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Brain Computer Interface (BCI) systems provide control of external devices by using
only brain activity. In recent years, there has been a great interest in developing BCI
systems for different applications. These systems are capable of solving daily
life problems for both healthy and disabled people. One of the most important
applications of BCI is to provide communication for disabled people that are totally
paralysed. In this paper, different parts of a BCI system and different methods used in
each part are reviewed. Neuroimaging devices, with an emphasis on EEG (electro-
encephalography), are presented and brain activities as well as signal processing
methods used in EEG-based BCIs are explained in detail. Current methods and
paradigms in BCI based speech communication are considered.

1. Introduction

The human brain controls the body by passing signals through a peripheral nervous
system. This process is started with the human’s intent and continues through
peripheral nerves until the destination body part is reached. Recent advances in
electrophysiological recording technology offer alternative ways to bypass the
peripheral nervous system and control a device directly by the brain. Such a system
that is responsible from translating brain activity to device control command is called
a Brain Computer Interface (BCI) .1

A BCImeasures the brain activity patterns produced by the user’s intent and uses it
for applications such as communication or control. This can be very useful for
patients with motor disabilities. However the application of BCI is not limited to
people with disabilities. BCI can be used in a variety of applications, from commu-
nication tools for Locked-In State (CLIS) patients to video gaming for healthy
people.
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An overview of a BCI system is given in Figure 1. The device to be controlled may
be a wheelchair, a neuroprothesis, a computer, a game console or any other device. In
a BCI system, the user represents his/her intention by a mental activity. The resulting
brain signals are transmitted to a computer and processed to generate a control signal
for the device to be manipulated. The control signal is used to change the state of the
device controlled and a feedback about the new state of the device is provided to the
user. The loop continues as the user changes his or her mental activity according to
the new state of the device.

Any BCI system interacts with the user by using different types of feedback signals.
Using these feedbacks provides the adaptation of the user to the system and also the
system to the user. Subjects learn to regulate their brain activities by using the online
feedback signals sent by the BCI system. The information collected may also be used
to train the BCI system through machine learning algorithms.

There are different control paradigms that define how the user interacts with the
BCI system. In asynchronous control, users can interact with a BCI any time without
worrying about timing. However, in a synchronous control system there are specific
time intervals that the user should respond to only in these periods. This is the easiest
and probably the most common paradigm in BCI applications.

People with motor disabilities can use BCI to control their environment.
Controlling the TV, lights, or room temperature can improve the quality of life for
these people.2 Locomotion is another BCI application that helps people with physical
impairments to control their wheelchairs autonomously.3 Improvements in BCI
technology have opened a new way to extend BCI use by non-disabled people. BCI
provides a new interaction modality to play video games or use computers. In some
recent studies, simple video games, such as Pacman, are being controlled by motor
imagery.4

Speech communication, which is also called silent speech, is one of the main
applications of BCI for people who have communication disabilities. There have been
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Figure 1. Overview of a BCI system.
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a lot of studies in the field. In these studies, a variety of brain activities have been used
to select the target letter from an on-screen display. One of the most popular para-
digms for BCI control in communication applications is to use P300 event-related
brain potentials. These signals are used in many speech communication studies in
BCI.5–9 Steady State Visual Evoked Potentials (SSVEP) are other types of control
signals that have been used frequently for speech communication.10–13 Motor
imagery signals are also popular in speech communication.14–16

The aim of this paper is to review BCI systems with an emphasis on speech com-
munication applications, This application is chosen since there are several studies in
the literature and it is most appropriate for showing how different approaches can be
used for the same purpose in BCI. In the next section, how to measure brain activity
in general is explained. In Section 3, different modalities for EEG signal acquisition
are explained since EEG is the most convenient and widely used approach in BCI
systems. In Section 4, how to process EEG signals is explained along with informa-
tion about the toolboxes, software libraries and datasets available for BCI applica-
tions. Then, in Section 5, the existing BCI systems for silent speech are summarized
and how to measure the performances of such systems is also explained. Finally,
conclusions are provided in Section 6.

2. Measuring Brain Activity

Brain activity produces electrophysiological and haemodynamic activities. There are
different sensors that can detect different types of activities in the brain. Signal
acquisition methods can be categorized in to two main groups: invasive and non-
invasive techniques. Table 1, which is an extended version of the table provided in
Ref. 17, summarizes different signal acquisition methods.

