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We consider a diffusive Nicholson’s blowflies equation with non-local delay and study the

stability of the uniform steady states and the possible Hopf bifurcation. By using the upper-

and lower solutions method, the global stability of constant steady states is obtained. We also

discuss the local stability via analysis of the characteristic equation. Moreover, for a special

kernel, the occurrence of Hopf bifurcation near the steady state solution and the stability of

bifurcated periodic solutions are given via the centre manifold theory. Based on laboratory

data and our theoretical results, we address the influence of various types of vaccinations in

controlling the outbreak of blowflies.

Key words: Nicholson’s blowflies equation; Diffusion; Non-local delay; Hopf bifurcation;

Homogeneous Neumann boundary condition

1 Introduction

The Australian sheep blowfly (or Lucilia cuprina) is known as a worldwide pest of sheep.

Usually, the Australian sheep blowfly lies in dead bodies and garbage tips. But if parts

of the fleeces of sheep are contaminated with faeces and urine, the female Lucilia cuprina

are attracted by the ammonia in urine and lie in those parts. The situation can be worse

if the skin of sheep is irritated by urine, because the young larvae will grow and attack

the living flesh of the sheep which causes the death of host sheep. From the early 1900s,

the Australian sheep industry has been losing more than one hundred million dollars per

annum [1, 3, 4] due to the flystrike of Lucilia cuprina. Recently, Lucilia cuprina has spread

to Tasmania and New Zealand causing veterinary health problem and economic burden

in all sheep rearing areas.

Over the years various methods of blowfly strike management have been tried and

proved to be failure because of different reasons [3]. The traditional ones, such as

the usage of chemical pesticides and radical surgery, are abandoned because of the
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development of resistance to pesticides and opposition to surgical techniques based on

ethical grounds. Recently, people began to advocate vaccination because of the possible

potential of mimicking or enhancing the mechanisms of natural immunity. As we know,

each technique has its own limitations and the effect can only be partial and transient.

It is interesting to know how effective the strategy should be so that the Lucilia cuprina

would extinct or the population keeps stable. From applied mathematical point of view,

the establishment and discussion about the population model are then essential.

A pioneer study on the distribution of blowflies population was started by Nicholson

[15], which concerned competition for food in laboratory fly populations. Based on

Nicholson’s data, Gurney et al. [10] posed a delay equation, which is now referred as the

‘Nicholson’s blowflies equation’,

du

dt
= −δu(t) + pu(t− τ) exp[−au(t− τ)]. (1.1)

Here p denotes the maximum per capita daily egg production rate, 1/a presents the size

at which the blowfly population reproduces at its maximum rate, δ is the per capita daily

adult death rate and τ is the generation time.

After Gurney et al.’s [10] work, some mathematicians have considered spacial influence

on the spread of blowfly disease. So and Yang [18] studied the model

∂ũ

∂t
= d∆ũ(t, x) − τũ(t, x) + βτũ(t− 1, x) exp[−ũ(t− 1, x)], (1.2)

the global stability of the equilibrium of equation (1.2) with the homogeneous Dirichlet

boundary condition was given. The existence of Hopf bifurcation and its properties under

the Neumann boundary condition was addressed in Yang and So [24].

Based on the model (1.2), distributed delay was introduced by Gourley and Ruan [7]

in the following equation:

∂u

∂t
= d∆u− τu(t, x) + βτ

(∫ t

−∞
f(t− s)u(s, x)ds

)
exp

(
−

∫ t

−∞
f(t− s)u(s, x)ds

)
, (1.3)

for (x, t) ∈ Ω× [0,∞), where Ω is either �n or some finite domain, and the kernel function

satisfies f(t) � 0 and ∫ ∞

0

f(t)dt = 1,

∫ ∞

0

tf(t)dt = 1. (1.4)

In the work of Gourley and Ruan [7], the global and local stabilities of uniform steady

states are studied. For the global stability, energy methods and a comparison principle for

delay equation are employed.

It is getting to be noted that diffusion and time delays are not independent of each other

and simply incorporating time delay into the reaction–diffusion system will bring some

problems, since individuals may move around and are at different points at different times

(see, e.g. [9, 22]). Britton [2] is the first to model delay and diffusion simultaneously for

the Fisher equation on an infinite spatial domain, in which the so-called spatiotemporal

delay or the non-local delay is introduced. As for the bounded domain, Gourley and
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So [8] made some modifications in the model based on the work of Britton [2]. They

showed that a spatial averaging kernel G(x, y, t) should be involved in delayed terms,

which is the fundamental solution of heat equation with proper initial data and boundary

conditions. In particular, on the one-dimensional domain [0, π], in the homogeneous

Neumann problem,

G(x, y, t) =
1

π
+

2

π

∞∑
n=1

e−dn2t cos(nx) cos(ny).

The problem of how the delay may be correctly incorporated into the equations has been

receiving a great deal of attention, for more details we refer to [6, 9, 14, 19, 23].

In the present paper, we consider the following modified equation of equation (1.3)

with non-local delay

∂u(t, x)

∂t
= d∆u(t, x) − τu(t, x) + βτ(g ∗ u)(t, x) exp[−(g ∗ u)(t, x)]

= d∆u(t, x) − τu(t, x) + βτ

∫ t

−∞

∫ π

0

G(x, y, t− s)f(t− s)u(s, y)dyds

× exp[−
∫ t

−∞

∫ π

0

G(x, y, t− s)f(t− s)u(s, y)dyds]

=: d∆u(t, x) + Q(U1, U2) (1.5)

for (t, x) ∈ [0,∞) × [0, π], with initial condition

u(s, x) = φ(s, x) � 0, (s, x) ∈ (−∞, 0] × [0, π],

and the homogeneous Neumann boundary condition,

∂u

∂x
= 0, t > 0, x = 0, π,

where φ ∈ C((−∞, 0] × [0, π]) is the bounded, uniformly Hölder continuous, φ(0, x) ∈
C1[0, π] and U1 = u(t, x), U2 = (g ∗ u)(t, x),

(g ∗ u)(t, x) =

∫ t

−∞

∫ π

0

(
1

π
+

2

π

∞∑
n=1

e−dn2(t−s) cos(nx) cos(ny)

