A minimal distal map on the torus with sub-exponential measure complexity

WEN HUANG, LEIYE XU and XIANGDONG YE

Wu Wen-Tsun Key Laboratory of Mathematics, USTC, Chinese Academy of Sciences and Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China

(e-mail: wenh@mail.ustc.edu.cn, leoasa@mail.ustc.edu.cn, yexd@ustc.edu.cn)

(Received 21 December 2017 and accepted in revised form 22 June 2018)

Abstract. In this paper the notion of sub-exponential measure complexity for an invariant Borel probability measure of a topological dynamical system is introduced. Then a minimal distal skew product map on the torus with sub-exponential measure complexity is constructed.

1. Introduction

Let (X, T) be a *topological dynamical system* (t.d.s. for short), that is, X is a compact metric space and $T: X \to X$ is a continuous self map. The distance on X will be denoted by $d(\cdot, \cdot)$ and the set of all T-invariant Borel probability measures on X will be denoted by $\mathcal{M}(X, T)$.

In the measurable dynamics, there are several ways to measure the complexity of a system. Kolmogorov introduced the notion of entropy that measures the average growth rate of the orbits. Positive entropy means the average growth rate of the orbits is exponential. The other well-known definitions of the complexity are due to Katok [7] using Bowen balls and to Ferenzi [1] using the Hamming distance. To study the Sarnak conjecture, recently Huang, Wang and Ye [5] introduced a notion of measure complexity following the idea of Ferenczi in [1] using mean distance instead of the Hamming distance, and showed that the Sarnak conjecture holds for all systems with sub-polynomial measure complexity.

In 1968 Parry proved any invariant Borel probability measure of a distal system has zero measure entropy [11]. By the Furstenberg structure theorem, any minimal distal system is the inverse limit of equicontinuous extensions [2]. It seems that such a system should have lower measure complexity. Surprisingly, this is not the case. Namely, we can construct a minimal distal system with sub-exponential measure complexity for any invariant Borel probability measure of the system.

We now outline the construction. To do so, first we introduce notions of measure complexity and sub-exponential measure complexity. For any t.d.s. (X, T), $\rho \in \mathcal{M}(X, T)$ and any $n \in \mathbb{N}$, we consider the mean metric \overline{d}_n on X,

$$\bar{d}_n(x, y) = \frac{1}{n} \sum_{i=0}^{n-1} d(T^i x, T^i y),$$

for any $x, y \in X$. See [5, 10, 14] for the role of this metric in studying mean dimension and measure complexity.

For any $\epsilon > 0$ and $n \in \mathbb{N}$, let

$$S_n(d, \rho, \epsilon) = \min\left\{m \in \mathbb{N} : \exists x_1, x_2, \dots, x_m \in X \text{ s.t. } \rho\left(\bigcup_{i=1}^m B_{\bar{d}_n}(x_i, \epsilon)\right) > 1 - \epsilon\right\},\$$

where $B_{\bar{d}_n}(x, \epsilon) := \{y \in X : \bar{d}_n(x, y) < \epsilon\}$ for any $x \in X$. We remark that $S_n(d, \rho, \epsilon) < \infty$.

We say that the measure-theoretic dynamical system $(X, \mathcal{B}, \rho, T)$ has *sub-exponential* measure complexity if, for any $0 < \tau < 1$,

$$\lim_{\epsilon \to 0} \liminf_{n \to \infty} \frac{\log S_n(d, \rho, \epsilon)}{n^{\tau}} = +\infty, \quad \text{and} \quad \lim_{\epsilon \to 0} \limsup_{n \to \infty} \frac{\log S_n(d, \rho, \epsilon)}{n} = 0.$$

The definition of sub-exponential measure complexity is independent of the metric (see [5]). Thus, we can simply say that the measure complexity of (X, T, ρ) is sub-exponential. We note that the above definition is also applied to any measurable system (X, \mathcal{B}, T, μ) when X is a metrizable space. We also note that in this case it may happen that $S_n(d, \rho, \epsilon) = \infty$. In [5] the first and third authors showed that for any ergodic $\rho \in \mathcal{M}(X, T)$, we have

$$\lim_{\epsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log S_n(d, \rho, \epsilon) = h_\rho(T) = \lim_{\epsilon \to 0} \liminf_{n \to \infty} \frac{1}{n} \log S_n(d, \rho, \epsilon).$$

So when an ergodic system has sub-exponential measure complexity, the entropy $h_{\rho}(T)$ is zero.

We are now ready to explain the idea of the construction. We construct our example in the following way. First we construct a measurable map $h : \mathbb{R} \to \{0, 1\}$ and obtain a measurable distal system $(X, \mathcal{B}_X, T, \rho)$ on \mathbb{T}^2 such that

$$T(x, y) = (x + \alpha, y + \frac{1}{2}h(x)), \quad x, y \in \mathbb{T},$$

where $X = \mathbb{T}^2$, α is irrational, \mathcal{B}_X is the Borel σ -algebra and ρ is measure preserving. Using a complicated computation, we show that the measure complexity of the system is sub-exponential. By a result of Lindenstrauss (see [9, Theorem 3.1]), there exist a measurable function $p : \mathbb{T} \to \mathbb{T}$ and continuous function $\tilde{h} : \mathbb{T} \to \mathbb{T}$ such that

$$\tilde{h}(x) = \frac{1}{2}h(x) + p(x+\alpha) - p(x)$$

for $m_{\mathbb{T}}$ -almost every $x \in \mathbb{T}$. We define a distal system $\tilde{T} : \mathbb{T}^2 \to \mathbb{T}^2$ such that

$$\tilde{T}(x, y) = (x + \alpha, y + \tilde{h}(x)).$$

Then we prove that the measure complexity of $(\mathbb{T}^2, \tilde{T}, \tilde{\rho})$ is the same as T for any $\tilde{\rho} \in \mathcal{M}(\mathbb{T}^2, \tilde{T})$, and $(\mathbb{T}^2, \tilde{T})$ is minimal, and thus finish the construction. We remark that to show the minimality we use the following proposition (Proposition 4.3): if a skew product map $W : \mathbb{T}^2 \to \mathbb{T}^2$ over an irrational rotation on \mathbb{T} is not minimal then it is equicontinuous.

To conclude the introduction we make the following remarks.

Remark 1.1. Define a skew product map $T : \mathbb{T}^2 \to \mathbb{T}^2$ with $T(x, y) = (x + \alpha, y + k(x))$, where α is irrational and $k : \mathbb{T} \to \mathbb{R}$ is continuous.

- (1) If $k(x) = \beta$, and α and β are rationally independent, then *T* is minimal and uniquely ergodic. Thus, the measure complexity is bounded for the unique measure (in [4] the authors construct a uniquely ergodic, minimal, distal and non-equicontinuous map on \mathbb{T}^2 with bounded measure complexity for the unique measure).
- (2) If k is a homotopically trivial C^{∞} -function, Huang, Wang and Ye [5] showed that the measure complexity is *sub-polynomial* (i.e. for any $\epsilon > 0$ and any $\tau > 0$, $\liminf_{n\to\infty} (\log S_n(d, \rho, \epsilon)/n^{\tau}) = 0$) for any $\rho \in \mathcal{M}(\mathbb{T}^2, T)$.
- (3) If k has a bounded variation, Qiao [12] showed that the measure complexity is *polynomial*.
- (4) If $k = \tilde{h}$, then the measure complexity is *sub-exponential*.

This indicates that the simple system (\mathbb{T}^2, T) (depending on *k*) may have various measure complexities, from the simplest to the most complicated (for a zero-entropy system). Thus, the system is a good touchstone to study the Sarnak conjecture.

Remark 1.2. Let $(\mathbb{T}^2, \tilde{T})$ be the system we defined above and

$$d_n(x, y) = \max_{0 \le i \le n-1} d(\tilde{T}^i x, \tilde{T}^i y).$$

It is clear that $\bar{d}_n(x, y) \le d_n(x, y)$ for $x, y \in \mathbb{T}^2$. Thus, $B_{d_n}(x, \epsilon) \subset B_{\bar{d}_n}(x, \epsilon)$. Define

$$r_n^K(d, \rho, \epsilon) = \min\left\{m \in \mathbb{N} : \exists x_1, x_2, \dots, x_m \in X \text{ s.t. } \rho\left(\bigcup_{i=1}^m B_{d_n}(x_i, \epsilon)\right) > 1 - \epsilon\right\}.$$

It is easy to see that $S_n(d, \rho, \epsilon) \leq r_n^K(d, \rho, \epsilon)$ for any $n \in \mathbb{N}$. So the measure complexity of $(\mathbb{T}^2, \tilde{T}, \rho, d)$ is also sub-exponential in Katok's sense if ρ is ergodic (see [7]).

Topologically, we may also define the complexity in the same fashion. Namely, let

$$r_n(d, \epsilon) = \min\left\{m \in \mathbb{N} : \exists x_1, x_2, \dots, x_m \in X \text{ s.t. } \bigcup_{i=1}^m B_{d_n}(x_i, \epsilon) = X\right\}$$

and

$$S_n(d, \epsilon) = \min\left\{m \in \mathbb{N} : \exists x_1, x_2, \dots, x_m \in X \text{ s.t. } \bigcup_{i=1}^m B_{\bar{d}_n}(x_i, \epsilon) = X\right\}$$

Then we have

 $r_n^K(d, \rho, \epsilon) \le r_n(d, \epsilon)$ and $S_n(d, \rho, \epsilon) \le S_n(d, \epsilon)$

for any $\rho \in \mathcal{M}(\mathbb{T}^2, \tilde{T})$. Thus, the topological complexity of $(\mathbb{T}^2, \tilde{T}, d)$ in both senses is also sub-exponential, since the topological entropy of $(\mathbb{T}^2, \tilde{T})$ is zero.

This paper is organized as follows. In §2 we construct a measurable map $h : \mathbb{R} \to \{0, 1\}$ with some properties we will need later. In §3 we compute the measure complexity of the measurable distal system $(X, \mathcal{B}_X, T, \rho)$. Then, in the final section, we use Lindenstrauss's result to get a t.d.s. $(\mathbb{T}^2, \tilde{T})$ and show that the measure complexity of $(\mathbb{T}^2, \tilde{T}, \tilde{\rho})$ is sub-exponential for any $\tilde{\rho} \in \mathcal{M}(\mathbb{T}^2, \tilde{T})$.

2. The construction of the function h

In this section we will construct a measurable map $h : \mathbb{R} \to \{0, 1\}$ with some properties we will need later. To do so, we fix an irrational number α and an $\eta \in (0, \frac{1}{100})$. Let $R_{\alpha} : \mathbb{T} \to \mathbb{T}, x \mapsto x + \alpha$ be the rotation on \mathbb{T} by α .

