in the bulk of Rayleigh–Bénard
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The Rayleigh number (Ra) scaling of the global Bolgiano length scale LB,global

and the local Bolgiano length scale LB,centre in the centre region of turbulent
Rayleigh–Bénard convection are investigated for Prandtl numbers Pr = 0.7 and 4.38
and 3 × 105 6 Ra 6 3 × 109. It is found that LB,centre does not necessarily exhibit the
same scaling as LB,global. While LB,global is monotonically deceasing as LB,global ∼ Ra−0.10

for both Pr , LB,centre shows a steep increase beyond a certain Ra value. The complex
scaling of the local Bolgiano length scale in the centre is a result of the different
behaviour of the temperature-variance dissipation rate, εT , and the turbulent-kinetic-
energy dissipation rate, εu. This shows that for sufficiently high Ra the flow is
well-mixed and hence temperature is passively advected. It is also observed that
the Ra-range in which LB,centre exhibits the same scaling as the global Bolgiano length
scale is increasing with increasing Pr . It is further observed that for Pr = 4.38 and
Ra 6 3 × 107 the local vertical heat flux in the centre region is balanced by the
turbulent-kinetic-energy dissipation rate. For higher Ra we find that the local heat
flux is decreasing. At Pr = 0.7 we do not observe such a balance, as the measured
heat flux is between the heat fluxes estimated through the turbulent-kinetic-energy
dissipation rate and the temperature-variance dissipation rate. We therefore suggest that
the balance of the local heat flux might be Prandtl-number dependent. The conditional
average of the local vertical heat flux 〈Nu|εu, εT〉centre in the core region of the flow
reveals that the highest vertical heat flux occurs for rare events with very high
dissipation rates, while the joint most probable dissipation rates are associated with
very low values of vertical heat flux. It is also observed that high values of εu and εT

tend to occur together. It is further observed that the longitudinal velocity structure
functions approach Kolmogorov K41 scaling. The temperature structure functions
appear to approach Bolgiano–Obukhov BO59 scaling for r > LB,centre, while a scaling
exponent smaller than the BO59 scaling is observed for separations r < LB,centre. The
mixed velocity and temperature structure function for Ra = 1 × 109 and Pr = 4.38
shows a short 4/5-scaling for r > LB,centre. Our results suggest that BO59 scaling might
be more clearly observable at higher Prandtl and moderate Rayleigh numbers.
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1. Introduction
Thermally driven flows play an important role in many natural phenomena and

technical applications, of which Rayleigh–Bénard convection (RBC) is a well-posed
idealized system that allows the study of such flows. Despite the fact that this model
system has been studied extensively (see e.g. Ahlers, Grossmann & Lohse 2009; Lohse
& Xia 2010; Chillà & Schumacher 2012, for recent reviews), fundamental behaviours,
such as whether or not the energy cascade exhibits a Bolgiano (1959) scaling in the
inertial range are still debated, see e.g. Calzavarini, Toschi & Tripiccione (2002), Sun,
Zhou & Xia (2006) and Kunnen et al. (2008).

In homogeneous and isotropic turbulence (HIT) and when the temperature is a
passive scalar in the flow, the scalings of the velocity and temperature structure
functions are expected to follow the Kolmogorov (K41) scaling (plus intermittency
corrections). However, in thermally driven flows, the temperature cannot generally be
considered passive. In such a case it is expected that the Bolgiano–Obukhov (BO59)
scalings should apply above a certain length scale, called the Bolgiano length

LB ≡ ε5/4
u ε

−3/4
T (αg)−3/2 . (1.1)

Hence the inertial subrange is divided into two regions, 10ηk / r < LB and LB < r� L,
for which K41 and BO59 scalings apply, respectively, where L is the integral length
scale of the system, and other variables are defined below.

In contrast to numerical simulations of HIT, which are typically based on forcing the
flow at a certain (small range of) wavenumber(s), turbulent flow in the centre of RBC
is a response to the imposed boundary conditions. The system is then determined by
the Rayleigh number Ra = αgH31T/(νκ) and Prandtl number Pr = ν/κ , where α, ν
and κ are the thermal expansion coefficient, kinematic viscosity and thermal diffusivity,
respectively, and g is the gravitational acceleration. The height of the fluid layer is
given by H and the temperature difference between the horizontal top and bottom
plates is 1T .

It is generally believed that a BO59-like cascade should be observable in RBC at
sufficiently high Ra, i.e. when Ra is sufficiently large to allow a long inertial subrange
and the Bolgiano length scale LB is sufficiently small to lie within the inertial range,
since the globally averaged Bolgiano length scale can be written (in non-dimensional
form) as

LB,global/H = (Nu− 1)5/4 Nu−3/4 (RaPr)−1/4, (1.2)

which follows from averaging (1.1) over the entire volume and substituting the
exact relations for the temperature-variance dissipation rate 〈εT〉V = κ (1T/H)2 Nu and
turbulent-kinetic-energy dissipation rate 〈εu〉V = (Nu − 1)ν3H−4Pr−2Ra obtained from
the Boussinesq equations into it (see also Lohse & Xia 2010). Hence LB,global ∼ Ra0.1

is readily obtained, when assuming an effective scaling Nu ∼ Ra0.3, which is a good
approximation for the range of Ra considered here.

Velocity and temperature structure functions measured experimentally by Sun et al.
(2006) and circulation structure functions measured by Zhou, Sun & Xia (2008) for
Ra≈ 1010 and Pr = 4.4 all follow the K41 prediction, rather than the BO59 prediction.
This is also supported by direct numerical simulation (DNS) with shear-free horizontal
boundaries (Calzavarini et al. 2002) at Ra ≈ 2 × 107 and Pr = 1. Being limited to
low Ra, and hence an insufficiently long inertial range, the authors of the latter paper
use the extended self-similarity (ESS) method to determine the inertial range and fitted
it with a power law to determine the scaling exponent. Hence they show that BO59
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scaling exists in the vicinity of the horizontal walls and scaling exponents of both
temperature and velocity structure functions are close to K41 scaling in the centre.

However, numerical results obtained by Kunnen et al. (2008) extracted from the
centre of their DNS at Ra= 1 × 108 and Pr = 4 contradict this. Temperature structure
functions in the radial direction and longitudinal structure functions of vertical velocity
both show BO59 scaling above the Bolgiano length scale.

