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Generalized torsion orders and Alexander
polynomials

Tetsuya Ito

Abstract. A nontrivial element of a group is a generalized torsion element if some products of
its conjugates is the identity. The minimum number of such conjugates is called a generalized
torsion order. We provide several restrictions for generalized torsion orders by using the Alexander
polynomial.

1 Introduction

An element g of a group G is a generalized torsion element if there exists a positive
integer n and x1 , . . . , xn ∈ G such that they satisfy

gx1 gx2 . . . gxn = 1.(1.1)

Here, we put gx ∶= x gx−1. The generalized torsion order gord(g) (often simply called
the order) is the minimum n such that g satisfies (1.1) for some x1 , . . . , xn ∈ G.

The Alexander polynomial is a (multivariable) polynomial invariant of a group G.
More precisely, the Alexander polynomial is defined for a group G with surjection
ϕ ∶ G → Z

s . Such a surjection ϕ corresponds to a normal subgroup N of G with
quotient G/N = Z

s , so we may regard the Alexander polynomial as an invariant of
a pair (G , N).

As a slight generalization, we define the Alexander polynomial ΔA(t1 , . . . , ts) for
an Alexander tuple A = (G; (X , N , H)) which is a group G and its normal subgroups
X ⊂ N ⊂ H having several properties (see Definition 3.2 for details).

The aim of this paper is to investigate the relation between generalized torsion
elements and Alexander polynomials. For g ∈ G, we define the generalized torsion
equation spectrum t(g) by

t(g) = {n ∈ N ∣ gx1 . . . gxn = 1 for some x1 , . . . , xn ∈ G}.

Namely, t(g) is the set of nonnegative integers n such that equation (1.1) has a solution.
We study a relation between Alexander polynomials and generalized torsion equation
spectrum.
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2 T. Ito

For an irreducible polynomial h(t1 , . . . , ts) ∈ Z[t±1
1 , . . . , t±1

s ], we define

t(h(t1 , . . . , ts)) = { f (1, . . . , 1) ∣ f ∈ (h(t1 , . . . , ts)) is positive} ⊂ N.

Here, we say that a polynomial f is positive if it is nonzero and all the coefficients are
nonnegative.

The following main theorem states that t(h(t1 , . . . , ts)) for an irreducible factor h
of the Alexander polynomial gives a restriction on the generalized torsion equation
spectrum t(g).

Theorem 1.1 Let A = (G; (X , N , H)) be an Alexander tuple. For an element g ∈ N,
if g /∈ X, then there exists an irreducible factor h(t1 , . . . , ts) of ΔA(t1 , . . . , ts) such that
t(g) ⊂ t(h(t1 , . . . , ts)).

One motivation of studying generalized torsion elements comes from orderable
groups. A bi-ordering of a group G is a total ordering < on G which is invariant under
both the left and right multiplications, i.e., g < h implies agb < ahb, for all a, b, g ,
h ∈ G. A group G is bi-orderable if G has a bi-ordering. A generalized torsion element
serves as a primary obstruction for a group to be bi-orderable.

Recently, the relation between orderable groups and low-dimensional topology is
actively studied by many researchers. Therefore, it is also interesting to explore the
relation between generalized torsion elements and low-dimensional topology.

As applications of Theorem 1.1, we will discuss generalized torsion elements of knot
groups. Our results lead to an interesting connection to homology growth of abelian
coverings and the generalized torsion elements.

Theorem 1.2 Let K be a knot in S3. Let G = G(K) = π1(S3/K) be the knot group,
and let Σk(K) be the k-fold cyclic branched covering of K. Assume that the Alexander
polynomial ΔK(t) of K is irreducible, Σk(K) is a rational homology sphere, and k = pe

is a power of a prime p. Then, for g /∈ [[G , G], [G , G]] and n ∈ t(g) either:
(a) n ≥ ∣H1(Σk(K);Z)∣ 1

k−1 , or,
(b) p divides n
holds.

The following special case (k = 2) of Theorem 1.2 deserves to mention.

Corollary 1.3 (Determinant bound) Let G = G(K) be the knot group of a knot K.
Assume that ΔK(t) is irreducible. If g /∈ [[G , G], [G , G]] and n ∈ t(G(K)) is odd, then

n ≥ det(K) = ∣ΔK(−1)∣.

A conjecture of Motegi–Teragaito says that a 3-manifold group has a generalized
torsion element if and only if it is not bi-orderable [21]. Although this conjecture
predicts the existence of generalized torsion elements for many 3-manifold groups,
currently our catalog of generalized torsion elements in 3-manifold groups are quite
limited [17].
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Generalized torsion orders 3

It is known that for a given d > 0, the number of alternating knots K satisfying
det(K) ≤ d is finite [2]. Thus, Corollary 1.3 says that for each odd k, there are
only finitely many alternating knots K having a generalized torsion element g /∈
[[G , G], [G , G]] with gord(g) = k and ΔK(t) is irreducible. Thus, Corollary 1.3
partially explains why finding a generalized torsion element is difficult.

This observation poses the following finiteness question.

Question 1 For a given integer m, let Malt(m) be the number of prime alternating
knots K other than (2, k)-torus knot1 whose knot group G(K) has a generalized
torsion element g with gord(g) = m. Is Malt(m) finite ?

A similar finiteness question makes sense for other appropriate classes of knots. In
particular, it is interesting to ask the same finiteness question for hyperbolic knots. On
the other hand, as we will see in Proposition 5.4, for the (p, q)-torus knots or (p, q)-
cable knots, their knot group have a generalized torsion element of generalized torsion
order p, if p < q are primes. This is why we exclude (2, k)-torus knots in Question 1.

Theorem 1.2 gives a restriction of t(g) for the case g /∈ [[G , G], [G , G]]. For general
g ∈ G, we have the following.

Theorem 1.4 Let K be a knot in S3 and G = G(K) be its knot group. Assume that
[G , G] is residually torsion-free nilpotent and that deg ΔK(t) = 2g(K), where g(K) is
the genus of K. If ΔK(t) divides (tk − 1), where k = pa qb for some distinct primes p, q
(p < q), then for every g ∈ G,

t(g) ⊂ pN ∪ N≥q .

The most fundamental example of knots satisfying the assumption of Theorem 1.4
is a fibered knot, a knot whose complement has a structure of a surface bundle over
the circle. By applying Theorem 1.4 for torus knots, we get the following.