)
f(t− s)u(s, y)dyds,

f(t) satisfies equation (1.4) and it is easy to see that
∫ ∞

0

∫ π

0 G(x, y, s)f(s)dyds = 1.

As far as we know, the main topic discussed in most of the literature about equation

(1.5) is the existence of travelling wave. For example, the existence of travelling wave-front

solutions established in [13, 21] proved the existence of non-monotone travelling waves

from the trivial solution to the positive equilibrium. Works about the dynamical behaviour

around the uniform steady state solutions are few. In this paper, our main purpose is

to investigate the stability of two constant steady states of equation (1.5) and possible

Hopf bifurcation when the stability is lost. Moreover, as an application of our theoretical

results, we will discuss the efficiency of different types of vaccinations based on some data

collected under laboratory conditions.
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This paper is organized as follows. In Section 2, the positivity and boundedness

of solution to equation (1.5) are discussed. In Section 3, using the method of upper-

and lower solutions and its associated monotone iteration scheme, we derived sufficient

conditions for the global stability of constant steady states. It is noticeable that the energy

methods used in [7] do not work for equation (1.5) because of spatial kernel. In Section 4,

the local stability of steady state solutions is established via analysis of the corresponding

characteristic equations. In Section 5, we discuss the occurrence of Hopf bifurcation when

parameter τ passes critical values. The formula determining the stability of bifurcated

periodic solutions on the centre manifold is given. In Section 6, numerical simulation

results are shown to support our theoretical analysis. Conclusion and discussion are

addressed in Section 7, where we apply theoretical results to analyse effects of various

types of vaccinations. In this paper, for convenience, we always denote Ω = [0, π].

2 Positivity and boundedness of solution

In this section, we are concerned with the positivity and boundedness of solutions to

equation (1.5). The positivity of solutions arising from population dynamics should be

guaranteed because of biological realism. By using the strong maximum principle, via

a similar process given in [7], we can have the positivity of solutions of equation (1.5).

To prove the boundedness of solutions, we first introduce definition of sub- and super-

solutions due to Redlinger [17], as it applies to our particular case.

Definition 2.1 A pair of suitably smooth functions v(t, x) and w(t, x) is said to be a pair

of sub- and super-solutions for equation (1.5), respectively, for (t, x) ∈ [0,∞) × Ω with the

boundary condition ∇u · n = 0 on ∂Ω and initial condition u(t, x) = φ(t, x) for t � 0, x ∈ Ω,

if the following conditions hold

(i) v(t, x) � w(t, x) for (t, x) ∈ [0,∞) × Ω.

(ii) The differential inequalities

∂v(t, x)

∂t
� d∆v(t, x) − τv(t, x) + βτ((g ∗ ψ)(t, x)) exp[−(g ∗ ψ)(t, x)],

∂w(t, x)

∂t
� d∆w(t, x) − τw(t, x) + βτ((g ∗ ψ)(t, x)) exp[−(g ∗ ψ)(t, x)]

hold for all functions ψ ∈ C(([0,∞) × Ω) ∪ ((−∞, 0] × Ω)), with v � ψ � w.

(iii) ∇v · n = 0 = ∇w · n on [0,∞) × ∂Ω.

(iv) v(t, x) � φ(t, x) � w(t, x) in (−∞, 0] × Ω.

The following result is from Theorem 3.4 of [17], which shows the control of sub- and

super-solutions on the solutions of equation (1.5).

Lemma 2.1 Assume that v(t, x) and w(t, x) is a pair of sub- and super-solutions for equation

(1.5). If φ ∈ C((−∞, 0] × Ω) is bounded, non-negative, uniformly Hölder continuous and

φ0(x) = φ(0, x) ∈ C1(Ω), then there exists a unique regular solution u(t, x) of the initial
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boundary value problem equation (1.5) such that

v(t, x) � u(t, x) � w(t, x) for (t, x) ∈ [0,∞) × Ω.

By the use of the above comparison lemma, we know that the positive solutions of

equation (1.5) are bounded.

Lemma 2.2 The solution u(t, x) of equation (1.5) satisfies limt→+∞ supx∈Ω u(t, x) � β
e
.

Proof. Let w0 be the solution of the initial value problem dw0

dt
= −τw0 + βτ

e
, t > 0,

with w0(0) = sups∈(−∞,0] maxx∈Ω φ(s, x).

Define

w0(t) =

{
w0(0), t ∈ (−∞, 0],

w0(t), t > 0.

Since 0 � φ � w0(0), we can choose (0, w0)(t) as a pair of sub- and super-solutions of

equation (1.5) under initial and boundary conditions. Actually, it is easy to see that 0 is a

sub-solution. As for w0, since ye−y � e−1 for y > 0, one has

∂w0(t)

∂t
− d∆w0(t) + τw0(t) − βτ((g ∗ ψ)(t, x)) exp[−(g ∗ ψ)(t, x)]

�
∂w0(t)

∂t
+ τw0(t) − βτ

e
= 0

for any ψ ∈ C(([0,∞) × Ω) ∪ ((−∞, 0] × Ω)), with 0 � ψ � w0. This shows that w0 is a

super-solution. Thus, Lemma 2.1 implies 0 � u(t, x) � w0. Since limt−→∞ w0(t) = β
e
, one

has limt→+∞ supx∈Ω u(t, x) � β
e
. The proof is completed. �

3 Global asymptotic behaviour of uniform equilibria

It is readily seen that equation (1.5) admits a trivial steady-state solution and a non-trivial

constant equilibrium ln β for β > 1. In this section, we study the global stability of the

non-negative uniform steady-state solutions using the upper- and lower-solution methods

developed by Pao [16].

To investigate the asymptotic dynamical behaviour, in the following we only need to

consider equation (1.5) when t � t0. According to Pao [16], if there exists C̃ � Ĉ � 0 such

that

−τC̃ + βτC̃e−C̃ � 0 � −τĈ + βτĈe−Ĉ , (3.1)

we call C̃ and Ĉ as upper- and lower-solutions for equation (1.5).