Invasive methods record the brain signals using sensors implanted inside the body.
Micro-electrode arrays (MeA) are highly invasive since they are implanted inside the
brain.18 Electrocorticographic (ECoG) activity recording is another invasive approach
in which the sensors are placed not inside but on the surface of the brain.19 Despite the
accurate signal recording ability of the invasive methods, surgery risks and implant-
related problems make these methods less preferable for BCI applications. However,
there are some studies that used EcoG20 and MeA21 for BCI applications.

Table 1. Properties of different signal acquisition methods.

Imaging
technique

Activity
measured

Direct/indirect
measurement

Temporal
resolution

Spatial
resolution Risk Portability

MeA Electrical Direct ∼0.03 s ∼2.8mm Highly invasive Portable
ECoG Electrical Direct ∼0.005 s ∼10mm Invasive Portable
EEG Electrical Direct ∼0.05 s ∼10mm Non-Invasive Portable
MEG Magnetic Indirect ∼0.05 s ∼5mm Non-Invasive Non-Portable
fMRI Metabolic Indirect ∼1 s ∼1mm Non-Invasive Non-Portable
NIRS Metabolic Indirect ∼1 s ∼5mm Non-Invasive Portable
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Non-invasive techniques involve all the methods that record brain activity from
outside of the body boundaries. These methods can measure two groups of signals:
signals from haemodynamic (blood oxygenation levels) activities 105 and signals from
electrophysiological (neuronal) activities.22 The first group of signals can be detected
with functional magnetic resonance imaging (fMRI) or near-infrared spectroscopy
(NIRS) methods. In fMRI, blood oxygenation level-dependent (BOLD) signals
associated with cortical activation are being measured. Different oxygen levels of the
blood can also be measured by NIRS, which is a portable device with a higher
temporal resolution but lower spatial resolution compared with fMRI.23 There are
few studies that use fMRI for BCI applications.24 This is because of the difficulty of
real time measurement of the brain activity. On the other hand, fNIRS has been used
in several BCI studies in recent years, although it has lower spatial resolution.25,26

Magnetoencephalography (MEG) and electroencephalography (EEG) methods
are two basic modalities for measuring brain electrophysiological activities. MEG
measures the brain activity with high resolution by measuring the magnetic fields
induced by the neuron’s electric current. However, MEG equipment is large and
expensive, which makes it a poor choice for BCI applications.17 Some studies have
used MEG for BCI applications, though.27–29

EEG also records brain activity by measuring the electrical fields produced by firing
neurons. EEG signals have comparatively low spatial resolution but, high temporal
resolution with cheap and easy to use equipment.17 These features make the EEG a
proper choice for BCI applications. EEG is used as the signal acquisition method in
plenty of BCI studies and therefore is explained in detail in the following section.

3. Brain Activities Used in EEG-based BCI

In EEG, sensor electrodes are placed over the head to measure the brain activity. The
number of electrodes can vary from 1 to more than 100. To accurately place
the electrodes over the head and measure the activities in different parts of the brain,
the International 10–20 System is being used. In this system, the distances between the
electrodes are 10% or 20% of the front–back or right–left distance of the skull. Each
region has a letter corresponding to the brain lobe (F frontal, T temporal, C central,
P parietal, and O occipital) and a number specifying the hemisphere location. The
electrode placement according to the International 10–20 System is shown in Figure 2.

The brain, as a result of conscious or unconscious mechanisms, may generate
different brain activity signals. The function of most of these signals is not under-
stood. However, the physiological phenomena of some of these signals are under-
stood and are being used in BCI applications. These signals are P300 evoked
potentials, Steady State Visual Evoked Potentials (SSVEP), Slow Cortical Potentials
(SCPs) and Sensory-Motor Rhythms and Motor Imagery.

