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Abstract

In this paper, the scheme of generation of second harmonics of incident electromagnetic wave
having a Hermite–Gaussian intensity profile in an under dense relativistic plasma has been
presented. The relativistic mass variation of electrons by the intense electric field of incident
beam generates the density gradients in background plasma which further excites the electron
plasma wave (EPW) at resonant frequency and coupling of the EPW with the incident beam
results in the generation of second harmonics of incident beam. Propagation dynamics of the
Hermite–Gaussian laser beam in plasma has been studied by the formulation of differential
equation for the spot size of the laser beam with the help of method of moments.
Numerical simulations have been carried out to solve the differential equation for the dimen-
sionless beam width parameters. Solution of the nonlinear wave equation for the electric field
vector of second harmonics of incident beam gives the expression for second-harmonic yield.
It has been observed that second-harmonic yield is affected by the different modes of
Hermite–Gaussian laser beam in relativistic plasma.

Introduction

Development of highly intense laser beams has evoked interest in various wave-particle phe-
nomena which are prevalent in laser plasma interactions viz., parametric instabilities (Mori,
1994; Fuchs et al., 2000), filamentation (Chekalin and Kandidov, 2013), higher harmonic gen-
eration (Gibbon, 1997), super continuum generation (Corkum et al., 1986), etc. All these pro-
cesses have remarkable significance in various applications such as laser-based accelerators
(Tajima and Dawson, 1979), coherent X-ray sources (Suckewer and Skinner, 1990; Eder
et al., 1994), and most importantly inertial confinement fusion (ICF) (Tabak et al., 1994;
Hora, 2007). The main impetus for the development of laser plasma physics was provided
by the invention of chirped pulse amplification (CPA) technique (Strickland and Mourou,
1985) which dramatically increased the laser intensities up to 1022 W/cm2. Diffraction broad-
ening of the laser beam is the harsh limitation in aforesaid applications. Laser propagation in
plasma gives rise to the so-called self-action effects due to the dependence of the complex
dielectric function on the incident electromagnetic wave intensity such that the plasma serves
as a focusing lens for the incident wave. Relativistic self-focusing is a result of quiver motion of
plasma electrons with a speed comparable to the speed of light when the intense laser field
interacts with plasma. As the quiver motion of electrons is highly relativistic, the mass of elec-
trons increases leading to the change in dielectric properties of plasma and hence refractive
index. For simple Gaussian intensity distribution the beam energy is maximum at the center
which reduces the plasma frequency by the Lorentz factor γ and correspondingly increases the
refractive index which converges the minimum intensity wave fronts toward the center causing
self-focusing of the laser beam.

Generation of optical harmonics of the fundamental beam is a vast area of research in
plasma physics. The optically nonlinear medium plasma hold promise for converting the
laser light into coherent harmonics with higher efficiency and for exploiting higher laser inten-
sities because it imposes no restriction on the strength of incident laser field. Higher harmonic
ultraviolet radiation emerging from laser-driven plasmas have applicability in powerful spec-
troscopy techniques and provide insight into the fundamental properties of plasma as well as
plasma parameters such as electrical conductivity, opacity, local electron density, etc.
Harmonic radiation enhances the laser penetration to the overdense regions of plasma thus
have special relevance to the ICF process. Optical harmonics can be generated through
many mechanisms, but excitation of plasma wave at pump frequency is the most common
mechanism for higher harmonic generation, particularly second harmonic generation
(SHG), in plasma. Plasma waves are the collective oscillations of electrons on a background
of heavier, stationary ions and exhibit the intrinsic characteristics of plasma. Nonlinear inter-
actions between the laser beam and the plasma electrons during laser propagation cause the
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generation of strongly nonlinear plasma waves suitable for particle
acceleration in plasma accelerators and higher harmonic genera-
tion. This resonantly generated plasma wave further interacts
with the pump beam to produce its second harmonics.