We can verify that Q(U1, U2) defined in equation (1.5) satisfies the Lipschitz condition,

|Q(u1, u2) − Q(w1, w2)| = | − τu1 + βτu2e
−u2 − (−τw1 + βτw2e

−w2 )| (3.2)

� K(|u1 − w1| + |u2 − w2|)

for all Ĉ � ui, wi � C̃, (i = 1, 2), where K = K(τ, β, C̃, Ĉ) . Constructing two sequences

https://doi.org/10.1017/S0956792512000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792512000265


782 R. Hu and Y. Yuan

{Cm}∞
m=0 and {Cm}∞

m=0 by the following iteration process

Cm = Cm−1 +
1

2K
(−τCm−1 + βτCm−1e

−Cm−1 ),

Cm = Cm−1 +
1

2K
(−τCm−1 + βτCm−1e

−Cm−1 ), (3.3)

with initial iteration C0 = C̃ and C0 = Ĉ, respectively, condition (3.3) implies that

Ĉ � Cm � Cm+1 � Cm+1 � Cm � C̃, m = 0, 1, 2 . . . . (3.4)

Then the limits C = limm−→∞ Cm, C = limm−→∞ Cm exist and satisfy the equation

−τC + βτCe−C = 0 = −τC + βτCe−C. (3.5)

Constants C and C are said to be quasi-solutions of equation (1.5) in the interval [Ĉ, C̃].

In general, C and C are not the solution of equation (1.5). If C = C, it is a unique solution

of equation (1.5) in the interval [Ĉ, C̃]. The following result is a consequence of Theorems

2.1 and 2.2 of [16].

Theorem 3.1 Assume that C̃ and Ĉ is a pair of upper- and lower solutions of equation

(1.5). Then the sequences {Cm}∞
m=0 and {Cm}∞

m=0 defined by (3.3) converge monotonically

to their respective limits C and C which, are the quasi-solution of equation (1.5) and satisfy

(3.5). If C = C, then C (or C) is a unique solution of equation (1.5) in the interval [Ĉ, C̃]

for any initial function satisfying φ ∈ [Ĉ, C̃] and the corresponding solution u of equation

(1.5) satisfies limt−→∞ u(t, x) = C.

Now we are in a position to state and prove our main results on the global stability of

two-constant steady-state solutions, since the kernel function f(x) satisfies the assumption

in [16].

Theorem 3.2

(1) If 1 < β � e, ln β is globally stable, i.e. any non-trivial solution u(t, x) of equation

(1.5) with initial boundary conditions satisfies limt−→∞ u(t, x) = ln β uniformly in

x ∈ Ω.

(2) If β < 1, u = 0 is globally stable.

Proof. (1) When 1 < β < e, according to Lemma 2.2, for any 0 < ε < 1 − β
e
, there exists

t0 such that u(t, x) � β
e

+ ε for t > t0. Then C̃ = β
e

+ ε, Ĉ = ε0, 0 < ε0 � ln β, as a pair of

upper and lower solutions for equation (1.5). Note here ln β � β
e
+ε = C̃ since β < e. Then

it is easy to see that inequality (3.1) holds for 1 < β < e. Actually, since 1 < β < e, we

have −1 + βe−( β
e
+ε) � 0, which means that −τC̃ + βτC̃e−C̃ = τ( β

e
+ ε)(−1 + βe−( β

e
+ε)) � 0;

and since 0 < ε0 � ln β, −1 + βe−ε0 � 0, i.e. −τĈ + βτĈe−Ĉ = ε0τ(−1 + βe−ε0 ) � 0.

By constructing the iteration process (3.3), we know (3.4) holds, so both of the limits of

{Cm}∞
m=0 and {Cm}∞

m=0 exist and satisfy 0 < C � β
e
, 0 < C � β

e
. Furthermore, according
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to (3.5), we have

−1 + βe−C = −1 + βe−C = 0,

i.e. C = C = ln β. Therefore, limt−→∞ u(t, x) = ln β uniformly in x ∈ Ω, for 1 < β < e.

When β = e, taking C̃ = Ĉ = 1 gives the result.

(2) For β < 1 we take C̃ = β
e

and Ĉ = 0 as a pair of upper and lower solutions. It is

obvious that 0 is a lower solution. We only need to verify that τβ
e
(βe− β

e − 1) � 0 holds,

i.e. βe− β
e − 1 � 0, which is obvious since β

e
� 0 � ln β. Thus, the limits C and C of the

constructed iterative sequences satisfy 0 � C � β
e
, 0 � C � β

e
. From (3.5),

Cτ(−1 + βe−C) = Cτ(−1 + βe−C) = 0.

Since β < 1 and C,C � 0, we have −1 + βe−C < 0, −1 + βe−C < 0 and then C = C = 0.

Therefore, limt−→∞ u(t, x) = 0 uniformly in x ∈ Ω. �

4 Linearized stability of constant steady sate

In the previous section, we have proved that the trivial steady-state solution is globally

stable for 0 < β < 1, and the positive steady-state u∗ = ln β is feasible when β > 1 and

globally stable for 1 < β � e. β = 1 is a critical value after which uniform steady state

ln β appears and 0 begins to loose its stability. For β > e, we consider the local stability

of u∗ = ln β. Let u = ln β +U. The linearized system of equation (1.5) at u∗ = ln β is

∂U(t, x)

∂t
= d∆U(t, x) − τU(t, x) + τ(1 − ln β)(g ∗U)(t, x) =: L(τ)U. (4.1)

A suitable trial solution is U = eλt cosmx, m = 0, 1, 2, . . . The effect of the non-local term

upon such a trial solution is g ∗ (eλt cos(mx)) = f(λ+dm2)eλt cos(mx). Substituting the trial

solution into equation (4.1) yields the eigenvalue equation

F(λ) := λ+ dm2 + τ− τ(1 − ln β)f(λ+ dm2) = 0, (4.2)

where f(λ+ dm2) =
∫ ∞

0 f(s)e−(λ+dm2)sds.

Theorem 4.1 If e < β � e2, the steady state u∗ = ln β of equation(1.5) on [0,∞) × [0, π]

with the Neumann boundary condition is linearly stable for any delay kernel.

Proof. First, it is easy to see that zero is not an eigenvalue. Then, we only need to prove

that all the roots λ of equation (4.2) are in the left half of the complex plane for any

m2 � 0. If it is false, then there exists a root λ0 with Reλ0 � 0 for some m2 � 0. Since

|f(λ0 + dm2)| < 1, for e < β � e2, one has

τ � |λ0 + dm2 + τ| = |τ(1 − ln β)f(λ+ dm2)| < τ.