Corollary 1.5 Let K be the (pa , qb)-torus knot, where p < q are primes. Then, for
every g ∈ G(K), t(g) ⊂ pN ∪ N≥q .

Motivated by these results, we will discuss the generalized torsion order spectrum
gord(G), the set of generalized torsion orders of a group G in Section 6. We will show
that every subset of natural numbers can be realized as the set gord(G) for some
countable, torsion-free groups (Corollary 6.4).

2 Generalized torsion order

We summarize the basic facts and definitions on generalized torsion elements and
generalized torsion orders.

Definition 2.1 The generalized torsion equation spectrum t(g) of an element g ∈ G
is the set

t(g) = {n ∈ N ∣ gx1 . . . gxn = 1 for some x1 , . . . , xn ∈ G}.

1This is equivalent to saying that K is a hyperbolic alternating knot [20]
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4 T. Ito

By definition, t(g) is a sub-semigroup of N: n, m ∈ t(g) implies n + m ∈ t(g).
Using the set t(g), generalized torsion elements and its generalized torsion orders
are defined as follows.

Definition 2.2 An element g is a generalized torsion element if t(g) ≠ ∅. The
generalized torsion order gord(g) is

gord(g) = min t(g).

When t(g) = ∅, we define gord(g) = ∞.

A torsion element g is a generalized torsion element. First of all, we discuss several
differences between generalized torsion elements and torsion elements.

For a torsion element g of G, clearly

t(g) ⊃ ord(g)N

holds. Here, ord(g) is the order of the torsion element g. In particular,

gord(g) ≤ ord(g)

holds. The next example shows that the difference of gord(g) and ord(g) can be
arbitrary large. (See Section 6 for more detailed discussion concerning the difference
of orders and generalized torsion orders.)

Example 2.1 For m ∈ N≥2 ∪ {∞}, let

Gm =
⎧⎪⎪⎨⎪⎪⎩

⟨a, b ∣ bab−1 = a−1 , am = 1⟩ m ∈ Z≥2

⟨a, b ∣ bab−1 = a−1⟩ m = ∞.

Then, ord(a) = m but gord(a) = 2.

The generalized torsion order is often called the order. However, since ord(g) ≠
gord(g) in general as Example 2.1 shows, it is useful to distinguish the order and the
generalized torsion order when G has a torsion element.

For a subgroup H of G and the inclusion map i ∶ H ↪ G, h ∈ H is a torsion element
of H if and only if i(h) is a torsion element of G. Furthermore, ord(h) = ord(ι(h)).
Example 2.1 shows that this is far from true for generalized torsion orders.

We will often write gord(g) as gordG (g) (and t(g) as tG (g)) to emphasize the
group G. For example, when H ⊂ G is a subgroup of G and h ∈ H, gordH(h) means a
generalized torsion order of h in the group H, whereas gordG (h) means a generalized
torsion order of ι(h) in the group G, where ι is the inclusion map. as an obstruction
for bi-orderability; if G has a bi-ordering < then for every nontrivial element g ∈ G,
1 < g or g < 1 holds. When 1 < g then 1 = xx−1 < x gx−1 for all x ∈ G hence product of
conjugates of x is not trivial. The case g < 1 is similar.

To investigate the set t(g), the next simple observation is useful.

Lemma 2.2 (Monotonicity) Let f ∶ G → H be a homomorphism. Then, for g ∈ G,
tG (g) ⊂ tH( f (g)). In particular, gordG (g) ≥ gordH( f (g)).
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Generalized torsion orders 5

Proof If gx1 . . . gxn = 1, then f (g) f (x1) . . . f (g) f (xn) = 1. ∎

This leads to the following useful consequences.

Corollary 2.3
(i) For a prime p and a homomorphism f ∶ G → Zp , if f (g) ≠ 1 then t(g) ⊂ pN.
(ii) If f ∶ G → H is a homomorphism and g ∈ G is a generalized torsion element, f (g)

is a generalized torsion element unless f (g) ≠ 1.
(iii) If a subgroup H of G is a retract (i.e., there is a map p ∶ G → H such that

the restriction p∣H ∶ H → H is the identity), then for every h ∈ H ⊂ G, tH(h) =
tG (h), and gordH(h) = gordG (h).

(iv) For every ϕ ∈ Aut(G), t(g) = t(ϕ(g)) and gord(ϕ(g)) = gord(g).

3 Alexander polynomial criterion

3.1 Alexander polynomial of modules

We quickly review the Alexander polynomial. We refer to [13] for algebraic treatments
of Alexander polynomial.

Let Λ = Z[t±1
1 , . . . , t±1

s ] be the Laurent polynomial ring of s variables. For f , g ∈ Λ,
we denote by f ≐ g if f = ug , where u ∈ Λ is a unit of Λ. We denote by ε ∶ Λ → Z, the
augmentation map ε( f (t1 , . . . , ts)) = f (1, . . . , 1).

A Λ-module M is finitely presented if there is an exact sequence of Λ-modules

Λm A→ Λn → M → 0

called a finite presentation of M. The matrix A is called a presentation matrix of M.

Definition 3.1 (Elementary ideal and Alexander polynomial) Let M be a finitely
presented Λ-module and A be its presentation matrix. The kth elementary ideal
Ek(M) is the ideal of Λ generated by (n − k) minors of A (when k > n, we define
Ek = {1}). The kth Alexander polynomial Δk(M) ∈ Λ is the generator of the smallest
principal ideal of R that contains Ek(M).

It is known that the elementary ideal does not depend on a choice of presentation
matrix and that Δk(M) is uniquely determined up to multiplication of units of Λ.

Let

TM = {m ∈ M ∣ f m = 0 for some 0 ≠ f ∈ Λ}
be the torsion submodule of M. The rank of M is defined by

rank (M) = dimk k ⊗ M

where k is the quotient field of Λ. We say that M is a Λ-torsion module if M = TM,
which is equivalent to rank (M) = 0.

The annihilator ideal of m ∈ M is an ideal of Λ defined by

Ann(m) = { f ∈ Λ ∣ f m = 0}.
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6 T. Ito

Similarly, the annihilator ideal of M is defined by

Ann(M) = ⋂
m∈M

Ann(m) = { f ∈ Λ ∣ f m = 0 for all m ∈ M}.

The Alexander polynomial and annihilator ideals are related as follows.