Franken et al. (1961) have reported the first experimentally
generated second harmonics of high intensity laser beam of wave-
length 6943 Å through crystalline quartz. Afterward, a lot of work
has been carried out on the production and analysis of second
harmonic radiation. Rax et al. (2000) analyzed the relativistic
SHG with highly intense laser pulses in weakly magnetized
plasma by considering the effect of pump depletion, phase match-
ing, and relativistic tapering. Carrasco et al. (2006) considered the
SHG and third harmonic generation (THG) in a nonlinear optical
crystal illuminated by a vector Gaussian beam. Dahiya et al.
(2007) developed a 2D particle-in-cell simulation code for the
generation of second and third harmonics of an ultrashort laser
pulse in an underdense plasma having a density ripple. Faez
et al. (2009) experimentally measured the distribution of the
second-harmonic intensity which is generated inside a highly
scattering slab of porous gallium phosphide. Purohit et al.
(2016) have reported the effect of self-focused hollow Gaussian
laser beam (carrying null intensity in the center) on the excitation
of electron plasma wave (EPW) and SHG in collisionless plasma.
Singh and Gupta (2016) investigated the SHG by the relativistic
self-focusing of cosh-Gaussian laser beam in underdense plasma
using the method of moments. Recently, Sharma et al. (2018)
observed the influence of density ripple on pulse slippage of
THG in plasma.

The perusal of literature shows that, most of the theoretical
investigations on SHG in plasma are carried out with the
Gaussian intensity distribution of the laser beam. Gaussian
modes are the lowest order solution to the free-space paraxial
wave equation but real lasers elect to oscillate in higher order
Gaussian modes (Siegman, 1986). The higher order solution to
the wave equation can take the form either of Hermite–
Gaussian functions in rectangular coordinates (Siegman, 1973),
or of Laguerre–Gaussian functions in cylindrical coordinates
(Courtial et al., 1997). These higher order Gaussian modes are
of considerable importance in practical lasers and in optical
beam analyses and communication. Recently such class of laser
beams such as Hermite–Gaussian, hollow Gaussian, Hermite–
cosh-Gaussian is gaining interest among researchers. Patil et al.
(2010) investigated the focusing of Hermite–cosh-Gaussian
beams in collisionless magneto plasma in paraxial approximation.
Also, paraxial ray approximation has been widely used to study
the nonlinear dynamics of laser plasma interactions which takes
into account only the paraxial region of the laser beam.
Moreover if the intensity distribution of the laser beam is not per-
fectly Gaussian and the intensity of off-axial part is relatively
more than that of axial intensity, as in the case of Hermite–
Gaussian profile, the off-axial part cannot be neglected and para-
xial approximation leads to large errors in the analysis. Recently,
propagation dynamics of Hermite–Gaussian beams (Takale et al.,
2009; Kant et al., 2012) in plasma have been studied using para-
xial approximation which is suitable only for m = 0 mode
(Gaussian) and not for higher order modes (m = 1, 2, …). This
gives strong motivation to use moment theory approach, which
is a global approach and takes into account the whole intensity
profile of the laser beam. To the best of author’s knowledge no
earlier investigations on the production of SHG in relativistic
plasma have been carried out with Hermite–Gaussian intensity
profile of laser beam with method of moments.

This paper is structured as follows: In the section “Theoretical
formulation”, the detailed theoretical formulation of dielectric
function of plasma under the effect of relativistic electron mass
variation and the nonlinear coupled differential equations for
beam width parameters in the transverse x and y directions is
given. In the section “Plasma wave excitation”, the excitation of
EPW and the source term for SHG have been derived. The nor-
malized second-harmonic yield has been obtained in the section
“Second-harmonic yield”. The detailed discussion and conclu-
sions drawn from the results of present investigation have been
summarized in the sections “Results and discussion” and
“Conclusions”, respectively.

Theoretical formulation

The optical wave-field E(x, y, z) of the circularly polarized laser
beam having angular frequency ω0 and wave number k0( =
ω0(ϵ0)

1/2/c) propagating in homogeneous plasma along the
z-axis is taken as

E(x, y, z) = c(x, y, z)exp(i̇{v0t − k0z}), (1)

where ψ(x, y, z) is the complex amplitude of the electric field vec-
tor of the Hermite–Gaussian laser beam which is a function of x,
y, and z, the transverse co-ordinates in the rectangular co-ordinate
system and is given by the following equation:

ccw = E2
00

fxfy
exp − x2

a2f 2x
+ y2

b2f 2y

( )( )

× Hm
x
afx

( )( )2

Hn
y
bfy

( )( )2

, (2)

where E00 represents the axial amplitude of the electric field of
laser beam, afx and bfy are associated with the beam waists in
the transverse x and y directions respectively, and Hm and Hn

are the Hermite polynomials of TEM modes (m, n) corresponding
to the x and y directions. The mode TEM00 of Hermite polyno-
mial in the abovementioned profile represents the fundamental
Gaussian beam. The normalized intensity profiles of first few
modes are shown in Figure 1.