This is a contradiction. �
For β > e2, we cannot follow the same way to analyse the local stability of uniform

steady-state solution ln β for general kernel since λ is mathematically involved in f(λ+dm2).
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However, by applying the theory of complex variables, we can obtain some further

sufficient stability conditions.

It follows from a general result in the complex variable theory that the number of

roots of eigenvalue equation (4.2), F(λ) = 0, in the right half of the complex plane will be

determined by

lim
R−→∞

1

2πi

∫
γ(R)

F ′(λ)

F(λ)
dλ,

with γ(R) being the closed semicircular contour centred at the origin and contained in

Reλ � 0. We know that if Reλ > 0, f(λ + dm2) � 1. A similar analysis as that in [12]

yields

lim
R−→∞

1

2πi

∫
γ(R)

F ′(λ)

F(λ)
dλ =

1

2
− 1

π
lim
R−→∞

argF(iR), (4.3)

i.e. the number of the roots of equation (4.2) is determined by 1
2

− 1
π

limR−→∞ argF(iR). It

is easy to see that

F(0) = τ

(
1 −

∫ ∞

0

e−sdm2

f(s)ds

)
+ τ ln β

∫ ∞

0

e−sdm2

f(s)ds+ dm2 > 0

for β > 1. Moreover, we know that |ReF(iR)| is bounded and independent of R, ImF(iR)

grows linearly with R, where

ReF(iR) = τ− τ(1 − ln β)

∫ ∞

0

f(t)e−tdm2

cosRtdt+ dm2 (4.4)

and

ImF(iR) = R + τ(1 − ln β)

∫ ∞

0

f(s)e−sdm2

sinRsds. (4.5)

Then the total change in argF(iR) as R goes from zero to infinity would be the values

(1 − 4n)π/2, n = 0,±1,±2, . . . . According to equation (4.3), ln β is locally stable if and

only if n = 0, i.e. limR→+∞ argF(iR) = π
2
.

In the following, we give two conditions to assure that either ReF(iR) > 0 or ImF(iR) >

0. In both cases, the curve of F(iR) always lies in the first quadrant of the complex plane

and limn→+∞ argF(iR) = π
2
.

Theorem 4.2 Let β > e2. Assume that the kernel f(t) satisfies f′′(t) � 0, f(∞) = 0 and

f′(∞) = 0. Then the steady state u∗ = ln β of equation (1.5) is linearly stable.

Proof. We will prove ReF(iR) > 0 for all R � 0 here. Actually, according to the form of

ReF(iR) in (4.4), this assertion holds since e−tdm2

> 0, 1 − ln β < 0 and∫ ∞

0

f(t) cosRtdt =
1

R2

∫ ∞

0

f′′(t)(1 − cosRt)dt � 0
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under the given assumption by using integration by parts twice. This implies that argF(iR)

can only be π
2

as R goes from zero to infinity. Thus, there is no root of F(λ) = 0 in the

right half complex plane, so u∗ = ln β is linearly stable. �

Theorem 4.3 If β > e2 and τ < 1
ln β−1

, then the steady state u∗ = ln β of equation (1.5) is

linearly stable.

Proof. Under the given condition, we can prove ImF(iR) > 0. Indeed, according to the

form of ImF(iR) in (4.5), we have for τ < 1
ln β−1

ImF(iR) � R − τ(ln β − 1)

∣∣∣∣∫ ∞

0

f(s)e−sdm2

sinRsds

∣∣∣∣ � R − τ(ln β − 1)R > 0

since ∣∣∣∣∫ ∞

0

f(s)e−sdm2

sinRsds

∣∣∣∣ �

∫ ∞

0

f(s)e−sdm2 | sinRs|ds � R

∫ ∞

0

se−sdm2

f(s)ds � R.

Thus, argF(iR) must be π/2 as R goes to ∞. Similar to Theorem 4.2, u∗ = ln β is linearly

stable. �

Remark 4.1 From the above discussion, we have the following results about the stability of

the two constant steady-state solutions zero and ln β, with β as parameter:

(1) If 0 < β < 1, u = 0 is globally stable as stated in Theorem 3.2;

(2) if 1 � β, u = 0 loses its local stability; when 1 < β � e, u∗ = ln β is globally

asymptotically stable, see Theorem 3.2;

(3) when e < β � e2, u = ln β is linearly stable for all kernels, shown in Theorem 4.1;

when β > e2, u∗ = ln β is linearly stable if kernel satisfies conditions of Theorems 4.2,

or the inequality about τ and β in Theorem 4.3 holds.

Remark 4.2 It is easy to see that the weak kernel f(t) = e−t is a convex function and

satisfies conditions in Theorem 4.2. Therefore, with the distributive delay function e−t, u∗ =

ln β is always locally asymptotically stable. In other words, a weak kernel cannot destabilize

the uniform state u∗.

5 Hopf bifurcation from the non-zero uniform state with strong kernel

In the previous section, with the widely used kernel, weak kernel, the stability of constant

steady states solution ln β of system equation (1.5) is obtained in Theorem 4.2. But as for

another frequently considered kernel function, strong kernel, the discussion in Theorem

4.2 does not work. How is the stability of u∗ = ln β with strong kernel for β > e2? This is

our target in this section.

With strong kernel f(t) = 4te−2t satisfying equation (1.4), whose Laplace transform is

f(σ) = 1/(1+σ/2)2, according to equation (4.2) the characteristic equation about u∗ = ln β
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is, for m = 0, 1, . . .

2

(
1 +

λ+ dm2

2

)2
λ+ dm2

2
+ τ

(
1 +

λ+ dm2

2

)2

− τ(1 − ln β) = 0. (5.1)

First, it is easy to verify that 0 is not an eigenvalue.