Proposition 3.1
(i) Δrank (M)+k(M) ≐ Δk(TM) [13, Theorem 3.4].
(ii)

√
Ann(M) =

√
E0(M) [13, Theorem 3.1].

(iii) If M = TM and M has a square presentation matrix, then Ann(M) = ((Δ0(M)/
Δ1(M)) [13, Corollary 3.4.1]

Here,
√

I ∶= {g ∈ Λ ∣ gn ∈ Λ for some n > 0} is the radical of the ideal I.

We will use the following result later.

Lemma 3.2 [13, Theorem 3.12(3)] Let Φ ∶ M → N be a homomorphism of Λ-modules.
If Φ∣T M ∶ TM → TN is a surjection, then Δ0(TN) divides Δ0(TM).

3.2 Alexander tuples

Let N be a normal subgroup of a group G such that its quotient group G/N = Z
s for

some s ≥ 0. The quotient group G/N = Z
s acts on the homology group H1(N ;Z) = N/

[N , N] by conjugation. Hence, N/[N , N] has a structure of Λ ∶= Z[Zs]-module. This
Λ-module is called the Alexander module and its Alexander polynomial is called the
Alexander polynomial of a group G. As we already mentioned, we regard them as an
invariant of a pair (G , N) of a group G and its normal subgroup N with G/N = Z

s .
We slightly extend this construction.

Definition 3.2 (Alexander tuple) Let G be a group and X , N , H be normal sub-
groups of the group G. We say that a tuple A = (G; (X , N , H)) is an Alexander tuple
if they satisfy the following conditions.
(a) [H, N] ⊂ X ⊂ N ⊂ H.
(b) The quotient group G/H is the free abelian group Z

s for s ≥ 0.

For an Alexander tuple A = (G; (X , N , H)), we put

Λ = Z[G/H] = Z[t±1
1 , . . . , t±1

s ] and M = N/X .

Since [N , N] ⊂ [H, N] ⊂ X, M is an abelian group. The group G acts on M by
conjugation because X and N are normal. Furthermore, [H, N] ⊂ X implies that the
conjugation action of H on M is trivial. Thus, the quotient group G/H = Z

s acts on
M hence M is a Λ-module.

Definition 3.3 (Alexander module and polynomials of the Alexander tuple) We call
the Λ-module M the Alexander module of the Alexander tuple A = (G; (X , N , H)).
We call the 0th Alexander polynomial Δ0(TM) the Alexander polynomial of the
Alexander tuple A and denote by ΔA(t1 , . . . , ts).
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The Alexander polynomial is usually used as an invariant of knots (and links) in
the following manner.

Example 3.3 (Alexander polynomial of a knot) Let K be a knot in S3 and G =
G(K) = π1(S3/K) be the knot group, the fundamental group of its complement.
By Alexander duality G/[G , G] = H1(G;Z) = H1(S3/K;Z) = Z. The 0th Alexander
polynomial of the Alexander tuple (G; ([[G , G], [G , G]], [G , G], [G , G])) is called
the Alexander polynomial of a knot K denoted by ΔK(t).

3.3 Alexander polynomial and generalized torsion equation spectrum

To state our theorem, we introduce a notion of generalized torsion equation spectrum
for an element of Λ-modules.

Definition 3.4 For a Λ-module M and m ∈ M, the generalized torsion equation
spectrum of m by

t(m) = {ε( f ) = f (1, . . . , 1) ∣ f ∈ Ann(m) and f is a positive element}.

Here, we say that an element f ∈ Λ is positive if f ≠ 0 and all the coefficients of f
are nonnegative.

For the Alexander module of an Alexander tuple, the generalized torsion equa-
tion spectrum is nothing but the generalized torsion equation spectrum of suitable
quotient group.

Lemma 3.4 Let A = (G; (X , N , H)) be an Alexander tuple and M be its Alexander
module. Then, for g ∈ N, t(p(g)) = tG/X(q(g)), where p ∶ N → M = N/X and q ∶
G → G/X are the quotient maps.

Proof By definition, n ∈ tG/X(q(g)) if and only if there exists x1 , . . . , xn ∈ G such
that

gx1 . . . gxn ∈ X .

Since g ∈ N , by taking the projection map p ∶ N → M it is equivalent to

p(gx1 ) . . . p(gxn ) = (
n

∑
i=1

ϕ(x i )) p(g) = 0 ∈ M = N/X ,

where ϕ ∶ G → G/H ⊂ Λ is the projection map. Therefore, n ∈ tG/X(q(g)) if and only
if n ∈ t(p(g)). ∎

Definition 3.5 For an irreducible element h ∈ Λ, we define

t(h) = {ε( f ) ∣ f ∈ (h(t1 , . . . , ts)), f is a positive element}.

The set t(h) for the case s = 1 (i.e., the case G/H = Z) will be studied in the next
section. Now we are ready to prove the main theorem stated in Sectio.
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8 T. Ito

Theorem 1.1 Let A = (G; (X , N , H)) be an Alexander tuple. For an element g ∈ N,
if g /∈ X, then there exists an irreducible factor h(t1 , . . . , ts) of ΔA(t1 , . . . , ts) such that
t(g) ⊂ t(h(t1 , . . . , ts)).

Proof If t(g) = ∅, we have nothing to prove so we assume that t(g) ≠ ∅. We put
m = p(g), where p ∶ N → M = N/X is the quotient map. By Lemma 2.2, t(g) ⊂ t(m)
hence t(m) ≠ ∅. In particular, m ∈ TM.

Let Λm be the sub Λ-module of TM generated by m. By Proposition 3.1,

Ann(m) = Ann(Λm) ⊂
√

Ann(Λm) =
√

E0(Λm) ⊂
√

(Δ0(Λm))
∪ ∪ ∪ ∪

Ann(TM) ⊂
√

Ann(TM) =
√

E0(TM) ⊂
√

(Δ0(TM))
∪ ∪

E0(TM) ⊂ (Δ0(TM)).