2.1. *Preparation.* Given an interval $E = [0, a) \subset \mathbb{T}$ with 0 < a < 1, define

$$f_1 : \mathbb{T} \to \mathbb{R}$$
 with $f_1(x) = \chi_E(x)\chi_E(R_\alpha x)$ for any $x \in \mathbb{T}$

and $f_i : \mathbb{T} \to \mathbb{R}$ with

$$f_i(x) = \chi_E(x)\chi_{E^c}(R_\alpha x) \cdots \chi_{E^c}(R_\alpha^{i-1}x)\chi_E(R_\alpha^i x) \quad \text{for any } x \in \mathbb{T},$$

and for any i = 2, 3, ... For given $i \in \mathbb{N}$, $x \in \mathbb{T}$ and n > i, set

$$s(i, n, E, x) = \#\{0 \le j \le n - i - 1 : f_i(R^j_\alpha x) = 1\}.$$
(2.1)

LEMMA 2.1. For a fixed $i \in \mathbb{N}$, the sequence $\{(1/n)s(i, n, E, x)\}_{n=i+1}^{\infty}$ uniformly converges to a constant $\rho_i(E)$ for all $x \in \mathbb{T}$. Moreover,

$$\{i \in \mathbb{N} : \rho_i(E) > 0\}$$

is a finite set and

$$\sum_{i=1}^{+\infty} i\rho_i(E) = 1.$$

Proof. Set $E_1 = E \cap R_{\alpha}^{-1}E$ and

$$E_i = E \cap R_{\alpha}^{-1} E^c \cap \cdots \cap R_{\alpha}^{-(i-1)} E^c \cap R_{\alpha}^{-i} E,$$

for i = 2, 3, ... Clearly, E_i is a finite union of disjoint intervals of \mathbb{T} or $E_i = \emptyset$. Let $m_{\mathbb{T}}$ be the Lebsegue measure on \mathbb{T} . For $i \in \mathbb{N}$, we put $\rho_i(E) = m_{\mathbb{T}}(E_i)$. Then, for a fixed $i \in \mathbb{N}$, by the unique ergodicity of R_{α} ,

$$\frac{1}{n}s(i, n, E, x) = \frac{1}{n} \sum_{j=0}^{n-i-1} f_i(R^j_{\alpha}x)$$
$$= \frac{1}{n} \sum_{j=0}^{n-i-1} \chi_{E_i}(R^j_{\alpha}x) \to \int_{\mathbb{T}} \chi_{E_i} dm_{\mathbb{T}} = m_{\mathbb{T}}(E_i) = \rho_i(E)$$

uniformly as *n* goes to ∞ for all $x \in \mathbb{T}$, as $\chi_{E_i}(R_\alpha^j x) \le 1$ for all $n - i \le j \le n - 1$.

In fact, that $\{i \in \mathbb{N} : \rho_i(E) > 0\}$ is finite follows from the fact that $E_i = \phi$ for large *i*. That is, there exists $N \in \mathbb{N}$ large enough so that $\{x, R_{\alpha}x, \ldots, R_{\alpha}^{N-1}x\}$ is a/2 dense in \mathbb{T} for any $x \in \mathbb{T}$. This means that for any $x \in E$, there is $1 \le j = j(x) \le N - 1$ such that $R_{\alpha}^j x \in E$. Hence, $E_i = \phi$ and $f_i(x) \equiv 0$ for any $x \in \mathbb{T}$ and i > N, which implies that there are only finitely many indices $i \in \mathbb{N}$ such that $\rho_i(E) > 0$.

By the Poincaré recurrence theorem, the map $n_E: E \to \mathbb{N}$,

$$n_E(x) = \inf\{n \ge 1 : R^n_\alpha(x) \in E\}$$

is well defined for $m_{\mathbb{T}}$ -almost every $x \in E$. It is well known that $\int_E n_E(x) dm_{\mathbb{T}}(x) = 1$ by Kac [6]. Thus

$$\sum_{i=1}^{\infty} i\rho_i(E) = \sum_{i=1}^{\infty} im_{\mathbb{T}}(E_i) = \sum_{i=1}^{\infty} \int_{E_i} n_E(x) \, dm_{\mathbb{T}}(x) = \int_E n_E(x) \, dm_{\mathbb{T}}(x) = 1.$$

We conclude that there exists some index $i \in \mathbb{N}$ such that $\rho_i(E) > 0$.

Set

$$\mathcal{I}(E) = \{i \in \mathbb{N} : \rho_i(E) > 0\} \text{ and } \rho(E) = \frac{1}{2}\min\{\rho_i(E) : i \in \mathcal{I}(E)\}.$$

By Lemma 2.1, it is clear that $\mathcal{I}(E)$ is a non-empty finite set and $\rho(E) > 0$.

For $n \in \mathbb{Z}$ and $k \in \mathbb{Z}_+$, the binomial coefficients are given by the formula

$$C_{n}^{k} := \begin{cases} \prod_{i=1}^{k} \frac{n+1-i}{i} & \text{if } k \in \mathbb{N}, \\ 1 & \text{if } k = 0. \end{cases}$$

By Stirling's approximation, there exists C > 0 such that

$$C_n^{[5\eta n]} \le C e^{a(\eta)n}$$
 with $a(\eta) = -5\eta \log(5\eta) - (1 - 5\eta) \log(1 - 5\eta),$ (2.2)

for any $n \in \mathbb{Z}_+$.

LEMMA 2.2. Let $E = [0, a) \subset \mathbb{T}$ and 0 < t < 1. Then there exists $N(E, t) \in \mathbb{N}$ such that, for any $n \ge N(E, t)$, $i \in \mathcal{I}(E)$ and $x \in \mathbb{T}$, one has:

- (1) $(1/n) \sum_{i \in \mathcal{I}(E)} i \cdot s(i, n, E, x) > 1 \eta;$
- (2) $(1/n)s(i, n, E, x) > \rho(E);$
- (3) $(1/n^t)(n\rho(E)(\log 2 a(\eta)) \log(10\#\mathcal{I}(E)Cn)) > \frac{1}{2}.$

Proof. (1), (2) and (3) follow from Lemma 2.1 and the fact $\lim_{n\to+\infty} (n/n^t) = +\infty$. In fact, since $\mathcal{I}(E)$ is a finite set, when *n* is large we have

$$\frac{1}{n}\sum_{i\in\mathcal{I}(E)}i\cdot s(i,n,E,x) = \sum_{i\in\mathcal{I}(E)}i\cdot\frac{1}{n}s(i,n,E,x) > (1-\eta)\sum_{i\in\mathcal{I}(E)}i\rho_i(E) = 1-\eta. \quad \Box$$

Let $[a, b) \subseteq \mathbb{R}$. We write

 $\mathcal{P}([a, b)) = \{\Delta : \Delta \text{ is a finite partition } a = a_1 < a_2 < \dots < a_k = b \text{ of } [a, b)\}.$

For $\Delta : a = a_1 < a_2 < \cdots < a_k = b \in \mathcal{P}([a, b))$, we define

$$l^*(\Delta) = \max_{1 \le i \le k-1} \{a_{i+1} - a_i\}$$
 and $l_*(\Delta) = \min_{1 \le i \le k-1} \{a_{i+1} - a_i\}.$

We also consider the function $\xi_{\Delta}(x)$ on [a, b]:

$$\xi_{\Delta}(x) = \begin{cases} 0 & \text{if } x \in \bigcup_{i=1}^{k-1} \left[a_i, a_i + \frac{a_i + a_{i+1}}{2} \right), \\ 1 & \text{if } x \in \bigcup_{i=1}^{k-1} \left[a_i + \frac{a_i + a_{i+1}}{2}, a_{i+1} \right). \end{cases}$$

For $\delta > 0$, let $B \subset [a, b)$ be some disjoint union of intervals with length not less than δ , and set

$$B_{\Delta} = \bigcup_{1 \le i \le k-1 \text{ and } [a_i, a_{i+1}) \subset B} [a_i, a_{i+1}).$$
(2.3)

Then

$$\frac{m(B_{\Delta})}{m(B)} \ge \frac{\delta - 2l^*(\Delta)}{\delta},\tag{2.4}$$

where *m* is the Lebesgue measure on \mathbb{R} .

For a < b < c, $\Delta_1 : a = a_1 < a_2 < \cdots < a_k = b \in \mathcal{P}([a, b))$ and $\Delta_2 : b = b_1 < b_2 < \cdots < b_\ell = c \in \mathcal{P}([b, c))$, we combine Δ_1 and Δ_2 to define a new finite partition

$$\Delta_1 \sqcup \Delta_2 : a = a_1 < a_2 < \dots < a_k = b_1 < b_2 < \dots < b_\ell = a_\ell$$

of [*a*, *c*).

2.2. The construction. Set $s_i = 1 - (1/2^i)$ and $E_i = [0, 1/2^i)$ for $i \in \mathbb{N}$. Fix a small positive real number β such that

$$\prod_{l=0}^{\infty} \left(\frac{1}{2}\right)^{\beta^{l+1}} > \frac{9}{10}.$$

As in Lemma 2.2, we let $N_i = N(E_i, s_i)$ for $i \in \mathbb{N}$. Without loss of generality, we assume that $N_{i+1} > N_i$ for $i \in \mathbb{N}$.

We now define a real function h(x) on (0, 1) with range $\{0, 1\}$ by induction for $i \in \mathbb{N}$. To do so, first we choose $K_1 < K_2 < \cdots$ such that, for each $k \in \mathbb{N}$,

$$\frac{N_{k+1}}{2^{K_k-k}} < \frac{\eta}{2} \tag{2.5}$$

and

$$\#\left\{0 \le i \le N_{k+1} : R^{i}_{\alpha}(x) \in y + \left[0, \frac{1}{2^{K_{k}}}\right)\right\} \le 1,$$
(2.6)

for any $x, y \in \mathbb{T}$. Recall that η is fixed with $\eta \in (0, \frac{1}{100})$.

We also define a counting function c(k) such that c(1) = 1 and, for $k \ge 1$,

$$c(k+1) = c(k) + 2^{K_k - k - 1}.$$

We are now ready to define h using induction.

Step 1. For i = 1, we put $\Delta_1 : \frac{1}{2} = a_1 < a_2 = 1 \in \mathcal{P}([\frac{1}{2}, 1))$, $h|_{[\frac{1}{2}, 1]} = \xi_{\Delta_1}$.

Step k. For $i = k \ge 1$, suppose h(x) has been defined on $[1/2^k, 1)$ with $h|_{[1/2^k, 1)} = \xi_{\Delta_k}$ for some defined $\Delta_k \in \mathcal{P}([1/2^k, 1))$.