Propagation of high intensity laser beam alters the properties of
plasma as the plasma electrons resonantly respond to the incident
beam and the motion becomes highly relativistic with velocity com-
parable to that of light. Hence refractive index as well as dielectric
function of plasma (e = 1− v2

pe/v
2
0; v2

pe = 4pe2ne/m) changes
as the mass of electrons m is replaced by the relativistic mass
m0γ. Therefore, the modified dielectric function for plasma can
be written in the form of linear and nonlinear parts as:

e = e0 +F(EEw), (3)

where

e0 = 1− v2
p0

v2
0
, (4)

F(EEw) = v2
p0

v2
0

1− 1
g

( )
, (5)
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g = (1+ bEEw)1/2. (6)

In Eq. (3) ϵ0 represents the linear part and F(EEw) determines
the nonlinear change in the dielectric function due to the presence
of the laser beam.

Under the WKB approximation, the wave field vector of the
laser beam satisfies the following wave equation:

∇2E+ v2
0

c2
eE = 0. (7)

Substituting Eq. (1) in Eq. (7) and using the assumption that
the variations in the z direction are slower than those in the trans-
verse directions, we get the following quasi-optic wave equation:

i̇
dc
dz

= 1
2k0

∇2
⊥c+ k0

2e0
F(EEw)c. (8)

Following Lam et al. (1977), the definitions of zeroth and
second-order spatial moments of the intensity distribution of
the laser beam, the intensity and mean square radius of the

laser beam are given by

I0 =
∫ ∫

ccw dx dy, (9)

and

〈r2rms〉 =
1
I0

∫ ∫
(x2 + y2) ccw dx dy. (10)

Differentiating Eq. (10) twice with respect to z and using Eq.
(8) we get

d2

dz2
〈r2rms〉 = 4

I2
I0
+ 4

H
I0
, (11)

where

I2 =
∫ ∫

(|∇⊥c|2 − F) dx dy, (12)

F(ccw) = 1
2e0

∫ccw

0
F(ccw) d(ccw), (13)

Fig. 1. Normalized intensity distribution of Hermite–Gaussian laser beam with transverse distances x and y for three different modes: (a) TEM00, (b) TEM01, and (c) TEM02.
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and

H =
∫ ∫

2F − 1
2e0

ccw F(ccw)

( )
dx dy. (14)

Substituting Eq. (2) in Eqs. (9) and (10) one can get,

I0 = pE2
00 ab 2m+n m! n!, (15)

and

〈r2rms〉 = 〈r2x〉 + 〈r2y 〉

= a2f 2x m+ 1
2

( )
+ b2f 2y n+ 1

2

( )
.

(16)

Differentiating Eq. (16) twice with respect to z and using Eqs.
(2) and (8)–(15), we get the following coupled differential equa-
tions for the transverse beam width parameters fx and fy in the
x and y directions respectively:

d2fx
dj2

+ 1
fx

dfx
dj

( )2

= 1
f 3x

+ bE2
00

pf 2x fy

v2
p0a

2

c2

( )
I1

(m+ 1/2) 2m+n+1 m! n!
,

(17)

d2fy
dj2

+ 1
fy

dfy
dj

( )2

= (a/b)4
f 3y

+ (a/b)2 bE
2
00

pfxf 2y

v2
p0a

2

c2

( )
I2

(n+ 1/2) 2m+n+1 m! n!
,

(18)

where

I1 =
∫1
−1

∫1
−1

ue−2(u2+v2)H3
m(u)H4

n(v){uHm(u) −Hm+1(u)}

(J(u, v))−3/2 du dv,

I2 =
∫1
−1

∫1
−1

ve−2(u2+v2)H4
m(u)H3

n(v){vHn(v) −Hn+1(v)}

(J(u, v))−3/2 du dv,

J(u, v) = 1+ bE2
00

fxfy
H2

m(u)H2
n(v)e−(u2+v2)

( )
,

u = x
afx

,

v = y
bfy

,

and, ξ = z/k0a
2 is the dimensionless distance of propagation.

Equations (17) and (18) are subjected to the boundary conditions
fx,y = 1 and dfx,y/dξ = 0 at ξ = 0, and are the basic equations to
study the dynamics of Hermite–Gaussian laser beam as it propa-
gates in plasma under the effect of relativistic nonlinearity. These
equations have been solved numerically by using the Runge–
Kutta method for the current work.