Thus,
√

(Δ0(Λm)) is a principal ideal that contains (Δ0(TM)). Since we are assum-
ing g /∈ X, m = p(g) ≠ 0. Thus,

√
(Δ0(Λm)) is not the whole Λ. Therefore, there

exists a nontrivial irreducible factor h(t1 , . . . , ts) of Δ0(TM) = ΔA(t1 , . . . , ts) such
that

Ann(m) ⊂
√

(Δ0(Λm)) ⊂ (h(t1 , . . . , ts))

hence,

t(g) ⊂ t(m) ⊂ t(h(t1 , . . . , ts)). ∎

Remark 3.10 Although in Theorem 1.1 we used the Alexander polynomial
ΔA(t1 , . . . , ts) = Δ0(TM), if we know the structure of the annihilator ideals we can
often improve the theorem. For example, if M = TM and M has a square presentation
matrix

t(g) ⊂ t(h(t1 , . . . , ts))

for some irreducible factor h(t1 , . . . , ts) of Δ0(M)/Δ1(M), because Ann(M) =
(Δ0(M)/Δ1(M)) by Proposition 3.1(iii).

For normal subgroups N and H of G such that N ⊂ H, the H-lower central series
of N

γH
0 N ⊃ γH

1 N ⊃ ⋅ ⋅ ⋅ ⊃ γH
k N ⊃ γH

k+1N ⊃ . . .

is defined by γH
0 N = N and γH

k+1N = [H, γH
k N]. When N = H, this is the usual lower

central series of H. We put γH
∞N = ⋂k≥0 γH

k N . Then, iterated use of Theorem 1.1 for
the Alexander tuple (G; (γH

k+1N , γH
k N , H)) gives the following.

Corollary 3.11 Let N and H be normal subgroups of a group G that satisfy the
conditions:
(a) N ⊂ H.
(b) The quotient group G/H is the free abelian group Z

s for s ≥ 0.
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For k > 0, let Ak = (G; (γH
k+1N , γH

k N , H)) be an Alexander tuple. If g ∈ �H
k N and g /∈

�H
k+1N, then there exists an irreducible factor h(t1 , . . . , ts) of ΔAk (t1 , . . . , ts) such that

t(g) ⊂ t(h(t1 , . . . , ts)).

We give the simplest application, the case H = G. For a prime number p, a group
G is residually finite p if for every nontrivial g ∈ G, there exists a surjection f ∶ G → Q
to a finite p-group Q such that f (g) ≠ 1.

Corollary 3.12 If G is a residually finite p-group, then for every nontrivial g ∈ G,
t(g) ⊂ pN.

Proof By the monotonicity (Lemma 2.2), it is sufficient to show the assertion for
finite p-groups. Let G be a finite p-group. We apply Corollary 3.11 for N = H = G
(thus Λ = Z). Since a finite p-group is nilpotent, there exists k ≥ 0 such that g ∈ γkG
but g /∈ γk+1G. Since G is a finite p-group, γkG/γk+1G is an abelian p-group hence
t(g) ⊂ pN. ∎

Finally, we give useful variant of Corollary 3.11 that only uses one Alexander
module M for an Alexander tuple A = (G; ([N , H], N , H)).

For a Λ-module M, let M⊗k be the tensor product of the Z-module (i.e., abelian
group) M. We view M⊗k as a Λ-module by the diagonal action; for t ∈ Zs ⊂ λ = Z[Zs]
and m1 , . . . , mk ∈ M, we define

t(m1 ⊗ m2 ⊗ ⋅ ⋅ ⋅ ⊗ mk) = tm1 ⊗ tm2 ⊗ ⋅ ⋅ ⋅ ⊗ tmk).

Corollary 3.13 Let A = (G; ([N , H], N , H)) be an Alexander tuple and M = N/
[N , H] be its Alexander module. If M is a Λ-torsion module, then for every g ∈ G,
if g /∈ γH

∞N then t(g) ⊂ t(h(t1 , . . . , ts)) for some irreducible factor h(t1 , . . . , ts) of
Δ0(M⊗k).

Proof Since g /∈ γH
∞N , there exists k > 0 such that g ∈ γH

k N and that g /∈ γH
k+1N . Let

Mk be the Alexander module of the Alexander tupleAk = (G; (γH
k+1N , γH

k N , H)) and
f ∶ M⊗(k+1) → Mk be the map defined by

f (a1 ⊗ a2 ⊗ ⋅ ⋅ ⋅ ⊗ ak+1) = [a1 , [a2 , [. . . , [ak , ak+1] . . . ]]] (a i ∈ N).

The map f is a surjective Λ-module homomorphism (see [24, 5.2.5]). Since we
are assuming M is a Λ-torsion module, so is M⊗k . Therefore, by Lemma 3.2,
ΔAk (t1 , . . . , ts) = Δ0(TMk) divides Δ0(T(M⊗k)) = Δ0(M⊗k) so the assertion
follows from Corollary 3.11. ∎

Remark 3.14 (Noncommutative settings) Throughout this section, we assume that
G/H is a finitely generated free abelian group (assumption (b) of the Alexander tuple).
However, the arguments presented in this section works without this assumption.

Let X , N , H be normal subgroups of G such that [N , H] ⊂ X ⊂ N ⊂ H. Let Λ ∶=
Z[G/H] be the group ring of the (possibly noncommutative) quotient group G/H.

https://doi.org/10.4153/S0008439524000432 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000432


10 T. Ito

Then, the conjugation of G induces a structure of right Λ-module for the quotient
group M = N/X.

By the same argument, we see that if g ∈ N , then

t(g) ⊂ tG/X(q(g)) = {ε( f ) ∣ f ∈ Ann(p(g)) and f is a positive element}
where p ∶ N → N/X and q ∶ G → G/X are the projection maps.

Unfortunately, it is not easy to use this noncommutative version.

4 The set t(h)

To utilize the results in the previous section, we need to know t(h(t1 , . . . , ts)) for
irreducible h(t1 , . . . , ts). In this section, we discuss the structure of the set t(h) for
irreducible one-variable Laurent polynomial h ∈ Λ = Z[t±1].

To begin with, we observe the following simple properties. For a positive integer
k > 0, let Φk(t) be the kth cyclotomic polynomial and Pk be the set of roots of Φk ,
the set of primitive kth root of unities.

Lemma 4.1 Assume that h(t) = am tm + ⋅ ⋅ ⋅ + a1 t + a0 (a0 , am ≠ 0, m ≥ 1) is irre-
ducible.
(i) t(h) ≠ ∅ if and only if h has no positive real root.
(ii) t(h) ⊂ ∣h(1)∣Z.
(iii) If n ∈ t(h(t)) then n ≥ ∣am ∣ + ∣a0∣.
(iv) 2 ∈ t(h(t)) if and only if h(t) = Φ2s for some s > 0.