3.1. P300

P300-evoked potentials are positive peaks in the EEG because of infrequent task-
related stimuli. These potentials appear in the EEG signal, approximately 300 ms
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after the stimulus. To evoke P300, the user is given a series of random stimuli.
Whenever the target (infrequent) stimulus is observed, P300 appears in the EEG.5

P300 signals are used widely in BCI applications from controlling cursers30 and
robots31 to speech communication.5–9

3.2. SSVEP

SSVEP signals are oscillations observable at the occipital lobe, because of visual
stimulation. The frequencies of the oscillations are the same as the frequencies of the
stimulation.32 When the subject focuses on a stimulus, the amplitude in the corre-
sponding frequency bands is increased. SSVEP signals are used mostly in speech
communication studies.10–13

3.3. SCP

SCP appears as a slow voltage shift in the EEG in the frequency range 1–2 Hz.
A decrease in cortical excitability causes negative SCPs and an increase in cortical
excitability causes positive SCPs. It is shown in Ref. 33 that users can be trained to
control their SCPs by using visual or auditory feedback signals. SCP signals are used
to provide communication for ALS patients.34

3.4. Sensory-Motor Rhythms and Motor Imagery

According to brain state, different oscillations happen in brain activity. These oscil-
lations are categorized into four different groups based on their frequency band in
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Figure 2. Electrode locations in the international 10–20 System.
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EEG: delta (1–4 Hz), theta (4–8 Hz), mu (8–13 Hz), beta (13–25 Hz), and gamma
(25–40 Hz). Sensory-Motor Rhythms (SMR) refers to oscillatory activities observed
in somatosensory and motor areas. The activations in different parts of the body are
mapped to different regions in the sensorimotor cortex of the brain. An activity in a
particular part of the body causes a decrease in SMR activity in the related brain area.
This decrease is called event-related desynchronization (ERD).35 Correspondingly,
event-related synchronization (ERS) is the increase in SMR activity during the
relaxation period after the body movements. These ERD and ERS activities also
happen when the subject is imagining the body movement and not actually moving
the body. ERS/ERD oscillations can be observed in EEG in beta and mu
frequency bands.

The term ‘motor imagery’ refers to moving a body part in imagination
without actually moving it. As discussed above, this imagination causes ERD
activities in the brain that can be observed in EEG. However, ERD/ERS patterns
of all body parts cannot be discriminated in EEG. The produced patterns should
be large enough to be distinguished from the background EEG. Currently, there
are four types of motor imagery actions that can be detected via EEG. These actions
are the movements of the left hand, right hand, feet and tongue. These four motor
imagery signals can be used to control BCI after attending sufficient training
sections.36

MI related signals are usually recorded by using C3, C4 and Cz electrodes in
EEG. Activity invoked by imagining the movement of right hand can be observed
mostly in electrode location C3. Left hand movement imagery can be observed
mostly in location C4. Movement imageries of left and right feet are not distin-
guishable since the corresponding motor rhythm origination areas take part in a
sulcus (groove in the cerebral cortex). Therefore, the measured potentials on the scalp
are spatially close. They both invoke activity mostly over the Cz area.37 Motor
imagery is used in wide range of BCI applications to send the desired command. In
Ref. 38 motor imagery is used for curser movement. It is also used for controlling a
wheelchair39 and a robot arm.40 Speech communication is another popular applica-
tion of motor imagery.14–16

4. EEG Signal Processing

Once the brain activity patterns are measured, the next step is to process these signals
in order to translate them to the appropriate control commands. This stage has three
steps: preprocessing, feature extraction and classification.

4.1. Preprocessing

The goal of the preprocessing step is to improve the quality of the desired patterns in
EEG and enhance the signal-to-noise ratio (SNR). There are three main steps in EEG
signal preprocessing: referencing, temporal filtering and signal enhancement.
Preprocessing also involves the removal of undesired EEG artefacts.
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Referencing
The choice of referencing in EEG-based BCI applications can change the results
dramatically. There are three main referencing strategies in EEG.

Common reference: In this approach an electrode far from the other electrodes is
selected as a reference. This method is widely used in BCI applications.

Average reference: In this method, the average of the activity of all electrodes is
subtracted from the measurements.

Current source density (CSD): It is ‘the rate of change of current flowing into and
through the scalp’.41 This quantity can be derived from EEG data, and it may be
interpreted as the potential difference between an electrode and a weighted average of
their surrounding electrodes.

Temporal Filtering
Informative brain signals for BCIs are found in the frequencies below 30 Hz.
Therefore, all other content with higher frequencies can be removed using a low pass
filter. Specific frequency bands may also be selected using band-pass filters.

Signal Enhancement
Because of the volume conduction, potentials from a large area affect the measured
potential in one electrode. To estimate the contribution of each electrode, a linear
transformation may be applied to the EEG signal. Methods such as Common
Average Reference (CAR) and Laplacian filter preserve the original values of elec-
trodes. Some other methods, such as Principal Component Analysis (PCA)42 and
Independent Component Analysis (ICA),43 try to find independent sources without a
direct reference to original channels. Some of these methods are explained in further
sections.

