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Transport equation for the mean turbulent
energy dissipation rate in low-Rλ grid turbulence
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A direct numerical simulation (DNS) based on the lattice Boltzmann method (LBM)
is carried out in low-Reynolds-number grid turbulence to analyse the mean turbulent
kinetic energy dissipation rate, ε, and its transport equation during decay. All the
components of ε and its transport equation terms are computed, providing for the first
time the opportunity to assess the contribution of each term to the decay. The results
indicate that although small departures from isotropy are observed in the components
of ε and its destruction term, there is sufficient compensation among the components
for these two quantities to satisfy isotropy to a close approximation. A short distance
downstream of the grid, the transport equation of ε simplifies to its high-Reynolds-
number homogeneous and isotropic form. The decay rate of ε is governed by
the imbalance between the production due to vortex stretching and the destruction
caused by the action of viscosity, the latter becoming larger than the former as the
distance from the grid increases. This imbalance, which is not constant during the
decay as argued by Batchelor & Townsend (Proc. R. Soc. Lond. A, vol. 190, 1947,
pp. 534–550), varies according to a power law of x, the distance downstream of the
grid. The non-constancy implies a lack of dynamical similarity in the mechanisms
controlling the transport of ε. This is consistent with the fact that the power-law-decay
(q2∼ xn) exponent n is not equal to −1. It is actually close to −1.6, a value in keeping
with the relatively low Reynolds number of the simulation. These results highlight
the importance of the imbalance in establishing the value of n. The ε-transport
equation is also analysed in relation to the power-law decay. The results show that
the power-law exponent n is controlled by the imbalance between production and
destruction. Further, a relatively straightforward analysis provides information on the
behaviour of n during the entire decay process and an interesting theoretical result,
which is yet to be confirmed, when Rλ→ 0, namely, the destruction coefficient G is
constant and its value must lie between 15/7 and 30/7. These two limits encompass
the predictions for the final period of decay by Batchelor & Townsend (1947) and
Saffman (J. Fluid Mech., vol. 27, 1967, pp. 581–593).
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1. Introduction

The mean turbulent kinetic energy dissipation rate, ε, defined as

ε = ν
2

(
∂ui

∂xj
+ ∂uj

∂xi

)2

(i, j= 1, 2, 3) (1.1)

where ν is the fluid kinematic viscosity, ui are the velocity fluctuations in the
xi directions (the overbar denotes ensemble averaging), is of fundamental interest
in freely decaying turbulence because it determines the rate at which the turbulence
decays. Also of importance is its transport equation, which remains the most uncertain
part of turbulence modelling. The equation plays a vital role in the study of small-
scale turbulence, although under a simpler form, which, for high-Reynolds-number
homogeneous turbulence, where ε= νωiωi (ωi are the fluctuating vorticity components
and ωiωi is the mean enstrophy), is

dε
dt
= 2ν

(
ωiωj

∂ui

∂xj

)
− 2ν2

(
∂ωi

∂xj

)(
∂ωi

∂xj

)
, (1.2)

with
dε
dt
= ∂ε
∂t
+Uk

∂ε

∂xk
. (1.3)

The equation shows that for homogeneous turbulence, ε is governed by the difference
between the production due to the stretching of vorticity and its destruction through
the action of viscosity (the first and second terms, respectively, on the right of (1.2),
first established by von Kármán (1937) and subsequently analysed in the context of
decaying grid turbulence by Batchelor & Townsend (1947), hereafter denoted BT47.
This equation is derived by writing the transport equation for ωiωi using homogeneity,
multiplying it by ν, and neglecting the turbulent and viscous diffusions of vorticity. It
plays a critical role in various turbulence models used in computational fluid dynamics
(CFD). For example, Hanjalic & Launder (1972) proposed closure approximations
for the different terms of the equation, in particular, the sum of the production and
destruction terms. Arguing that, at a sufficiently large Reynolds number, this sum is
controlled by the dynamics of the energy cascade process transporting energy from
low to high wavenumbers and is thus independent of viscosity, the sum was modelled
as Cε2ε/q2, where q2 is the mean turbulent kinetic energy and Cε2 a constant. The
final form of the modelled equation is

dε
dt
= ε

q2
(Cε1P−Cε2ε) (1.4)

where Cε1 is a constant and P is the turbulence production. The constants Cε1 and
Cε2, which are supposed to be universal, were established using data from near-wall
turbulent flows and decaying grid turbulence, respectively. It is now generally accepted
that these constants are flow dependent. Rubinstein & Clark (2005) argued that no
single ε equation can be consistent with all classes of turbulent flows (at least when
Cε1 and Cε2 are considered constant). Equally of interest in CFD are the possible
variations of these constants with the Reynolds number. This is particularly important
for low-Reynolds-number turbulence modelling.
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290 L. Djenidi and R. A. Antonia

While (1.2) is important in the study of turbulence from both modelling and
theoretical points of view, it is nevertheless only a simplified form of the actual
transport equation for ε (Chassaing 2000):

∂ε

∂t
+Uk

∂ε

∂xk
=−ν

(
∂ui

∂xj
+ ∂uj

∂xi

)
uk
∂

∂xk

(
∂Ui

∂xj
+ ∂Uj

∂xi

)
T1a

− ν
[(

∂ui

∂xj
+ ∂uj

∂xi

)
∂uk

∂xj

∂Ui

∂xk
+
(
∂ui

∂xj
+ ∂uj

∂xi

)
∂uk

∂xi

∂Uj

∂xk

]
T1b

− ν
[(

∂ui

∂xj
+ ∂uj

∂xi

)
∂ui

∂xk

∂Uk

∂xj
+
(
∂ui

∂xj
+ ∂uj

∂xi

)
∂uj

∂xk

∂Uk

∂xi

]
T1c

− ν
(
∂ui

∂xj
+ ∂uj

∂xi

)(
∂ui

∂xk

∂uk

∂xj
+ ∂uj

∂xk

∂uk

∂xi

)
T2

− ∂εuk

∂xk
T3

− 2ν
ρ

(
∂ui

∂xj
+ ∂uj

∂xi

)
∂2p
∂xi∂xj

T4

+ ν ∂2ε

∂xk∂xk
T5

− ν2

[
∂

∂xk

(
∂ui

∂xj
+ ∂uj

∂xi

)]2

T6. (1.5)

Collectively, terms T1a, T1b, and T1c on the right of the equation represent the
production of the dissipation rate by interaction between the mean flow and the
turbulence. Term T2 is the production of the dissipation rate by turbulent stretching
(or creation). Term T3 represents the diffusion of the dissipation rate by the turbulence.
Term T4 is the dissipation rate/pressure gradient correlation. Term T5 is the viscous
diffusion, and term T6 is the destruction of the dissipation rate (or destruction by
viscosity). It is evident that measuring all the terms of this equation represents an
almost insurmountable task for experimentalists. At present, access to all these terms
can be achieved only through a direct numerical simulation (DNS). Mansour, Kim &
Moin (1987) used their DNS database of a fully developed turbulent channel flow to
compute all the terms on the right-hand side of the equation for the pseudo-dissipation
rate,

ε= ν ∂ui

∂xk

∂ui

∂xk
= ε − ∂

∂xk

(
νui
∂uk

∂xi

)
(1.6)

(for incompressible flow), which is relatively simpler than (1.5) (Chassaing 2000).
Following Corrsin (1953), Bradshaw & Perot (1993) showed that the difference
between ε and ε is less than 2 % in the viscous wall region, and negligible elsewhere.
Thus, in practice, it is often common to ignore the difference between ε and ε.

Since it is virtually impossible to measure all the terms in (1.5), much attention
has been paid to (1.2), mostly in decaying grid turbulence, as this flow represents a
good approximation of homogeneous isotropic turbulence (HIT). For this flow, (1.2)
becomes (e.g. Zhou et al. 2000)

dε
dt
= 7ε3/2

3(15)1/2ν1/2

(
S− 2G

Rλ

)
(1.7)
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where the destruction coefficient G (sometimes called palinstrophy coefficient) is
defined as

G= u2

(
∂2u/∂x2

)2[
(∂u/∂x)2

]2 (1.8)

and the skewness S of the velocity derivative is given by

S=− (∂u/∂x)3[
(∂u/∂x)2

]3/2 , (1.9)

with Rλ = u′λ/ν the Taylor microscale Reynolds number; a prime denotes the
root-mean-square (r.m.s.) value and λ is the Taylor microscale (λ2 = u2/(∂u/∂x)2). If
turbulence decays according to a power law, q2∼ xn (q2 is the mean turbulent energy,
x the distance downstream of the grid and n < 0) then ε ∼ nxn−1 and (1.7) can be
simplified to the form (George 1992; Zhou et al. 2000)

G= 15
7

(
n− 1

n

)
+ SRλ

2
. (1.10)

Equation (1.10) reduces to that obtained by BT (1947; 1948a) when n=−1, which
corresponds to the asymptotic state of decay at very large Reynolds numbers (e.g.
Dryden 1943; Speziale & Bernard 1992). Using a single hot wire, BT47 measured S
and G at several locations downstream of their grid. Their results show that S and G
are approximately constant while Rλ has a general tendency to decrease, albeit slightly,
with x/M, where M is mesh size. Antonia, Zhou & Zhu (1998) used three-component
vorticity measurements in grid turbulence and showed that both (1.2) and (1.10) were
satisfied reasonably well. However, while their data indicate that S is approximately
constant with respect to x/M, G and Rλ decrease slowly with x/M. This is also seen in
the data of Antonia et al. (2002). Further, Lee et al. (2014) showed that the ratio G/Rλ
increases while the product SRλ decreases. Constancy of SRλ requires that either S and
Rλ are both constant or S∼R−1

λ . The first condition appears to be only approximately
satisfied by the data of BT47 for RM = 5620. The second, which is a consequence
of George’s equilibrium similarity theory (George 1992), has yet to be verified. It is
also of interest to point out that the limiting behaviour of S as Rλ approaches zero
(i.e. the final stage of the decay) remains an open issue (e.g. Batchelor & Townsend
1948a; Reid 1956; Ling & Huang 1970; Bennett & Corrsin 1978; Tavoularis, Bennett
& Corrsin 1978).