Recent numerical simulations of Rayleigh–Taylor turbulence by Boffetta et al.
(2012) suggest that the lateral extent of the geometry might be a good means to
confine the Bolgiano length scale, thus allowing one to study the transition from
BO59-like to K41-like scaling of the structure functions. The geometrical confinement
of the flow will, however, not be included here, but in a subsequent publication.

In this paper we use DNS of RBC in a cube in order to answer the question of
how the local Bolgiano length scale varies with Ra for two different Prandtl numbers
Pr = 0.7 and Pr = 4.38 and compare this scaling to the global estimate, in order to
find out whether the global scaling can be applied to the bulk region. Furthermore,
we extract the local heat flux in the centre of RBC and, analogously to Ni, Huang
& Xia (2011), examine whether the local heat flux is balanced by the dissipation
rate of turbulent kinetic energy or the temperature-variance dissipation rate, hence
testing if their finding also applies to relatively low Prandtl numbers. Additionally, we
investigate the joint probability density function (p.d.f.) of the two dissipation rates
and examine the conditional average of the local vertical heat flux, depending on both
dissipation rates, in order to gain a more complete picture of the heat transfer process
in the bulk.

2. Set-up
2.1. Numerical method

The governing equations are solved in the Boussinesq approximation

∇ ·u= 0, (2.1a)
∂u/∂t + u ·∇u+∇p= ν1u+ Tez, (2.1b)

∂T/∂t + u ·∇T = κ1T, (2.1c)

where u = (u, v,w) is the velocity vector and T and p represent the temperature and
pressure, respectively. The gravity vector is acting in the vertical direction, i.e. the
−ez direction. Equations (2.1) are discretized employing the finite volume method
on non-equidistant Cartesian meshes with Nx × Ny × Nz cells in the x-, y- and z-
direction, respectively. Cell face values are approximated using fourth-order-accurate
polynomials. The time integration is done using the Euler–leapfrog scheme, where the
convective terms are discretized employing the leapfrog scheme and diffusive terms
are discretized using Euler forward differencing. The solver is described in detail in
Kaczorowski et al. (2008) and Shishkina, Shishkin & Wagner (2009).

Since the governing equations are solved in non-dimensional form using the
normalizations xref = H, uref = (αgH1T)1/2, Tref = 1T and tref = xref /uref , all results
presented in the following are also non-dimensional, unless stated otherwise, i.e. they
will be denoted with a hat ( .̂ ).

2.2. Computational set-up
The geometry used here to study turbulent RBC is a cube bounded by solid walls
at all boundaries, i.e. no-slip and impermeability conditions are applied to all walls.
The sidewalls are adiabatic and the top and bottom plates isothermal. The Prandtl
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(a) (b)

(c) (d )

FIGURE 1. (Colour online) Visualization of the instantaneous temperature field with
isosurfaces for T > 0.1 to give an impression of the size of the large coherent structures
for different Ra and Pr : (a) Ra = 1 × 107 and Pr = 0.7, (b) Ra = 1 × 108 and Pr = 0.7,
(c) Ra= 1× 107 and Pr = 4.38, (d) Ra= 1× 109 and Pr = 4.38.

numbers Pr under investigation are 0.7 and 4.38, representing the properties of the
widely used media air at ambient conditions and water at 40 ◦C. An illustration of the
isothermal surfaces formed by the flow at two different Ra for both Prandtl numbers
is provided in figure 1, giving an impression of the size of the flow structures. The
simulation parameters are summarized in table 1.

We designed the meshes such that the grid spacing in the bulk is smaller than the
global estimate of the Kolmogorov and the Batchelor length scales. For Ra > 2 × 107

(Pr = 0.7) and Ra > 5 × 107 (Pr = 4.38) the grid spacing in the centre of the cell
is equidistant as can be seen from figure 2(a). Towards the walls the grid spacing
becomes finer in order to sufficiently resolve the boundary layers. For lower Ra the
grid spacing is non-uniform throughout the cell.

It is noted that the resolution of the simulations exceeds the requirements proposed
by Shishkina et al. (2010), so that all relevant turbulent scales should be resolved.
In figure 2(b) a typical mesh and the resolution of the flow are shown for both Pr
in order to provide evidence that the flow is sufficiently resolved – a necessity to
obtain accurate results of small-scale quantities. It can be seen that the dissipative
scales of turbulence are well-resolved in the bulk of the flow. However, it is also noted
in passing that despite the fact that the resolution of the boundary layers for both
Prandtl numbers is around twice the resolution requirement estimated by Shishkina
et al. (2010), the boundary layers of the Pr = 0.7 simulations are not as well resolved
as the resolution requirements might suggest.
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Pr Ra Nx × Ny × Nz NH NT Nv NuS NuεT Nuεu tavg

0.7 3× 105 64× 64× 64 41 10/2.0 9/1.8 5.86 5.53 5.82 225
0.7 5× 105 64× 64× 64 49 9/2.1 8/1.9 6.64 6.60 6.58 890
0.7 1× 106 82× 82× 82 63 8/2.4 8/2.1 8.32 8.25 8.25 1080
0.7 2× 106 98× 98× 98 78 7/2.6 6/2.3 10.1 10.0 10.0 900
0.7 3× 106 98× 98× 98 89 6/2.8 5/2.5 11.5 11.3 11.4 760
0.7 5× 106 162× 162× 162 106 9/3.0 8/2.6 13.6 13.4 13.4 710
0.7 1× 107 162× 162× 162 132 7/3.3 7/2.9 16.3 16.1 16.2 390
0.7 2× 107 194× 194× 194 165 8/3.7 7/3.2 19.6 19.5 19.7 200
0.7 3× 107 290× 290× 290 191 10/3.9 9/3.4 22.0 22.0 22.1 308
0.7 1× 108 290× 290× 290 281 7/4.6 6/4.1 31.3 31.1 31.8 300