EEG Artefacts
The EEG signal includes undesired potentials that corrupt the brain signals. These
signals are called artefacts and should be cleaned before the processing step. Artefacts
may originate from outside the human body (non-physiological) or inside human
body (physiological). The first type of artefacts may originate due to recording
equipment. There are some activities inside the human body that may also cause
artefacts. Ocular artefacts, caused by eye blinking and pupil movement, and mus-
cular artefacts, caused by movement of body parts, are two main groups of physio-
logical artefacts.

Artefacts can be handled by using three different strategies: avoiding, rejecting and
removing. Artefacts may be avoided by asking the subjects to avoid moving and eye
blinking. Artefacts can also be identified and rejected by an expert in offline appli-
cations. An artefact removal approach attempts to detect and remove the artefacts
automatically during the signal processing step. Because of the online application of
BCI, this approach is the preferred method for BCI studies. In the literature there are
several methods for artefact removal, such as linear filtering, linear combination and
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regression, and Principle component analysis (PCA). Some of these methods are
explained in the further sections.

4.2. Feature Extraction

The goal of the signal processing stage of a BCI system is to separate brain patterns
related to a subject’s intention from the other patterns. Therefore, we deal with a
pattern recognition problemwhere different patterns should be classified according to
their features. Selecting suitable features is a challenging issue. The values recorded
from one electrode may contain overlapped signals from different sources. In this
section, we briefly discuss most common feature extraction methods for BCI
applications.

Time and Frequency Domain Features
Time domain features can be used when event related potentials are present in the
signal. The relevant information can be separated based on the EEG signal amplitude
by using methods such as band-pass filtering, windowing and down-sampling.
Frequency domain features are derived from oscillations in the EEG signal. These
features are mostly used in BCI systems based on SSVEP and motor imagery tasks.
Different types of time44 and frequency45,46 domain features have been used in BCI
studies. In Ref. 47, a fourth-order Butterworth band-pass filter is used to select the
frequency bands 6–30 Hz, including mu and beta bands that correspond to limb
movements. Then, different frequency bins and time segments are selected as fea-
tures. Event related desynchronization (ERD) and event-related synchronization
(ERS) can also be used as features. ERD and ERS are defined as the percentage of
power decrease (ERD) or power increase (ERS) in a defined frequency band in
relation to the reference interval with second duration before the verification of an
event.46 The band powers can be used as features in the classification algorithms.

Principal Component Analysis (PCA)
Principal Component Analysis (PCA) is an orthogonal linear transformation method
that transforms the data to a new basis according to variance of the data. The axes of
the new coordinate system, which are called the principal components, are ordered
with decreasing variance and the components having high variance are used to
represent the data. PCA is commonly used for reducing dimensionality of the data set
since correlated variables are also eliminated while projecting data to the lower
dimensional space.42 PCA is proven to reduce noise and improve the classification
accuracy. This method has been used in several EEG BCI applications. PCA is used
to reduce the dimension of the feature space before classification45,49–51 and also to
remove the EEG artefacts and reduce noise.48

Independent Component Analysis (ICA)
ICA is a statistical method that assumes the recorded value of the EEG signal is a
combination of independent sources coming from different cognitive activities inside
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the brain. No further previous information is used about the signals. The recorded
EEG signal is expressed by a linear or nonlinear function of the independent
sources.52 The number of independent components is usually assumed to be fewer
than or equal to the number of EEG channels. Like PCA, ICA uses information from
channels to identify patterns in brain activity related to different mental tasks. ICA is
usually used to remove artefacts from the EEG signal before the classification.53

However, it can also be used as a classification method.54

Common Spatial Pattern (CSP)
CSP tries to map EEG channels into a subspace where the differences between
channels are maximized and the similarities are reduced. The variances of the signals
filtered by CSP can be directly used as features for classification.55 CSP is designed to
solve two-class problems but can be extended to deal with multi-class problems too.
This method has been used in many BCI applications, especially for motor imagery
tasks.56,57