Equations (1.2), (1.4), (1.7) and (1.10) are assumed to be valid at very high
Reynolds numbers and for homogeneous and/or isotropic conditions. To date, their
validation (in particular (1.7) and (1.10) which have been used for low-Reynolds-
number turbulence flows) has not been thoroughly investigated, mainly because of the
difficulties of measuring all the terms of (1.5). Even in the case of grid turbulence,
which plays a pivotal role in the theory of turbulence, such validation is lacking.
Quite remarkably, there has been so far no attempt to test these equations through
DNS. Thus, the purpose of this work is to examine (1.5) in the context of decaying
grid turbulence, and compare it with (1.2) and (1.7). All terms of (1.2), (1.5), and
(1.7) except T1a, T1b and T1c, are directly computed through DNS which is carried out
via the lattice Boltzmann method (LBM). There is currently no reported experimental
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or numerical data corresponding to all these terms in these equations. We believe that
the study provides the first detailed results on how these transport equations evolve
through the generation of turbulence and its subsequent decay at low Reynolds
number. It thus contributes to the study of low-Reynolds-number turbulence, a subject
which is yet to be fully investigated and, not surprisingly, inadequately understood.

2. Numerical procedure
2.1. Lattice Boltzmann method

A DNS is carried out using the LBM. Rather than solving the governing fluid
equations (Navier–Stokes equations), the LBM solves the Boltzmann equation on a
lattice (Frisch, Hasslacher & Pomeau 1986). The method has been successfully used
to simulate turbulent flows (Burattini et al. 2006; Djenidi 2006, 2008). Note that
unless otherwise specified all quantities are either expressed in lattice units or made
non-dimensional. Details on the LBM can be found in Chen & Doolen (1998) or
Succi (2001). Implementation of the LBM for this flow is given in Djenidi (2006)
and Djenidi, Tardu & Antonia (2013a).

2.2. Computational domain and boundary conditions
The computational uniform Cartesian mesh consists of 1600× 240× 240 mesh points
with 1x = 1y = 1z = 1 (x is the longitudinal direction and y and z the lateral
directions). The turbulence-generating grid is made up of 6 × 6 floating flat square
elements in an aligned arrangement (see Djenidi et al. 2013a). Each element is
represented by 1 × 20 × 20 mesh points and the mesh spacing (M) between the
centre of two elements is 40 mesh points (i.e. 2D, D being the length of an element
side), yielding a grid solidity of 0.25. The downstream distance extends to x/D= 70
(equivalently x/M = 35), where the origin of x is the grid plane and D = 20 mesh
points is the grid-element side length. Note that the same distance would require far
too large a number of mesh points if a grid made of vertical and horizontal bars
and with the same solidity were to be used. This is the main reason why the square
elements were chosen.

Periodic conditions are applied in the y- and z-directions. At the inlet, a uniform
velocity (U0=0.05, and V0=W0=0) is imposed, and a convective boundary condition
is applied at the outlet. It was observed that the convective condition affected
marginally the simulation results within a distance of less than 2D upstream of the
outlet. A no-slip condition at the grid elements is implemented with a bounce-back
scheme (Succi 2001). The Reynolds number, RM, is approximately 3200. This is a
relatively small value, which allows a reasonably good grid resolution which varies
from approximately 2.9η at x/D = 8 to 0.78η at x/D = 68; η is the Kolmogorov
length scale. A check for the computational accuracy is provided in the Appendix
Although a steady-state solution is obtained after 10 000 iterations, the first velocity
field is saved after the 50 000th iteration. Subsequently, 40 velocity fields are recorded,
each separated by approximately 15 000 iterations (approximately 5λ/u′, u′ being the
velocity fluctuation r.m.s. at x/D = 30) to ensure that two consecutive fields are
uncorrelated. In order to avoid the occurrence of instabilities where the magnitude
of the local strain rate could be large, mainly around the grid, a large-eddy simulation
(LES) scheme with a filter size equal to the mesh resolution was introduced. The
LES scheme is based on the Smagorinsky model and developed for the LBM by Hou
et al. (1996); details can be found in Djenidi (2006) and Djenidi et al. (2013a).
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RM x/D 1x/η L/1x Rλ

3200 8–68 2.9–0.78 8.5–27 56–19

TABLE 1. Variations of the ratios x/D, 1x/η, L/1x and Rλ.

The value of Rλ varies from approximately 60 at x/D = 8 to approximately 18
at x/D = 70. It should be noted that Rλ decreases rapidly from a maximum of
approximately 1300 at x/D= 0.5 to 92 at x/D= 5. The rate at which it decreases is
subsequently reduced. For example, Rλ = 25 at x/D = 30 and Rλ = 19 at x/D = 65.
The strong initial drop in Rλ indicates a transient stage. Beyond that regime, Rλ is
comparable to the values of BT47 (Rλ ' 22 for 20 6 x/M 6 120) for RM = 5620.
Table 1 reports variations of some characteristic length scales with the distance
downstream of the grid.

3. The mean turbulent energy dissipation rate ε
The streamwise variation of 〈ε〉 is shown in figure 1; the symbol 〈.〉 represents

time and space (in a plane perpendicular to the mean flow) averaging over 40 flow
realizations. Djenidi et al. (2013a) showed that single-point temporally averaged
statistics are equal to spatially averaged (over a transverse plane) statistics for one
realization. They also showed that the flow is spatially homogeneous (in planes
perpendicular to the mean flow) for x/D> 10. Thus, since the flow is stationary in
time and spatially homogeneous in the transverse directions, and the temporal and
spatial averages are equivalent, they concluded that the ergodic hypothesis is satisfied
in planes perpendicular to the mean flow. This implies that the present time–space
averaging is justified and 〈ε〉 is equivalent to the ensemble-averaged value ε in planes
perpendicular to the mean flow for x/D > 10. Accordingly, the notations 〈a〉 and a
will be used interchangeably. It is interesting to note that the results of Djenidi et al.
(2013a) vindicate the justification for relaxing Corrsin’s second and third criteria
on homogeneity; these state that ratio L/M (L is the height/diameter of the wind
tunnel) should be large and measurements should be made at least 40M downstream
of the grid for the turbulence to be homogeneous in planes perpendicular to the main
flow. These arguments were for a grid made of vertical and horizontal bars whose
two-dimensional wakes interact to generate the turbulent field. These arguments are
less likely to apply to the present grid made of floating flat square elements where
individual three-dimensional wakes interact to generate the turbulent field.

Figure 1 also reports the streamwise variation of εhom = νωiωi, the homogeneous
value of ε, and ε iso = 15ν(∂u/∂x)2, the isotropic value of ε. The good agreement
between ε and εhom confirms that the small-scale motion satisfies homogeneity closely,
except immediately downstream of the grid. It is remarkable that there is such a close
agreement between ε and εhom beyond a value of x/D as small as 0.5, and between ε
and ε iso when x/D> 3; ε, ε iso and εhom become indistinguishable at x/D= 3. From a
practical point of view, the figure suggests that ε iso can be used to estimate the true
dissipation rate in grid turbulence, even at an early stage of the decay.

The equality between ε and εiso needs to be discussed as it does not necessarily
imply that local isotropy is satisfied rigorously. Antonia et al. (1998) argued that there
is in fact a compensating effect among the 12 components of ε. Figure 2 shows the
streamwise distributions of all the terms of ε:
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10−1

10−2

10−3

10−4

10−1 100 101

FIGURE 1. Streamwise variation of εD/U3
0 downstream of the grid. Also shown are the

homogeneous and isotropic values of ε.