We divide $E_k = [0, 1/2^k)$ into 2^{K_k-k} subintervals

$$E_{k,l} = \left[\frac{1}{2^k} - \frac{l+1}{2^{K_k}}, \frac{1}{2^k} - \frac{l}{2^{K_k}}\right),$$

where $0 \le l \le 2^{K_k - k} - 1$ (see Figures 1 and 2 below). Note that

$$E_{k,2^{K_k-k}-1} = \left[0, \frac{1}{2^{K_k}}\right), \dots, E_{k,2^{K_k-k-1}-1} = \left[\frac{1}{2^{k+1}}, \frac{1}{2^{k+1}} + \frac{1}{2^{K_k}}\right), \dots, E_{k,0} = \left[\frac{1}{2^k} - \frac{1}{2^{K_k}}, \frac{1}{2^k}\right).$$

Remark 2.3. Since we divided E_k into finitely many intervals $E_{k,l}$ and Δ_k is a finite partition, we can find $\delta_k > 0$ small enough such that we can find a Borel set $M_k \subseteq \mathbb{T}$ satisfying $m_{\mathbb{T}}(M_k) > 1 - (\eta/2)$, and if $0 \le n \le N_{k+1}$, $x \in M_k$, then:

- (1) $R^n_{\alpha}x \in E_k$ implies $[R^n_{\alpha}x, R^n_{\alpha}x + \delta_k) \subset E_{k,\ell}$ for some $0 \le l \le 2^{K_k-k} 1$;
- (2) $R_{\alpha}^n x \in [1/2^k, 1)$ implies that $[R_{\alpha}^n x, R_{\alpha}^n x + \delta_k) \subset [1/2^k, 1)$ and h is constant on $[R_{\alpha}^n x, R_{\alpha}^n x + \delta_k)$.

In fact any $\delta_k > 0$ with $\delta_k (2^{K_k - k} + 2\#\Delta_k) N_{k+1} < (\eta/2)$ is the number we want.

Step k + 1. Now let $\Delta_{k+1,0}^* = \Delta_k$ and $\delta_{k,0} = \frac{1}{2} \min\{\delta_k, l_*(\Delta_{k+1,0}^*)\}$. By (2.4), we can find $\Delta_{k,0} \in \mathcal{P}(E_{k,0})$ such that

$$\frac{\delta_{k,0} - 2l^*(\Delta_{k,0})}{\delta_{k,0}} \ge \left(\frac{1}{2}\right)^{\beta^{c(k)+1}}$$

Suppose, for $\ell \in [0, 2^{K_k-k-1}-2]$, that we have defined $\Delta_{k,0} \in \mathcal{P}(E_{k,0}), \ldots, \Delta_{k,\ell} \in \mathcal{P}(E_{k,\ell})$ and

$$\Delta_{k+1,0}^* = \Delta_k, \quad \Delta_{k+1,j}^* = \Delta_{k,j-1} \sqcup \Delta_{k+1,j-1}^* \quad \text{for } 1 \le j \le \ell,$$

such that, for each $0 \le j \le \ell$,

$$\frac{\delta_{k,j} - 2l^*(\Delta_{k,j})}{\delta_{k,j}} \ge \left(\frac{1}{2}\right)^{\beta^{j+c(k)+1}}$$

where $\delta_{k,j} = \frac{1}{2} \min\{\delta_k, l_*(\Delta_{k+1,j}^*)\}$. Next let

$$\Delta_{k+1,\ell+1}^* = \Delta_{k,\ell} \sqcup \Delta_{k+1,\ell}^* = \Delta_{k,\ell} \sqcup \cdots \sqcup \Delta_{k,1} \sqcup \Delta_k$$

and $\delta_{k,\ell+1} = \frac{1}{2} \min\{\delta_k, l_*(\Delta_{k+1,\ell+1}^*)\}$. By (2.4), we can find $\Delta_{k,\ell+1} \in \mathcal{P}(E_{k,\ell+1})$ such that

$$\frac{\delta_{k,\ell+1} - 2l^*(\Delta_{k,\ell+1})}{\delta_{k,\ell+1}} \ge \left(\frac{1}{2}\right)^{\beta^{\ell+1+c(k)+1}}$$

We repeat the above process until $\ell = 2^{K_k - k - 1} - 1$. Then we get

$$\Delta_{k,0} \in \mathcal{P}(E_{k,0}), \, \Delta_{k,1} \in \mathcal{P}(E_{k,1}), \, \dots, \, \Delta_{k,2}^{\kappa_{k-k-1}} \in \mathcal{P}(E_{k,2}^{\kappa_{k-k-1}})$$

and

$$\Delta_{k+1,0}^* = \Delta_k, \quad \Delta_{k+1,j}^* = \Delta_{k,j-1} \sqcup \Delta_{k+1,j-1}^*,$$

for $1 \le j \le 2^{K_k - k - 1} - 1$, such that, for each $0 \le j \le 2^{K_k - k - 1} - 1$,

$$\frac{\delta_{k,j} - 2l^*(\Delta_{k,j})}{\delta_{k,j}} \ge \left(\frac{1}{2}\right)^{\beta^{j+c(k)+1}}$$

where $\delta_{k,j} = \frac{1}{2} \min\{\delta_k, l_*(\Delta_{k+1,j}^*)\}.$

FIGURE 2. $E_{k,i}$.

It is clear that $\Delta_{k+1,2^{K_k-k-1}-1}^* \in \mathcal{P}([1/2^{k+1}, 1))$. Now we put

$$\Delta_{k+1} = \Delta_{k+1,2^{K_k-k-1}-1}^*$$
 and $h|_{[\frac{1}{2^{k+1}},1)} = \xi_{\Delta_{k+1}}.$

Then it is clear that $(h_{\Delta_{k+1}})|_{[1/2^k,1)} = \xi_{\Delta_k}$.

By the induction, we have defined h(x) on (0, 1) as above. Then we set h(0) = 1 and by the periodic extension we define

$$h(x) = h(\{x\})$$

for any $x \in \mathbb{R}$, where $\{x\}$ is the decimal part of x.

With the above construction, we now define $T : \mathbb{T}^2 \to \mathbb{T}^2$ such that

$$T(x, y) = (x + \alpha, y + \frac{1}{2}h(x))$$

for $(x, y) \in \mathbb{T}^2$. It is clear that *T* is a Borel measurable map from \mathbb{T}^2 to \mathbb{T}^2 . Note that, for any $n \in \mathbb{N}$,

$$T^{n}(x, y) = \left(x + n\alpha, y + \frac{1}{2}\sum_{i=0}^{n-1}h(x + i\alpha)\right).$$

In the following remark we extend the definition of $\Delta_{k,j}$ for $2^{K_k-k-1} \le j \le 2^{K_k-k}-2$.

Remark 2.4. For k > 0 and $0 \le j \le 2^{K_k - k} - 2$, there exists a unique partition in $\mathcal{P}(E_{k,j})$ (which will also be denoted by $\Delta_{k,j}$ when $j \ge 2^{K_k - k - 1}$) such that $h|_{E_{k,j}}(x) = \xi_{\Delta_{k,j}}$ and if $B \subset E_{k,j}$ is any disjoint union of intervals with length not less than $\frac{1}{2} \min\{\delta_k, l_*(\Delta_k), l_*(\Delta_{k,i}), 0 \le i \le j - 1\}$, then

$$\frac{m_{\mathbb{T}}(B_{\Delta_{k,j}})}{m_{\mathbb{T}}(B)} \ge \left(\frac{1}{2}\right)^{\beta^{j+c(k)+1}}.$$
(2.7)

Proof. In fact, given $2^{K_k-k-1} \le j \le 2^{K_k-k} - 2$, let k(j) be the unique integer such that $(1/2^{k(j)+1}) \le (1/2^k) - (j+1)/2^{K_k} < (1/2^{k(j)})$. We have $k+1 \le k(j) < K_k$ since $2^{K_k-k-1} \le j \le 2^{K_k-k} - 2$. Note that $(1/2^{k(j)})$ is an endpoint of $E_{k,2^{K_k-k}-2^{K_k-k}(j)}$. One has

$$\frac{1}{2^{k(j)+1}} \le \frac{1}{2^k} - \frac{j+1}{2^{K_k}} < \frac{1}{2^k} - \frac{j}{2^{K_k}} \le \frac{1}{2^{k(j)}}$$

Set

$$j_1 = 2^{K_{k(j)}-k(j)} - 2^{K_{k(j)}-k} + j \cdot 2^{K_{k(j)}-K_k}$$
 and $j_2 = j_1 + 2^{K_{k(j)}-K_k}$.

One has

$$E_{k,j} = \bigsqcup_{j_1 \le l < j_2} E_{k(j),l}.$$

Put

$$\Delta_{k,j} = \Delta_{k(j),j_1} \sqcup \Delta_{k(j),j_1+1} \sqcup \cdots \sqcup \Delta_{k(j),j_2-1}$$

One has

$$l^*(\Delta_{k,j}) \le l^*(\Delta_{k(j),j_1})$$
 and $\frac{1}{2} \min_{0 \le i \le j-1} \{\delta_k, l_*(\Delta_k), l_*(\Delta_{k,i})\} = \delta_{k(j),j_1}.$

Hence, if $B \subset E_{k,j}$ is any disjoint union of intervals with length not less than $\frac{1}{2}\min_{0\leq i\leq j-1}\{\delta_k, l_*(\Delta_k), l_*(\Delta_{k,i})\} = \delta_{k(j),j_1}, \text{ then by } (2.4) \text{ and the construction we have}$

$$\frac{m_{\mathbb{T}}(B_{\Delta_{k,j}})}{m_{\mathbb{T}}(B)} \ge \frac{\delta_{k(j),j_1} - 2l^*(\Delta_{k(j),j_1})}{\delta_{k(j),j_1}} \ge \left(\frac{1}{2}\right)^{\beta^{j_1 + c(k(j))+1}} \ge \left(\frac{1}{2}\right)^{\beta^{j+c(k)+1}}.$$

er, it is clear that $h|_{F_{k,j}}(x) = \xi_{\Delta_{k,j}}.$

Moreover, it is clear that $h|_{E_{k,i}}(x) = \xi_{\Delta_{k,i}}$.

3. The measure complexity

For a topological space X, let M(X) be the collection of all Borel probability measures on X and (X, T) be the system defined in the previous section. For $\rho \in M(\mathbb{T}^2)$, we say that ρ is *T*-invariant, if $\rho(T^{-1}A) = \rho(A)$ for any Borel set *A* of \mathbb{T}^2 . We denote by $M(\mathbb{T}^2, T)$ the set of all T-invariant measures in $M(\mathbb{T}^2)$. It is clear that the Haar measure $m_{\mathbb{T}^2} \in$ $M(\mathbb{T}^2, T).$

For any
$$(x_1, y_1), (x_2, y_2) \in \mathbb{T}^2$$
, the metric
 $d((x_1, y_1), (x_2, y_2)) := \max\{||x_1 - x_2||, ||y_1 - y_2||\},\$

where $||z|| = \min_{k \in \mathbb{Z}} |z - k|$ for $z \in \mathbb{R}$.

In this section we compute the measure complexity of (X, T, ρ) for any $\rho \in M(\mathbb{T}^2, T)$. Since the computation is long we will put the proofs of some technical lemmas in subsections.