Genetic Algorithm (GA)
GA is originally an optimization method, which may be used for selecting efficient
features.58 In BCI studies, GA has been used to extract the optimal set of features
automatically. In this method, first a random population of chromosomes is
constructed. Each chromosome has binary value for each feature. Then, in each
iteration/generation a portion of chromosomes with best fitting values are selected for
the next generation. These chromosomes are then modified by cross-over and
mutation operations. In cross-over, two chromosomes are mixed to make new
chromosomes. In mutation, random changes happen at chromosomes. Fitness
is defined as classification accuracy for each chromosome. When the termination
condition is reached, the best chromosome is selected as the feature set for classifi-
cation. In BCI area, GA is used to select features from the power spectral density
(PSD) of each EEG channel during the motor imagery task59 and to select features for
P300 classification.60

AdaBoost
AdaBoost is a machine-learning algorithm first introduced for adaptive boosting.61

The main idea is to combine weak classifiers to construct a new strong classifier. The
features are selected by using the discriminative properties of the target and non-
target classes. AdaBoost performs dimension reduction by selecting a subset of fea-
tures according to the information provided in training data and eliminating the
unselected features. In BCI studies, AdaBoost is used for feature selection and also for
classification purposes.50,62

4.3. Classification

The classification step aims to determine the subject’s intention by using the features
provided in the previous stage. These features are used to construct boundaries
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between classes in the training stage of the classifier and then they are used to discover
the intention in the recognition stage. Some of the most popular classification
methods used in BCI studies are discussed in the following.

K-Nearest Neighbour Classifier (K-NNC)
In this classifier, the test sample is classified into a class based on the distance
between the features of the test sample and samples of different classes. K nearest
neighbours (with less distance) are selected from trained samples and the test
sample is assigned to the class with more neighbors.63 K-NNC is proven to be
efficient when the dimension of the feature vector is low and is not very popular in
BCI research.17

Linear Discriminant Analysis (LDA)
LDA is a simple classifier with acceptable accuracy and low computational require-
ments.64 LDA is designed for classification of two classes but can be extended for
multi-classes. For a two-class problem, LDA tries to define a hyperplane in the fea-
ture space that distinguishes the classes. This hyperplane is defined by a linear dis-
crimination function. LDA has some drawbacks, such as failing in the presence of
strong noise and not being stable. LDA can also be used for dimension reduction for
feature extraction before classification. There are some improved algorithms based
on LDA, like Fisher LDA (FLDA) and Bayesian LDA (BLDA).65 Because of the
ability of online computation, this method has been applied in many BCI
studies.15,17,45,46,66

Support Vector Machine (SVM)
The main idea in SVM is to select the hyperplanes separating the classes in a way that
the distance from the nearest training points of different classes is maximized.67,68

SVM was proposed originally for classification of two classes but it can be extended
to multi-classes. It provides simple, robust and fast classification without needing a
large training set. This method has been used in many BCI applications, especially to
classify P300 evoked potentials.17,36,50,66,69,70

Bayesian Statistical Classifier
Bayesian classifier assigns an observed vector x to a class y by maximizing the so-
called a posteriori probability P(y|x). For a feature vector x, a posteriori probability is
defined by Bayesian rule as P(y|x)=P(y)P(x|y)/P(x), where P(y) is the prior prob-
ability of class y and P(x|y) is the likelihood of x given class y.71 The likelihood
function is usually assumed to have Gaussian form. The parameters of the Gaussian
model are being estimated to achieve maximum likelihood or maximum a posteriori
(MAP). The Expectation Maximization (EM) algorithm is usually used to predict
these parameters.72

Although Bayesian classifiers are not very popular in BCI applications, they have
been used in some motor imagery and P300 studies.17,59
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Hidden Markov Models (HMM)
An HMM is a stochastic process that has unobserved (hidden) states that can only be
observed through another set of stochastic processes that produce the sequence of
observed symbols.73 Hidden Markov Models are well known for their application in
temporal pattern recognition such as speech recognition, and they have been used in
some BCI.74,75

Artificial Neural Network (ANN)
ANNs are non-linear classifiers that have been used in a wide variety of pattern
recognition applications. The multilayer perceptron (MLP) is a popular ANN
structure76 but several other models are also used.106 The backpropagation algorithm
is the most widely used algorithm for training MLP. In the backpropagation algo-
rithm, a labelled training set is fed to the network and the difference between the
output produced by the network and the desired output is computed. Then optimi-
zation methods such as gradient descent are used to minimize this difference by
changing network weights. The trained network can then be used for classification of
the new samples. There are a variety of other NN structures.107,108

