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Abstract

Accurate channel characterization is extremely helpful in channel estimation, channel coding,
and many other parts of communication system design and can effectively reduce overhead.
Ray tracing (RT) shows accurate channel reconstruction for specific maps, but the multipath
propagation in indoor scenes is far more complex than in outdoor scenes leading to a challenge
for RT. This work presents and validates an RT tool for a massive multiple-input multiple-
output (MIMO) system in the millimeter-wave frequency bands with the associated channel
beamforming algorithm and provides ideas for channel estimation algorithm in subsequent
MIMO systems. The impact of the order of interactions, e.g. reflections and diffractions on the
channel impulse response reconstruction are analyzed in the RT simulation. The comparison
between RT simulated and measured results shows a reasonable level of agreement. The pre-
sented RT tool that can provide complete and accurate channel information is of high value for
the design of reliable communication systems.

Introduction

The increasing demands for higher data rates, broader coverage, and enhanced communi-
cations reliability call for significant advancements in radio technology [1]. As one of the
most promising technologies massive multiple-input multiple-output (MIMO) systems have
attracted significant interest in both the industry and academic in 5G new radio (NR) [2-4].
Radio channel modeling is crucial for the development and assessment of NR technologies.
Empirical data have shown that massive MIMO systems exhibit distinctive features not typi-
cally found in traditional MIMO setups, such as spatial non-stationarity and the prevalence of
spherical wave propagation [5, 6].

Coexisting with the high attenuation and scarcity of propagation paths associated with mil-
limeter waves (mmWave), it is essential to integrate massive MIMO technology with mmWave
systems to unlock their full potential [7-9]. The integration of massive MIMO technology sig-
nificantly enhances the energy and spectral efficiency of the communication channel [10, 11].
It also provides substantial beamforming benefits and effectively decreases the path loss associ-
ated with mmWave channels, as discussed in Refs [12, 13]. Additionally, mmWave technology
inherently provides a greater bandwidth, as noted in Ref. [14]. The utilization of these shorter
wavelengths facilitates the installation of a large size of antenna array in the compact form factor
[5].

The implementation of massive MIMO systems has been widespread, accompanied by
extensive research into channel modeling. Artificial intelligence (AI) radio maps for channel
prediction have been in the spotlight recently [15]. By acquiring information about the com-
munication environment, it is crucial for the network design of communication systems, and
ray tracing (RT) can be one of the important steps. RT stands out as a prevalent simulation tech-
nique for studying the propagation of electromagnetic waves. It is grounded in the principles of
geometric optics and typically incorporates a combination of shooting and bouncing rays along
with the images theory, positioning it as a favored option for channel modeling in both indoor
and outdoor mmWave environments [7, 16]. Specifically, when dealing with target dimensions
that are more larger than the wavelength, RT becomes an essential and reliable tool in wireless
communication system simulation [17-19]. It can help alleviate the requirement for costly and
time-consuming channel measurements and simplifies scenario modeling.

The aim of this paper is to confirm the accuracy of the channel data generated by the RT for
massive MIMO systems in the mmWave frequency range, especially in an indoor scenario that
exhibits more complex multipath propagation than the outdoor scenario and hence is challeng-
ing for RT. To achieve this goal, the channel measurement for massive MIMO is conducted using
a vector network analyzer (VNA)-based channel sounder as proposed in the study referenced
in [20]. The experimental setup utilizes a virtual uniform circular array (UCA), operating
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Figure 1. |llustration of the virtual UCA, with mth element, nth path.

with a 6 GHz bandwidth at a central frequency of 29.5 GHz, as
detailed in Ref. [6]. The identical scenario is then simulated by
the RT. A comparative analysis is performed, focusing on chan-
nel impulse responses (CIRs) obtained from various locations
within the virtual UCA and investigating the beamforming results.
Additionally, the potential of using simulation results in MIMO
detection is explored. The key contributions of this paper are
outlined below.

(1) A virtual array scheme, forming a UCA with a 0.5 m radius
and 720 antenna elements, is implemented to measure mmWave
channels covering the frequencies of 26.5-32.5 GHz. Propagation
characteristics of large-scale array antennas are analyzed employ-
ing classical beamforming (CBF) algorithms.