4.38 1× 106 64× 64× 64 52 7/1.9 9/3.2 8.35 8.22 8.28 300
4.38 5× 106 178× 178× 194 88 17/2.4 25/4.0 13.1 13.1 13.1 400
4.38 8× 106 178× 178× 194 103 15/2.6 22/4.32 15.4 15.4 15.3 530
4.38 1× 107 178× 178× 194 110 14/2.6 21/4.5 16.1 16.0 16.1 520
4.38 3× 107 242× 242× 258 160 11/3.2 17/5.3 22.6 22.4 22.3 570
4.38 5× 107 258× 258× 258 189 7/3.4 12/5.7 26.2 26.2 26.3 375
4.38 1× 108 258× 258× 258 236 6/3.8 10/6.3 32.2 31.7 32.0 750
4.38 2× 108 354× 354× 354 295 7/4.1 11/6.9 39.3 38.9 39.2 625
4.38 3× 108 354× 354× 354 338 7/4.4 10/7.4 44.4 43.8 44.3 525
4.38 1× 109 514× 514× 514 501 13/5.3 19/8.8 63.4 62.7 63.0 350
4.38 3× 109 770× 770× 770 719 13/6.3 19/10.4 88.3 89.6 89.4 90

TABLE 1. Simulation parameters and mean heat flux. The number of grid points
Nx × Ny × Nz in the respective spatial direction; required number of grid points NH in
the vertical direction; number of grid points required for resolving the thermal NT and
the viscous Nv boundary layers (actual resolution/requirement); mean heat transfer NuS

calculated in horizontal slices, NuεT = (RaPr)1/2 〈εT〉global and Nuεu = (RaPr)1/2 〈εu〉global+1.
tavg denotes the averaging time of the simulations in free-fall time units.

We also checked the bulk resolution by investigating the scaling of the second-
order longitudinal and transverse structure functions, Swl

2 and Swt
2 , of vertical

velocity fluctuations w′ with separations r in the dissipative range. The velocity
increments in the centre of the cell have been averaged spatially over a volume
Vcentre = (0.5H)3. From figure 3 it can be seen that Swl

2 (r) = Swt
2 (r)/2, where Swl

2 (r) =
〈(w′(r0 + rez)− w′(r0))

2〉t,centre ∼ r2 and Swt
2 (r) = 〈(w′(r0 + rex)− w′(r0))

2〉t,centre ∼ r2,
when r is of the order of the Kolmogorov length scale or smaller. On the one
hand this proves that the bulk resolution is sufficient to resolve the dissipative scales
of the flow, on the other hand it also shows that the bulk turbulence at these Rayleigh
numbers is homogeneous and isotropic.

In order to verify the global properties obtained from our simulations, we compare
the Nusselt number with numerical and experimental results from the literature.
Figure 4 reveals that our data for Pr = 4.38 match the experimental measurement
by Funfschilling et al. (2005) obtained in a cylindrical cell with Pr = 4.4 and aspect
ratio unity very well. For moderate Ra (107 / Ra / 109) our Nu-data for Pr = 0.7
are roughly 2 % lower than for the higher Prandtl number case. The observation that
the Nusselt number at a Prandtl number of 0.7 is lower than at a Prandtl number of
4.4 matches the extrapolation of the experimental observation of Xia, Lam & Zhou
(2002), who observed that the Prandtl number dependence of the heat flux exhibits
a maximum around a Prandtl number of 4–6. However, comparing the results by
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0.008

0.006

0.004

0.002

0.010

0.1 0.2 0.3 0.40 0.5 0.1 0.2 0.3 0.40 0.5

0.1 0.2 0.3 0.40 0.5
z

0.1 0.2 0.3 0.40 0.5
z

0.8

0.6

0.4

0.2

1.0
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FIGURE 2. (Colour online) (a) Grid spacing in the vertical direction of the cube (—)
compared with global estimates for the Kolmogorov (· · ·) and Batchelor (- -) length scale
for Ra = 1 × 108 and Pr = 0.7 (left) and for Ra = 1 × 108 and Pr = 4.38 (right). (b) The
grid spacing in terms of the Kolmogorov (—) and Batchelor length scales (- -) for the same
configuration as in (a). For symmetry reasons only half of each profile is shown.

Wagner, Shishkina & Wagner (2012) obtained in cylindrical cells with Pr ≈ 0.7 with
the experiments by Funfschilling et al. (2005) suggests that there is no difference in
the Nusselt number between those Prandtl numbers. In terms of scaling both of our
data sets are close to the results by Funfschilling et al. (2005) and Wagner et al.
(2012), which both used a geometry with aspect ratio one.

3. Profiles of the local Bolgiano length scale
It is known (Benzi, Toschi & Tripiccione 1998; Kunnen et al. 2008) that the local

Bolgiano length scale LB depends on the position in the convection cell, where small
LB values are found near the isothermal plates and large ones near the adiabatic
sidewall, reflecting the different boundary conditions of the respective walls. In terms
of our set of normalized variables the local Bolgiano length scale defined in (1.1) can
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(a)

100

10–1
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10–2
100 101

(b)

100 101
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10–3

10–2

FIGURE 3. (Colour online) Comparison of the second-order transverse structure function Swt
2

(- -) with the second-order longitudinal structure function Swl
2 (—) plotted in compensated

form for (a) Ra= 1× 108, Pr = 0.7 and (b) Ra= 3× 109, Pr = 4.38.

Ra

0.085

0.080

0.075

0.070

0.065

0.060

106 107 108 109 1010

0.090

0.055

FIGURE 4. (Colour online) Nu–Ra relation in the cube for Pr = 0.7 (♦) and Pr = 4.38 (�).
For comparison results obtained in cylindrical geometries using DNS with Pr = 0.786 and
aspect ratio unity by Wagner et al. (2012) (O), and experimental measurements with Pr = 4.4
and aspect ratio unity by Funfschilling et al. (2005) (©) are also shown.

be calculated as

LB(x, y, z)= 〈εu (x, y, z)5/4〉t 〈εT (x, y, z)−3/4〉t, (3.1)

where 〈εT(x, y, z)〉t = (RaPr)−1/2 〈∑i (∂T ′/∂xi)
2〉t is the non-dimensional time-averaged

temperature-variance dissipation rate, 〈εu(x, y, z)〉t = (Ra/Pr)−1/2 〈∑i

∑
j (∂u′i/∂xj)

2〉
t

the non-dimensional time-averaged turbulent-kinetic-energy dissipation rate and primed
quantities denote turbulent fluctuations. Averaging the local Bolgiano length scale
LB(x, y, z) in space, one obtains the mean of the local Bolgiano length scales, which
is then given by 〈LB(x, y, z)〉δV = 〈〈εu (x, y, z)5/4〉t 〈εT (x, y, z)−3/4〉t〉δV , where δV denotes
the averaging volume. In the present paper we shall, however, evaluate the structure
functions averaged over the bulk region, so that the mean Bolgiano length scale is
defined as