Plasma wave excitation

To excite the EPW at pump frequency we consider the high fre-
quency oscillations of electrons over the neutralizing background
of ions in plasma. Relativistic mass variation of electrons modifies
the plasma density and hence amplitude of EPW. The equation
governing the excitation of EPW can be derived by using the fol-
lowing fluid equations viz., equation of continuity, equation of
momentum, adiabatic equation of state, and Poisson’s equation:

∂ne
∂t

+∇ · (nev) = 0, (19)

m
∂v
∂t

+ (v · ∇)v
( )

= −∇P
ne

− eE, (20)

P
n3e

= const., (21)

∇ · E = −4pnee, (22)

where ne represents the total electron density comprises of equi-
librium plasma density (n0) and perturbed density (n1) associated
with EPW, v is the fluid velocity, E is the total electric field vector
of laser beam and field associated with plasma wave, and P is the
fluid pressure. Using the linear perturbation theory for Eqs. (19)–
(22) one can have the following equation governing for density
perturbation:

− v2
0n1 + v2th∇2n1 +

v2
p0

g
= − e

m
n0∇c, (23)

where v2th = 2KBT0/m0 is the thermal velocity of electrons. Taking
n1 / ei(k0z−v0t) and using Eq. (2) in the above equation, the source
term for SHG is found to be

n1 =− en0
m

E00����
fxfy

√ e−1/2(x2/a2f 2x +y2/b2f 2y )

Hm
x
afx

( )
Hn

y
bfy

( )
x

a2f 2x
+ y

b2f 2y

( )(

− 1
afx

Hm+1
x
afx

( )
Hn

y
bfy

( )
− 1

bfy
Hm

x
afx

( )
Hn+1

y
bfy

( ))

× 1
{v2

0 − k20v
2
th − v2

p0/g}
.

(24)
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Second-harmonic yield

Following Sodha et al. (1978), the electric field vector E2 of the
second harmonic of incident laser beam satisfies the following
wave equation:

∇2E2 + v2
2

c2
e2(v2)E2 =

v2
p0

c2
n1
n0

c, (25)

where ω2 = 2ω0 is the frequency of generated second harmonic
radiation and ϵ2 is the corresponding effective dielectric constant.
Above equation can be solved for E2 by taking E2 / c2e

i(k2z−v2t)

as shown below:

c2 =
v2
p0

c2
n1
n0

c

(k22 − 4k20)
. (26)

The normalized conversion efficiency of SHG in plasma can be
defined as the ratio of power of generated second harmonic radi-
ation to that of incident pump beam:

h =
	1
−1

	1
−1 c2c

w
2 dx dy	1

−1
	1
−1 ccw dx dy

. (27)

Using Eqs. (2), (24), and (26) in (27), we have the following
second-harmonic yield or conversion efficiency (η) for incident
Hermite–Gaussian laser beam:

h = 1
9p

bE2
00

fxfy

v2
p0a

2

c2

( )
I3

m! n! 2m+n
, (28)

where

I3 =
∫1
−1

∫1
−1

e−(u2+v2)H2
m(u)H2

n(v) H2
m(u)H2

n(v)
u2

f 2x
+ a

b

( )2 v2
f 2y

( )
+ 1

f 2x
H2

m+1(u)H2
n(v)

{

+ a
b

( )2 1
f 2y
H2

m(u)H2
n+1(v) − 2

u
f 2x
Hm(u)Hm+1(u)H2

n(v) − 2
a
b

( )2 v
f 2y
H2

m(u)Hn(v)Hn+1(v)
}

× 1

{v2
0a2/c2 − (v2

0a2/c2 − v2
p0a2/c2)v

2
th/c

2 − v2
p0a2/c2 (J(u, v))−1/2}

2 du dv.

Results and discussion

The second-order differential Eqs. (17) and (18) and Eq. (28) have
been solved numerically for the transverse beam width parame-
ters fx and fy and second-harmonic yield respectively with dis-
tance of propagation ξ, to envision the effect of propagation
dynamics of Hermite–Gaussian laser beam in relativistic plasma.
Following set of laser parameters have been used to analyze the
effect of different TEM modes of Hermite–Gaussian laser beam
and plasma density on self-focusing as well as on the generation
of second harmonics: ω0 = 1.78 × 1015 rad/s; a = 15 μ T0 = 106 K.