(2) An RT simulation with the same scenario and configurations
as the measurement is performed, predicting the mmWave massive
MIMO channel. The effect of interaction order on mmWave CIR is
discussed to reduce the use of simulation arithmetic resources. It is
established that in this scenario, interaction order up to the third
order can provide a complete description of the main path in the
investigated scenario.

The paper is organized as follows: the second section describes
the CBF algorithm employed to analyze UCA arrays. The third
section describes the measurements set up and the scenario.
The fourth section discusses the RT simulation and the mod-
eling of the scenario. The fifth section provides a complexity
analysis by comparing the results obtained through the experi-
ments and simulations. Finally, the sixth section concludes this
article.

Indoor scenario channel model
Signal model

Figure 1 illustrates a UCA consisting of P array elements that
are evenly distributed along the circumference of a circle with
a radius r. Each element is positioned at an angle §,, = 27 -
m/P with m € [1,P]. Considering N distinct paths from
the receiver (Rx) to the transmitter (Tx) at the center of the
UCA, the channel’s frequency response can be described as
follows:

H, (f) = 30 a,exp (—j2nfT,) (1)
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Table 1. Measurement specifications

Measurement set up details value

Tx and Rx height 1.25m
Los distance 6.5 m
Radius of UCA 0.5m
Number of antenna array 720
Frequency 26.5-32.5G Hz
Frequency points 1800
Antenna type Bi-conical
Polarization Vertical

where a, and 7, represent the complex amplitude and delay of the
nth path, respectively .

Considering the channel frequency response for N distinct
paths between the Rx and each individual element of the UCA at
the Tx location:

H, () = £, anexp (—j27f7,) 2)
T,, represent the delay of the nth path on each antenna elements.
The delay difference between nth path reaching mth element and
the center of the UCA can be calculated from the antenna geomet-
rical location properties.
The phase alignment of the antenna array elements is achieved
through the application of a weighting function, which is repre-
sented as follows:

. 0—0
W:mpﬂfLﬂ%_ﬁ) 3)
The classical beamforming result can be obtained by:
H(f,0) = ﬁzpzlwm-Hm f) 4)

Then, the CIR of the delay-angular domain can be calculated via
inverse Fourier transformation.

h(7,0) = Y2 (f,0) exp (j2rf7) (5)
fu and f; are the upper and lower limits of the frequency band.
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Channel measurements and results
Measurement architecture

The experimental arrangement includes a set of vertically polar-
ized omnidirectional biconical antennas, as referenced in [21] and
[22], which serve as the Tx and Rx units. Figure 2 depicts the
phase-compensated VNA-based channel sounder as proposed in
Ref. [20]. The system operates within a frequency band 0f 26.5-32.5

GHz, offering a 6 GHz bandwidth. It employs 1800 frequency

points across this range, which results in a delay resolution of 0.167
ns and allows for the measurement of propagation distances up to
90 m. The calibration between transceiver antennas is performed in
advance of measurements. The CIR can be derived by conducting
an inverse Fourier transform on the CFR in the frequency domain.
In the virtual UCA configuration, the transmitter encompasses
720 distinct positions. Additionally, a turntable is set up to rotate

through 360 degrees in a clockwise direction, with increments of

0.5 degrees, as illustrated in Figure 3. The detailed measurement
parameters are shown in Table 1.

Channel measurements

The measurement scenario is located on the ground floor of a
building in the Aalborg University, Aalborg, Denmark. The dimen-
sions of the enclosed room are 8.19 x 4.78 m?, as shown in Figure 3.
In this scenario, several structural elements possess significance for
RT simulations. Notably, the room is characterized by two floor-to-
ceiling glass windows, an elevator, two heaters, and two wooden
doors, all of which serve as critical constituents within the simu-
lated model. Two omnidirectional bi-conical antennas are used as
the Tx and Rx, with 1.25 m of the antennas above the ground. To
enable the distinction of propagation paths characterized by vari-
ous time delays originating from reflections of the room’s left and
right boundaries, the Tx and Rx positions are strategically placed in
proximity to the left wall, with a distance of 2 m. This configuration
yields a deliberate line-of-sight (LoS) scenario, where the Tx and
Rx are separated by a linear distance of 6.5 m. For more technical
details of the measurement campaign, readers are recommended
to read [6].
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Ray tracing simulation
Ray tracing modeling