ε = ν(2u2
1,1 + 2u2

2,2 + 2u2
3,3 + u2

1,2 + u2
2,1 + u2

1,3 + u2
3,1 + u2

2,3 + u2
3,2

+ 2u1,2u2,1 + 2u1,3u3,1 + 2u2,3u3,2) (3.1)

(with ui,j = ∂ui/∂xj; in the rest of the text we will use the following convention:
i, j, k = 1, 2, 3, 1 ≡ x, 2 ≡ y, 3 ≡ z, u1 = u, u2 = v, and u3 = w). Clearly, all terms
contribute to ε, with the first nine terms on the right-hand side of (3.1) (denoted
d1–d9) positive and the three ‘cross-derivative products’ (denoted d10, d11, d12)
negative. Note that lateral homogeneity implies d2 = d3, d4 = d6, d5 = d7, d8 = d9
and d10 = d11. If isotropy were satisfied then the ratios di/d1 (i = 2,. . ., 9) should
all be equal to 1 and −di/d1 (i = 10, 11, 12) be equal to 0.5. Although not
shown here, these ratios are found to differ slightly from 1 and 0.5 throughout
the decay. For example at x/D = 25, d2/d1 = 1.03, d4/d1 = 0.98, d5/d1 = 0.96,
d8/d1 = 0.97, −d10/d1 = 0.50 and −d12/d1 = 0.53, indicating small departures
from isotropy; for d1–d9, the maximum departure is approximately 3 % whereas it is
almost 6 % for the cross-derivative terms (d10–d12), reflecting a genuine departure
from isotropy. Indeed these departures are larger than the simulation errors which
are approximately 2–3 % as estimated by computing G using (1.8) and (A 5) (see the
Appendix). Nonetheless, there is an evident compensation effect which produces an
almost perfect equality between ε and εiso, thus vindicating Antonia et al.’s (1998)
contention.

Remarkably, compensation comes into play at an early stage of the decay, as can
be inferred from figure 1. Note that the ω2

i data of Antonia et al. (1998) also satisfied
homogeneity (see figure 6 of Antonia, Orlandi & Zhou 2002) reasonably well in the
range 206 x/M6 80, although the agreement improved towards the end of the range,
probably because the spatial resolution of the probe improved with increasing x. It
is interesting to note the establishment of a power-law decay with an exponent nε '
−2.55 in the region x/D> 30 which corresponds to a power-law exponent n'−1.55
for q2. Note that because only a qualitative estimate of nε is sufficient for the present
purpose, the virtual origin x0 was assumed to be 0. Also, it is clear that a longer
distance is required to allow for a full establishment of the power law (as will be
seen later).
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−1

0

1

2

3
d1
d2, d3
d4, d6
d5, d7
d8, d9
d10, d11
d12

40 45 50 55 60 65 70

−2

0

2

4

100 101

FIGURE 2. Streamwise distribution of all terms of ε downstream of the grid. The inset
focuses on 406 x/D6 70; the terms are ordered as in (3.1).

A comment needs to be made with regard to (3.1) and the determination of ε from
the three-component vorticity probe of Antonia et al. (1998). These authors showed
that, by assuming incompressibility, terms d2 and d3 can be obtained via the following
relation:

2u2
2,2 + 2u2

3,3 = 2u2
1,1 − 4u2,2u3,3. (3.2)

Assuming homogeneity in the transverse (y, z)-plane, the equality

u2,2u3,3 = u2,3u3,2 (3.3)

should hold. After substituting (3.3) into (3.2), one can obtain

εhom,yz = ν(4u2
1,1 + u2

1,2 + u2
2,1 + u2

1,3 + u2
3,1 + u2

2,3 + u2
3,2

+ 2u1,2u2,1 + 2u1,3u3,1 − 2u2,3u3,2), (3.4)

the subscript hom, yz standing for homogeneity in the (y, z)-plane. In the present grid
turbulence, where the y- and z-directions are ‘equivalent’, one can expect expression
(3.3) to be true in planes perpendicular to the main flow. This is indeed observed in
figure 3 which shows that the ratio u2,2u3,3/u2,3u3,2 is almost equal to 1 immediately
downstream of the grid and remains equal to 1 for x/D > 10. This result explains
the good agreement between ε and εhom observed in figure 1, even though lateral
homogeneity is not quite satisfied in the region 0 6 x/D 6 1. It further implies that
lateral homogeneity at small scales can be well-approximated even though the flow
exhibits large-scale anisotropy. This has relevant implications for the measurement of
ε in turbulent wall flows such as a channel and a boundary layer. Away from the
wall and while the large-scale anisotropy is still important, one can estimate ε using
expression (3.4) if the homogeneity is valid at small scales; this of course requires
that all terms of (3.4) be measured. Antonia et al. (1998) demonstrated that this is
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10 20 30 40 50 60
0.90

0.95

1.00

1.05

1.10

FIGURE 3. Ratio u2,2u3,3/u2,3u3,2.

possible with the used of eight hot wires (four X-probes). They also measured ε using
the turbulent kinetic energy transport equation ((9.1) in their paper) and found εhom,yz'
ε. Unpublished DNS data in a turbulent channel flow by Abe (Private communication)
indicate that (3.3) is closely satisfied for y/h> 0.1 (y is the distance to the wall and
h is the half-width of the channel).

4. The transport equation for ε

The peak in ε at x/D' 2 indicates that the production (term T2 in (1.5)) is likely
to dominate the transport equation of ε in the early stage of decay. This is indeed
observed in figure 4 where all the terms on the right-hand side of (1.5), except T1a,
T1b and T1c, are reported. The sum T1=T1a+T1b+T1c (not reported here), obtained by
summing the remaining terms of (1.5) quickly becomes negligible, as can be inferred
from figure 5, which shows −U0(∂ε/∂x), −(T2 + T3 + T4 + T5 + T6) and −T6 (which
is only shown for comparison). The good balance between the left- and right-hand
sides of (1.5) is a measure of the accuracy of the simulation.

In the region 06 x/D6 30, all the terms of the transport equation (1.5) contribute
to the budget, except the viscous diffusion (T5) which is practically zero everywhere.
While the turbulent diffusion (T3) is positive up to x/D ≈ 1.6 before becoming
and remaining negative throughout the decay, the pressure term (T4) has an opposite
behaviour. It is clear that the terms T2 and T6 dominate the budget; they are dominant
throughout the decay (figure 4), suggesting that the stretching of vorticity, i.e. the
production of intense ‘spotty’ vorticity (BT47), and the destruction of vorticity,
through viscosity, control the turbulence decay. In particular, these two mechanisms
are very important in the region x/D 6 5 (figure 4), with the production being
stronger, leading to an intensification of the turbulence. Not surprisingly, the location
x/D ' 2, where T2 is largest, is the same as that where ε is maximum. However,
for larger x/D, the term T6 becomes larger than T2, reflecting the dominance of
the destruction by viscosity over production, thus constraining the turbulence to
decay. Although it decreases, T2, which represents both the stretching (positive) and
compression (negative) of vorticity, remains positive, implying that stretching occurs
more frequently than compression.
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FIGURE 4. Terms in the transport equations of ε ((1.2) and (1.5)):T2 = production
of dissipation by turbulent stretching; T3 = diffusion of dissipation by turbulence;
T4 = dissipation/pressure gradient correlation; T5 = viscous diffusion; T6 = destruction
of dissipation. Inset: range 406 x/D6 70. The data are normalized by (U4

0/D
2).
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FIGURE 5. Comparison between U0(∂ε/∂t), (T2+T3+T4+T5+T6) and T6. The data are
normalized by (U4

0/D
2).

Recalling that all terms of (1.5) are averaged in a plane perpendicular to the mean
flow, the streamwise evolution of the term T3 in figure 4 suggests∫ ∞

0
T3dx=

∫
Ω

T3dΩ = 0, (4.1)

where Ω is the volume 70D× 12D× 12D, i.e. the computational domain behind the
grid. This relation implies that the overall contribution of the turbulent diffusion of ε
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within the entire turbulent field is zero. This is consistent with the following analysis.
In the present turbulent flow, the term T3 takes the form

− ∂εuk

∂xk
=−∂εu

∂x
. (4.2)

Indeed, averaging over a plane perpendicular to the mean flow erases any lateral
inhomogeneity and leads to −∂εv/∂y = −∂εw/∂z = 0. Integrating (4.2) with respect
to x leads to [εu]∞0 = 0 if εu= 0 at x= 0 and x=∞, which one expects to be the
case. It is less obvious whether integration of the T4 term with respect to x yields
zero or not. In the present flow, T4 takes the form:

T4 =−4ν
ρ

∂

∂x

(
∂u
∂xj

∂p
∂xj

)
, (4.3)

where the continuity equation, ui,j = 0, has been used in conjunction with the
permutation ∂A/∂xi = ∂A/∂xi. After integration of (4.3), one obtains

∫ ∞
0

T4dx=
[

4ν
ρ

(
∂u
∂xj

∂p
∂xj

)]∞
0

. (4.4)

While [(4ν)/ρ(∂u/∂xj)(∂p/∂xj)] = 0 for x = ∞ is supported by the asymptotic
behaviour of T4 at large x/D, it is not evident whether [(4ν)/ρ(∂u/∂xj)(∂p/∂xj)] = 0
or not when x/D = 0. Nevertheless, the overall contribution of T4 is without doubt
small. Note that the contribution of both T3 and T4 is localized in a relatively short
region (0 6 x/D 6 7) downstream of the grid, where any gain or loss of ε by the
turbulent diffusion is offset, at least in part, by the pressure diffusion. These two
terms arise in this region because the turbulence is strongly non-homogeneous. Still,
their net contribution to the transport of ε as the turbulence evolves from its birth to
its death is relatively weak, if not negligible. This shows that even at a low Reynolds
number, the transport equation of ε can be remarkably well-represented by a much
simplified form of (1.5) where only the terms T2 and T6 are retained on the right-hand
side of the equation.