To examine the existence of pure imaginary eigenvalue and simplify the notation, let

λ = 2iω, ω ∈ �, d = 2d̃. Then (5.1) becomes

ω2 = 3d̃2m4 + (4 + τ)d̃m2 + τ+ 1, ω2 =
2d̃3m6 + (4 + τ)d̃2m4 + 2(τ+ 1)d̃m2 + τ ln β

6d̃m2 + 4 + τ
,

which implies that there exist two sequences of critical values of τ satisfying

(1 + d̃m2)τ2 + [4(1 + 2d̃m2)(1 + d̃m2) + 1 − ln β]τ+ 4(1 + d̃m2)(1 + 2d̃m2)2 = 0, (5.2)

for m = 0, 1, . . . . Since 4(1 + d̃m2)(1 + 2d̃m2)2 > 0 and τ > 0, equation (5.2) has positive
roots for τ if and only if

ln β � 1+8(1+2d̃m2)(1+d̃m2)=: ln βm (m = 0, 1, . . .)

with β0 < β1 < β2 < . . . .

Therefore, the characteristic equation (5.1) has pure imaginary eigenvalue only if β � β0.

Moreover, since 0 is not an eigenvalue, for e2 < β < β0 = e9 the steady state ln β is stable.

If β0 < β < β1, equation (5.2) has a pair of roots (denoted by τ100 and τ200) when

m = 0, but no such roots when m > 0. Then equation (5.1) has a pair of pure imaginary

eigenvalues when τ is one of τ100 or τ200. As β increases and passes another critical value

β1 and β1 < β < β2, the number of roots to equation (5.2) increases. Besides two roots

denoted by τ110 and τ210 for m = 0, equation (5.2) has two more roots (τ111, τ211) for

m = 1, and no more when m � 2. In this case, equation (5.1) has a pair of imaginary

eigenvalues if τ is one of the four values. Generally, assume βn < β < βn+1, (n = 0, 1, . . .),

then equation (5.2) has roots τ1nm, τ2nm with 0 < τ1nm < τ2nm for m = 0, 1, . . . n. At each

critical value τjnm (j = 1, 2), characteristic equation (5.1) has a pair of pure imaginary

eigenvalues λ = ±iωjnm (j = 1, 2). Differentiating equation (5.1) implicitly with respect to

τ at τjnm and using ω2
jnm = 3d̃2m4 + (4 + τ)d̃m2 + τ+ 1, we have, for j = 1, 2

λ′(τjnm) = −1

2

−ω2
jnm + d̃ 2m4 + 2d̃m2 + ln β + 2iωjnm(d̃m2 + 1)

−2ω2
jnm + iωjnm(6d̃m2 + 4 + τjnm)

,

then

Reλ′(τjnm) =
−ω2

jnm + d̃
2
m4 + 2d̃m2 + ln β − (d̃m2 + 1)(6d̃m2 + 4 + τjnm)

4ω2
jnm + (6d̃m2 + 4 + τjnm)2

= −
(d̃m2 + 1)τ2jnm + [4(2d̃m2 + 1)(d̃m2 + 1) + 1 − ln β]τjnm + (d̃m2 + 1)τ2jnm

τjnm[4ω2
jnm + (6d̃m2 + 4 + τjnm)2]

= −(1 + dm2)
τjnm − τknm

4ω2
jnm + (6d̃m2 + 4 + τjnm)2

{
> 0, if j = 1
< 0, if j = 2

(k=2−j+1).

Therefore, the transversality condition holds and Hopf bifurcation occurs. Summarizing

the above analysis, we have the following.
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Theorem 5.1 For equation (1.5) with strong kernel, the uniform steady state u∗ = ln β is

globally stable for 1 < β � e; and it is locally stable when e < β < e9; as β > e9, series of

Hopf bifurcation can occur at τ = τjnm (j = 1, 2; n, m = 0, 1, . . .).

In the following, by using the centre manifold method, we investigate the direction of

Hopf bifurcation at the critical value τ0 with pure imaginary eigenvalues ±iω0, and the

stability of the bifurcated periodic solutions.

Let τ = τ0 and u = U + ln β, then equation (1.5) becomes

∂U

∂t
= L(τ0)U + F(τ0, U), (5.3)

where L(τ0) is defined in equation (4.1) and

F(τ0, U) = −τ0(g∗U)2(t, x)+
τ0

2
(g∗U)3(t, x)+

τ0

2
lnβ(g∗U)2(t, x)− τ0

3!
ln β(g∗U)3(t, x)+o(|U|3).

According to Hassard et al. [11], the stability of the bifurcating periodic solutions and

the bifurcation direction is determined by sign(Rec1(τ0)) and µ2 = −Re c1(τ0)
Reλ′(τ0)

respectively,

where

c1(τ0) =
i

2ω0

(
g20g11 − 2|g11|2 − 1

3
|g02|2

)
+
g21

2
.

More specifically, if m� 0, Rec1(τ0) = 1
2
Reg21; whereas if m = 0,

Rec1(τ0) = Re

{
i

2ω0

(
g20g11 − 2|g11|2 − 1

3
|g02|2

)
+
g21

2

}
,

where g20, g11, g02 are ‘explicitly’ given in (7.2) and g21 is given in (7.13) for m� 0 and

(7.13) for m = 0 in given in Appendix A. Here, ‘explicitly’ means that these values are

expressed by the original parameters and functions.

6 Numerical simulations

In this section we present some numerical simulations to support the previous theoretical

analysis. As an example, we consider equation (1.5) with d = 1 and choose the initial

condition and the homogeneous Neumann boundary condition as following:

∂u(t, x)

∂t
= ∆u(t, x) − τu(t, x) + βτ

∫ t

−∞

∫ π

0

G(x, y, t− s)f(t− s)u(s)dyds

× exp

[
−

∫ t

−∞

∫ π

0

G(x, y, t− s)f(t− s)u(s)dyds

]
u(t, x) = c sin2 x+ ln β − 1, (t, x) ∈ (−∞, 0] × [0, π],

∂u

∂x
= 0, t > 0, x = 0, π, (6.1)
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Figure 1. (Colour online) For β = e3, τ = 1 and c = 2, u∗ = ln β = 3 is stable. Left: weak kernel.

Right: strong kernel.

Figure 2. (Colour online) With β = e10, strong kernel, c = 10. Left: u∗ = ln β = 10 is asymptotically

stable when τ = 1
20
< 1

ln β−1
. Right: positive solution converges to a periodic solution when

τ = 1 > 1
ln β−1

and τ100 < τ < τ200.

where

G(x, y, t− s) =
1

π
+

2

π

∞∑
n=1

e−dn2(t−s) cos(nx) cos(ny)

and constant c is used to adjust the visibility of the numerical solution.