The scenario is simulated utilizing an in-house RT, which is based
on the principles of geometric optics. RT assumes that light trav-
els in straight lines (rays) and interacts with surfaces through
transmission, reflection, diffraction, and scattering. Although a
vegetation model is typically used for outdoor environments, it is
excluded from this indoor simulation. The workflow of RT simula-
tion contains (a) Scenario Definition (material definition), (b) 3D
Geometry Modeling (in blander), (c) Simulation Launching, and
(d) Channel Model Virtualization. The LoS components within the
RT are determined according to the Friis free-space path loss for-
mula, and reflections are figured out using Snell’s equation, as in
Ref. [24]. The diffraction calculations are grounded in the uniform
geometrical theory of diffraction (UTD) [25-27], and scattering
is evaluated using the Lambertian, directive, and backscattering
lobe scattering models [28]. Thus, the accuracy of the indoor
model’s geometry and the specifications of the building materials
are pivotal for achieving precise simulation results.

The room is represented in a 3D model, as shown in Figure 4(a),
which is created using the open-source modeling software Blender.
This model contain such as heating systems, doors, elevators,
windows, and others, each detailed with their specific dimen-
sions as indicated in Figure 3. Corresponding material properties
are also assigned to these components. The building’s material
parameters are sourced from the guidelines established by the
International Telecommunication Union [29], covering a range of
materials including concrete, glass, wood, and others. Note that
the metals within the model are characterized as perfect electrical
conductors.

In RT modeling, object interactions are classified into three pri-
mary categories: (a) interactions involving reflection or diffraction
processes, (b) interactions that are a combination of reflection and
diffraction (i.e. mix mode), and (c) interactions involving scatter-
ing processes. It is important to note that this study only accounts
for the first two types of interactions, as the emphasis is on the
dominant propagation paths within mmWave frequency bands (as
the mmWave communication will mainly rely on dominant paths
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Figure 3. (a) Measurement scenario and (b) photo of the indoor
scenario for two antennas location [23].
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(b) Figure 4. (a) Measurement scenario and (b) reflection, reflection,
or diffraction, mix mode.
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for data transmission). The scattering mechanism, which could be
significant for overall power considerations, is excluded from the
subsequent analysis.

The central frequency employed in the RT simulation is set at
29.5 GHz, with the simulation incorporating the coordinates for
720 antenna positions at the Tx of the virtual UCA and a single
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Figure 6. (a) Measured CIR in LoS scenario and (b) PADP.

Figure 7. Identified ray trajectory compared to room geometry.

antenna position at the Rx. The simulations are conducted for one
Tx-Rx position pair at a time, resulting in a total of 720 individ-
ual simulations for the virtual antenna array (VAA) measurements.
The RT tool is based on NVIDIA Optix and runs on Linux, with
an Intel Xenon 4108 Silver Processor with 64 RAM. The simu-
lation process is divided into two stages. The first stage involves
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Figure 8. CIR at position (a) 2nd, (b) 3rd, and (c) 4th. [23].

straightforward reflection or diffraction, with each simulation tak-
ing an average of 4 s. The second-stage addresses mixed-mode
scenarios, where paths include third-order reflections followed by

Results comparison

Measurement results

the first-order diffraction, with each averaging simulation time of
approximately 75 s. The entire process of this massive MIMO sys-
tem simulation takes around 4 h, with bandwidth limitations being
addressed during the post-processing phase.
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When the turntable rotates, the CFRs for each of the 720 posi-
tions of the VAA are recorded. A brief pause is set after each
measurement to guarantee the reliability of the data collection.
Figure 5 presents the CIR at the initial position, excluding the
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Figure 9. Simulated CIR in LoS scenario.

antenna gain. The delay for the LoS path is 20 ns, which corre-
sponds to the distance between the Tx and Rx with 6 m. The
results from both the measurements and the simulations show a
high degree of consistency. The LoS path exhibits a variation of less
than about 2 dB, which could be attributed to misalignments in the
antenna positioning and discrepancies in the antenna gain values
specified in the manufacturer’s datasheet.