5. Simplified form of the transport equation of ε

The previous section showed that (1.5) can be simplified to

Uk
∂ε

∂xk
=−ν

(
∂ui

∂xj
+ ∂uj

∂xi

)(
∂ui

∂xk

∂uk

∂xj
+ ∂uj

∂xk

∂uk

∂xi

)
︸ ︷︷ ︸

T2

−ν2

[
∂

∂xk

(
∂ui

∂xj
+ ∂uj

∂xi

)]2

︸ ︷︷ ︸
T6

(5.1)

(the term ∂ε/∂t is zero). While T2≈ 2ν
(
ωiωj∂ui/∂xj

)
and T6≈ 2ν2

(
∂ωi/∂xj

) (
∂ωi/∂xj

)
,

there are some differences close to the grid, which seem to weaken but not vanish
as x/D increases, as observed in figure 4. This persistence has yet to be explained.
Equation (5.1) shows that the production and destruction terms control the decay of ε
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FIGURE 6. Destruction (solid line) and production (dashed line) of ε and their sum
(circles). The data are normalized by (U4

0/D
2).

(figure 1), at least in the region x/D> 10. One may then infer that the occurrence of
the power-law decay visible in ε should be reflected in these terms and their sum. This
is indeed observed in figure 6, which shows T2, −T6 and −(T2+T6); all three exhibit
a power-law decay. Since −T6 is larger than T2, it imposes its form of decay on the
sum and ultimately on ε. Note that the sum is negative in the region 1 6 x/D 6 4,
where production is larger than destruction. Of particular interest is that the balance
between production and destruction (i.e. T2 + T6) is not constant during the decay,
which seems to be at variance with BT47, who argued that the balance is essentially
the same at all stages of the decay. This is important as it signifies that there is no
dynamical similarity of those aspects of the turbulence which control the dissipation
balance, at least at finite Reynolds numbers.

To gain some insight into the destruction term, T6, which is critical to the decay
of turbulence, the contributions of its individual terms are analysed next. For grid
turbulence, where homogeneity is satisfied in planes perpendicular to the main flow
and the y- and z-directions are equivalent, T6 takes the form

T6=−ν2(4u2
1,11+ 4u2

2,11+ 8u2
1,22+ 12u2

1,12+ 24u2
2,22+ 24u2

2,12+ 8u1,12u2,11+ 16u1,22u2,21),

(5.2)
where the notation ui,kl is used to represent the second-order derivative of the velocity
component ui with respect to the coordinates xk and xl. The streamwise variation of
each term of (5.2) is displayed on figure 7. Of the eight terms, 24u2

2,22 and 8u2
1,22

are the dominant ones, in particular in the region 20 6 x/D, which controls the
decay of T6. Notice that all terms appear to follow a power-law decay for x/D> 20.
Also evident is the compensation among terms, e.g. −16u1,22u2,21 balances exactly
12u2

1,12, while −8u1,12u2,11 balances 4u2
1,11 when x/D> 20. This is reminiscent of the

compensation observed among the terms of ε. It is then reasonable to enquire if T6

satisfies isotropy. Using the sixth-order isotropic tensor form for ui,kmuj,ln (first derived
by Wyngaard (see Champagne 1978 and Wyngaard 2010), the following isotropic
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FIGURE 7. Streamwise variation of all terms in (5.2).

relations among the second-order velocity derivatives are obtained:

u2
1,22 = 3u2

1,11,

u2
1,12 = 2u2

1,11/3,

u2
2,22 = u2

1,11,

u2
2,11 = 3u2

1,11,

u2
2,12 = 2u2

1,11/3,

u1,12u2,11 =−u2
1,11/2,

u1,22u2,21 =−u2
1,11/2,


(5.3)

and are reported in figure 8. Isotropy is not as well-satisfied for u2
2,22/u

2
1,11 and

(1/3)u2
1,22/u

2
1,11 as for the other ratios. For example, over the region x/D > 50,

isotropy is satisfied by u2
2,22/u

2
1,11 to within 13 %, and by −2u1,12u2,11/u2

1,11 to within
5 %. There is a general tendency for isotropy to improve as x/D increases. If isotropy
applies, (5.2) simplifies to

T6,iso =−84ν2u2
1,11. (5.4)

This is compared to T6 in figure 9. Not surprisingly, the departure from isotropy
exhibited by the individual terms of T6 (figure 8) is also observed in T6,iso, which
does not follow T6 exactly. Nevertheless, the difference weakens with increasing x/D;
at x/D= 10 and 65, T6,iso is approximately 20 % and 9 % larger than T6, respectively,
mirroring the improvement in isotropy of the individual terms of T6 as x/D increases.
The present results corroborate the grid turbulence results of Antonia et al. (1998)
who measured ω2

2,1, ω2
3,1, 2ω2

1,1, three of the destruction components as expressed by
the second term on the right of (1.2). They showed that the isotropic relation

ω2
2,1 =ω2

3,1 = 2ω2
1,1 (5.5)
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FIGURE 8. Streamwise variation of the ratios ui,kmuj,ln/u2
1,11 given in (5.3).

10−2

10−1 100 101

10−4

10−6

T6

FIGURE 9. Comparison between the actual destruction term (−T6) and its isotropic
expression (84u2

1,11). Also shown are other forms of the destruction term given by the
second term on the right-hand side of (1.2) and 2fεG/Rλ from (1.7)). The data are
normalized by (U4

0/D
2).

was verified to within ±10 %. Also reported in figure 9 are the other forms of
the destruction term given by the second term on the right-hand side of (1.2)
and 2fεG/Rλ (fε is the factor in front of the parentheses in (1.7)). Altogether, T6,
2fεG/Rλ, and 2ν2

(
∂ωi/∂xj

) (
∂ωi/∂xj

)
are relatively close to each other for x/D > 4,

although T6 remains slightly larger than the other two for x/D > 15. Interestingly,
the difference between T6 and 2fεG/Rλ reflects the anisotropy of the large scales as
expressed by the difference between the Reynolds normal stresses u2 and v2. This
difference remains constant downstream of the grid; its magnitude R = v2/u2 = 0.87
is typical of grid turbulence measurements (Lavoie, Djenidi & Antonia 2007). This
can be seen as follows: isotropy at large scales implies q2

iso = 3u2. However, for
grid turbulence, u2 > v2(v2 = w2) which leads to q2 = u2(1 + 2R). For the present
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FIGURE 10. Variation of Rλ and G with x/M. Note that we used x/M rather than x/D for
a better comparison with the measurements. Rλ: LBM (solid line), BT47 (•); G computed
with (1.8): LBM (dashed line), BT47 (�). G computed with (1.10): dotted-dashed line,
LBM; 4, BT47 with S= 0.49; �, BT47 with S= 0.39. Inset: variation of S (LBM) with
x/M; the line S= 0.39 is used only for reference.

simulation, q2 = 2.74u2, which is 8.6 % lower than q2
iso. The low level of anisotropy

of the small scales appears to be constant with the downstream distance, merely
echoing the constancy of global anisotropy. One expects the small scales to become
increasingly less affected by the large scales as the Reynolds number increases, with
a subsequent continuous improvement in isotropy. Collectively, the results reported in
figures 4 and 9 underline the correspondence between the individual terms of (1.2)
and (5.1) despite the low value of the Reynolds number. In other words, the present
data justify the use of (1.2) as a reliable surrogate for (1.5) in low-Reynolds-number
grid turbulence. This has implications for grid turbulence measurements where Rλ is
often not much greater than 50, and which are limited to only a few quantities.