When β > 1, as shown in Theorem 4.2 and Section 5, u∗ is stable for weak kernel, and

when 1 < β < e9, strong kernel cannot destabilize the stability of u∗. To demonstrate the

prediction, we choose β = e3, τ = 1 and c = 2. Then one can observe the stability of

non-trivial equilibrium with both weak and strong kernels in Figure 1.

When β > e9, if τ is small enough (i.e. τ < 1
lnβ−1

), the non-trivial steady-state u∗

with strong kernel can keep its stability according to Theorem 4.3. By taking β = e10,

c = 10 and τ = 1
20
< 1

ln β−1
, the left graph of Figure 2 demonstrates the stability of

u∗ = 10. Nevertheless, u∗ may lose its stability as τ increases because of the occurrence

of Hopf bifurcation from Theorem 5.1. Since β0 = e9 < β = e10 < β1 = e25, (5.2)

has a pair of roots τ100 = 1
2

and τ200 = 2 from which Hopf bifurcations occur and
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Reλ′(τ100) > 0, Reλ′(τ200) < 0. By using the explicit algorithm provided in the previous

section for detecting the direction and stability of Hopf bifurcations, we have Rec1(τ100) ≈
−1.3692 < 0, i.e. from the critical value τ100 the bifurcated periodic solutions are stable

and the Hopf bifurcation is supercritical. When choosing τ = 1 ∈ (τ100, τ200), c = 10, there

exists a positive solution that converges asymptotically to a periodic solution (see the

right graph of Figure 2).

7 Conclusion and discussion

In this paper, we consider the diffusive Nicholson’s blowflies model with non-local (or

spatiotemporal) delay on a one-dimensional bounded domain. This spatial non-locality

arises due to the fact that in biological models individuals usually have been at different

points in spacial location at different times. We adopt the spatial averaging kernel

introduced in [8], and by using the upper- and lower solution method, we have obtained

sufficient conditions for the global convergence of uniform equilibrium to the proposed

problem, which is determined by the value β = p
δ
. When the ratio β is less than one, the

trivial equilibrium is proved to be globally stable, i.e. the population goes to extinction;

and when this ratio is relatively small (1 � β < e), the population will be steady but small

around the non-trivial steady-state solution u∗ = ln β.

Since the spatial averaging kernel is explicitly chosen, it enables us to analyse the local

stability of uniform steady-state solutions by investigating the corresponding characteristic

equations. We have proved that the non-trivial steady-state solution u∗ = ln β is linearly

stable when the ratio β is between e and e2 for all kernels. When β > e2, we have given

conditions to assure the local stability of u∗ = ln β. Noting that the effect of a non-local

term upon the characteristic equation is the appearance of f(λ + dm2) instead of f(λ) in

[7], since |f(λ+ dm2)| � |f(λ)| < 1 for Reλ > 0, we have similar results as that in [7] for

local stability analysis.

Although the strong kernel f(t) = 4te−2t does not satisfy conditions in Theorem 4.2, if

τ < 1
ln β−1

, this kernel cannot destabilize the stability of non-trivial steady state u∗ = ln β

according to Theorem 4.3. When τ is relatively large, by investigating the distribution

of eigenvalues, we found that there exist a series of β0 < β1 < . . . such that when

e < β < β0 = e9, the local stability of the uniform steady-state solution u∗ = ln β remains,

when β > β0, the strong kernel destabilizes the uniform steady-state ln β through Hopf

bifurcations with τ as parameter. Moreover, when β passes βi, (i = 0, 1, . . .), the number

of critical values τ is 2(i + 1). Formulas determining direction of Hopf bifurcation and

stability of bifurcated periodic solutions have been obtained by using centre manifold

methods. Finally, numerical simulations are presented to demonstrate analytical results.

The non-locality can essentially affect dynamical properties. It is obvious that all the

solutions approach to be spatially uniform in Figures 1 and 2, which is actually due to

the fact that the non-locality is a form of spatial averaging and affects anything that is

spatially heterogeneous [9]. In [6], a diffusive predator–prey system with non-local delay

is studied. By considering various spatial and temporal kernels, some types of bifurcations

can occur under the cooperation of diffusion and non-local delay, while such bifurcations

cannot appear when the non-local delay degenerates into local delay. Such dynamical
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Table 1. Values for parameters in equation (1.1)

Description of parameter Value

1/a Population size at which the population achieves

maximum reproductive success

1/a ≈ 450

p
Maximum rate of egg-laying

Population producing maximum reproduction
7.4 < p < 11.4

δ Per capita adult death rate 0.17 < δ < 0.23

τ Days that eggs take to develop into sexually

matured adults

14.8 ± 0.4 days

behaviour is evidently not brought about by diffusion alone, but rather by the non-local

delay in the system.

As introduced in [3], traditional methods of controlling flystrike are becoming less

effective whereas vaccination against Lucilia cuprina has shown considerable potential.

The study of the population dynamics of blowflies after sheep being vaccinated can help

us appraise the potential of all the blowfly control measures listed above, on minimizing

the incidence of flystrike in flocks. In the following, we will validate model (1.5) against the

vaccination cases given in [3] and discuss the population dynamics corresponding to each

vaccine according to our theoretical results. To do this, we need to evaluate the constant

coefficients, especially the ratio β of the maximum per capita daily egg production rate p

and the per capita daily adult death rate δ, and the time distribution kernel f(t) in our

mathematical model.

Note that there are some realistically feasible parameters in [10] which well explained

Nicholson’s data. We list values of some parameters for model (1.1) in Table 1. For more

details about the calculation of these values, we refer to [10] and the references therein.

But to analyse our cases, we need to do some modification about the estimation of p, the

maximum per capita daily egg production rate. As we know, R(u) = puexp(−au) in (1.1)

describes the rate of recruitment to the adult population. In [10], p is simply the ratio

of maximum rate of egg-laying and population producing maximum reproduction, which

implies that the mortality rate of egg is ignored and all eggs mature into adults. This p is

reasonable if the survival rate from egg to adult stage is very high. But considering the

case that the sheep are vaccinated and the larval growth is greatly reduced, we modify p

as p′ = p× (1 − reduction rate of larval growth). Then β = p′/δ. By using the values of p

and δ in Table 1, we can obtain the values of p′ and β corresponding to each vaccination

as shown in Table 2.