LB,centre = 〈εu〉5/4centre,t 〈εT〉−3/4
centre,t, (3.2)
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FIGURE 5. (Colour online) Time-averaged profiles of the local Bolgiano length scale through
the centre of the cube LB(x) = LB(x, y = 0.5, z = 0.5) and LB(z) = LB(x = 0.5, y = 0.5, z) for
(a) Pr = 0.7 and (b) Pr = 4.38. Plotted are profiles for Ra = 1 × 107 in the vertical (– –) and
the horizontal (- · -) direction and for Ra= 1× 108 in the vertical (- -) and the horizontal (- · · -)
direction. For symmetry reasons only half of each profile is shown.

which follows from equating (6.1) and (6.3) or (6.2) and (6.4) (see § 6 below) and
consequently results in the mean Bolgiano length scale of the bulk region being a
function of 〈εu〉centre,t and 〈εT〉centre,t, since the structure functions are averaged over the
bulk region.

In figure 5 profiles of LB for Pr = 0.7 and 4.38 measured locally through the centre
of the cube illustrate the strong influence of the Prandtl number on the Bolgiano length
scale in the centre of the cell. Due to the symmetry of the flow we only plot half of
the profile, from the wall at x = 0 (sidewall) or z = 0 (hot bottom plate) to the centre
of the cell at x, z = 0.5. The profile in figure 5(a) shows the familiar shape of the
LB-profile already shown by Benzi et al. (1998). However, we note that despite the
similar values of Ra ≈ 107 and Pr ≈ 1, the local Bolgiano length scale in the centre
of the cell in the present simulations is only ∼1/3 of the one observed by Benzi et al.
(1998). Since the simulation parameters are essentially the same, the only remaining
difference is that Benzi et al. (1998) use slip boundary conditions on the horizontal
plates and periodic boundary conditions in the horizontal directions, while no-slip
conditions are employed on all walls of our simulations. We therefore infer that the
dynamics of the core region are significantly influenced by the boundary conditions,
and hence the dynamics of the adjacent boundary layers.

It can also be seen from figure 5 that due to the different boundary conditions in
the horizontal and the vertical direction LB(x) and LB(z) show a different behaviour
outside the core region. In the subsequent sections we therefore evaluate the turbulent
properties of the flow in a region 3/8 6 x, y, z 6 5/8, where we can assume similar
properties of the flow in both the horizontal and the vertical direction.

A comparison of figures 5(a) and 5(b) also demonstrates that the Prandtl number
dependence of the local Bolgiano length scale is a function of Ra. While LB(x, z) in
the bulk does not change significantly from Ra = 1 × 107 to 1 × 108 when Pr = 4.38,
it increases dramatically for Pr = 0.7, while the global Bolgiano length scale is
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x, z
0.1 0.2 0.3 0.40 0.5

10–2
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10–5
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FIGURE 6. (Colour online) Profiles of the turbulent-kinetic-energy dissipation rate in the
vertical (- -) and the horizontal directions (– ·· –) and temperature-variance dissipation rate in
the vertical (– –) and the horizontal directions (– · –) for Ra = 1 × 108 through the centre of
the cube. For symmetry reasons only half of each profile is shown.

decreasing for both Pr . Hence the behaviour of the local Bolgiano length scale can be
entirely different from the globally averaged Bolgiano length scale.

Since both εu and εT contribute to the Bolgiano length scale, it is interesting
to ask where the different behaviour of the LB-profiles comes from: a change of
the temperature-variance dissipation rate or a change of the turbulent-kinetic-energy
dissipation rate? Figure 6 reveals that the profiles of εT , both in the horizontal and
the vertical direction are very similar for both Prandtl number cases, while the εu

profiles are very similar in shape, but their absolute values differ by about one order of
magnitude. The higher energy dissipation rate for Pr = 0.7 thus leads to a significantly
larger Bolgiano length scale.

4. Ra-scaling of the flow
A plot of the Bolgiano length scale against Rayleigh number averaged both locally

for a volume Vcentre = (0.25H)3 as described above and globally calculated by (1.2) for
Pr = 0.7 and 4.38 presented in figure 7 illustrates the power-law decrease of LB,global

and the complex Ra-scaling of LB,centre. A least-squares fit of the globally averaged
Bolgiano length scales yields LB,global(Pr = 0.7) = 0.420Ra−0.104 and LB,global(Pr =
4.38) = 0.251Ra−0.101. For Pr = 4.38 and moderate Ra the scaling of the local and
global Bolgiano length scale are identical, whereas for Ra< 1× 107 and Ra> 2× 108

the scalings differ, i.e. LB,centre increases with Ra, and hence behaves contrary to the
globally averaged Bolgiano length scale. Kunnen et al. (2008) have investigated the
global and local Bolgiano length scale in a cylindrical container using DNS. Here
we compare our data to their results obtained for Pr = 4, which is in the range
1 × 108 6 Ra 6 1 × 1010. Before investigating the scaling of the local Bolgiano length
scale in the centre of the cell, we deduce from figure 1(b) of their paper that both the
turbulent-kinetic-energy dissipation rate and the temperature-variance dissipation rate
for Ra = 1 × 109 and Pr = 6.4 match the experimental data by He et al. (2007) and
Ni et al. (2011) closely. The Bolgiano length scale extracted from the centre of their
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FIGURE 7. (Colour online) (a) Ra-scaling of the local Bolgiano length scale LB,centre averaged
over a volume Vcentre = (0.25H)3. (b) Log–log plot of the globally averaged Bolgiano
length scales together with their least-squares fits LB,global(Pr = 0.7) = 0.420Ra−0.104 and
LB,global(Pr = 4.38) = 0.251Ra−0.101. The global Bolgiano scales have been multiplied by
C(Pr = 0.7) = 3.3 and C(Pr = 4.38) = 5.0 to allow a better comparison of the scaling
of local and global scales. Pr = 0.7 (O) and Pr = 4.38 (�) and the respective global
Bolgiano length scale LB,global for Pr = 0.7 (?) and Pr = 4.38 (�). The least-squares fit
〈LB〉centre = 0.024Ra0.107 (-·-) obtained from DNS by Kunnen et al. (2008) for Pr = 4 and
the corresponding data points (×) are given for reference. The long-dashed line represents
the least-squares fit LB,centre = 1.123Ra−0.10 to the data of both Prandtl numbers that scales
similarly to the global length scale. The least-squares fits LB,centre = 0.020 × Ra0.18 (– ·· –)
for Pr = 0.7 and LB,centre = 6.79 × 10−4Ra0.29 (—) for Pr = 4.38 are given for reference.
Additionally the scaling of the local Bolgiano length scale in the centre computed from the
scalings εu ∼ Ra0.02 (Ni et al. 2011) and εT ∼ Ra−0.83 (He, Tong & Xia 2007) is provided (- -).