6. Relationship to the power-law decay

For high-Reynolds-number homogeneous and isotropic turbulence, (5.1) becomes
exactly (1.7), which is equivalent to (1.10) if turbulence decays according to a power
law (i.e. q2∼ xn or ε∼ xn−1 with n< 0), and ε= νωiωi. Thus the equation can be used
for estimating G, once Rλ and S are known. This, however, requires knowledge of n,
which must be determined independently. BT47 used such a procedure with n=−1.
Figure 10 compares the values of G calculated with (1.8) and (1.10) for both BT47
(RM = 5620) and the LBM simulation; Rλ is also reported in the figure. Arguing that
S is an absolute constant, independent of RM, BT47 used S= 0.39, even though their
measurements for RM= 5620 indicated a value of approximately 0.49 for S. The value
0.39 is the average of S measured over the range RM = 4.4 × 103 to 4.4 × 104. We
also calculated G with the data of BT47 but using n=−1 and S = 0.49 and report
the results in figure 10. For the LBM data we used n=−1.55 and the actual values
of S (shown in the inset in figure 10). Although the numerical data cover a shorter
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downstream distance than the experimental data, a comparison between the two sets
of data is instructive. The difference in the magnitude of Rλ between measurement
and simulation reflects different initial conditions (e.g. RM and grid geometry). While
not shown in the figure, the measurements of BT47 show that both Rλ and G are
approximately constant for x/M > 40. BT47 used analogue differentiators to measure
S and G and indicated that their differentiating circuit is susceptible to amplifier noise
that can increase the uncertainty in their estimates of G especially when the turbulence
intensity is low. Since BT47 did not provide spectra, it is not possible to check their
values of G via the relation

G=

∫ ∞
0

Eu(k1)dk1

∫ ∞
0

k4
1Eu(k1)dk1[∫ ∞

0
k2

1Eu(k1)dk1

]2 (6.1)

(see the Appendix). More recent experimental data (Zhou et al. 2000; Zhou, Antonia
& Chua 2002; Lee et al. 2014) show that Rλ actually decreases with increasing x/M,
albeit slowly, while G is almost constant. Unfortunately, the short x/M range of the
numerical data prevents drawing a definitive conclusion on this issue. Nonetheless,
the conclusion that can be drawn is that for x/M> 20, it is impossible to distinguish
between the directly estimated value of G and that calculated with (1.10). This
is a very important result because while (1.7) and (1.10) were used for analysing
both experimental (e.g. BT47, Antonia et al. 2004, Lee et al. 2014) and numerical
(Antonia & Orlandi 2004; Mansour & Wray 1994) data, they have not been verified
previously. The present results clearly confirm that (1.7) and (1.10) are appropriate
for investigating decaying turbulence downstream of a grid or in a three-dimensional
periodic box.

The measured Rλ of Zhou et al. (2002) shows a decrease, albeit at a smaller rate
than observed by Zhou et al. (2000). Antonia et al. (2004) argued that, according to
(1.10), G varies linearly with Rλ or the product SRλ if S is not constant. Regarding
the BT47 data, it is quite remarkable that G calculated with (1.10) and S = 0.49
is approximately 15 % larger than the directly estimated G, while the calculated G
with S= 0.39 is only approximately 3 % higher. Unfortunately, we can only speculate
as to the reasons why the agreement is better with S = 0.39 instead of the actual
value S = 0.49. Aside from the likely systematic experimental errors, one can point
to the use of n=−1. It is now well-accepted that a value of −1 for n corresponds
to complete self-preservation and is unlikely to be found at finite Reynolds numbers;
so far n=−1 has not been obtained experimentally or by DNS. Using a fixed-point
analysis, Speziale & Bernard (1992) showed that a power-law decay q2 ∼ t−1 is
consistent with completely self-preserving decay at very high Reynolds numbers,
as was inferred earlier by Dryden (1943) from a self-preserving analysis of the
Kármán–Howarth equation. In this case, Rλ must remain constant. The good match
between the numerical values of G calculated with (1.8) and (1.10) implies that
−1.55 is a reasonably close estimate of n, which can be also calculated as follows:

n= 1
1+ 7

30(SRλ − 2G)
. (6.2)

The variation of −n with x/M inferred from (6.2) and the numerical data for S, Rλ
and G is reported in figure 11. For x/M> 25, −n is only approximately 6.5 % higher
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FIGURE 11. Variation of −n, computed from (6.2), with x/M. Solid line: LBM. Symbols:
BT47 for RM = 5620, and ◦, S= 0.49; •, S= 0.39.

than 1.55, reinforcing not only the internal consistency of the data but also that (6.2)
provides a reliable means for estimating n without the need of knowing x0, the virtual
origin. The value of −n ' 1.6 is larger than that commonly measured (1.1–1.4) in
wind tunnel experiments (Mohamed & LaRue 1990; Lavoie et al. 2007) and reflects
the low value of Rλ. Figure 11 also reports n calculated with (6.2) for the data of
BT47 for Rλ = 5620 with S = 0.39 and 0.49. While S = 0.39 leads to n = −1.16,
S = 0.49 yields rather large values of n. This inconsistency reveals the difficulty in
measuring adequately both G and S and the need to run consistency checks to ensure
reliable results; (1.10) or (6.2) could be used for such consistency checks.

Returning to (5.1), one can observe that the decay of ε, and ultimately that of
q2, is controlled by the imbalance between production and destruction, T2 and T6,
respectively (or S and G in the case of (1.7)). An interesting consequence is that if the
decay follows a power law, then the exponent n must be affected by that imbalance
as seen in (6.2). The effect of initial conditions is felt through S and G. According to
(1.7), S − 2G/Rλ = const. implies a power-law exponent of −1. However, when S −
2G/Rλ is not constant, the equation may still lead to a power-law decay if S− 2G/Rλ
varies like xγ . This is supported by the present LBM data reported in figure 12, which
shows the variation of −(S−2G/Rλ) with x/D in log–log scale. There is a clear linear
region when x/D> 30, which corresponds also to the region where a power-law decay
is observed in ε (see figure 1). The slope (i.e. γ ) of the linear region is approximately
0.33. Integration of (1.7) with respect to x after substituting S − 2G/Rλ ∼ xγ into
the equation, yields ε ∼ x−2(γ+1) (Lee et al. 2014). Since ε ∼ xn−1, it follows that
γ = −(n + 1)/2; for γ = 0.33, n = −1.66. Not surprisingly, this value is about the
same as that calculated with (6.2) (see figure 11), providing further confidence in
the validity of (1.7) at low Reynolds numbers, and that (1.10) (or (6.2)) is an exact
expression in which n, S and G are intimately related. Interestingly, this result would
entail that the small-scale motion may play, along with the large-scale motion, a role
in establishing the value of n, a result at odds with the more traditional thinking that
n is solely controlled by the large-scale structures. Mansour & Wray (1994) argued
that the difference between the production and destruction rates of ε, namely Cε2, not
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100

10−1

100 101 102

FIGURE 12. −(S − 2G/Rλ) as a function of x/M. The straight line is used as a visual
aid only.

only is sensitive to the initial conditions, but also depends on both the large scales
(through q2 in (1.4)) and the small scales. Lee et al. (2014) also argue that their grid
turbulence measurements support the idea that one cannot overlook the role of the
small scales in determining or at least maintaining the decay rate exponent of q2.

Although the present work is not concerned with the initial and final periods of
decay, it is nevertheless of interest to discuss the transport equation (1.10) with respect
to these decay stages. Recasting the equation as

G
Rλ
= 15

7

(
n− 1

n

)
1

Rλ
+ S

2
, (6.3)

Lee et al. (2014) compiled grid turbulent data (for both passive and active grids) for
Rλ ranging from approximately 10 to 1000 and plotted them along with their own
measurements in the form of G/Rλ as a function of Rλ. We reproduce a selection of
their data sets in figure 13, which includes the data of BT47 (Rλ= 5620), Zhou et al.
(2000, 2002) and the present LBM data (only for x/M > 15). The lines, computed
with (6.3), are presented to illustrate the effect of n, S and Rλ on the behaviour
of the ratio G/Rλ. In computing the lines, values of n and S are assumed to be
constant for all Rλ, an assumption which is clearly not valid. This however does not
affect a qualitative discussion on the asymptotic states. When Rλ is very large, the
solution should approach the result corresponding to stationary turbulence, namely
G/Rλ= S∞/2. The present LBM data fall within the range of existing data at similar
Rλ (see inset of figure 13). Two important observations can be drawn from the
figure: (i) G/Rλ→∞ when Rλ→ 0 and (ii) G/Rλ→ const. when Rλ→∞. The first
observation indicates that G approaches a non-zero value in the final period of decay,
or at least that Rλ decreases much more rapidly than G. The second shows that
G→ 0.5S∞Rλ at very large Rλ, i.e. G varies linearly with Rλ. This trend is supported
by recent experimental results, e.g. the data gathered by Lee et al. (2014) up to
Rλ ' 103, and the EDQNM results of Meldi & Sagaut (2013). Associated with this
trend is the approach of n to its asymptotic value of −1 (e.g. Antonia et al. 2013;
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FIGURE 13. G/Rλ as a function of Rλ. The data symbols are extracted from Lee et al.
(2014). LD: Larssen & Devenport (2011); ZA: Zhou & Antonia (2000); HL: Huang &
Leonard (1994); MW: Mydlarsky & Warhaft (1996); KCM: Kang, Chester & Meneveau
(2003). Inset: short thick solid line, LBM; ◦, BT47; �, Zhou et al. (2002); �, Zhou et al.
(2000); to facilitate viewing a log scale is used for the abscissa. The lines are computed
with (6.3): solid, n=−1.55, S= 0.43; dot-dashed, n=−1.0, S= 0.39, dashed, n=−1.2,
S= 0.50.