3.1. The computation. Before stating the following proposition, let us recall some notation. Let $s_i = 1 - 1/2^i$ and $E_i = [0, 1/2^i)$ for $i \in \mathbb{N}$. Fix a small $\beta > 0$ such that $\prod_{l=0}^{\infty} (\frac{1}{2})^{\beta^{l+1}} > \frac{9}{10}$. For each $k \in \mathbb{N}$, $(N_{k+1}/2^{K_k-k}) < (\eta/2)$ with $0 < \eta < 1/100$.

PROPOSITION 3.1. For any $\rho \in M(\mathbb{T}^2, T)$,

$$\lim_{\epsilon \to 0} \liminf_{n \to \infty} \frac{\log S_n(d, \rho, \epsilon)}{n^{\tau}} = +\infty$$
(3.1)

for any $0 < \tau < 1$.

Proof. Let $\rho \in M(\mathbb{T}^2, T)$. Fix $k \in \mathbb{N}$ and $N_k \leq n \leq N_{k+1}$. By the definition of $S_n(d, \rho, \eta/2)$, there exist $z_1, z_2, \ldots, z_{S_n(d,\rho,\eta/2)} \in \mathbb{T}^2$ such that

$$\rho\left(\bigcup_{i=1}^{S_n(d,\rho,\eta/2)} B_{\bar{d}_n}(z_i,\,\eta/2)\right) > 1 - \eta/2$$

FIGURE 3. \tilde{P}_0 and $H = \pi(\tilde{P}_0)$.

Set $P_i = \mathbb{T} \times [i/4, i+1/4), i = 0, 1, 2, 3$ (see Figure 3). There must be some $0 \le i \le 3$, such that $\rho(P_i) \ge \frac{1}{4}$. Without loss of generality, we suppose $\rho(P_0) \ge \frac{1}{4}$. Write

$$\tilde{P}_0 = P_0 \cap \left(\bigcup_{i=1}^{S_n(d,\rho,\eta/2)} B_{\bar{d}_n}(z_i,\eta/2)\right).$$

Clearly, $\rho(\tilde{P}_0) > \frac{1}{4} - \eta$. Let $\pi : \mathbb{T}^2 \to \mathbb{T}$ be the projection of the first coordinate. Notice that the marginal of ρ on the first coordinate is the Haar measure $m_{\mathbb{T}}$, and we have $\rho \circ \pi = m_{\mathbb{T}}$. Set

$$H = \pi(\tilde{P}_0).$$

Since \tilde{P}_0 is a Borel set of \mathbb{T}^2 , *H* is an analytic subset of \mathbb{T} (see [3] for the definition) with $m_{\mathbb{T}}(H) > \frac{1}{4} - \eta$. Moreover, for any $x \in H$, we fix some $z(x) \in \tilde{P}_0$ such that $\pi(z(x)) = x$.

At this point let us explain the main idea of the proof. For $x_1, x_2 \in H$ and $j \in \mathbb{N}$, we have

$$d(T^{j}(z(x_{1})), T^{j}(z(x_{2}))) \ge \frac{1}{2} - ||y_{1} - y_{2}|| \ge \frac{1}{4}$$

if $z(x_1) = (x_1, y_1)$, $z(x_2) = (x_2, y_2)$ and $\sum_{i=0}^{j-1} h(x_1 + i\alpha) \neq \sum_{i=0}^{j-1} h(x_2 + i\alpha) \pmod{1}$, since $y_1, y_2 \in P_0$. This implies that

$$\bar{d}_n(z(x), z(x')) \ge \frac{1}{4n} \# \bigg\{ 0 \le l \le n-2 : \sum_{j=0}^l h(R^j_\alpha x) \ne \sum_{j=0}^l h(R^j_\alpha x') \pmod{1} \bigg\}.$$

So the computation of the measure complexity can be reduced to the study of properties of *h*. To estimate $S_n(d, \rho, \eta/2)$ we construct a subset $J_{x_0,s} \subset \mathbb{T}$ and consider

$$W = \{1 \le i \le S_n(d, \rho, \eta/2) : \{z(x) : x \in J_{x_0, s} \cap H\} \cap B_{\bar{d}_n}(z_i, \eta/2) \ne \emptyset\}.$$

Using results in Claims 1 and 2 below, we may get a lower bound of W which is the one we need.

We now begin the proof of the proposition. Setting

$$J = \{x \in \mathbb{T} : m_{\mathbb{T}}([x, x + \delta_k) \cap H) \ge (\frac{1}{4} - 2\eta)\delta_k\},\tag{3.2}$$

we have

$$\begin{pmatrix} \frac{1}{4} - \eta \end{pmatrix} \delta_k < \int_0^{\delta_k} \int_{\mathbb{T}} \chi_H(x+y) \, dm_{\mathbb{T}}(x) \, dy$$

$$= \int_{\mathbb{T}} \int_0^{\delta_k} \chi_H(x+y) \, dy \, dm_{\mathbb{T}}(x)$$

$$\le m_{\mathbb{T}}(J) \delta_k + \left(\frac{1}{4} - 2\eta\right) \delta_k (1 - m_{\mathbb{T}}(J))$$

$$= m_{\mathbb{T}}(J) \left(\frac{3}{4} + 2\eta\right) \delta_k + \left(\frac{1}{4} - 2\eta\right) \delta_k,$$

which implies $m_{\mathbb{T}}(J) > (\eta/(3/4) + 2\eta) > \eta$ and $J \cap (M_k \setminus \bigcup_{i=0}^n R_{\alpha}^{-i}[0, 1/2^{K_k})) \neq \emptyset$ by (2.5) and the fact that $m_{\mathbb{T}}(M_k) > 1 - (\eta/2)$ (see Remark 2.3). Pick $x_0 \in J \cap (M_k \setminus \bigcup_{i=0}^n R_{\alpha}^{-i}[0, 1/2^{K_k}))$ and set $J_{x_0} = [x_0, x_0 + \delta_k)$.

Let

$$\mathcal{J} = \{0 \le j \le n-1 : R^j_\alpha x_0 \in E_k\},\$$

and $s = #\mathcal{J} - 1$. Denote the elements in \mathcal{J} by $j_1, j_2, \ldots, j_{s+1}$ with $0 \le j_1 < j_2 < \cdots < j_{s+1} \le n-1$. Let $\mathcal{S} = [1, s] \cap \mathbb{N}$ and

$$S_i = \{l : 1 \le l \le s \text{ and } j_{l+1} - j_l = i\}.$$

We remark that by the definition $s(i, n, E_k, x_0) = \#\{0 \le j \le n - i - 1 : f_i(R_{\alpha}^j x_0) = 1\}$. Thus, we have $\#S_i = s(i, n, E_k, x_0)$ (see (2.1) for the definition).

For a given $x \in J_{x_0}$, and any $x' \in J_{x_0}$, let

$$0 \le j_1(x, x') < j_2(x, x') < \cdots < j_{s'(x, x')}(x, x') \le j_s$$

be the collection of $j \in \mathcal{J} \setminus \{j_{s+1}\}$ such that $h(R_{\alpha}^j x) \neq h(R_{\alpha}^j x')$. This means that if $j_i(x, x') for some$ *i* $, then <math>h(R_{\alpha}^p x) = h(R_{\alpha}^p x')$.

Set $j_{s'(x,x')+1}(x, x') = j_{s+1}$ and put

$$\mathcal{K}_{x,x'} = \bigcup_{0 < 2i \le s'(x,x')+1} \{l : j_l \in [j_{2i-1}(x,x'), j_{2i}(x,x')), 1 \le l \le s\}$$

It is clear that $\mathcal{K}_{x,x'}$ is a subset of \mathcal{S} . We remark that if $j_l \in [j_{2i-1}(x, x'), j_{2i}(x, x'))$ then $[j_l, j_{l+1}) \subset [j_{2i-1}(x, x'), j_{2i}(x, x'))$ as $j_{2i}(x, x') \in \mathcal{J}$. Thus

$$\bigcup_{l \in \mathcal{K}_{x,x'}} [j_l, j_{l+1}) \cap \mathbb{N} = \bigcup_{0 < 2i \le s'(x,x') + 1} \{t \in \mathbb{N} : t \in [j_{2i-1}(x, x'), j_{2i}(x, x'))\}$$
(3.3)

is a subset of $0 \le i \le n-2$ for which $\sum_{j=0}^{i} h(R_{\alpha}^{j}x) \ne \sum_{j=0}^{i} h(R_{\alpha}^{j}x') \pmod{1}$ (see Remark 2.3(2)).

We have the following claim, whose proof will be given in the next subsection.

CLAIM 1. If $x \in J_{x_0} \cap H$, then

$$#\{\mathcal{K}_{x,x'} \subset \mathcal{S} : x' \in J_{x_0} \cap H \text{ and } \bar{d}_n(z(x), z(x')) < \eta\} \leq #\mathcal{I}(E_k)C2^s n e^{-(\log 2 + 5\eta \log(5\eta) + (1 - 5\eta) \log(1 - 5\eta))\rho(E_k)n}$$

Let

$$\mathcal{L}_k := \{\ell \in [0, 2^{K_k - k} - 1] : R_{\alpha}^{j_i}(x_0) \in E_{k,\ell} \text{ for some } i \in [1, s] \}.$$

By (2.6),

$$#\{0 \le i \le n : R^i_{\alpha}(x_0) \in E_{k,l}\} \le 1$$

for any $0 \le l \le 2^{K_k-k} - 1$. Hence $\#\mathcal{L}_k = s$ and we rewrite

$$\mathcal{L}_k = \{ 0 \le \ell_1 < \ell_2 < \dots < \ell_s \le 2^{K_k - k} - 1 \}.$$

By the selection of x_0 , one has $\ell_s \neq 2^{K_k-k} - 1$ (recall that $E_{k,2^{K_k-k}-1} = [0, 1/2^{K_k})$). Moreover, for any $l \in \mathcal{L}_k$, we write as j(l) the only element in $\mathcal{J} \setminus \{j_{s+1}\}$ such that $R_{\alpha}^{j(l)}(x_0) \in E_{k,l}$.