Owing to the unique properties of the virtual UCA, the CIR dis-
plays clear S-shaped patterns, which aid in identifying the primary
propagation paths in the indoor environment. Figure 6(a) displays
the CIR data across the entire virtual array for the LoS scenario.
The horizontal axis represents the channel propagation delay, the
vertical axis shows the antenna position in a clockwise direction,
and the color scale indicates the received power level, spanning
a dynamic range of 25 dB. It is evident that the measured chan-
nel is predominantly concentrated within a delay window of 20-40
ns. And within the mmWave frequency band, there is a noticeable
effect from scattered fields, particularly around delays of 30 and 40
ns. Figure 6(b) illustrates the power angular delay profile (PADP)
curves for the LoS scenario, which are derived using the frequency
beamforming method outlined in the second section. The CBF ata
22 ns delay indicates a peak in energy with a transmission azimuth
of 0 degrees, which corresponds to the LoS path observed in the
experiment. At a 27 ns delay, another path is observed at 0 degrees,
indicating a reflection from the back wall after the initial transmis-
sion from the UCA in the same direction. The CBF results provide
comprehensive azimuth information for the nine distinct paths. A
comparison can be clearly found in Figure 7.

Simulation results

The simulation accounts for the first two categories of environ-
mental object interactions mentioned in the fourth section, with
a limit on the total number of interactions set at third section, as
shown in Figure 4(b). This restriction includes up to third-order
reflections and first-order transmissions. The results of the simu-
lation, which depict first-, third-, and fifth-order reflections in the
mmWave channel context, are graphically represented in Figure 5.
In the context of this LoS scenario, the RT simulation utilizes
third-order reflections and first-order transmissions to identify
and analyze the principal nine propagation paths.

Figure 7 illustrates the trajectory of the paths at the first antenna
position, with the path analysis extracted from the RT simulation.
The simulation data include the electromagnetic intensity, delay,
departure angle, arrival angle, and the polarization matrix for each
individual path.
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The CIR is provided for the 2nd, 3rd, and 4th of the virtual
array, as shown in Figure 8. The path delays and received power lev-
els generally align with the measurements showing a satisfactory
match, though some deviations exist. The 2nd and 4th positions
are virtual array symmetric positions with a direct radial delay of
around 21.5 ns. The Los path delay of the 3rd position is about 23 ns
and the propagation distance is at 7 m. And large arrays often show
spatial non-stationary, like the path 4 is missing from the results for
the 3rd position. The received power has an error of about 5 dB in
3rd position, the source of which may be the measurement noise
along with the presence of the floor noise. In addition, the delay
difference may come from errors of the turntable.

The RT simulation in Figure 9 shows a good correspondence
with the measurement data, within a dynamic range of 25 dB. An
S-shaped pattern, consisting of nine distinct paths, is clearly vis-
ible within a 65 ns time delay window. The paths labeled 2 and
4 are seen to overlap because they have close delays. The trajec-
tories can be discerned by examining the departure and arrival
angles as provided by the RT simulation data. A similar overlap
is noted for the paths labeled 3 and 6. However, the measured data
indicate a more intricate path scenario, possibly due to the pres-
ence of rough surfaces on some spatial elements that contribute to
additional scattering.

Conclusion

In the current MIMO simulation, the channel is commonly derived
from the 3rd Generation Partnership Project (3GPP) model, which
is not site-specific and has some discrepancies with the actual
conditions. Therefore, it is suggested to use more realistic chan-
nel information for MIMO simulation. It has been verified in the
previous section that the difference between the RT channel and
measured channel information is relatively low, and RT channel
simulation is much more simplified than the channel measurement
process. Thus, employing RT channels in place of ideal channels for
MIMO simulations can substantially improve the realism and reli-
ability of the simulation outcomes in certain scenarios. Following
this, the RT channel or the measured channel can also serve as
a benchmark for refining the channel estimation algorithms in
MIMO systems.

In this study, we validate the accuracy of mmWave massive
MIMO channels simulated using RT by comparing them with
actual measurement data. The LoS scenario, which includes envi-
ronmental elements like wooden doors and elevators, demon-
strates the natural sparsity characteristic of mmWave channels.
Notably, there is a significant correlation between the measured
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data and the RT simulations, which successfully catch the main
propagation paths. By examining the order of interactions, par-
ticularly focusing on third-order reflections in this LoS scenario,
we obtain a better understanding of the main propagation paths.
However, the simulation indicates that some paths are missing
at specific positions within the virtual UCA, potentially due to
inaccuracies in the model’s dimensions or the positioning of the
large array elements. The CBF results moreover demonstrate the
consistency of the validation results.
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