cylindrical cell is in excellent agreement with our data for Ra 6 3 × 108, but differs
significantly for Ra > 3 × 108. However, their Bolgiano length scale in the bulk is
calculated in a different way from ours, i.e. using (3.1), while we are using (3.2).
A direct comparison of the LB–Ra-scaling of Kunnen et al. (2008) and our data is
therefore not possible. A comparison of the local Bolgiano length scale in a cubic and
a cylindrical cell is, however, possible by using the experimental data by He et al.
(2007) and Ni et al. (2011) to calculate the scaling of LB in the bulk. This yields
LB,centre = 3.47 × 10−7Ra0.645, when using the offset scaling of εT , whose multiplicative
constant is adjusted to our DNS data. Had we used the data by He et al. (2007)
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FIGURE 8. (Colour online) Ra-scaling of the turbulent-kinetic-energy and temperature-
variance dissipation rate for Pr = 0.7 (εu: H; εT : O) and Pr = 4.38 (εu: �; εT : ♦). The
error bars are calculated from the difference between the average of the entire time series
and the second half of it. The solid line represents the least-squares fit εT = 44.58Ra−0.78. For
reference experimental measurements of εT (+) by He et al. (2007) and of εu (�) by Ni et al.
(2011), both in the centre of the cell, are plotted. Both experiments were conducted in water
with Pr ≈ 4.4. For comparison the scaling εT ∼ Ra−0.83 (-·-) obtained by He et al. (2007) is
shifted towards the numerical data. Note that the normalization used here differs from the one
used by He et al. (2007) in their paper – see text for more details..

directly without offset, the resulting LB would be only 20 % of the value plotted in
figure 7.

A generally similar behaviour of the local Bolgiano length scale is observed for
Pr = 0.7; however, the transition to a rapid increase with Ra in this case has already
occurred at Ra ≈ 3 × 106. Least-squares fits to the region where LB,centre is rapidly
increasing yield LB,centre = 0.020 × Ra0.18 for Pr = 0.7 and LB,centre = 6.79 × 10−4Ra0.29

for Pr = 4.38.
The complex dynamics of the flow in the core region therefore do not necessarily

allow an application of the scaling of (1.2) to the core region, if Ra is either too
large or too small, where the range of validity strongly depends on Pr . Analysis
of the corresponding turbulent-kinetic-energy dissipation rate and temperature-variance
dissipation rate shown in figure 8 reveals that the Ra-scalings of εT and εu exhibit a
different behaviour. While the scaling of εu shows a clear Prandtl number dependence
and approaches a plateau for sufficiently high Ra, the scaling of εT does not show a
Prandtl number dependence for high Ra (Ra> 3× 107 for the Prandtl numbers studied
here) and follows the scaling εT ∼ Ra−0.78.

The values of εu match the experimental data by Ni et al. (2011) measured in the
centre of a cylindrical cell. He et al. (2007) experimentally measured the temperature-
variance dissipation rate in the range 1× 109 6 Ra6 1× 1010 and obtained the scaling

ε̂T/(κ̂ (1T̂/Ĥ)
2
) = 2.9 × Ra−0.33 in the centre of their water-filled cell. Using the

normalization introduced in § 2.1 yields εT = 2.9Pr−1/2×Ra−0.83 for the experimentally
measured results (the normalized temperature-variance dissipation rate satisfies the

relation ε̂T = κ̂ (1T̂/Ĥ)
2
(RaPr)1/2 εT and the normalized kinetic-energy dissipation

rate satisfies ε̂u = ν̂3Ĥ−4 (Ra/Pr)−3/2 εu). For 5 × 107 6 Ra 6 1 × 109 and Pr = 4.38
we obtain the scaling of the temperature-variance dissipation rate εT = 43.9 × Ra−0.78.
While the scaling exponents of experiment and DNS match very well, the magnitude
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FIGURE 9. (Colour online) p.d.f.s of the Bolgiano length scale differences δLB = LB,centre(t)−
LB,centre computed from the core region with Vcentre = (0.25H)3, where LB,centre(t) is the
instantaneous, but volume averaged Bolgiano length scale and LB,centre the time and volume
averaged Bolgiano length scale, for (a) Pr = 0.7 and (b) Pr = 4.38. Ra = 1 × 106 (+),
Ra= 1× 107 (©), Ra= 1× 108 (♦) and Ra= 1× 109 (O).

of the scaling observed in our DNS is, however, one order of magnitude smaller than
the experimental observation. We are not sure what causes this difference. We are
confident that it is neither a result of the resolution, nor an effect of transient data,
which in our experience lead to higher, but not to lower dissipation rates (which might
be the case for Ra = 3 × 109, where we started averaging only 300 time units after
the initialization using a flow field with the same simulation parameters, but a lower
resolution). There is, however, evidence that the temperature fluctuations scale very
differently in a cylindrical and a cubic cell, which we suspect might be the reason
for the difference. We will address the influence of the geometry in a subsequent
publication.

We now ask the question of how the instantaneous Bolgiano length scales in
the centre behave. For this purpose the p.d.f.s P(δLB) computed from the centre
region are presented in figure 9. It is observed that LB,centre coincides with the most
probable value of the local Bolgiano length scale, for all Ra and Pr investigated here.
Comparison of P(LB) for Ra = 1 × 107 and different Prandtl numbers reveals that the
p.d.f. of the higher Prandtl number is much narrower than the one of the lower Prandtl
number. It also becomes clear that for all Ra with Pr = 0.7 there is a fair probability
of ∼5 % of observing a Bolgiano length scale that is of the size of the box. Since the
probability of observing very large LB is larger than the probability of observing very
small LB, the p.d.f. is positively skewed.