Zied et al. [25] collected the life-history raw data of Lucilia cuprina in laboratory

conditions and obtained life tables of the sheep blowfly. According to their record, the

probability that a newborn will survive to age x, which is also referred as the age-specific

survival rate (lx), shows weak distribution (Figure 2 in [25]). This suggests that the time

distribution kernel f(t) = e−t in equation (1.5).

Based on the values of β listed in Table 2, we can receive some information about the

population dynamics of blowflies. Note that for the first four vaccines β > e2, according
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Table 2. Values of p′ and β corresponding to each vaccination in [3]

Reduction rate of

Vaccination larval growth p′ β = p′/δ

Detergent-insoluble

fraction [4]

40% in vivo 4.44 < p′ < 6.84 19.30 < β < 40.24

50% in vitro 3.70 < p′ < 5.70 16.08 < β < 33.53

Binding of MoAb to

antigens [5]

33% in vitro 4.96 < p′ < 7.64 21.56 < β < 44.95

PM [3] 30% in vivo and

in vitro

5.18 < p′ < 7.98 22.52 < β < 46.94

Glycoproteins [3] 50% 3.70 < p′ < 5.70 16.08 < β < 33.53

Fourfold

concentrationof

immunoglobulin

fraction from two of

the antisera [3]

86% 1.04 < p′ < 1.60 4.52 < β � e2 e2 < β < 9.42

Table 3. Final population of Lucilia cuprina when the initial population is feasible

Final population of

Vaccination ln β Lucilia cuprina u∗ = ln β/a

Detergent-insoluble fraction [4] 2.9 < ln β < 3.7 (1,305, 1,665) in vivo

2.7 < ln β < 3.6 (1,215, 1,620) in vitro

Binding of MoAb to antigens [5] 3.0 < ln β < 3.9 (1,350, 1,755) in vitro

PM [3] 3.1 < ln β < 3.9 (1,395, 1,755) in vivo and in vitro

Glycoproteins [3] 2.7 < ln β < 3.6 (1,215, 1,620)

Fourfold concentration of

immunoglobulin fraction from

two of the antisera [3]

1.5 < ln β < 2.0 (675, 900)

2.0 < ln β < 2.3 (900, 1,035)

to Theorem 4.2 the non-trivial steady state u∗ = ln β of equation (1.5) is locally stable.

Recall that we did re-scaling from equations (1.1) to (1.5). Then with certain region of β,

the final population will approach to u∗/a when the initial population is feasible, which is

listed in Table 3. As for the last vaccine case when e < β � e2, u∗ = ln β is globally stable

according to Theorem 4.1. This implies that the final population will be u∗/a irrespective

of the initial population (see Table 3).

In summary, by applying our main theorem in Section 4, we can observe that all the vac-

cines in [3, 4, 5] would be expected to decrease the incidence and severity of blowfly strike

on vaccinated sheep. Particularly, four-fold concentration of isolated immunoglobulin has

shown considerable potential for controlling flystrike.
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Appendix. Calculation of g20, g02, g11, g21

The eigenfunction corresponding to iω0 is η(θ) = cos(mx)eiω0θ for −∞ < θ � 0. The

adjoint eigenfunction of iω0 is η∗(s) = De−iω0s cos(mx) for 0 � s < ∞. Here D =
2
π
[1 − τ0(1 − ln β)

∫ +∞
0

f(s)seiω0sds]−1 is obtained from (η∗, η) = 1 where the inner product

is defined in [20]. The abstract form of (5.3) is

∂Ut

∂t
= Aτ0Ut + X0F(Ut), (7.1)

where for φ ∈ C((−∞, 0], X)

Aτ0φ(θ) =

{
dφ
dθ
, −∞ < θ < 0

L(φ), θ = 0
and X0F(φ)(θ) =

{
0, −∞ < θ < 0,

F(φ), θ = 0

with L, F defined in (5.3). Let Ut = 2Re{ηz} + w with z = (η∗, Ut). Then (7.1) becomes

∂z

∂t
= iω0z + (η∗,X0F(2Re{ηz} + w)) = iω0z + Υ (z, z, w),

∂z

∂t
= −iω0z + (η∗,X0F(2Re{ηz} + w)),

∂w

∂t
= Aτ0w + X0F(2Re{ηz} + w) − 2Re{η(η∗,X0F(2Re{ηz} + w))}

= Aτ0w +H(z, z, w).

By using the expansion of w(z, z), Υ (z, z), H(z, z) and notations in [11], we can obtain

Υ (z, z, w) = g20

2
z2 + g11zz + g02

2
z2 + g21

2
z2z + . . . , where

g20 =g02 =

{
0, m� 0,

2πτ0D
(

ln β
2

− 1
)
f

2
(iω0), m = 0,

g11 =

{
0, m� 0,

2πτ0D
(

ln β
2

− 1
)

|f(iω0)|2, m = 0

and

g21 = 4D

∫ π

0

cos2(mx) τ0(
ln β

2
−1)[f(dm2+iω0)(g ∗ w11)+

1

2
f(dm2−iω0)(g ∗ w20)]dx+

9πτ0D

8

(
1− ln β

3

)
f

(
dm2 + iω0

)
|f(dm2 + iω0)|2. (7.2)

Moreover, when −∞ < θ < 0,

H(θ, z, z) =

⎧⎪⎪⎨⎪⎪⎩
O(|z|3), m� 0,

−πτ0(f
2
(iω0)z

2 + f
2
(−iω0)z

2 + 2|f(iω0)|2zz)

×(eiω0θD + e−iω0θD)( ln β
2

− 1), m = 0,

and when θ = 0,

H(0, z, z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

τ0[f
2
(dm2+iω0)z

2+f
2
(dm2−iω0)z

2 + 2|f2
(dm2 + iω0)|2zz]

×( ln β
2

−1) cos2(mx), m� 0,

τ0[f
2
(iω0)z

2 + f
2
(−iω0)z

2 + 2|f2
(iω0)|2zz]