Proof (i) This is proven in [10] (see also [4]).
(ii) If n ∈ t(h(t)), then there exists g(t) = bk tk + ⋅ ⋅ ⋅ + b0 (bk , b0 ≠ 0) such that

f (t) = g(t)h(t) is positive and that n = f (1). Then, n = g(1)h(1) = ∣g(1)∣∣h(1)∣ so
∣h(1)∣ always divides n.

(iii) Since f (t) = g(t)h(t) is positive,

n = ambk + ⋅ ⋅ ⋅ + a0b0 ≥ ∣ambk ∣ + ∣a0b0∣ ≥ ∣am ∣ + ∣a0∣.

(iv) If 2 ∈ t(h(t)) there exists g(t) ∈ Λ such that f (t) = g(t)h(t) = 1 + td for some d
or g(t)h(t) = 2. The latter case does not happen since we are assuming that h is not
a constant. Thus, h(t) divides 1 + td which implies that h(t) = Φ2s for some divisor s
of d. ∎

To get more constraints, we use the following quantity.

Definition 4.1 For h(t) ∈ Λ, we define

Rk(h) = ∏
ζ∈Pk

∣h(ζ)∣ ∈ Z≥0

where Pk is the set of primitive kth root of unities.

This is the absolute value of the resultant of h(t) and the k-th cyclotomic polyno-
mial Φk(t).
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Proposition 4.2 Let h ∈ Λ be an irreducible polynomial and k = pe be a power of a
prime p. Then, if n ∈ t(h), then either
(a) p divides n. Furthermore, if h ≠ Φk(t), then p∣h(1)∣ divides n, or,
(b) nϕ(k) ≥ Rk(h).
holds. Here, ϕ(k) ∶= #Pk is the Euler’s totient function.

Proof Assume that f (t) = g(t)h(t) is positive and that n = f (1) = g(1)h(1). Since
f (t) is positive, n = ∣ f (1)∣ ≥ ∣ f (ω)∣ for all ω ∈ {z ∈ C ∣ ∣z∣ = 1}. In particular, n =
f (1) ≥ ∣ f (ζ)∣ for every root of unity ζ . Therefore,

nϕ(k) = ∣ f (1)∣ϕ(k) ≥ Rk( f ) = Rk(g)Rk(h)

holds for all k > 0.
If Rk(g) = 0, then we may write f (t) = Φk(t) f ∗(t) for some f ∗(t). Since Φk(1) =

p if k = pe ,

n = f (1) = ∣Φk(1)∣∣ f ∗(1)∣ = p∣ f ∗(1)∣.

Furthermore, if h ≠ Φk(t), then f (t) = Φk(t)g∗(t)h(t) for some g∗(t), hence,

n = f (1) = ∣Φk(1)∣∣g∗(1)∣∣h(1)∣ = p∣h(1)∣∣g∗(1)∣.

Thus, in this case (a) holds.
If Rk(g) ≠ 0 then Rk( f ) = Rk(g)Rk(h) ≥ Rk(h) so (b) holds. ∎

The Mahler measure M( f ) of a polynomial f (t) = ad td + ad−1 td−1 + ⋅ ⋅ ⋅ + a0 ∈
Z[t±1] is defined by

M( f ) = ∣ad ∣
d

∏
i=1

max{1, ∣α i ∣}

where α1 , . . . , αd are zeros of f (t). It is known that [12, 23, 25]

lim
k→∞

⎛
⎝ ∏

ζ k=1
h(ζ)

⎞
⎠

1
k

=
⎛
⎝∏

d ∣k
Rd (h)

⎞
⎠

1
k

= M(h).

Thus by Proposition 4.2, we get the following interesting connection to Mahler
measure.

Corollary 4.3 (Mahler measure bound) If h(t) is irreducible, then n ≥ M(h) for all
n ∈ t(h).

We give some simple calculations which will be used later.

Example 4.4 Let k = pa be a power of a prime p. Since Φk(1) = p, by Lemma 4.1
t(Φk) ⊂ pN. Indeed, Φk = t(p−1)pa−1 + t(p−2)p(a−1) + ⋅ ⋅ ⋅ + 1 is positive so p ∈ t(Φk).
Thus,

t(Φpa ) = pN.
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Let k = pa qb where p < q be primes and a, b > 0. Assume that n ∈ t(Φk). Since
Rp(Φk) = q (see [1]), by Proposition 4.2, p divides n, or, n ≥ q. Similarly, since
Rq(Φk) = p, either q divides n, or, n ≥ p. Since p < q, we conclude that

t(Φpa qb ) ⊂ pN ∪ N≥q .

5 Application: Generalized torsion elements of knot groups

In this section, we apply our arguments for knot groups. We refer to [9] as a reference
for the knot theory and its relation to orderable group theory. Actually, our arguments
can be applied for an augmented group, a pair (G , χ) consisting of a finitely generated
group G and epimorphism χ ∶ G → Z [25].

Let K be a knot in S3, and G = G(K) ∶= π1(S3/K) be the knot group, the fun-
damental group of the knot complement. As we have mentioned in Example 3.3,
the Alexander polynomial ΔK(t) of the knot K in knot theory is the Alexander
polynomial of the Alexander tuple (G; ([[G , G], [G , G]], [G , G], [G , G])).

Proof of Theorem 1.2 Let Σk(K) be the k-fold cyclic branched covering of K. If
Σk(K) is a rational homology sphere (that is, equivalent to saying that ΔK(ζ) ≠ 0 for
every (not necessarily primitive) kth root of unities), then the order of homology is
given by

∣H1(Σk(K);Z)∣ =
k

∏
i=1

∣ΔK(ζ i )∣ = ∏
d ∣k

Rd (ΔK)

[26]. Since we are assuming that ΔK(t) is irreducible, if g ≠ [[G , G], [G , G]] by
Proposition 4.2, we have either (a) or (b). ∎

Proof of Theorem 1.4 Since ΔK(t) divides (tk − 1), ΔK(t) is monic. A knot having
the properties that deg ΔK(t) = 2g(K) and that ΔK(t) is monic is called (integrally)
homologically fibered knot. For such a knot, the Alexander module M of G(K) has a
square presentation matrix of the form A = tI2g − S , where S is certain 2g × 2g integer
matrix [11].

By the definition of the tensor product module M⊗m , M⊗m has a presentation
matrix Am = tI(2g)m − S⊗m where S⊗m ∶ (Z2g)⊗m → (Z2g)⊗m is the tensor product
of S.