5. Energy balance
The globally averaged turbulent-kinetic-energy and temperature-variance dissipation

rates obey the following exact relations:

Nu= 〈εu〉global (RaPr)
1/2+1, (5.1)
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Nu= 〈εT〉global (RaPr)
1/2, (5.2)

which are both equally valid and therefore hold at the same time. It is one of the key
assumptions of the GL theory (Grossmann & Lohse 2000, 2004, 2011) that the global
heat flux can be decomposed into contributions from the bulk and the boundary layers
and it is therefore of key interest to verify this assumption. In order to answer the
question of whether or not the local heat flux in the centre of the cell is balanced by
the turbulent-kinetic-energy dissipation rate or the temperature-variance dissipation rate
Ni et al. (2011) calculate the local vertical heat flux in the centre of the cell as

Nucentre = 〈εu〉centre (RaPr)1/2 . (5.3)

By comparing their data with direct heat flux measurements by Shang et al.
(2004) they found that in the centre of their cylindrical cell the heat transfer is
balanced by the turbulent-kinetic-energy dissipation rate, while previous experimental
measurements in water (He et al. 2007; Shang et al. 2008) have shown that a balance
of the form

Nucentre = 〈εT〉centre (RaPr)1/2 (5.4)

does not hold. It is, however, experimentally difficult to access all necessary quantities
at the same time, in particular in gases. We therefore further test this observation
by comparing the Nusselt numbers calculated through (5.3) and (5.4) with direct
measurements of the local vertical heat flux for two different Pr in the centre of the
cube. We compute the local Nusselt number as

Nucentre ≡ (RaPr)1/2 〈uzT
′〉t,centre (5.5)

using our non-dimensional set of variables (i.e. Nu ≡ (〈ûzT̂ ′〉t,centre)/(κ̂1T̂/Ĥ) using
dimensional quantities).

Figure 10 compares the directly measured vertical heat flux in the core region
with the vertical heat flux calculated from the turbulent-kinetic-energy dissipation rate
using (5.3) and the temperature-variance dissipation rate using (5.4) for both Prandtl
numbers.

The results for Pr = 0.7 presented in figure 10(a) reveal that the local heat flux
and the temperature-variance dissipation rate exhibit a similar scaling although their
absolute values differ by almost one order of magnitude. Figure 10(b) for Pr = 4.38
illustrates that the directly measured heat flux and the heat flux calculated from (5.3))
match closely for Ra 6 5 × 107, which is in agreement with the findings by Ni et al.
(2011), who observed that in their cylindrical cell filled with water the local vertical
heat flux in the centre of the cell is balanced by the local turbulent-energy-dissipation
rate. With increasing Ra, however, the two quantities extracted from the simulations
begin to differ. This might be due to a lack of statistical data, which might prevent
us from capturing very rare events, or a result of a different behaviour of the bulk
flow in a cube as compared to a cylinder, as was for example observed by Daya &
Ecke (2001). We therefore compare our results with experimental data obtained by
Shang et al. (2004) in the centre of a cylindrical cell with Ra ≈ 109 and Pr = 5.5.
It can be seen from figure 11(a) that the numerical and the experimental data are
in good agreement, even for values of the probability density as low as 10−5. The
only remaining parameter to explain the discrepancy is Nurms that has been used to
normalize the p.d.f., implying that the dynamics of the bulk are different in a cube and
a cylinder.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

74
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.74


Turbulent flow in the bulk of Rayleigh–Bénard convection 609

101

100

10–1

106 107 108

(a)

Ra

(b) 102

100

101

10–1
106 107 109108

FIGURE 10. (Colour online) Ra-scaling of direct measurements of the local Nusselt number
averaged over the entire time series (©), and the local Nusselt number estimated through
(5.3) (O) and (5.4) (�) all averaged over the volume Vcentre = (0.25H)3 for (a) Pr = 0.7
and (b) Pr = 4.38. Experimental data by Ni et al. (2011) (×) calculated from kinetic-energy
dissipation rates, i.e. (5.3), and direct measurements of the local heat flux by Shang, Tong &
Xia (2008) (4) are given in (b) for comparison.

The non-symmetric shape of the p.d.f. reflects the presence of two different
phenomena in the bulk region: random fluctuations represented by the negative
exponential tail of the p.d.f., while their positive tail is superimposed with increasingly
intermittent fluctuations which carry a net heat flux through the bulk. In figure 11(b)
we compare the p.d.f.s of the local heat flux averaged in time and over the core region
for different Rayleigh and Prandtl numbers. It is observed that for the cases with
higher Prandtl number the Nusselt number fluctuations are stronger, and hence the
p.d.f. more skewed, implying that more heat is transported through the bulk at higher
Prandtl numbers. This can be quantified by calculating the skewness of the p.d.f. We
find that this skewness increases monotonically with Ra as can be seen from figure 12.
Since the scaling of the skewness of the p.d.f.s shows a monotonic behaviour with
Ra, we conclude that the effect of very rare events might not be as large as initially
suspected, so that a geometrical effect appears to be the most plausible reason for the
observed difference in experimental findings in cylindrical cells.

Comparing the p.d.f.s of the vertical heat transport through the bulk with the heat
transport along the sidewall or through the entire cell, as measured experimentally
by e.g. Shang, Tong & Xia (2005) and Gasteuil et al. (2007), it is evident that
the Nusselt number fluctuations in the cell centre are about one order of magnitude
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FIGURE 11. (Colour online) (a) Comparison of p.d.f.s of the local vertical heat flux
measured in the core region of the flow for Ra = 1 × 109, Pr = 4.38 (- -) and Ra = 3 × 109,
Pr = 4.38 (—) with experimental data by Shang et al. (2004) (+). (b) p.d.f.s of the local
vertical heat flux for Ra= 3× 106, Pr = 0.7 (· · ·), Ra= 1× 108, Pr = 0.7 (-·-), Ra= 1× 107,
Pr = 4.38 (- -) and Ra= 3× 109, Pr = 4.38 (—) all averaged in time and over the core region
of the cube.
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FIGURE 12. (Colour online) Skewness of the p.d.f.s of the local heat flux in the centre
(Vcentre = (0.25H)3) of the cube for Pr = 4.38 (•).

smaller compared to the measurements that are subject to the frequent passing by of
the thermal plumes.