For $i \in [1, s]$, by Remark 2.4 there exists a unique $\Delta_{k,\ell_i} \in \mathcal{P}(E_{k,\ell_i})$ such that $h|_{E_{k,\ell_i}}(x) = \xi_{\Delta_{k,\ell_i}}$ and (2.7) holds. Suppose the partition Δ_{k,l_i} is

$$a_i = a_{i,1} < a_{i,2} < \cdots < a_{i,k_i} = b_i$$

for $1 \le i \le s$. For i = 1, we let

$$\mathcal{I}_1 = \{ j \in [1, k_1 - 1] : [a_{1,j}, a_{1,j+1}) \subset R_{\alpha}^{j(l_1)} J_{x_0} \}$$

and

$$J_{x_0,1} = R_{\alpha}^{-j(l_1)} \left(\bigcup_{j \in \mathcal{I}_1} [a_{1,j}, a_{1,j+1}) \right) = R_{\alpha}^{-j(l_1)} (R_{\alpha}^{j(l_1)} J_{x_0})_{\Delta_{k,l_1}}$$

It is clear that

$$J_{x_0,1} \subset R_{\alpha}^{-j(l_1)}(R_{\alpha}^{j(l_1)}J_{x_0}) = J_{x_0}.$$

By induction, for $2 \le i \le s$, by (2.3), we put

$$\mathcal{I}_{i} = \left\{ j \in [1, k_{i} - 1] : \text{ there exists } j' \in \mathcal{I}_{i-1} \text{ such that} \\ [a_{i,j}, a_{i,j+1}) \subset R_{\alpha}^{j(l_{i}) - j(l_{i-1})} \left(\left[a_{i-1,j'}, \frac{a_{i-1,j'} + a_{i-1,j'+1}}{2} \right) \right) \text{ or} \\ [a_{i,j}, a_{i,j+1}) \subset R_{\alpha}^{j(l_{i}) - j(l_{i-1})} \left(\left[\frac{a_{i-1,j'} + a_{i-1,j'+1}}{2}, a_{i-1,j'+1} \right) \right) \right\}$$

and

$$J_{x_{0},i} = R_{\alpha}^{-j(l_{i})} \left(\bigcup_{j \in \mathcal{I}_{i}} [a_{i,j}, a_{i,j+1}) \right)$$

$$= R_{\alpha}^{-j(l_{i})} \left(\bigcup_{j' \in \mathcal{I}_{i-1}} \left(R_{\alpha}^{j(l_{i})-j(l_{i-1})} \left(\left[a_{i-1,j'}, \frac{a_{i-1,j'}+a_{i-1,j'+1}}{2} \right] \right) \right) \right)_{\Delta_{k,l_{i}}} (3.4)$$

$$\cup \left(R_{\alpha}^{j(l_{i})-j(l_{i-1})} \left(\left[\frac{a_{i-1,j'}+a_{i-1,j'+1}}{2}, a_{i-1,j'+1} \right] \right) \right)_{\Delta_{k,l_{i}}} \right).$$

It is clear that

$$J_{x_{0,i}} \subset R_{\alpha}^{-j(l_{i})} \left(\bigcup_{j' \in \mathcal{I}_{i-1}} R_{\alpha}^{j(l_{i})-j(l_{i-1})}([a_{i-1,j'}, a_{i-1,j'+1})) \right)$$
$$= R_{\alpha}^{-j(l_{i-1})} \left(\bigcup_{j' \in \mathcal{I}_{i-1}} [a_{i-1,j'}, a_{i-1,j'+1}) \right)$$
$$= J_{x_{0},i-1}.$$

In this way we get $J_{x_0,s} \subset \cdots \subset J_{x_0,1} \subset J_{x_0}$. It is clear that each $J_{x_0,i}$ is a finite union of subintervals of J_{x_0} .

Next for $t = (t(j))_{i=1}^{s} \in \{0, 1\}^{s}$, we define

$$J_{x_0,s}(t) = \{x' \in J_{x_0,s} : h(R_{\alpha}^{j(\ell_j)}x') = t(j), \ 1 \le j \le s\}.$$

We have the following claim whose proof will be presented in the final subsection.

CLAIM 2. The following statements hold.

(1)
$$m_{\mathbb{T}}(J_{x_0,s} \cap H) > \frac{1}{10}\delta_k$$

(2)
$$m_{\mathbb{T}}(J_{x_0,s}(t)) \le (1/2^s)\delta_k$$
 for any $t = (t(j))_{j=1}^s \in \{0, 1\}^s$.

Recall that z_i is the point defined at the beginning of the proof. We now let

$$W = \{i \in [1, S_n(d, \rho, \eta/2)] : \{z(x) : x \in J_{x_0,s} \cap H\} \cap B_{\bar{d}_x}(z_i, \eta/2) \neq \emptyset\}.$$

For $i \in W$, we put

$$J_{x_0,s,H}(i) := \{ x \in J_{x_0,s} \cap H : z(x) \in B_{\bar{d}_n}(z_i, \eta/2) \}$$

and fix a point $x_i \in J_{x_0,s,H}(i)$. Then let

$$\mathcal{B}_i = \{\mathcal{K}_{x_i, x'} \subset \mathcal{S} : x' \in J_{x_0} \cap H \text{ and } \bar{d}_n(z(x_i), z(x')) < \eta\}$$

For any $\mathcal{K} \in \mathcal{B}_i$, set

$$J_{x_0,\mathcal{K}}(x_i) = \{x' \in J_{x_0,s} : \mathcal{K}_{x_i,x'} = \mathcal{K}\}$$

By the definition of *h* and $x_0 \in M_k$, it is clear that $J_{x_0,\mathcal{K}}(x_i)$ is a union of finite sub-intervals of $J_{x_0,s}$. While $x' \in J_{x_0,\mathcal{K}}(x_i)$, for $1 \le l \le s$, $h(R_{\alpha}^{j_l}x')$ is decided by x_i and \mathcal{K} , which will be denoted by h_{x_i,\mathcal{K},j_l} . Hence, by Claim 2(2),

$$m_{\mathbb{T}}(J_{x_0,\mathcal{K}}(x_i)) = m_{\mathbb{T}}(\{x' \in J_{x_0,s} : h(R^{j_l}_{\alpha}x') = h_{x_i,\mathcal{K},j_l}, 1 \le l \le s\})$$

$$\le \frac{1}{2^s} \delta_k.$$
(3.5)

Let

$$J_{x_0,s,H}^*(i) := \bigcup_{\mathcal{K}\in\mathcal{B}_i} J_{x_0,\mathcal{K}}(x_i).$$

Then $J_{x_0,s,H}^*(i)$ is also a union of finite sub-intervals of $J_{x_0,s}$ and

$$m_{\mathbb{T}}(J_{x_{0},s,H}^{*}(i)) = \sum_{\mathcal{K}\in\mathcal{B}_{i}} m_{\mathbb{T}}(J_{x_{0},\mathcal{K}}(x_{i}))$$

$$\leq \frac{1}{2^{s}} \delta_{k} \# \mathcal{I}(E_{k}) C2^{s} n e^{-(\log 2 + 5\eta \log(5\eta) + (1 - 5\eta) \log(1 - 5\eta))\rho(E_{k})n} \qquad (3.6)$$

$$= \delta_{k} \# \mathcal{I}(E_{k}) Cn e^{-(\log 2 + 5\eta \log(5\eta) + (1 - 5\eta) \log(1 - 5\eta))\rho(E_{k})n}$$

by Claim 1 and (3.5).

Since $\bar{d}_n(z(x_i), z(x)) < \eta$ for any $x \in J_{x_0,s,H}(i)$, one has

$$J_{x_0,s,H}(i) \subseteq J^*_{x_0,s,H}(i). \tag{3.7}$$

Moreover, as

$$\{z(x): x \in J_{x_0,s} \cap H\} \subseteq \tilde{P}_0 \subset \bigcup_{i=1}^{S_n(d,\rho,\eta/2)} B_{\bar{d}_n}(z_i,\eta/2),$$

we have

$$J_{x_0,s} \cap H \subset \bigcup_{i \in W} J_{x_0,s,H}(i).$$
(3.8)

By (3.7) and (3.8) we obtain

$$J_{x_0,s} \cap H \subset \bigcup_{i \in W} J_{x_0,s,H}(i) \subseteq \bigcup_{i \in W} J^*_{x_0,s,H}(i).$$

$$(3.9)$$

Combining (3.9) with (3.6) and Claim 2(1), we have

$$\begin{split} &\#W \cdot \delta_k \#\mathcal{I}(E_k) Cn e^{-(\log 2 + 5\eta \log(5\eta) + (1 - 5\eta) \log(1 - 5\eta))\rho(E_k)n} \\ &\geq \sum_{i \in W} m_{\mathbb{T}}(J_{x_0, S, H}^*(i)) \geq m_{\mathbb{T}} \left(\bigcup_{i \in W} J_{x_0, S, H}^*(i) \right) \\ &\geq m_{\mathbb{T}}(J_{x_0, S} \cap H) > \frac{\delta_k}{10}, \end{split}$$

which implies

$$S_n(d, \rho, \eta/2) \ge \#W \ge \frac{\frac{1}{10}\delta_k}{\delta_k \#\mathcal{I}(E_k)Cne^{-(\log 2+5\eta \log(5\eta)+(1-5\eta)\log(1-5\eta))\rho(E_k)n}}$$

= $e^{(\log 2+5\eta \log(5\eta)+(1-5\eta)\log(1-5\eta))\rho(E_k)n-\log(10\#\mathcal{I}(E_k)Cn)}.$

Thus by Lemma 2.2 (3), we deduce that

$$\frac{\log S_n(d, \,\rho, \,\eta/2)}{n^{s_k}} \ge \frac{1}{2} \tag{3.10}$$

for $N_k \le n \le N_{k+1}$. Notice that $s_k \nearrow 1$ when k goes to infinity, hence

$$\lim_{\epsilon \to 0} \liminf_{n \to \infty} \frac{\log S_n(d, \rho, \epsilon)}{n^{\tau}} \ge \liminf_{n \to \infty} \frac{\log S_n(d, \rho, \eta/2)}{n^{\tau}}$$
$$\ge \liminf_{k \to +\infty} \min_{N_k \le n \le N_{k+1}} \frac{\log S_n(d, \rho, \eta/2)}{n^{\tau}}$$
$$= \liminf_{k \to +\infty} \min_{N_k \le n \le N_{k+1}} n^{s_k - \tau} \frac{\log S_n(d, \rho, \eta/2)}{n^{s_k}}$$
$$\ge \liminf_{k \to +\infty} \min_{N_k \le n \le N_{k+1}} n^{s_k - \tau} \frac{1}{2} \quad (by (3.10))$$
$$= +\infty$$

for any $0 < \tau < 1$. That is, (3.1) holds.

3.2. *Proof of Claim 1.* In this subsection we prove Claim 1.