Let α1 , . . . , α2g ∈ C be the roots of the Alexander polynomial ΔK(t). Then, for
m ≥ 1

Δ0(M⊗m) = det(tI(2g)m − S⊗m) =
2g

∏
i1=1

2g

∏
i2=1

⋅ ⋅ ⋅
2g

∏
im=1

(t − α i1 α i2 . . . α im ).

Since ΔK(t) divides tk − 1, α1 , . . . , α2g are (not necessarily primitive) k-th root of
unities. Thus their products α i1 α i2 . . . α im are also the kth root of unities. Since k =
pa qb , every irreducible factor of Δ0(M⊗m) is a cyclotomic polynomial Φpa′ qb′ (0 ≤
a′ ≤ a, 0 ≤ b′ ≤ b). Thus, by Corollary 3.13

t(g) ⊂ t(Φpa′ qb′ )

for some a′ , b′ hence by Example 4.4, t(g) ⊂ pN ∪ N≥q . ∎
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Example 5.1 Let K be the (2, 5) torus knot K = T2,5 or the knot 10132. They are
fibered knots with the Alexander polynomial ΔT2,5 (t) = t4 − t3 + t2 − t + 1 = Φ10(t).
By Theorem 1.4, t(g) ⊂ 2N ∪ N≥5 for every g ∈ G(K). In particular, G(K) has no
generalized torsion element of generalized torsion order 3.

On the other hand, the knot T2,5 has a generalized torsion element of generalized
torsion order 2, whereas the knot 10132 has no generalized torsion element of gener-
alized torsion order 2 (because it is hyperbolic).

Our result can be used to determine the generalized torsion order.

Example 5.2 (Himeno’s generalized torsion element [14]) Let K = T2,k be the (2, k)-
torus knot with k > 3. Himeno showed for n > 0, the element En ∈ G(K) = ⟨a, b ∣ a2 =
bk⟩ given by

En = [a, b]n[a, b2][a, b]n+1[a, bk−1],

satisfies 4 ∈ t(En). He verified gord(E1) = 4 for small k by using computer calcula-
tions of the stable commutator length and the lower bound of generalized torsion
order given in [16].

It is easy to check that 2 /∈ t(En) because En and E−1
n are not conjugate. If k = qe

is a power of a prime q > 3, 3 /∈ t(En) by Theorem 1.4. Therefore, gord(En) = 4 as
expected.

Our result gives a following partial answer to [22, Question 6.6] which asks the
existence of generalized torsion of G(K) when ΔK(t) is nontrivial and has no positive
real roots.

Proposition 5.3 Let K be a knot in S3 and G = G(K) be the knot group. If ΔK(t) has
no positive real root and is nontrivial then G/[[G , G], [G , G]] has a generalized torsion
element.

Proof This is an immediate consequence of Lemma 3.4 and Lemma 4.1(i). ∎

A knot satisfying the condition deg ΔK(t) = 2g(K) is called rationally homologi-
cally fibered knot. In [15] we showed that for a rationally homologically fibered knot
K, if ΔK(t) has no positive real root then G = G(K) is not bi-orderable. This result
and Proposition 5.3 raise the following question.

Question 2 If K is rationally homologically fibered and ΔK(t) has no positive
real root, is there a generalized torsion element g ∈ G = G(K) such that g /∈
[[G , G], [G , G]] ?

Finally, we observe the following existence result of generalized torsion elements.

Proposition 5.4 Let K be a (pa , qb)-torus knot Tpa ,qb or a (pa , qb)-cable knot where
p < q are primes. Then, its knot group G(K) admits a generalized torsion elements with
gord(g) = p such that g /∈ [[G(K), G(K)], [G(K), G(K)]].
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Proof Assume that K is a (pa , qb)-cable of a knot C where we allow C to be the
trivial knot (in such case, K is just the (pa , qb)-torus knot). Then, its knot group is
the amalgamated free product G(K) = G(C) ∗μqb λ pa=y pa ⟨y⟩, where μ and λ are the

meridian and the longitude of P. Since [μ, ypa−1 ] ≠ 1 but [μ, ypa ] = [μ, μqb
λpa ] = 1, p ∈

tG(K)([μ, ypa−1 ]) [22]. Furthermore, [μ, ypa−1 ] /∈ [[G(K), G(K)], [G(K), G(K)]].
Let π ∶ G(C) → Z be the projection map, x = π(μ) and let G = G(Ta ,b) be the

torus knot group. The projection induces the epimorphism

π ∶ G(K) = G(C) ∗μqb λ pa=y pa Z → Z ∗x qb=y pa Z = G(Tpa ,qb ) = G .

Since ΔTpa ,qb (t) = (t pa qb
−1)(t−1)

(t pa−1)(tqb−1)
, the irreducible factors of ΔTpa ,qb (t) are cyclotomic

polynomial Φpa′ qb′ (t) for some 0 ≤ a′ ≤ a, 0 ≤ b′ ≤ b. Since f (π([μ, ypa−1 ])) /∈
[[G , G], [G , G]], by Theorem 1.1, Example 4.4, and the monotonicity

tG(K)([μ, ypa−1
]) ⊂ tG (π([μ, ypa−1

])) ⊂ pN ∪ N≥q .

Therefore, gordG(K)([μ, ypa−1 ]) = p. ∎

6 Generalized torsion order spectrum

For a group G, the torsion order spectrum ord(G) is the set defined by

ord(G) = {ord(g) ∣ g is a torsion element of G}.

It is easy to see that ord(G) cannot be arbitrary because ord(G) is factor-complete,
which means that if pq ∈ ord(G) with p, q ≠ 1 then p, q ∈ ord(G).

The torsion order spectrum is characterized as follows [8].

Theorem 6.1
(i) For a factor-complete subset A of N≥2, there exists a finitely generated group G

such that ord(G) = A.
(ii) For a factor-complete subset A ofN≥2, there exists a finitely presented group G such

that ord(G) = A if and only if A is a Σ0
2-set ([8, Theorem 6.3]).

Here, Σ0
2-set is a set appeared in a theory of arithmetical hierarchy, and is larger

than Σ0
1 -set, the recursively enumerable sets.

As a natural generalization of torsion order spectrum, it is natural to investigate
the following set.

Definition 6.1 Let G be a group. The generalized torsion order spectrum gord(G) of
G is

gord(G) = {gord(g) ∣ g is a generalized torsion element of G}.