In order to gain a deeper insight into the dynamics of the heat transfer processes
in the core region of RBC, we evaluate the joint p.d.f. P(εu, εT) of the turbulent-
kinetic-energy dissipation rate and the temperature-variance dissipation rate and the
conditional average 〈Nu|εu, εT〉centre of the local heat flux depending on εu and εT . The
joint p.d.f.s of εu and εT presented in figure 13 reveal that, independent of Ra and Pr ,
the highest joint probability of εu and εT is found to occur at values smaller than their
respective mean values, while high dissipation rates are rarely observed. It is, however,
noted that there is a general tendency for high dissipation rates to occur together,
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FIGURE 13. (Colour online) Joint p.d.f.s of εu and εT in the core region of the cube for (a)
Ra = 3 × 106, Pr = 0.7, (b) Ra = 1 × 108, Pr = 0.7, (c) Ra = 5 × 106, Pr = 4.38 and (d)
Ra = 1 × 109, Pr = 4.38. The colour scale is in log(P(εu, εT)). The dashed red lines indicate
the mean values of εu and εT averaged over the core region and the dot-dashed black lines
their respective most probable values.

especially at Pr = 4.38, which can be seen from the protrusion in the top right corner,
while events with only high εu or high εT are hardly observed. This demonstrates that
few, but extreme events increase the dissipation rates in the bulk by around an order of
magnitude.

The conditional average of the local heat flux in figure 14 shows that for both
Prandtl numbers and all Rayleigh numbers the conditionally averaged heat flux is
increasing from low to high dissipation rates. It appears that the highest values of
the local heat flux occur for values of the dissipation rates larger than their mean,
revealing that heat is primarily carried through the bulk by rare, but extreme events,
which might be linked to the thermal plumes.

6. Structure functions in the core region
For sufficiently high Ra it is expected that for separations r within the inertial range

the pth-order structure functions of velocity Su
p = 〈(|1ru′|)p〉 and (passively advected)

temperature increments ST
p = 〈(|1rT ′|)p〉 scale according to the K41 prediction, namely,

〈(|1ru
′|)p〉 = βpε

p/3
u rp/3 (6.1)
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FIGURE 14. (Colour online) Local vertical heat flux 〈Nu|εu, εT〉centre in the core region of the
cube, conditioned on the local turbulent-kinetic-energy dissipation rate εu and temperature-
variance dissipation rate εT for (a) Ra = 3 × 106, Pr = 0.7, (b) Ra = 1 × 108, Pr = 0.7, (c)
Ra = 5 × 106, Pr = 4.38 and (d) Ra = 1 × 109, Pr = 4.38. The dashed red lines indicate the
mean values of εu and εT averaged over the core region and the dot-dashed black lines their
respective most probable values.

and

〈(|1rT
′|)p〉 = βT,pε

p/2
T ε−p/6

u rp/3, (6.2)

respectively, where βp and βT,p are constants. For BO59-scaling in the inertial range
one would expect scalings of the form

〈(|1ru
′|)p〉 = βBo,u,pε

p/5
T r3p/5 (6.3)

and

〈(|1rT
′|)p〉 = βBo,T,pε

2p/5
T rp/5. (6.4)

In order to check which range of Ra is of interest, we compare the integral
length scale as a measure for the upper bound and 10ηk as a lower bound
of the inertial range with the local Bolgiano length scale. We compute the
longitudinal and transverse correlation functions f (r) = 〈w′(r0 + rez)w′(r0)〉t,global and
g(r) = 〈w′(r0 + rex)w′(r0)〉t,global. The longitudinal integral length scale in the vertical
direction is then given by L11 =

∫∞
0 f (r) dr. The three length scales are illustrated

in figure 15, from which it can be deduced that for Pr = 4.38 Rayleigh numbers
larger than 3 × 108 will not satisfy the condition 10ηk < LB < L. Here we only
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FIGURE 15. (Colour online) Ra-scaling of the integral length scale L11 (�), the local
Bolgiano length scale LB,centre (H) and 10 〈ηk〉centre (×) for Pr = 4.38. The inset shows
the longitudinal f (r) = 〈w′(r0 + rez)w′(r0)〉t,global (-·-) and transverse correlation function
g(r) = 〈w′(r0 + rex)w′(r0)〉t,global (- -) of the vertical velocity for Ra = 3 × 108 and Pr = 4.38
averaged over the whole volume. The parabola 1 + 2r2/(f ′′(r = 0)) (—) determining the
Taylor microscale is given for reference.

plot the integral length scale computed from vertical velocity increments; however,
using horizontal velocity increments, i.e. f (r) = 〈u′(r0 + rex)u′(r0)〉t,global, yields the
same integral length scale. For some reason the structure functions for Ra = 5 × 107

decay much more slowly to zero than for the neighbouring data points, leading to
a significantly higher integral length scale, which is why we consider this point an
outlier and do not plot it in the figure.

The longitudinal velocity structure functions averaged over the bulk region with
V = (0.5H)3 presented in figure 16(a,c) show that their inertial range is very short
even for the highest Rayleigh number and no clear plateau is observed in the
compensated plot. Due to the short inertial range of the structure functions on the
one hand and the rapidly increasing local Bolgiano length scale on the other hand, it
might not be possible to observe a transition from BO59 to K41 scaling in the core
region of RBC with Prandtl numbers around unity by just examining the scaling of
the structure functions. It is, however, noted that the longitudinal velocity increments
in the vertical direction appear to approach a K41-like scaling. This observation is
consistent with the results obtained by Sun et al. (2006), who found K41-scaling
above the global Bolgiano length scale. The temperature structure functions in the
vertical direction shown in figure 16(b,d), on the other hand, tend to approach a
BO59 scaling for separations r > LB,centre. However, it is also noted that for separations
r < LB,centre the structure functions of vertical temperature increments exhibit a scaling
exponent smaller than the BO59 one; it is approximately p/10.