Figures 2 and 3 depict the oscillatory focusing and de-focusing
of the transverse beam width parameters fx and fy with

dimensionless distance of propagation ξ for different modes of
Hermite–Gaussian beams, that is TEM00, TEM01, and TEM02

respectively. Synchronized focusing is observed for both fx and
fy for lowest order Gaussian mode TEM00. For modes TEM01

and TEM02 fx and fy behave exactly opposite. From the intensity
profile of TEM01 mode in Figure 1(b), it is clear that intensity
has a central dip along the y-axis but Gaussian along the x-axis
with no central dip. Therefore, laser beam undergoes oscillatory
de-focusing along the transverse y direction and oscillatory focus-
ing along the x-axis as focusing is observed mainly due to the con-
tribution of axial intensity. Moreover, there is observed less
focusing for TEM01 as compared to Gaussian mode for fx this
is due to the large divergence of beam in the y direction as
both these beam width parameters are coupled to each other.
For TEM02 there is a greater extent of self-focusing along the
x-axis among all three modes and fy also observes less de-focusing
as compared with TEM01. This is due to the fact that intensity
profile of TEM02 mode in Figure 1(c) is symmetrically distributed
in three lobes along the y-axis with maximum intensity distribu-
ted to the off-axial parts. The central part (axial-part) enhances
the focusing of the beam in the y direction which results in greater
focusing in the x direction.

Figures 4 and 5 depict the effect of plasma density on the evo-
lution of spot size of Hermite–Gaussian laser beam in the trans-
verse x and y directions respectively for TEM02 mode. Strong
focusing is observed for the beam width parameter fx with an
increase in plasma density whereas, decrease in defocusing is
observed in the case of fy.

Figure 6 depicts the variation of second-harmonic yield, that
is, η with a dimensionless distance of propagation ξ for different
modes of Hermite–Gaussian laser beam and fixed values of nor-
malized beam intensity and plasma density. It has been observed
that second-harmonic yield shows a step-like variation corre-
sponding to periodical positions of minimum beam waists during

propagation and highest yield is obtained for mode TEM02. This
is due to the fact that η is dependent on normalized distance of
propagation ξ through transverse beam widths fx and fy.
Therefore, if fx and fy are oscillatory, then η will also be oscillatory
as well, giving rise to a step-like behavior in η. Another reason for
this is that the focal spots of the laser beams are the regions of
very high intensity. As a result of which the amplitude of the
plasma wave and hence second-harmonic yield is maximum at
the focal spots.

Figure 7 depicts the effect of increased plasma density on the
second-harmonic yield of TEM02 mode of Hermite–Gaussian
laser beam. It is observed that with increase in plasma density
there is an increase in second-harmonic yield. This is because
of the strong self-focusing of the beam width parameter fx and
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Fig. 2. Variation of transverse beam width parameter fx against the distance of prop-
agation ξ for different TEMmn modes and fixed values of plasma density
v2
p0a

2/c2 = 12, laser intensity bE200 = 2 and a/b = 1.

Fig. 3. Variation of transverse beam width parameter fy with the distance of propa-
gation ξ for different TEMmn modes and fixed values of plasma density
v2
p0a

2/c2 = 12, laser intensity bE200 = 2 and a/b = 1.

Fig. 4. Variation of transverse beam width parameter fx for TEM02 mode against the
distance of propagation ξ with different values of plasma density and fixed values of
laser intensity bE200 = 2 and a/b = 1.

Fig. 5. Variation of transverse beam width parameter fy for TEM02 mode against the
distance of propagation ξ with different values of plasma density and fixed values of
laser intensity bE200 = 2 and a/b = 1.

Fig. 6. Variation of η with the distance of propagation ξ for different TEMmn modes of
Hermite–Gaussian beam and fixed values of plasma density v2

p0a
2/c2 = 8, laser

intensity bE200 = 2 and a/b = 1.

Fig. 7. Variation of η of TEM02 mode of Hermite–Gaussian beam against distance of
propagation ξ for different values of plasma density and fixed values of laser inten-
sity bE200 = 2 and a/b = 1.
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decrease in defocusing in case of fy of the laser beam with the
increase in plasma density which results in steeper density gradi-
ents and amplified plasma wave at the focal regions and hence
greater conversion efficiency, that is η.

Conclusions

In this work, theoretical approach has been developed by using
method of moments for the generation of second harmonics of
Hermite–Gaussian laser beam in plasma and following important
conclusions have been drawn from the present analysis.

• Self-focusing as well as second-harmonic yield is greater for
TEM02 mode as compared to TEM00 and TEM01 which is
one of the important investigations as far as the second-
harmonic yield is concerned and would be helpful for the
experimentalists working in the area of laser-induced fusion.

• Plasma density has a significant effect on second-harmonic
yield as it increases with increase in plasma density.
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