Meldi & Sagaut 2013). Further, (6.3) can be reformulated as

S− 2
G
Rλ
= 30

7

(
n− 1

n

)
1

Rλ
, (6.4)

which indicates that S− 2G/Rλ→ 0 asymptotically as Rλ→∞, leading to stationary
turbulence. Thus, one expects the decay term in the ε-transport equation (represented
by the right-hand side of (6.4)) to decrease with increasing Reynolds number, implying
that the small-scale turbulence approaches stationarity (or universality) in accordance
with the Kolmogorov theory (Kolmogorov 1941). Note that if the turbulent kinetic
energy decays like x−1, the flow is expected to satisfy complete self-similarity and Rλ
remains constant with x. This is yet to be observed. It is worthwhile pointing out that
(6.4) is an exact equation, and as such imposes an exact dynamical constraint on the
asymptotic behaviours of S and G as Rλ→∞.

Equation (1.10) can be further exploited for discussing the decay as Rλ decreases.
One may consider two limiting cases: (i) S= βRαλ (β > 0 and α> 0) or (ii) S= const.
Mansour & Wray (1994) (see also Tavoularis et al. 1978) showed that for Rλ 6 5, S
decreases with decreasing Rλ, according to a power law S ∼ Rm

λ , where the positive
exponent m is not constant in the range 16Rλ6 25. Since S is related to the spectral
transfer of energy (Tavoularis et al. 1978), the reported decrease of S as Rλ decreases
reflects the gradual weakening of the energy transfer T(k) from large to small scales;
ultimately, the energy transfer should become negligible, implying a lack of interaction
between vortices. More recently, the EDQNM of Meldi & Sagaut (2013) shows that
S ' Rλ when Rλ < 1. On the other hand, using Heisenberg’s spectral theory, Reid
(1956) and Lin & Reid (1963) predict a non-zero S0 as Rλ→ 0. Regardless of the
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actual value of S when Rλ→ 0, both cases imply that SRλ� 2G in the final period
of decay, which is consistent with the data in figure 12. Accordingly, (6.2) reduces to

n= 1
1− 7

15 G
. (6.5)

Since n6−1, then
15
7
6G6 30

7
. (6.6)

This is in agreement with the result of the fixed-point analysis of Speziale & Bernard
(1992) (see also Ristorcelli & Livescu 2004). Expression (6.6) thus reveals that
15/76GRλ→0 6 30/7 as Rλ→ 0. It is worth comparing this asymptotic behaviour of
G with values obtained for two known final periods of decay. According to Batchelor
& Townsend (1948b), n = −5/2 in the final period of decay so that GRλ→0 = 3 or
21/7, whereas Saffman (1967) found, also for the final period of decay, n = −3/2,
thus leading to GRλ→0 = 25/7. According to (6.6) both values of G are possible in
the final period. Note though that the condition (6.6) imposed on G allows many
possible final periods to exist, each likely to be defined by the initial conditions. The
above analysis and the data in figure 13 at small Rλ are consistent with G remaining
finite and approaching a non-zero value in the limit Rλ→ 0. Thus, S= βRαλ leads to

dn
dRλ
= − 7

30β(α + 1)Rαλ[
1+ 7

30(βRα+1
λ − 2G)

]2 (6.7)

while S= const. results in

dn
dRλ
= − 7

30 S[
1+ 7

30(SRλ − 2G)
]2 . (6.8)

In the limit Rλ → 0, equations (6.7) and (6.8) yield dn/dRλ → 0 and
dn/dRλ→ ((−7/30S)/([1− 7/15G]2)), respectively. Note that the last solution should
lead to a small, if not negligible, value of dn/dRλ. This can be easily seen if we
assume S= 0.5 (clearly an overestimated value) and use either G= 3 or 25/7. Thus,
the power-law exponent n remains approximately constant in the final period of
decay as Rλ decreases. Also, one can show that dn/dRλ = 0 when Rλ →∞ since
G ∼ Rλ. This simple analysis reveals how n behaves during the entire process of
turbulence decay. In the early stages of the initial period where the Reynolds number
is large, the magnitude of n is approximately constant ('n∞), and likely to be fixed
by the initial conditions. As the Reynolds number decreases (with increasing x/M),
n decreases to its final period value, n0, and remains practically constant. This is
in agreement with the EDQNM results of Meldi & Sagaut (2013). To date, all
experiments on grid turbulence, which are for Rλ > 30, report a power-law exponent
n of between approximately −1.1 and −1.4. The value of n=−1.55 obtained in the
present simulations reflects the low value of the Reynolds number. It should decrease
further as Rλ decreases to reach its final period value. The actual final value of n
when Rλ→ 0 is yet to measured.

Finally, it is appropriate to comment on (1.7) in relation to turbulence modelling.
The widely used turbulence model in CFD is the so-called k–ε model. The model
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consists of the transport equations for k (or q2) and 〈ε〉. The reliability of the model
hinges on a reliable closure of the 〈ε〉-equation. For HIT, the equation is

dε
dt
=Cε2

ε2

q2
(6.9)

where Cε2(=RλS−2G) is assumed to be constant at sufficiently high Reynolds number
(e.g. Tennekes & Lumley 1974). However, (1.10) leads to

Cε2 =
(

n− 1
n

)
, (6.10)

showing that Cε2 is function of the decay exponent, which in turn, as seen above,
depends on the Reynolds number. Thus Cε2 cannot be universal. It is likely that it
will vary not only from flow to flow, but also from location to location in a given
flow. Calibrating the value of the constant Cε2 against grid turbulence data can only
lead to an erroneous model constant for other flows. A more reasonable approach is
to use the 〈ε〉-equation, written in a form similar to (1.7), relevant to the flow (e.g.
jets, wakes and wall flows) that is being modelled.

7. Conclusions
DNS based on the LBM have been carried out for the turbulence downstream of

a grid consisting of flat square elements. The individual terms of ε and its transport
equation are analysed in detail. The results support the contention of Antonia et al.
(1998) that there is sufficient compensation among the components of ε, which
produces a near equality between ε and its isotropic value, 15ν(∂u/∂x)2, in the
region x/D > 10. However, this near equality is not as good as that between νωiωi
and ε across the entire decay range, which indicates that the homogeneity of the
small-scale motion is a good approximation despite the non-homogeneity of the
mean quantities in the main flow direction. The results also show that there is
sufficient compensation among the individual components of the destruction term in
the transport equation of ε. The isotropic form (−84ν2

(
∂2u/∂x2

)
) of the destruction

term is satisfied to better than 10 %, at x/M = 30.
For the first time, the equivalence between the general transport equation for ε

and its isotropic form in low-Reynolds-number grid turbulence is confirmed. This
equivalence is important in the context of (low-Reynolds-number) grid turbulence
experiments where only the isotropic form of the ε-transport equation is amenable
to measurements. The result is also important because it vindicates the use of (1.7)
and (1.10) for analysing experimental data in low-Reynolds-number decaying grid
turbulence. In this regard, it is a remarkable achievement that BT47 were able to
verify, albeit approximately, (1.10) using grid turbulence measurements.

All the terms in the transport equation of ε, except for the viscous diffusion
term which is practically zero, are important in the region x/D 6 5, although the
production, due to vortex stretching, and destruction tend to dominate. This reflects
the strong inhomogeneity in this region. Beyond this region, the transport of ε is
mainly controlled by the imbalance, equal to U(dε/dx), between production and
destruction, the latter being larger than the former. While this is consistent with
the existing theory of homogeneous and isotropic turbulence (BT47), there is an
important difference. The imbalance between the production and destruction is not
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constant during the decay, as argued by BT47. The non-constancy implies that the
transport of ε during its decay is not dynamically self-similar and that the turbulence
cannot decay according to a power law (i.e. q2∼ xn) with an exponent n equal to −1.
Nevertheless, the turbulence decays according to a power law because the imbalance
(e.g. S + 2G/Rλ) varies as a power of x; the present value of n is actually close to
−1.6, a value in keeping with the relatively low Reynolds number of the simulation.
The results highlight the importance of the imbalance in establishing the value of n.
They also demonstrate for the first time that (1.10) is very closely satisfied in grid
turbulence at a small Reynolds number. A fortiori, one would expect that the equation
will hold at larger Reynolds numbers.

The transport equation, rewritten in (6.2) as an expression for n, has been discussed
in the context of Rλ→ 0. The discussion provides some insight into the behaviour of
n during the entire decay process and a yet to be confirmed theoretical result, namely
the destruction coefficient G is constant and its a magnitude must lie between 15/7
and 30/7. These two bounds encompass the predictions for G in the final period of
decay, given by Batchelor & Townsend (1948a,b) and Saffman (1967).
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Appendix – Accuracy of the computation
Since the present study deals with the small-scale motion and in particular with

first- and second-order velocity derivatives, it is important to establish that the
computational resolution is adequate. A few checks of the accuracy of the computation
are given below.