Proof of Claim 1. Fix $x \in J_{x_0} \cap H$. For any $x' \in J_{x_0} \cap H$, it is clear that

$$\begin{split} \bar{d}_n(z(x), z(x')) &\geq \frac{1}{4n} \# \bigg\{ 0 \leq l \leq n-2 : \sum_{j=0}^{\ell} h(R^j_{\alpha} x) \neq \sum_{j=0}^{\ell} h(R^j_{\alpha} x') \pmod{1} \bigg\} \\ &\geq \frac{1}{4n} \# \bigg\{ l \in \mathbb{N} : l \in \bigcup_{0 < 2i \leq s'(x, x')+1} [j_{2i-1}(x, x'), j_{2i}(x, x')) \bigg\} \\ &\stackrel{(3.3)}{=} \frac{1}{4n} \# \bigcup_{l \in \mathcal{K}_{x, x'}} [j_l, j_{l+1}) \cap \mathbb{N}. \end{split}$$

Now if, in addition, $\bar{d}_n(z(x), z(x')) < \eta$, then

$$\frac{1}{n} \# \bigcup_{l \in \mathcal{K}_{x,x'}} [j_l, j_{l+1}) \cap \mathbb{N} < 4\eta.$$

This implies

$$4\eta > \frac{1}{n} \sum_{l \in \mathcal{K}_{x,x'}} j_{l+1} - j_l = \sum_{i \in \mathcal{I}(E_k)} i \frac{\#(\mathcal{K}_{x,x'} \cap \mathcal{S}_i)}{\#\mathcal{S}_i} \frac{\#\mathcal{S}_i}{n},$$

where $\#S_i = s(i, n, E_k, x_0)$. Thus by Lemma 2.2(1),

$$4\eta > (1 - \eta) \sum_{i \in \mathcal{I}(E_k)} \frac{\#(\mathcal{K}_{x,x'} \cap \mathcal{S}_i)}{\#\mathcal{S}_i} \frac{i\#\mathcal{S}_i}{\sum_{j \in \mathcal{I}(E_k)} j\#\mathcal{S}_j}$$

Hence, there exists $i \in \mathcal{I}(E_k)$ such that

$$\frac{\#(\mathcal{K}_{x,x'} \cap \mathcal{S}_i)}{\#\mathcal{S}_i} < \frac{4\eta}{1-\eta} < 5\eta$$

when $\bar{d}_n(z(x), z(x')) < \eta$.

Now, we have the following approximation:

$$\begin{aligned} & \#\{\mathcal{K}_{x,x'} \subset \mathcal{S} : x' \in J_{x_0} \text{ and } d_n(z(x), z(x')) < \eta\} \\ & \leq \sum_{i \in \mathcal{I}(E_k)} \#\left\{\mathcal{K}_{x,x'} \subset \mathcal{S} : \frac{\#(\mathcal{K}_{x,x'} \cap \mathcal{S}_i)}{\#\mathcal{S}_i} < 5\eta, x' \in J_{x_0}\right\} \\ & \leq \sum_{i \in \mathcal{I}(E_k)} \sum_{j=0}^{[5\eta_s(i,n,E_k,x_0)]} 2^{s-s(i,n,E_k,x_0)} C_{s(i,n,E_k,x_0)}^j \\ & \leq \sum_{i \in \mathcal{I}(E_k)} 2^{s-s(i,n,E_k,x_0)} [5\eta_s(i,n,E_k,x_0)] C_{s(i,n,E_k,x_0)}^{[5\eta_s(i,n,E_k,x_0)]} \\ & \leq \sum_{i \in \mathcal{I}(E_k)} 2^{s-s(i,n,E_k,x_0)} n C_{s(i,n,E_k,x_0)}^{[5\eta_s(i,n,E_k,x_0)]} \\ & \leq \sum_{i \in \mathcal{I}(E_k)} C2^s n e^{-(\log 2 + 5\eta \log(5\eta) + (1-5\eta) \log(1-5\eta))s(i,n,E_k,x_0)} \\ & \text{Lem. 2.2(2)} \quad \mathcal{I}(E_k) C2^s n e^{-(\log 2 + 5\eta \log(5\eta) + (1-5\eta) \log(1-5\eta))\rho(E_k)n}. \end{aligned}$$

This completes the proof of Claim 1.

3.3. *Proof of Claim 2.* In this subsection we prove Claim 2.

Proof of Claim 2(1). For i = 1, by (2.7) we have

$$m_{\mathbb{T}}(J_{x_{0},1}) = m_{\mathbb{T}}(R_{\alpha}^{-j(l_{1})}(R_{\alpha}^{j(l_{1})}J_{x_{0}})_{\Delta_{k,l_{1}}})$$

= $m_{\mathbb{T}}((R_{\alpha}^{j(l_{1})}J_{x_{0}})_{\Delta_{k,l_{1}}})$
 $\geq (\frac{1}{2})^{\beta^{l_{1}+c(k)+1}}m_{\mathbb{T}}(R_{\alpha}^{j(l_{1})}J_{x_{0}}) = (\frac{1}{2})^{\beta^{l_{1}+c(k)+1}}m_{\mathbb{T}}(J_{x_{0}}).$

For $2 \le i \le s$, by (2.7) and (3.4) we have

$$\begin{split} m_{\mathbb{T}}(J_{x_{0},i}) &= \sum_{j' \in \mathcal{I}_{i-1}} m_{\mathbb{T}} \bigg(\bigg(R_{\alpha}^{j(l_{i})-j(l_{i-1})} \bigg(\bigg[a_{i-1,j'}, \frac{a_{i-1,j'}+a_{i-1,j'+1}}{2} \bigg) \bigg) \bigg)_{\Delta_{k,l_{i}}} \bigg) \\ &+ \sum_{j' \in \mathcal{I}_{i-1}} m_{\mathbb{T}} \bigg(\bigg(R_{\alpha}^{j(l_{i})-j(l_{i-1})} \bigg(\bigg[\frac{a_{i-1,j'}+a_{i-1,j'+1}}{2}, a_{i-1,j'+1} \bigg) \bigg) \bigg)_{\Delta_{k,l_{i}}} \bigg) \\ &\geq \bigg(\frac{1}{2} \bigg)^{\beta^{l_{i}+c(k)+1}} \bigg(\sum_{j' \in \mathcal{I}_{i-1}} m_{\mathbb{T}} \bigg(R_{\alpha}^{j(l_{i})-j(l_{i-1})} \bigg(\bigg[a_{i-1,j'}, \frac{a_{i-1,j'}+a_{i-1,j'+1}}{2} \bigg) \bigg) \bigg) \\ &+ \sum_{j' \in \mathcal{I}_{i-1}} m_{\mathbb{T}} \bigg(R_{\alpha}^{j(l_{i})-j(l_{i-1})} \bigg(\bigg[\frac{a_{i-1,j'}+a_{i-1,j'+1}}{2}, a_{i-1,j'+1} \bigg) \bigg) \bigg) \bigg). \end{split}$$

It is clear that the right-hand side is equal to

$$\begin{split} &\left(\frac{1}{2}\right)^{\beta^{l_i+c(k)+1}} \sum_{j'\in\mathcal{I}_{i-1}} (a_{i-1,j'+1}-a_{i-1,j'}) \\ &= \left(\frac{1}{2}\right)^{\beta^{l_i+c(k)+1}} \sum_{j'\in\mathcal{I}_{i-1}} m_{\mathbb{T}}(R_\alpha^{-j(l_{i-1})}([a_{i-1,j'},a_{i-1,j'+1}))) \\ &= \left(\frac{1}{2}\right)^{\beta^{l_i+c(k)+1}} m_{\mathbb{T}}(J_{x_0,i-1}). \end{split}$$

Thus

$$m_{\mathbb{T}}(J_{x_0,i}) \ge m_{\mathbb{T}}(J_{x_0}) \prod_{j=1}^{i} \left(\frac{1}{2}\right)^{\beta^{l_j + c(k) + 1}} \ge \delta_k \prod_{l=0}^{\infty} \left(\frac{1}{2}\right)^{\beta^{l+c(k) + 1}} > \frac{9}{10} \delta_k$$

for $1 \le i \le s$. Hence

$$m_{\mathbb{T}}([x_0, x_0 + \delta_k) \setminus J_{x_0,s}) = m_{\mathbb{T}}([x_0, x_0 + \delta_k)) - m_{\mathbb{T}}(J_{x_0,s}) < \frac{1}{10}\delta_k.$$

Moreover, by (3.2), we have

$$m_{\mathbb{T}}(J_{x_{0},s} \cap H) \ge m_{\mathbb{T}}([x_{0}, x_{0} + \delta_{k}) \cap H) - m_{\mathbb{T}}([x_{0}, x_{0} + \delta_{k}) \setminus J_{x_{0},s})$$
$$\ge \left(\frac{1}{4} - 2\eta\right)\delta_{k} - \frac{1}{10}\delta_{k} > \frac{1}{10}\delta_{k}.$$
(3.11)

Proof of Claim 2(2). Fix $t \in \{0, 1\}^s$. We will prove that $m_{\mathbb{T}}(J_{x_0,s}(t)) \le (\frac{1}{2})^s \delta_k$. First we let

$$J_{x_0,i}(t) = \{ x' \in J_{x_0,i} : h(R_{\alpha}^{j(\ell_r)}x') = t(i), \ 1 \le r \le i \}$$

for $1 \le i \le s$.

Next for i = 1, we set

$$\mathcal{I}_{t,1} = \mathcal{I}_1 = \{ j \in [1, k_1 - 1] : [a_{1,j}, a_{1,j+1}) \subset R_{\alpha}^{j(l_1)} J_{x_0} \}.$$

By induction, for $2 \le i \le s$, we put

$$\mathcal{I}_{t,i} = \begin{cases} \left\{ j \in [1, k_i - 1] : [a_{i,j}, a_{i,j+1}) \subset R_{\alpha}^{j(l_i) - j(l_{i-1})} \left[a_{i-1,j'}, \frac{a_{i-1,j'} + a_{i-1,j'+1}}{2} \right) \right. \\ \left. \begin{array}{c} \text{for some } j' \in \mathcal{I}_{t,i-1} \right\} & \text{if } t(i-1) = 0 \\ \left\{ j \in [1, k_i - 1] : [a_{i,j}, a_{i,j+1}) \subset R_{\alpha}^{j(l_i) - j(l_{i-1})} \left[\frac{a_{i-1,j'} + a_{i-1,j'+1}}{2}, a_{i-1,j'+1} \right) \right. \\ \left. \begin{array}{c} \text{for some } j' \in \mathcal{I}_{t,i-1} \end{array} \right\} & \text{if } t(i-1) = 1. \end{cases} \end{cases}$$

It is clear that

$$\mathcal{I}_{t,i} \subset \mathcal{I}_i$$

for $1 \leq i \leq s$.