We note that the separation of scales is not large enough to observe an r0-scaling
for separations r > L11. We attribute this to the relatively large separation compared
to the size of the container. Thus, for large separations r the structure function is no
longer evaluated in the homogeneous region, but is influenced by the boundary layers.
For larger Ra this effect should gradually vanish. Despite the short inertial range of
the structure functions, the results seem to be consistent with K41 and BO59 scaling
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FIGURE 16. (Colour online) Plots of the pth-order longitudinal structure functions of the
vertical velocity structure function compensated with (a) K41 and (c) BO59 scaling and
temperature structure functions measured in the vertical direction in the centre of the cube
compensated with (b) K41 and (d) BO59 scaling for Ra = 1 × 109, Pr = 4.38; and (from
bottom to top) p = 2 (—), p = 3 (-·-), p = 4 (- -), p = 5 (· · ·), p = 6 (—), p = 7 (-·-), p = 8
(- -). The vertical lines represent the Batchelor length scale ηb (-··-), the Kolmogorov length
scale (-·-) and the local Bolgiano length scales LB,centre (– –) averaged over the centre of the
cube (Vcentre = (0.5H)3).

at scales r > LB of the longitudinal velocity and the temperature structure functions,
respectively. An influence of the boundary layers on this region of the structure
function can, however, not be ruled out.

We now analyse the mixed vertical velocity–temperature structure function
〈1w′1T ′〉 and test whether the relation

〈1rw
′1rT

′〉 = βuTε
3/5
T r4/5, (6.5)

where βuT is the proportionality constant, derived from BO59 theory (see e.g. Benzi
et al. 1998; Lohse & Xia 2010) holds for the turbulence in the core region of the
cell. It is seen from figure 17 that the low-Prandtl-number cases do not follow the r4/5-
scaling suggested by theory, even though at Ra = 1 × 108 and Pr = 0.7 there appears
to be a small region that approaches the r4/5-scaling. It is, however, questionable if this
scaling will be more clearly visible at higher Ra, since the Bolgiano length scale is
increasing rapidly and therefore possibly prevents observation of BO59 scaling in the
mixed structure function at low Pr . At Ra = 1 × 109 and Pr = 4.38 a small region
with r4/5-scaling has formed for r > LB. It is noted that for this Prandtl number the
local Bolgiano length scale is also increasing for Ra ' 3 × 108, so that increasing the
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FIGURE 17. (Colour online) Compensated plots of the mixed vertical velocity–temperature
structure function (—) and horizontal velocity–temperature structure function (- -) in the
centre of the cube for Ra= 1 × 109 and Pr = 4.38. The vertical lines represent the Batchelor
length scale ηb (-··-), the Kolmogorov length scale (-·-) and the local Bolgiano length scales
LB,centre (– –) averaged over the centre of the cube (Vcentre = (0.5H)3).

Rayleigh number might not be a good means to observe a longer range with BO59
scaling. On the other hand our data suggest that simulations at higher Prandtl numbers
and moderate Rayleigh numbers will provide reasonably long inertial ranges following
the BO59 scaling.

7. Conclusions
We have made a highly resolved DNS study of the small-scale properties of

turbulent Rayleigh–Bénard convection in the core region of a cubic cell, with the
Rayleigh number spanning approximately three decades and for two different values of
the Prandtl number. We find that the Ra-scaling of the global Bolgiano length scale
defined by the globally averaged dissipation rates can only be used as a scaling for
sufficiently large Pr , when Ra is neither too high, nor too low. For Pr = 4.38 it is
valid for 1×107 / Ra/ 2×108 and for Pr = 0.7 it is valid for Ra≈ 1×106, suggesting
that the region of applicability increases with increasing Ra. The complex scaling of
the local Bolgiano length scale in the centre is a result of the different scaling
behaviour of the temperature-variance dissipation rate and the turbulent-kinetic-energy
dissipation rate at intermediate Ra.

The joint p.d.f. of the turbulent-kinetic-energy dissipation rate and the temperature-
variance dissipation rate reveals that high values of εu and εT are very rare events
in the bulk, but are likely to occur together. The joint most probable dissipation
rates are on the other hand approximately one order of magnitude smaller than
their respective mean values. This demonstrates that rare but extreme events have a
significant influence on the dynamics of the bulk region. A conditional average of
the local vertical heat flux depending on both turbulent-kinetic-energy dissipation rate
and temperature-variance dissipation rate shows that the heat flux transported through
the bulk increases as the local dissipation rate increases, where large values of the
local vertical heat flux are predominant when the dissipation rates are larger than their
mean, indicating that the heat carried by thermal plumes plays an important role in the
dynamics of the bulk.
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It is observed that for Pr = 0.7 the local vertical heat flux in the centre of RBC
in a cube is balanced neither by the local temperature-variance dissipation rate nor
by the local turbulent-kinetic-energy dissipation rate. However, the local vertical heat
flux seems to obey the same scaling as the local temperature-variance dissipation rate.
For Pr = 4.38 we observe that for Ra 6 3 × 107 the local vertical heat flux through
the centre of the cell is balanced by the local turbulent-kinetic-energy dissipation rate,
which agrees with the finding by Ni et al. (2011) observed for 5 × 108 6 Ra 6 1010.
Despite the fact that the numerically and experimentally measured normalized p.d.f.s
of the local heat flux are in excellent agreement, our data do not confirm this
observation for high Ra. This discrepancy needs to be further investigated and more
statistical data should be collected in order to rule out long-term effects that might
influence the normalization Nurms. However, since the skewness of the p.d.f.s is
increasing with Ra, we infer that the differences observed here are an effect of the
cubic geometry as opposed to the cylindrical geometry of the experiments. Based on
the low-Ra data, we put forward the hypothesis that the balance of the local vertical
heat flux in the centre of RBC is Prandtl-number dependent, which is balanced by
the temperature-variance dissipation rate at low Pr and by the turbulent-kinetic-energy
dissipation rate at high Pr .

Our results show that the inertial-range longitudinal velocity structure functions in
the centre of the cube approach K41-scaling, while the temperature structure functions
approach the BO59-scaling for r > LB,centre. For smaller separations r the temperature
structure functions exhibit a scaling p/10. These observations tend to be more clear
and pronounced at high Prandtl numbers, suggesting further investigation of BO59
properties at high Pr . For the highest Ra simulated here we observe a tendency to
follow the 4/5-power law of the mixed vertical velocity temperature structure function,
which for Ra = 1 × 109 and Pr = 4.38 forms a short 4/5 scaling at separations
r > LB,centre.
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