In grid turbulence, ε can be easily and reliably obtained via the turbulent kinetic
energy transport equation which is closely approximated by

U
∂q2

∂x
=−ε. (A 1)

Values of ε obtained through different expressions (e.g. ε = νωiωi, ε = 15ν(∂u/∂x)2

or ε = 15ν
∫∞

0 k2
xE(kx)dkx) can be compared with the value given by (A 1). Figure 14

shows the distribution of ε obtained with (A 1) and that calculated from (1.1). Despite
the inevitable scatter associated with computing the derivative of q2 (no smoothing
on q2 and its derivative has been applied), expressions (A 1) and (1.1) are in close
agreement for x/D> 20, suggesting that the grid resolution is sufficient for calculating
ε via expression (1.1).

A more stringent assessment of the computational resolution is provided by the
velocity spectrum. Figure 15 shows distributions of Ev(ky) at x/D= 8.45, 28.45 and
68.45. The figure shows Ev(ky) normalized by the Kolmogorov scales (vK , η) denoted
by ∗; ky is the wavenumber along a transverse direction and Ev(ky) is the spectrum of
v, defined such that

v2 =
∫ ∞

0
Ev(ky)dky. (A 2)

It should be pointed out that we checked that Ev(ky) = Eu(kx) (where kx is the
wavenumber along the longitudinal direction and Eu(kx) is the spectrum of u computed
using the time series signal and Taylor’s hypothesis). The LBM spectra are computed
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FIGURE 14. Streamwise variations of ε and −U(∂q2/∂x).
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FIGURE 15. Spectra E∗v(k
∗
y ) for three x/D values. The symbol ∗ represents the Kolmogorov

normalization.

using a fast Fourier transform (FFT) with a Hanning window and an FFT length of
256. The FFT is performed on the transverse velocity along the y-direction using
a length N = 256. Note that since there are only 240 data points in the transverse
direction, the first 16 data points of each segment are added at the other end of
the segment. This is consistent with the periodic nature of the boundary conditions
used in the simulation. Thus 240 individual spectra are computed for one realization.
This is repeated for all realizations recorded (i.e. 40 fields) and averaged to yield the
spectra shown in figure 15. At x/D = 8.45, the spectrum drops off too quickly at
the high wavenumbers reflecting the extra dissipative effect introduced by the LES
scheme. This effect is reduced significantly at x/D= 28.45 and is not discernible at
x/D = 68.45. The weakening of the LES dissipative effect on the energy spectra is
associated with the improved grid resolution as the distance x/D increases. As stated
earlier, the grid resolution, which is also equal to the LES spatial filter (∆), varies
from 1y= 2.9η at x/D= 8 (or x/M = 4) to 1y= 0.78η at x/D= 68 (or x/M = 34).
Such a spatial resolution is common in grid turbulence measurements. For example
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FIGURE 16. Three-dimensional spectra E∗(k∗) and one-dimensional spectra E∗v(k
∗
y ). Also

shown are data from DNS of Mansour & Wray (1994) in decaying box turbulence and
Abe et al. (2009) in a turbulent channel flow, and measurements in grid turbulence (Comte-
Bellot & Corrsin 1971).

Krogstad & Davidson (2010) reported a ratio lw/η (lw is the hot wire length) ranging
from approximately 2.6 at their first measurement station (x/M ≈ 35) to 0.8 at the
most downstream portion (x/M ≈ 250). Similar spatial resolutions (2.1 to 0.86) are
reported by Lavoie et al. (2007) and (1.4 to 0.5) by Comte-Bellot & Corrsin (1971).

To assess the quality of the computed spectra, the spectrum at x/D = 68.45 is
compared (figure 16) with that measured by Comte-Bellot & Corrsin (1971) in grid
turbulence and that computed (DNS) by Abe, Antonia & Kawamura (2009) in a
turbulent channel flow. Also shown in figure 16 are three-dimensional spectra, E(k),
for the present LBM, the experiment of Comte-Bellot & Corrsin (1971) in grid
turbulence and the DNS (spectral method) of Mansour & Wray (1994) in decaying
box turbulence. To compute E(k) we followed Comte-Bellot & Corrsin (1971) and
used the isotropic assumption

E(k)= 1
2

k3 ∂

∂k

(
1
k
∂

∂k
Ev(k)

)
, (A 3)

with k= ky.
The difference between the LBM one-dimensional spectrum and that of Comte-

Bellot & Corrsin or Abe et al. reflects low-Reynolds-number effects, already observed
by Mansour and Wray (see also Djenidi, Tardu & Antonia 2013b; Kamruzzaman,
Djenidi & Antonia 2013). The distributions of E(k) obtained by Mansour & Wray
(1994) agree well with the present spectrum at a comparable Rλ.

Clearly, figures 15 and 16 indicate that the LBM resolves the small-scale motions
sufficiently accurately, at least for the region x/D> 8. The LBM spectra show some
attenuation at the higher wavenumbers. This is a combined effect of aliasing and
spectral leakage. Aliasing occurs because fs is smaller than 2fK , where fs= 1/1y and
fK = 1/η are the sampling and Kolmogorov frequencies, respectively. Spectral leakage
is caused by the discontinuities in the spatial signal of the velocity (figure 17), which
result from the non-periodic nature of the individual velocity segments. Note however
that spectral leakage is minimized by carrying out the FFT on traces containing only
256 samples and using the Hanning window.
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FIGURE 17. Spanwise variation of the transverse velocity v at two consecutive
downstream positions, x/D= 66 and 66.05.
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FIGURE 18. k4-weighed spectra k∗4y E∗v(k
∗
y ).

That the small-scale motion is adequately resolved is supported by the data of
figure 18 showing distributions of k4

yEv(ky). In particular, the figure shows that the
LBM captures well the zone that contributes most to the integral∫ ∞

0
k4

yEv(ky)dky (A 4)

which is used for calculating G

G= u2

∫ ∞
0

k4
yEv(ky)dky[∫ ∞

0
k2

yEv(ky)dky

]2 . (A 5)
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The increase in k∗4E∗v(k
∗), where the symbol ∗ represents the Kolmogorov

normalization, after it reaches a minimum reflects the aliasing and spectral leakage
observed in the spectra and is not physical. There is no ‘energy’ pile-up even at
x/D = 8.45 where the relatively poor grid resolution could have been a source of
aliasing. Values of G are obtained with (A 5) where the integration is carried out
from kmin to kmax where kmin is the lowest wavenumber and kmax is the wavenumber
where k∗4y E∗v(k

∗
y ) reaches its minimum. The values of G thus obtained (11.97, 8.64 and

7.9 at x/D= 8.45, 28.45 and 68.45) are slightly (2–3 %) larger than those calculated
from (1.8) (11.35, 7.95, 7.53, respectively). This agreement supports the claim that
the small-scale motion is adequately resolved.

REFERENCES

ABE, H., ANTONIA, R. A. & KAWAMURA, H. 2009 Correlation between small-scale velocity and
scalar fluctuations in a turbulent channel flow. J. Fluid Mech. 627, 1–32.

ANTONIA, R. A., LEE, S. K., DJENIDI, L., LAVOIE, P. & DANAILA, L. 2013 Invariants for slightly
heated decaying grid turbulence. J. Fluid Mech. 727, 379–406.

ANTONIA, R. A. & ORLANDI, P. 2004 Similarity of decaying isotropic turbulence with a passive
scalar. J. Fluid Mech. 505, 123–151.

ANTONIA, R. A., ORLANDI, P. & ZHOU, T. 2002 Assessment of three-components vorticity probe
in decaying turbulence. Exp. Fluids 33, 384–390.

ANTONIA, R. A., SMALLEY, R. F., ZHOU, T., ANSELMET, F. & DANAILA, L. 2004 Similarity
solution of temperature structure functions in decaying homogeneous isotropic turbulence. Phys.
Rev. E 69, 016305.

ANTONIA, R. A., ZHOU, T., DANAILA, L. & ANSELMET, F. 2002 Scaling of the mean energy
dissipation rate equation in grid turbulence. J. Turbul. 3, 1468-5248(02)52345-6.

ANTONIA, R. A., ZHOU, T. & ZHU, Y. 1998 Three-component vorticity measurements in a turbulent
grid flow. J. Fluid Mech. 374, 29–57.

BATCHELOR, G. K. & TOWNSEND, A. A. 1947 Decay of vorticity in isotropic turbulence. Proc. R.
Soc. Lond. A 190, 534–550.

BATCHELOR, G. K. & TOWNSEND, A. A. 1948a Decay of isotropic turbulence in the initial period.
Proc. R. Soc. Lond. A 193, 539–558.