Then we will show that

$$J_{x_0,i}(t) = R_{\alpha}^{-j(l_i)} \left(\bigcup_{j \in \mathcal{I}_{t,i}} I(i, j:t(i)) \right)$$
(3.12)

for $1 \le i \le s$, where

$$I(i, j; r) = \begin{cases} \begin{bmatrix} a_{i,j}, \frac{a_{i,j} + a_{i,j+1}}{2} \end{bmatrix} & \text{if } r = 0, \\ \begin{bmatrix} \frac{a_{i,j} + a_{i,j+1}}{2}, a_{i,j+1} \end{bmatrix} & \text{if } r = 1, \end{cases}$$

for $i \in [1, s]$, $j \in [1, k_i - 1]$ and $r \in \{0, 1\}$. First, for i = 1,

$$\begin{split} J_{x_0,1}(t) &= \left\{ x' \in R_{\alpha}^{-j(l_1)} \bigg(\bigcup_{j \in \mathcal{I}_1} [a_{1,j}, a_{1,j+1}) \bigg) : h(R_{\alpha}^{j(l_1)} x') = t(1) \right\} \\ &= R_{\alpha}^{-j(l_1)} \bigg(\left\{ x \in \bigcup_{j \in \mathcal{I}_1} [a_{1,j}, a_{1,j+1}) : h(x) = t(1) \right\} \bigg) \\ &= \left\{ \begin{aligned} R_{\alpha}^{-j(l_1)} \bigg(\bigcup_{j \in \mathcal{I}_{t,1}} \left[a_{1,j}, \frac{a_{1,j} + a_{1,j+1}}{2} \right) \bigg) & \text{if } t(1) = 0, \\ R_{\alpha}^{-j(l_1)} \bigg(\bigcup_{j \in \mathcal{I}_{t,1}} \left[\frac{a_{1,j} + a_{1,j+1}}{2}, a_{1,j+1} \right) \bigg) & \text{if } t(1) = 1, \\ &= R_{\alpha}^{-j(l_1)} \bigg(\bigcup_{j \in \mathcal{I}_{t,1}} I(1, j : t(i)) \bigg). \end{split}$$

That is, (3.12) holds for i = 1.

Assume that (3.12) holds for $i = k \in [1, s - 1]$. Then, for i = k + 1,

$$\begin{split} J_{x_{0},k+1}(t) &= J_{x_{0},k}(t) \cap \{x' \in J_{x_{0},k+1} : h(R_{\alpha}^{j(\ell_{k+1})}x') = t(k+1)\} \\ &= J_{x_{0},k}(t) \cap \left\{x' \in R_{\alpha}^{-j(\ell_{k+1})} \left(\bigcup_{j \in \mathcal{I}_{k+1}} [a_{k+1,j}, a_{k+1,j+1})\right) : h(R_{\alpha}^{j(\ell_{k+1})}x') = t(k+1)\right\} \\ &= J_{x_{0},k}(t) \cap R_{\alpha}^{-j(\ell_{k+1})} \left\{x \in \bigcup_{j \in \mathcal{I}_{k+1}} [a_{k+1,j}, a_{k+1,j+1}) : h(x) = t(k+1)\right\} \right) \\ &= R_{\alpha}^{-j(\ell_{k})} \left(\bigcup_{j \in \mathcal{I}_{t,k}} I(k, j : t(k))\right) \cap R_{\alpha}^{-j(\ell_{k+1})} \left(\bigcup_{j \in \mathcal{I}_{k+1}} I(k+1, j : t(k+1))\right) \\ &= R_{\alpha}^{-j(\ell_{k+1})} \left(\left(\bigcup_{j \in \mathcal{I}_{t,k}} R_{\alpha}^{j(\ell_{k+1})-j(\ell_{k})} I(k, j : t(k))\right) \cap \left(\bigcup_{j \in \mathcal{I}_{k+1}} I(k+1, j : t(k+1))\right) \right) \\ &= R_{\alpha}^{-j(\ell_{k+1})} \left(\left(\bigcup_{j \in \mathcal{I}_{t,k+1}} I(k+1, j : t(k+1))\right) \right) \\ \end{split}$$

That is, (3.12) holds for i = k + 1. Thus by induction, we obtain (3.12) holds for $1 \le i \le s$.

Next,

$$m_{\mathbb{T}}(J_{x_0,1}(t)) = \frac{1}{2}m_{\mathbb{T}}(J_{x_0,1}) \le \frac{1}{2}m_{\mathbb{T}}(J_{x_0}) = \frac{1}{2}\delta_k.$$

We suppose

$$m_{\mathbb{T}}(J_{x_0,i}(t)) \le (\frac{1}{2})^i \delta_k,$$

for some $1 \le i \le s - 1$. Then

$$m_{\mathbb{T}}(J_{x_{0},i+1}(t)) = \begin{cases} m_{\mathbb{T}} \left(R_{\alpha}^{-j(l_{i+1})} \left(\bigcup_{j \in \mathcal{I}_{t,i+1}} \left[a_{i+1,j}, \frac{a_{i+1,j} + a_{i+1,j+1}}{2} \right) \right) \right) \\ \text{if } t(i+1) = 0, \\ m_{\mathbb{T}} \left(R_{\alpha}^{-j(l_{i+1})} \left(\bigcup_{j \in \mathcal{I}_{t,i+1}} \left[\frac{a_{i+1,j} + a_{i+1,j+1}}{2}, a_{i+1,j+1} \right) \right) \right) \\ \text{if } t(i+1) = 1. \end{cases}$$

By induction, we have

$$m_{\mathbb{T}}(J_{x_{0},i+1}(t)) = \sum_{j \in \mathcal{I}_{t,i+1}} \frac{1}{2} (a_{i+1,j+1} - a_{i+1,j}) \le \frac{1}{2} \sum_{j' \in \mathcal{I}_{t,i}} \frac{(a_{i,j'+1} - a_{i,j'})}{2}$$
$$= \frac{1}{2} m_{\mathbb{T}}(J_{x_{0},i}(t)) \le \left(\frac{1}{2}\right)^{i+1} \delta_{k}.$$

This implies $m_{\mathbb{T}}(J_{x_0,s}(t)) \leq (\frac{1}{2})^s \delta_k$.

4. The final construction: sub-exponential measure complexity

As in §2, we fix an irrational number α and an $\eta \in (0, \frac{1}{100})$. Let $R_{\alpha} : \mathbb{T} \to \mathbb{T}, z \mapsto z + \alpha$ be the irrational rotation of \mathbb{T} by α . Let *h* be the function defined in §2.2. Then we set

$$T(x, y) = (x + \alpha, y + \frac{1}{2}h(x))$$

for $(x, y) \in \mathbb{T}^2$. The following result was first proved by Kočergin [8] (one can also see Lindenstrauss [9, Theorem 3.1] for a more general setting): there exist a measurable function $p : \mathbb{T} \to \mathbb{T}$ and a continuous function $\tilde{h} : \mathbb{T} \to \mathbb{T}$ such that

$$h(x) = \frac{1}{2}h(x) + p(x + \alpha) - p(x)$$

for $m_{\mathbb{T}}$ -almost every $x \in \mathbb{T}$.

We now define a skew product $\tilde{T} : \mathbb{T}^2 \to \mathbb{T}^2$ such that $\tilde{T}(x, y) = (x + \alpha, y + \tilde{h}(x))$ for $(x, y) \in \mathbb{T}^2$.

THEOREM 4.1. $(\mathbb{T}^2, \mathcal{B}_{\mathbb{T}^2}, \tilde{\rho}, \tilde{T})$ has sub-exponential measure complexity for any $\tilde{\rho} \in \mathcal{M}(\mathbb{T}^2, \tilde{T})$,

Proof. We follow the arguments in the proof of [5, Proposition 2.2]. Let $\tilde{\rho} \in M(\mathbb{T}^2, \tilde{T})$. Denote $\phi : (x, y) \to (x, y - p(x))$ and $\rho = \pi^*(\tilde{\rho}) = \tilde{\rho} \circ \phi^{-1}$. It is not too hard to see that $\rho \in M(\mathbb{T}^2, T)$ and $\phi : (\mathbb{T}^2, \mathcal{B}_{\mathbb{T}^2}, \tilde{\rho}, \tilde{T}) \to (\mathbb{T}^2, \mathcal{B}_{\mathbb{T}^2}, \rho, T)$ is a measure-theoretic isomorphism.

We choose a Borel subset *B* of \mathbb{T} such that $m_{\mathbb{T}}(B) = 1$, $R_{\alpha}(B) = B$ and

$$\tilde{h}(x) = \frac{1}{2}h(x) + p(x+\alpha) - p(x)$$

for any $x \in B$. Let $\tilde{Z} = Z = B \times \mathbb{T}$. Then $\tilde{T}(\tilde{Z}) = \tilde{Z}$, T(Z) = Z, $\phi(\tilde{Z}) = Z$ and $\phi \circ \tilde{T}(\tilde{z}) = T \circ \phi(\tilde{z})$ for all $\tilde{z} \in \tilde{Z}$.

Fix $\epsilon > 0$. By Lusin's theorem there exists a compact subset A of \tilde{Z} such that $\tilde{\rho}(A) > 1 - (\epsilon/4)^2$ and $\phi|_A$ is a continuous function. Choose $\delta \in (0, \epsilon/2)$ such that $\sqrt{2\delta} < (\epsilon/6)$ and

$$d(\phi(\tilde{z}), \phi(\tilde{z}')) < \frac{\epsilon}{3}$$
 for any $\tilde{z}, \tilde{z}' \in A$ with $d(\tilde{z}, \tilde{z}') < \sqrt{2\delta}$. (4.1)

Now we show that $S_n(d, \tilde{\rho}, \delta) \ge S_n(d, \rho, \epsilon)$ for all $n \in \mathbb{N}$.

Fix $n \in \mathbb{N}$. For $\tilde{z} \in A$, let $E(\tilde{z}) = \{i \ge 0 : \tilde{T}^i \tilde{z} \in A\}$ and let

$$E_n = \left\{ \tilde{z} \in A : \frac{|E(\tilde{z}) \cap [0, n-1]|}{n} \le 1 - \epsilon/4 \right\}.$$

Note that

$$\int_{\mathbb{T}^2} \frac{|E(x) \cap [0, n-1]|}{n} \, d\tilde{\rho}(\tilde{z}) = \int_{\mathbb{T}^2} \frac{1}{n} \sum_{i=0}^{n-1} 1_A(\tilde{T}^i \tilde{z}) \, d\tilde{\rho}(\tilde{z}) = \tilde{\rho}(A) > 1 - (\epsilon/4)^2.$$

We have

$$(1 - \epsilon/4)\tilde{\rho}(E_n) + 1 - \tilde{\rho}(E_n) \ge \int_{\mathbb{T}^2} \frac{|E(\tilde{z}) \cap [0, n-1]|}{n} \, d\tilde{\rho}(\tilde{z}) > 1 - (\epsilon/4)^2$$

which implies that $\tilde{\rho}(E_n) < \epsilon/4$.