The strict generalized torsion order spectrum gord∗(G) of G is

gord∗(G) = {gord(g) ∣ g is a non-torsion, generalized torsion element of G}.
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By definition, gord∗(G) ⊂ gord(G) ⊂ ⋃g∈G t(g). Unlike torsion order spectrum,
generalized torsion order spectrum is not necessarily factor-complete as the next
lemma shows.

Lemma 6.2 For every n ∈ Z≥2, there exists a finitely presented torsion-free group Gn
such that gord∗(Gn) = gord(Gn) = {n}.

Proof When n = 2, let G2 = ⟨a, t ∣ tat−1 = a−1⟩ be the infinite diherdal group. If g ∈
G2 is a generalized torsion element, then g ∈ ⟨a⟩. However, every element in ⟨a⟩ is a
generalized torsion element of generalized torsion order two because tak t−1 ⋅ ak = 1
for every k. Thus, gord∗(G2) = {2}.

For n ≥ 3 and n ≠ 4, let A be the free abelian group of rank two generated by a, b
and let

Gn = ⟨t, a, b ∣ tat−1 = a−n+2b, tbt−1 = a−1 , [a, b] = 1⟩.

GN is the HNN extension 1 → A → G → Z = ⟨t⟩. If g ∈ Gn is a generalized torsion
element, then g ∈ ⟨a, b⟩. The Alexander polynomial of G is an irreducible polynomial
t2 + (n − 2)t + 1. If g ∈ Gn is a generalized torsion element, then g ∈ [Gn , Gn] = A. For
every 1 ≠ g ∈ A, t2 gt−2(tg t−1)n−2 g = 1. Furthermore, by Theorem 1.1 and Lemma 4.1,
t(g) ⊂ nN. Thus, gord∗(Gn) = {n}.

The group G4 is constructed in a similar manner. Let A be the free abelian group
generated by a, b, c. We define

G4 = ⟨t, a, b, c ∣ tat−1 = b, tbt−1 = c, tct−1 = a−1b−2

[a, b] = [a, c] = [b, c] = 1 ⟩ .

G4 is the HNN extension 1 → A → G → Z = ⟨t⟩ → 1. Its Alexander polynomial is t3 +
2t + 1. Since it is irreducible, we conclude gord∗(G4) = {4} by the same argument.

∎

The strict generalized torsion order spectrum behaves nicely with respect to the
free product.

Theorem 6.3 If G and H are torsion-free, then gord∗(G ∗ H) = gord∗(G) ∪
gord∗(H).

Proof By [16, Theorem 1.5], a generalized torsion element x of G ∗ H is conjugate to
a generalized torsion element of G or H if G and H are torsion-free. Since generalized
torsion order is invariant under conjugation, we assume that x ∈ G ⊂ G ∗ H (or x ∈
H). Since the inclusion map G ↪ G ∗ H is a retract, gordG (x) = gordG∗H(x) by
Corollary 2.3. Thus, gord∗(G ∗ H) = gord∗(G) ∪ gord∗(H). ∎

These two results give the following realization result.

Corollary 6.4 For every subset A ⊂ N≥2, there exists a countable, torsion-free group
G such that gord∗(G) = gord(G) = A.
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It is interesting to ask when we can take such a group G finitely generated (or,
finitely presented, with suitable complexity assumption on A). For a torsion spectrum
case, Higman–Neumann–Neumann embedding theorem allows us to embed count-
able groups to finitely generated groups so that the set of torsion elements are the
same. For generalized torsion case, we do not know similar embedding is possible or
not.

Question 3 (Higman–Neumann–Neumann embedding preserving generalized tor-
sion equation spectrum/generalized torsion orders) Let G be a countable group. Is
there an embedding of G into a finitely generated group H such that tG (g) = tH(g)
(or, gordG (g) = gordH(g)) for all g ∈ G?

A Appendix. Generalized torsion elements and G-invariant norms

In this appendix, we show that G-invariant norms can be used to evaluate the
generalized torsion orders. This is an extension of our previous observation that the
stable commutator length gives a lower bound of the generalized torsion order [16].

Definition A.2 Let N be a normal subgroup of a group G. We say that a function
ν ∶ N → R≥0 is
– G-invariant if ν(gag−1) = ν(a) for all a ∈ N and g ∈ G.
– Symmetric if ν(a−1) = ν(a) for all a.
– Homogeneous if ν(an) = nν(a) for all a and n ∈ N.
– A norm if ν(ab) ≤ ν(a) + ν(b) for all a, b ∈ N .
– A quasi-norm if there exists a constant Dν ≥ 0 such that ν(ab) ≤ ν(a) + ν(b) + Dν

for all ab ∈ N . We call Dν the defect of ν.

We often allow ν to take the value ∞. When N = G, a G-invariant norm is usually
called a conjugation-invariant norm of the group G. Such a norm has been studied in
several places. See [5] for the relation to geometry.

For ν ∶ N → R, we define its symmetrization νs ∶ N → R by νs(a) = ν(a)+ν(a−1)
2 .

Symmetrization preserves the property that ν is G-invariant, homogeneous, norm,
quasi-norm.

Remark A.5
(i) Although we call ν a norm, it is actually a semi-norm since we do not require

ν(g) = 0 iff g = 1. Indeed, we even do not assume ν(1) = 0.
(ii) If ν is a quasi-norm, then ν + Dν ∶ G → R≥0 given by (ν + Dν)(g) = ν(g) + Dν is

a norm. In particular, if ν is a G-invariant quasi-norm then ν + Dν is G-invariant
norm.

Example A.6 (G-invariant quasimorphism) A map ϕ ∶ N → R is a quasimorphism
if

Dϕ = sup
a ,b∈N

∣ϕ(ab) − ϕ(a) − ϕ(b)∣ < ∞.
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Dϕ is called the defect of ϕ. A quasimorphism ϕ is G-invariant if ϕ(gag−1) = ϕ(a).
The absolute value ∣ϕ∣ of a G-invariant quasimorphism ϕ gives a G-invariant quasi-
norm with defect Dϕ . Thus, ∣ϕ∣ + Dϕ ∶ N → R given by (∣ϕ∣ + Dϕ)(g) = ∣ϕ(g)∣ + Dϕ
is a G-invariant norm.

Example A.7 (Mixed commutator length) The mixed commutator length clG ,N (g)
of an element g ∈ [G , N] is the minimum number of commutators of the form [x , a]
or [a, x] (x ∈ G , a ∈ N) whose product is equal to g. Clearly, the mixed commutator
length clG ,N is a G-invariant symmetric norm.