Neural Networks are used in many BCI applications to classify two or more
tasks.77-83 They have also been used in the preprocessing step of EEG studies to
improve the classification accuracy.17

Deep Neural Networks
Deep neural networks is a recent approach in neural networks, allowing the network
to extract much more complex features of the input by using several hidden layers.
Each layer has a nonlinear activation function. In this way, deep networks can
represent more functions in a compact form. Due to the complexity of the deep
networks, training is a difficult task. The algorithms used to train the deep neural
networks are called Deep Learning. One approach is to pre-train a deep network
work by training each layer in turn. This approach is utilized in stacked autoencoder
networks. In a stacked autoencoder, multiple layers of autoencoders are connected to
each other consecutively.112 The parameters of each layer are learned separately, and
the activation units of the layer are computed. Then, the computed neuron outputs
are used as raw input for the next layer. Mapping from the last hidden layer to the
output can be performed by classification methods such as logistic regression. To
improve the results, a fine-tuning by backpropagation can be applied to tune the
change of all layers at the same time. Convolutional Neural Network,84 Stacked auto
encoders,85 and Deep Boltzmann Machine86 are the most widely used deep networks
for various applications.

Deep neural networks have been used in some recent BCI studies. Convolutional
neural networks are used for classification of P300 in Ref. 87. Stacked Auto Encoder
and Deep Boltzmann Machine have been used for classification of EEG motor
imagery signals.44,88 Convolutional neural networks and Stacked Auto Encoder are
used together in Ref. 89 to classify motor imagery signals.
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4.4. Tools, Libraries and Datasets

EEGLAB90 is a Matlab toolbox that may be used to analyse the EEG data and
different brain patterns. BCILAB91 is another Matlab toolbox for designing and
testing brain computer interface experiments. BioSig92 is an open source software
library that provides signal processing algorithms for biomedical applications. To
design an experiment with visual or auditory feedbacks and also in connection with
the EEG device, Psychtoolbox93 may be used in Matlab.

There are plenty of online datasets including BCI signals. The most popular datasets
are BCI competition datasets. BCI competition 200394 includes several datasets with
SCP, P300 and motor imagery signals. BCI Competition III95 includes different P300
and motor imagery datasets with different paradigms. BCI competition IV96 also has
different motor imagery datasets. There are also other online available datasets, such as
OpenVIBE dataset, that provide BCI signals.97

5. BCI Applications for Silent Speech

Silent Speech applications, which are BCI systems developed for speech
communication, do not use voice, but only brain signals. These systems can
be categorized in three main groups according to the brain response they use:
event-related potentials (ERP), steady state evoked potential (SSVEP), and motor
imagery (MI).

5.1. BCIs Based on P300

The best-known representative of this group is the P300 speller. The first speller based
on P300 was proposed in Ref. 5 and different modifications of it have been studied
afterwards.6–9,94,98

In such applications, a matrix of characters is displayed to the subject. The rows
and columns of the matrix are intensified sequentially and the subject attends to the
target character. A sample character matrix used in P300 spelling paradigm is shown
in Figure 3.

The attention of the subject to an intensified character evokes an enhanced P300
component. A classifier can be trained to detect the target character by using the
combination of intensified rows and columns. For signal processing, a time window is
usually applied to select the EEG samples related to P300 evoked potentials. Then,
different samples are selected from each channel and used as feature vectors
for training and testing. In the literature, different classification methods such
as SVM, neural networks and Bayesian linear discriminant analysis are used for
classification. Different spelling paradigms based on P300 are used in speech
communication studies.6–9

Even though there has been a lot of research in the P300 speller area, the most
recent systems are still not applicable for clinical use. The proposed systems lack
robustness across the users and the users cannot control the system easily.99
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5.2. BCIs Based on SSVEP

In this paradigm, flickering lights at different frequencies are used as the stimuli. For
each flickering frequency band, Steady-State Visual Evoked Potential (SSVEP)
oscillations happen in the visual cortex of the brain with the same frequency band and
higher harmonics. By using this fact, it is possible to detect if the subject is looking at
the display part with frequency f or 2f, 3f, etc. Several graphical interfaces have been
proposed for this purpose. Figure 4 shows a simple form of SSVEP speller. In this
example, symbol w is selected in three stages. Each stage is composed of four boxes in
the display with different flickering frequencies.100 Different forms of SSVEP-based
spellers are introduced for speech communication.10–13

Since the SSVEP is embedded in other ongoing brain activity and also noise, the
recording interval should be long. Another limitation is that only flickering fre-
quencies within a particular frequency range evoke a reasonable SSVEP response.101

Further studies are needed to provide a SSVEP-based speller for commercial uses.