×( ln β
2

− 1)(1 − 2πReD), m = 0.
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Then via a direct calculation, H20 = H02, when −∞ < θ < 0

H20(θ) =

{
0, m� 0,

−2πτ0(e
iωθD + e−iωθD)

(
ln β
2

− 1
)
f

2
(iω0), m = 0,

H11(θ) =

{
0, m� 0,

−2πτ0(e
iωθD + e−iωθD)

(
lnβ
2

− 1
)

|f(iω0)|2, m = 0,

and when θ = 0

H20(0) =

⎧⎨⎩ 2τ0

(
ln β
2

− 1
)

cos2(mx)f
2
(dm2 + iω0), m� 0,

2τ0

(
ln β
2

− 1
)

(1 − 2πReD)f
2
(iω0), m = 0,

H11(0) =

⎧⎨⎩ 2τ0

(
ln β
2

− 1
)

cos2(mx)|f(dm2 + iω0)|2, m� 0,

2τ0

(
ln β
2

− 1
)

(1 − 2πReD)|f(iω0)|2, m = 0.

Since H(θ, z, z) is explicitly obtained, we are in a position to get w20, w11 and w02. From

[11], w20 = w02 and

[2iω0 − Aτ0 ]w20(θ) = H20(θ), −Aτ0w11(θ) = H11(θ). (7.3)

Let w20(θ) = A1e
−iω0θ + A2e

iω0θ + Ee2iω0θ. From (7.3), we have for −∞ < θ < 0,

3iω0A1e
−iω0θ + iω0A2e

iω0θ =

{
0, m� 0,

−2πτ0(e
iω0θD + e−iω0θD)

(
ln β
2

− 1
)
f

2
(iω0), m = 0.

Then

A1 =

{
0, m� 0,
2πτ0Di
3ω0

(
ln β
2

− 1
)
f

2
(iω0), m = 0,

A2 =

{
0, m� 0,
2πτ0Di
ω0

(
ln β
2

− 1
)
f

2
(iω0), m = 0.

(7.4)

Since

(2iω0 − Aτ0 (0))(Ee2iω0 ·)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2τ0

(
ln β
2

− 1
)
cos2(mx)f

2
(dm2 + iω0), m� 0,

2τ0
(

ln β
2

− 1
)
f

2
(iω0)[(1 − 2πReD) − (2iω0 + τ0)

(
D
3

+ D
)

πi
ω0

+(1 − ln β)
(
D
3
f(−iω0) + Df(iω0)

)
πi
ω0

], m = 0,

(7.5)

we are going to use the initial condition to determine E. When m � 0, let E =
E1 + E2 cos(2mx), E1, E2 ∈ �, then from (7.5)

2iω0E−d∆E+τ0E−τ0(1−ln β)(g ∗ (Ee2iω0 ·))=2τ0

(
ln β

2
−1

)
1+cos(2mx)

2
f

2
(dm2+iω0),

by solving the above equation, we have

E1 = [2iω0 + τ0 − τ0(1 − ln β)f(2iω0)]
−1τ0

(
ln β

2
− 1

)
f

2
(dm2 + iω0),
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E2 = [2iω0+4dm2+τ0−τ0(1−ln β)f(4dm2+2iω0)]
−1τ0

(
ln β

2
−1

)
f

2
(dm2 + iω0). (7.6)

When m = 0, letting E = E0 ∈ �, via a direct calculation from (7.5), we have

E0 = [2iω0 + τ0 − τ0(1 − ln β)f(2iω0)]
−12τ0

(
ln β

2
−1

)
f

2
(iω0) (7.7)

×
[
(1−2πReD)−(2iω0+τ0)

(
D

3
+D

)
πi

ω0

+ (1−ln β)

(
D

3
f(−iω0)+Df(iω0)

)
πi

ω0

]
.

Therefore, the explicit form of w20 is obtained and

(g ∗ w20)=

{
A1f(−iω0)+A2f(iω0)+E1f(−2iω0)+E2f(4dm

2+2iω0) cos(2mx), m� 0,

E0f(−2iω0), m = 0.
(7.8)

Similarly, let w11(θ) = A3e
−iω0θ + A4e

iω0θ +M, A3, A4,M ∈ �. For −∞ < θ < 0,

−iω0A3e
−iω0θ + iω0A4e

iω0θ = −H11(θ).

It is a direct calculation to see that

A3 = A4 =

⎧⎨⎩
0, m� 0

−2πτ0Di

ω0

(
ln β

2
− 1

)
|f(iω0)|2, m = 0.

For θ = 0, when m� 0, let M = M1 +M2 cos(2mx); when m = 0, let M = M0, we have

M1 =
1

ln β

(
ln β

2
− 1

)
|f(dm2 + iω0)|2,

M2 = −[τ0(1 − ln β)f(4dm2) − 4m2 − τ0]
−1τ0

(
ln β

2
− 1

)
|f(dm2 + iω0)|2 (7.9)

and

M0 =

2τ0

(
ln β

2
− 1

)
ln β

|f(iω0)|2[(1 − 2πReD) +
2πτ0D

ω0
(ln β − 1)Imf(−iω0)]. (7.10)

Then w11 is well defined and

(g ∗ w11) =

{
A3f(−iω0) + A4f(iω0) +M1 +M2f(4dm

2) cos(2mx), m� 0

M0, m = 0.
(7.11)

Then by substituting w20, w11 into (7.2), we have for m� 0

g21 =2πτ0D

(
ln β

2
−1

) [
1

2
f(dm2−iω0)(A1f(−iω0)+A2f(iω0)+E1f(−2iω0) (7.12)

+
1

2
E2f(4dm

2+2iω0)) +f(dm2+iω0)(2Re{A3f(−iω0)}+M1)

]
+

9

8
πτ0D

(
1− ln β

3

)
f(dm2+iω0)|f(dm2+iω0)|2

and for m = 0

g21 =4τ0πD

(
ln β

2
−1

) [
1

2
f(−iω0)E0f(−2iω0)+ f(iω0)M0

]
+

9

8
πτ0D

(
1− ln β

3

)
f(iω0)|f(iω0)|2.

(7.13)
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