For a G-invariant quasi-norm ν, its stabilization (or, homogenization) ν ∶ G → R≥0
is defined by

ν(g) = lim
n→∞

ν(gn)
n

.

Then, ν is homogeneous and G-invariant. The next lemma gives a sufficient condition
for ν to be a quasi-norm.

Lemma A.8 For a G-invariant quasi-norm ν of N,

ν(gh) ≤ ν(g) + ν(h) + 1
2

sup
s ,t∈N

ν([s, t]).

To prove the lemma, we use the following.

Lemma A.9 For g1 , . . . , gn ∈ G and k > 0,

(g1 g2 . . . gn)2k = g2k
1 g2k

2 . . . g2k
n ⋅ ((n − 1)k commutators).

Similarly,

(g1 g2 . . . gn)2k−1 = g2k−1
1 g2k−1

2 . . . g2k−1
n ⋅ ((n − 1)k commutators).

Proof We prove the lemma by induction on n. The case n = 2 is well-known; see
[6, Lemma 2.24] for example. For n > 1, by induction

(g1 g2 . . . gn)2k = (g1(g2 . . . gn))2k

= g2k
1 (g2 . . . gn)2k ⋅ (k commutators)

= . . .

= g2k
1 g2k

2 . . . g2k
n ⋅ ((n − 1)k commutators).

The 2k − 1 case is similar. ∎

Proof of Lemma A.8 By Lemma A.9, (gh)2n = g2n h2n(n commutators) hence

ν((gh)2n) ≤ ν(g2n) + ν(h2n) + n sup
t ,s∈N

ν([t, s]). ∎

Then, we have the following estimate of generalized torsion order.
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Theorem A.10 Let N be a normal subgroup of a group G. Assume that g ∈ N and
n ∈ tG (g). Then, for a G-invariant norm ν of N, if sup{ν([x , t]) ∣ x ∈ G , t ∈ N} < ∞,
then

ν(g) ≤ n − 2
2n

sup{ν([t, s]) ∣ t, s ∈ N}.

Proof Since g ∈ N satisfies the order n generalized torsion equation, there exists
x1 , . . . , xn−1 ∈ G such that

g−1 = gx1 . . . gxn−1.

Therefore, by taking 2kth powers for k > 0, by Lemma A.9

g−2k = (gx1 )2k(gx2 )2k . . . (gxn−1 )2k ⋅ ((n − 2)k commutators)
so

g−2nk = [x1 , g2k]∗[x2 , g2k]∗ . . . [xn−1 , g2k]∗ ⋅ ((n − 2)k commutators).

Here, [x , y]∗means a conjugate of [x , y]. Furthermore, the (n − 2)k commutators are
actually commutators of elements of N (by Lemma A.9 applied to G = N). Therefore,

ν(g2nk)
2nk

≤ n − 1
2nk

sup
x∈G ,t∈N

ν([x , t]) + (n − 2)
2n

sup
s ,t∈N

ν([s, t]).

By taking k → ∞, we get the desired inequality. ∎

Theorem A.10 makes sense only if sups ,t∈N ν([s, t]) < ∞. In this case, the assump-
tion sup{ν([x , t]) ∣ x ∈ G , t ∈ N} < ∞ is automatically satisfied.

Example A.11 (Stable mixed commutator length [18, 19]) The stable mixed com-
mutator length sclG ,N (g) is the stabilization of the mixed commutator length clG ,N .
When N = G, the (stable) mixed commutator length is called the (stable) commutator
length of G denoted by clG and sclG , respectively.

For an element g ∈ G such that g� ∈ [G , N] for some � > 0 one can define the stable
mixed commutator length sclG ,N (g) by sclG ,N (g) = sc l G ,N(g�)

�
.

Applying Theorem A.10 for mixed commutator length or G-invariant homoge-
neous quasimorphisms, we get the following.

Corollary A.12 If g ∈ N and n ∈ tG (g)

sclG ,N (g) ≤ n − 2
2n

(< 1
2

)(A.1)

and

∣ϕ(g)∣ ≤ n − 2
2n

( sup
s ,t∈N

∣ϕ([s, t])∣ + Dϕ) = n − 2
n

Dϕ
2(A.2)

for every G-invariant homogeneous quasimorphism ϕ ∶ N → R.

2Here, we use the equality sups ,t∈N ∣ϕ([s, t])∣ = Dϕ [3, 6].
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When N = G, (A.1) is nothing but [16, Theorem 2]. Since sclG (g) ≤ sclG ,N (g),
Corollary A.12 gives stronger restriction.

Remark A.13 It is known that supϕ
∣ϕ(g)∣
2Dϕ

= sclG ,N (g) where ϕ runs all G-invariant
homogeneous quasimorphism which is not a homomorphism (Bavard’s duality;
[3, 18]) so (A.2) follows from (A.1) and vice versa. We remark that our argument does
not use these results whose proof uses Hahn–Banach theorem, although it requires
that g is a generalized torsion element.

In a similar vein, we have the following variant of Theorem A.10.

Proposition A.14 Let N be a normal subgroup of a group G. Assume that g ∈ N
and n ∈ tG (g). Then, for a symmetric G-invariant norm ν of N, ν(gn) ≤ (n − 1)
sup{ν([x , g]) ∣ x ∈ G} holds. In particular,

ν(g) ≤ n − 1
n

sup{ν([x , g]) ∣ x ∈ G}.

Proof Assume that g−1 = gx1 . . . gxn−1 for some x1 , . . . , xn−1 ∈ G. Then,

g−n = [x1 , g]∗ . . . [xn−1 , g]∗

where [x i , g]∗ means a suitable conjugate of [x i , g]. ∎

Example A.15 ((Stable) γk-length [7]) The γk-length �γk of a group G is the min-
imum number the kth commutator [g1 , [g2 , [. . . , [gk−1 , gk]] . . . ]](g i ∈ G) and its
inverses that is needed to express g. The γk-length is a G-invariant norm on the
(k − 1)th lower central subgroup �k−1G = [G , [G , [. . . , [G , G]] . . . ]].

Assume that g ∈ �kG and n ∈ tG (g). If �γk−1 (g) = 1, then �γk ([x , g]) = 1 for all x ∈
G so Proposition A.14 shows that the stable γk-length satisfies

�γk (g) ≤ n − 1
n

.
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