5.3. BCIs Based on MI

As described before, moving a body part or imagining it produces neural activity in
the motor cortex of the brain that can be detected by EEG. Only a limited number of

Figure 3. P300 Spelling Paradigm character matrix that is displayed to user.94
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movements can be detected by using this method. So, a strategy should be used to
combine these acts and produce characters.

Different spelling interfaces have been proposed in the literature for MI-based
communication.

A speller is presented in Ref. 98 by using only two commands: left hand and both
feet. In this study, 30 different characters are divided into six hexagons around a circle
(Figure 5). By left hand command, the arrow rotates in a clockwise manner showing
the selected box, and by feet command the box is selected. A character can be selected
in two stages.

Another speller system based on MI system102 is shown in Figure 6. This system is
composed of four boxes. Twenty-six English characters and a space symbol are
grouped in three boxes. The fourth box is used for undo command. The subject selects
one of the boxes by imagining the movement of the corresponding body part. They
have used left hand, right hand, both hands and both feet movement for command.
The desired symbol can be selected in three stages.

5.4. Other Studies Use Similar Interfaces for Selecting Characters

Motor Imagery commands can be used in another manner to produce desired char-
acters. Each character can be coded into a combination of motor imagery acts. In this
way there is no need for a graphical interface. To our knowledge, there are only two
studies considering this approach in the literature. Both of these studies103,104 use
motor imagery EEG signals from an EEG dataset recorded109 with different MI
signals recorded separately. In other work, these signals are combined to synthesize
new words. An actual experiment for spelling and performance analysis is not per-
formed in these studies.

Figure 4. Character sets based on SSVEP.100

Figure 5. MI based speller with six hexagons chosen by two MI tasks.98
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5.5. Measuring Speller Performance

It is difficult to measure the performance of different BCI speller systems and com-
pare them in a meaningful way. BCI spellers use different spelling paradigms that
make them very different from each other. One traditional way to measure perfor-
mance is to compute typing accuracy. However, this doesn’t provide any information
about spelling speed, which is also an important issue, and an information transfer
rate (ITR) metric has been proposed to measure the performance of BCI speller
applications.110 ITR is the amount of information communicated per unit time. It
takes into account the accuracy, the number of possible selectable commands that the
interface supports, and the time required for communicating one command.
However, this metric has some drawbacks, such as considering backspace command
as a correct transformation of information. In addition, in spellers that use word
compilation strategies, this metric can’t provide a fair performance measurement.
Another strategy is to use character per minute measure beside bit per minute in ITR.

It has also been proposed to use output character per minute (OCM) measure for
spelling performance measurement.111 OCM is defined as the ratio of the total
number of characters in the final text to the total time spent spelling it. This metric can
be used to compare different BCI spellers with different paradigms and even different
language models.

6. Conclusions

This article has discussed different parts of a Brain Computer Interface (BCI) system
from signal acquisition to signal processing. How to measure brain activity in gen-
eral, and especially how different modalities for EEG signal acquisition can be used,
have been explained. Various EEG signal processing techniques used in BCI appli-
cation for preprocessing, feature extraction and classification have been presented
and information has been provided about the toolboxes, software libraries and
datasets. Various speech communication systems based on neural activity are
explained in detail. Current speech communication studies are discussed and different
spelling paradigms and methods are explained.

Figure 6. MI-based speller with four boxes each chosen by one of four MI tasks.102
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Speech communication systems can provide a huge benefit for people with severe
disabilities. Current spellers mostly use P300, SSVEP and motor imagery paradigms
to provide communication. Signal processing and machine learning algorithms for
BCI signals have been improved extensively in recent years. The classification per-
formances of these methods are near acceptable. However, designing a spelling
paradigm and graphical interface suitable for the daily life use of people with dis-
abilities is still a challenge. Current studies provide slow communication rates that
make them less preferable for common utilization. Improvements in signal processing
algorithms as well as designing easy to use and fast spellers are needed to make a
BCI-based speller in the future. New portable signal acquisition methods can also
help a lot to make a usable spelling device.
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