BATCHELOR, G. K. & TOWNSEND, A. A. 1948b Decay of isotropic turbulence in the final period.
Proc. R. Soc. Lond. A 194, 527–543.

BENNETT, J. C. & CORRSIN, S. 1978 Small Reynolds number nearly isotropic turbulence in a
straight duct and a contraction. Phys. Fluids 21, 2129–2140.

BRADSHAW, P. & PEROT, J. B. 1993 A note on turbulent energy dissipation in the viscous wall
region. Phys. Fluids A 5, 3305–3306.

BURATTINI, P., LAVOIE, P., AGRAWAL, A., DJENIDI, L. & ANTONIA, R. A. 2006 On the power
law of decaying homogeneous isotropic turbulence at low Rλ. Phys. Rev. E 73, 066304.

CHAMPAGNE, F. H. 1978 The fine-scale structure of the turbulent velocity field. J. Fluid Mech. 86
(1), 67–108.

CHASSAING, P. 2000 Turbulence en Mecanique des Fluides. (Collection Polytech), Cépaduès-Éditions.
CHEN, S. & DOOLEN, G. D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid

Mech. 30, 329–364.
COMTE-BELLOT, G. & CORRSIN, S. 1971 Simple Eulerian time correlation of full- and narrow band

velocity signals in grid generated, ‘isotropic’ turbulence. J. Fluid Mech. 48, 273–337.
CORRSIN, S. 1953 Interpretation of viscous terms in the turbulent energy equation. J. Aeronaut. Sci.

20, 853–854.
DJENIDI, L. 2006 Lattice Boltzmann simulation of grid-generated turbulence. J. Fluid Mech. 552,

13–35.
DJENIDI, L. 2008 Study of the structure of a turbulent crossbar near-wake by means of Lattice

Boltzmann. Phys. Rev. E 77, 036310.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

15
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.157


314 L. Djenidi and R. A. Antonia

DJENIDI, L., TARDU, S. & ANTONIA, R. A. 2013a Relation between temporal and spatial averages
in grid turbulence. J. Fluid Mech. 730, 593–606.

DJENIDI, L., TARDU, S. & ANTONIA, R. A. 2013b Breakdown of Kolmogorov’s scaling in
grid turbulence. In 14th European Turbulence Conference, 10–14 September, Lyon, France
pp. 593–606.

DRYDEN, H. L. 1943 A review of the statistical theory of turbulence. Q. Appl. Maths 1, 7–42.
FRISCH, U., HASSLACHER, B. & POMEAU, Y. 1986 Lattice gas automata for the Navier–Stokes

equations. Phys. Rev. Lett. 56, 1505–1508.
AGEORGE, W. K. 1992 The decay of homogeneous isotropic turbulence. Phys. Fluids 4, 1492–1509.
HANJALIC, K. & LAUNDER, B. E. 1972 A Reynolds stress model of turbulence and its application

to thin shear flows. J. Fluid Mech. 52, 609–638.
HOU, S., STERLIN, J., CHEN, S. & DOOLEN, G. D. 1996 A lattice Boltzmann subgrid model for

high Reynolds number flows. In Pattern Formation and Lattice Gas Automata (ed. A. T.
Lawniczak & R. Kapral), Field Institute Communications, vol. 6, pp. 151–166. American
Mathematical Society, Also arXiv:comp-gas/9401004v1.

HUANG, M.-J. & LEONARD, A. 1994 Power-law decay of homogeneous turbulence at low Reynolds
number. Phys. Fluids 6, 3765–3775.

KAMRUZZAMAN, MD., DJENIDI, L. & ANTONIA, R. A. 2013 Behaviours of energy spectrum at low
Reynolds numbers in grid turbulence. International Journal of Mechanical, Industrial Science
and Engineering 7, 472–476.

KANG, H. S., CHESTER, S. & MENEVEAU, C. 2003 Decaying turbulence in an active-grid generated
flow and comparisons with large-eddy simulation. J. Fluid Mech. 480, 129–160.

VON KÁRMÁN, T. 1937 The fundamentals of statistical theory of turbulence. J. Aero. Sci. 4, 131–138.
KOLMOGOROV, A. 1941 On the degeneration (decay) of isotropic turbulence in an incompressible

viscous fluid. Dokl. Akad. Nauk SSSR 31, 538–540.
KROGSTAD, P.-A. & DAVIDSON, P. A. 2010 Is grid turbulence Saffman turbulence? J. Fluid Mech.

642, 373–394.
LARSSEN, J. V. & DEVENPORT, W. J. 2011 On the generation of large-scale homogeneous turbulence.

Exp. Fluids 50, 1207–1223.
LAVOIE, P., DJENIDI, L. & ANTONIA, R. A. 2007 Effects of initial conditions in decaying turbulence

generated by passive grids. J. Fluid Mech. 585, 395–420.
LEE, S. K., BENAISSA, A., DJENIDI, L., LAVOIE, P. & ANTONIA, R. A. 2012 Scaling range of

velocity and passive scalar spectra in grid turbulence. Phys. Fluids 24, 075101.
LEE, S. K., DJENIDI, L., ANTONIA, R. A. & DANAILA, L. 2014 On the destruction coefficients

for slightly heated decaying grid turbulence. Int. Jnl Heat and Fluid Flow 43, 129–136.
LIN, C. C. & REID, W. H. 1963 Turbulent flow, Theoretical aspects. In Handbuch der Physik (ed.

S. Flugge & C. A. Truesdell), vol. 8, p. 438. Springer.
LING, S. C. & HUANG, T. T. 1970 Decay of weak turbulence. Phys. Fluids 13, 2912–2924.
MANSOUR, N. N., KIM, J. & MOIN, P. 1987 Reynolds-stress and dissipation rate budgets in a

turbulent channel flow NASA Tech. Mem. 89451.
MANSOUR, N. N. & WRAY, A. A. 1994 Decay of isotropic turbulence at low Reynolds number.

Phys. Fluids 6, 808–813.
MELDI, M. & SAGAUT, P. 2013 Further insights into self-similarity and self-preservation in freely

decaying isotropic turbulence. J. Turbul. 14, 24–53.
MOHAMED, M. S. & LARUE, L. 1990 The decay power law in grid-generated turbulence. J. Fluid

Mech. 219, 195–214.
MYDLARSKY, L. & WARHAFT, Z. 1996 On the onset of high-Reynolds number grid-generated wind

tunnel turbulence. J. Fluid Mech. 320, 331–368.
REID, W. H. 1956 On the approach to the final period of decay in isotropic turbulence according

to Heisenberg’s transfer theory. Proc. Natl Acad. Sci. 42, 559–563.
RISTORCELLI, J. R. & LIVESCU, D. 2004 Decay of isotropic turbulence: fixed points and solutions

for nonconstant G Rλ palinstrophy. Phys. Fluids 16, 3487–3490.
RUBINSTEIN, R. & CLARK, T. T. 2005 Self-similar turbulence evolution and the dissipation rate

transport equation. Phys. Fluids 17, 095104.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

15
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://www.arxiv.org/abs/comp-gas/9401004v1
https://doi.org/10.1017/jfm.2014.157


Transport equation for the mean turbulent energy dissipation rate 315

SAFFMAN, P. G. 1967 The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27,
581–593.

SPEZIALE, C. G. & BERNARD, P. 1992 The energy decay in self-preserving isotropic turbulence
revisited. J. Fluid Mech. 241, 645–667.

SUCCI, S. 2001 The lattice Boltzmann equation for fluid dynamics and beyond. In Numerical
Mathematics and Scientific Computation, Oxford University Press.

TAVOULARIS, S., BENNETT, J. C. & CORRSIN, S. 1978 Velocity-derivative skewness in small
Reynolds number, nearly isotropic turbulence. J. Fluid Mech. 88, 63–69.

TENNEKES, H. & LUMLEY, J. L. 1974 First Course in Turbulence. 3rd edn. MIT Press.
WYNGAARD, J. C. 2010 Turbulence in the Atmosphere. Cambridge University Press.
ZHOU, T. & ANTONIA, R. A. 2000 Reynolds number dependence of the small-scale structure of

grid turbulence. J. Fluid Mech. 406, 81–107.
ZHOU, T., ANTONIA, R. A. & CHUA, L. P. 2002 Performance of a probe for measuring turbulent

energy and temperature dissipation rates. Exp. Fluids 33, 334–345.
ZHOU, T., ANTONIA, R. A., DANAILA, L. & ANSELMET, F. 2000 Transport equations for the mean

energy and temperature dissipation rates in grid turbulence. Exp. Fluids 28, 143–151.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

15
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.157

	Transport equation for the mean turbulent energy dissipation rate in low-Rλ grid turbulence
	Introduction
	Numerical procedure
	Lattice Boltzmann method
	Computational domain and boundary conditions

	The mean turbulent energy dissipation rate ε
	The transport equation for ε
	Simplified form of the transport equation of ε
	Relationship to the power-law decay
	Conclusions
	Acknowledgement
	Appendix – Accuracy of the computation
	References