For $\tilde{z}, \tilde{z}' \in A$, if $\overline{d}_n(\tilde{z}, \tilde{z}') = (1/n) \sum_{i=0}^{n-1} d(\tilde{T}^i \tilde{z}, \tilde{T}^i \tilde{z}') < 2\delta$ then it is easy to see that

$$\frac{1}{n}\#\{i\in[0,n-1]:d(\tilde{T}^{i}\tilde{z},\tilde{T}^{i}\tilde{z}')\geq\sqrt{2\delta}\}<\sqrt{2\delta},$$

and so, for $\tilde{z}, \tilde{z}' \in A' =: A \setminus E_n$ with $\overline{d}_n(\tilde{z}, \tilde{z}') < 2\delta$ (note that $\rho(A') > 1 - (\epsilon/4)^2 - (\epsilon/4) > 1 - (\epsilon/2)$), one has

$$\begin{split} \overline{d}_{n}(\phi(\tilde{z}),\phi(\tilde{z}')) &= \frac{1}{n} \sum_{i=0}^{n-1} d(T^{i}\phi(\tilde{z}),T^{i}\phi(\tilde{z}')) = \frac{1}{n} \sum_{i=0}^{n-1} d(\phi(\tilde{T}^{i}\tilde{z}),\phi(\tilde{T}^{i}\tilde{z}')) \\ &\leq \frac{1}{n} (\#\{i \in [0,n-1]: d(T^{i}\tilde{z},T^{i}\tilde{z}') \geq \sqrt{2\delta}\} \\ &\quad + \frac{1}{n} \Big(\#\{i \in [0,n-1]: \tilde{T}^{i}\tilde{z} \notin A \text{ or } \tilde{T}^{i}\tilde{z}' \notin A\} \\ &\quad + \frac{\epsilon}{3} \#\{i \in [0,n-1]: d(\tilde{T}^{i}\tilde{z},\tilde{T}^{i}\tilde{z}') < \sqrt{2\delta}\} \Big) \text{ (by (4.1))} \\ &\leq \sqrt{2\delta} + \frac{\epsilon}{2} + \frac{\epsilon}{3} < \epsilon. \end{split}$$

Pick $\tilde{z}_1, \tilde{z}_2, \ldots, \tilde{z}_m \in \mathbb{T}^2$ such that $m = S_n(d, \tilde{\rho}, \delta)$ and

$$\tilde{\rho}\left(\bigcup_{i=1}^{m} B_{\overline{d}_n}(\tilde{z}_i, \delta)\right) > 1 - \delta.$$

Let $I_n = \{r \in [1, m] : B_{\overline{d}_n}(\tilde{z}_r, \delta) \cap A' \neq \emptyset\}$. For $r \in I_n$, we choose $\tilde{z}_r^n \in B_{\overline{d}_n}(\tilde{z}_r, \delta) \cap A'$. Then

$$\bigcup_{r\in I_n} (B_{\overline{d}_n}(\tilde{z}_r^n, 2\delta) \cap A') \supseteq \bigcup_{r\in I_n} (B_{\overline{d}_n}(\tilde{z}_r, \delta) \cap A') = \left(\bigcup_{i=1}^m B_{\overline{d}_n}(\tilde{z}_i, \delta)\right) \cap A'.$$

Thus

$$\tilde{\rho}\bigg(\bigcup_{r\in I_n} (B_{\overline{d}_n}(\tilde{z}_r^n, 2\delta) \cap A')\bigg) \geq \tilde{\rho}\bigg(\bigg(\bigcup_{i=1}^m B_{\overline{d}_n}(\tilde{z}_i, \delta)\bigg) \cap A'\bigg) > 1 - \delta - \bigg(\frac{\epsilon}{4}\bigg)^2 - \frac{\epsilon}{4} > 1 - \epsilon.$$

Since $\overline{d}_n(\phi(\tilde{z}), \phi(\tilde{z}')) < \epsilon$ for $\tilde{z}, \tilde{z}' \in A'$ with $\overline{d}_n(\tilde{z}, \tilde{z}') < 2\delta$, one has

$$\phi(B_{\overline{d}_n}(\tilde{z}_r^n, 2\delta) \cap A') \subseteq B_{\overline{d}_n}(\phi(\tilde{z}_r^n), \epsilon)$$

for $r \in I_n$. Thus

$$\begin{split} \rho\bigg(\bigcup_{r\in I_n} B_{\overline{d}_n}(\phi(\tilde{z}_r^n),\epsilon)\bigg) &\geq \rho\bigg(\bigcup_{r\in I_n} \phi(B_{\overline{d}_n}(\tilde{z}_r^n,2\delta)\cap A')\bigg) \\ &= \rho\bigg(\phi\bigg(\bigcup_{r\in I_n} B_{\overline{d}_n}(\tilde{z}_r^n,2\delta)\cap A'\bigg)\bigg) \\ &= \tilde{\rho}\bigg(\bigcup_{r\in I_n} B_{\overline{d}_n}(\tilde{z}_r^n,2\delta)\cap A'\bigg) > 1-\epsilon. \end{split}$$

Hence $S_n(d, \rho, \epsilon) \le |I_n| \le m = S_n(d, \tilde{\rho}, \delta)$. This implies

$$\lim_{\epsilon \to 0} \liminf_{n \to \infty} \frac{\log S_n(d, \rho, \epsilon)}{n^{\tau}} \le \lim_{\delta \to 0} \liminf_{n \to \infty} \frac{\log S_n(d, \tilde{\rho}, \delta)}{n^{\tau}}$$

for any $0 < \tau < 1$. Moreover, by Proposition 3.1 we have

$$\lim_{\epsilon \to 0} \liminf_{n \to \infty} \frac{\log S_n(d, \rho, \epsilon)}{n^{\tau}} = +\infty,$$

for any $0 < \tau < 1$. It follows that

$$\lim_{\delta \to 0} \liminf_{n \to \infty} \frac{\log S_n(d, \tilde{\rho}, \delta)}{n^{\tau}} = +\infty,$$

for any $0 < \tau < 1$.

Finally, since $(\mathbb{T}^2, \tilde{T})$ is distal, the topological entropy of $(\mathbb{T}^2, \tilde{T})$ is zero [11]. This implies

$$\lim_{\delta \to 0} \limsup_{n \to \infty} \frac{\log S_n(d, \tilde{\rho}, \delta)}{n} = 0.$$

Hence, $(\mathbb{T}^2, \mathcal{B}_{\mathbb{T}^2}, \tilde{\rho}, \tilde{T})$ has sub-exponential measure complexity.

Remark 4.2. (1) In general, it is true that sub-exponential measure complexity is a measure-theoretic invariant. One can see this by using the methods in [5]. (2) The *topological complexity* of the system $(\mathbb{T}^2, \tilde{T}_h)$ is also sub-exponential, since the system has zero topological entropy and the topological complexity is not less than the measure complexity.

We have the following proposition related to skew product maps on \mathbb{T}^2 .

PROPOSITION 4.3. If a skew product map $W : \mathbb{T}^2 \to \mathbb{T}^2$ over an irrational rotation on \mathbb{T} is not minimal then it is equicontinuous.

Proof. Let $W : \mathbb{T}^2 \to \mathbb{T}^2$ be a skew product map on \mathbb{T}^2 such that $W(x, y) = (x + \alpha, y + k(x))$ for any $(x, y) \in \mathbb{T}^2$, where α is irrational and $k : \mathbb{T} \to \mathbb{T}$ is continuous.

Let *Y* be a minimal subset of (\mathbb{T}^2, W) . Then $Y \neq \mathbb{T}^2$. First, we consider that \mathbb{T} acts on \mathbb{T}^2 by $S_h(x, y) = (x, y + h)$ for any $h \in \mathbb{T}$. It is clear that $S_h \circ W = W \circ S_h$ for any $h \in \mathbb{T}$. Thus if $h \in \mathbb{T}$, then $S_h(Y)$ is a minimal subset of \mathbb{T}^2 and $S_h(Y) = Y$ or $S_h(Y) \cap Y = \emptyset$.

Let $H = \{h \in \mathbb{T} : S_h(Y) = Y\}$. Then *H* is a non-empty closed subgroup of \mathbb{T} . Moreover, $H \neq \mathbb{T}$ since $Y \neq \mathbb{T}^2$. This implies that *H* is a finite subgroup, since a closed subgroup of \mathbb{T} is \mathbb{T} or a finite group.

Next, for $x \in \mathbb{T}$, put $Y(x) = \{y \in \mathbb{T} : (x, y) \in Y\}$. Then Y(x) is a closed subset of \mathbb{T} and

$$Y(x) - Y(x) = H.$$

In fact, for $h \in H$, one has Y(x) + h = Y(x) since $S_h(Y) = Y$. Thus $h \in Y(x) - Y(x)$ when $h \in H$. Conversely, let $h \in Y(x) - Y(x)$. Then $h = y_1 - y_2$ for some $y_1, y_2 \in Y(x)$ and so $(x, y_2) \in S_h(Y) \cap Y$. This implies $S_h(Y) = Y$, that is, $h \in H$.

Combining the fact that Y(x) - Y(x) = H and the fact that H is a finite closed subgroup of \mathbb{T} , we know that Y(x) is a finite set and #Y(x) = #H.

Let $\pi: Y \to \mathbb{T}$ be the projection $\pi(x, y) = x$ for $(x, y) \in Y$. Then $\pi: (Y, W) \to (\mathbb{T}, R_{\alpha})$ is a factor map between two minimal systems. Since (\mathbb{T}, R_{α}) is minimal equicontinuous and π is a #*H*-to-1 extension, that is, #*Y*(*x*) = #*H* for any $x \in \mathbb{T}$, one has that (Y, W) is also a minimal equicontinuous t.d.s. by [13, Theorem 2].

We now show that (\mathbb{T}^2, W) is equicontinuous itself. Let $\epsilon > 0$. By the equicontinuity of (Y, W), there is $0 < \delta_1 < \epsilon/4$ such that if $(x_1, y_1), (x_2, y_2) \in Y$ and $d((x_1, y_1), (x_2, y_2)) < \delta_1$ then $d(W^n(x_1, y_1), W^n(x_2, y_2)) < \epsilon/2$ for all $n \in \mathbb{Z}$. It is clear that $\pi' : X \to 2^H, x \mapsto \pi^{-1}(x)$ is continuous since π is a distal extension. This means

that there is $\delta_2 > 0$ such that if $||x_1 - x_2|| < \delta_2$ then $d_H(\pi'(x_1), \pi'(x_2)) < \delta_1$, where d_H is the Hausdorff distance. Let $\delta = \min\{\delta_1, \delta_2\}$.

Assume that $d((x_1, y_1), (x_2, y_2)) < \delta$. There is $h \in \mathbb{T}$ such that $(x_1, y_1 - h) \in Y$. This implies that there is $y_2^* \in \mathbb{T}$ such that $(x_2, y_2^* - h) \in Y$ and $||(y_1 - h) - (y_2^* - h)|| < \delta_1$, since $||x_1 - x_2|| < \delta_2$. Thus, $d((x_1, y_1 - h), (x_2, y_2^* - h)) < \delta_1$. Then, for any $n \in \mathbb{Z}$,

$$d(W^{n}(x_{1}, y_{1}), W^{n}(x_{2}, y_{2})) = d(W^{n}(x_{1}, y_{1} - h), W^{n}(x_{2}, y_{2} - h)) \\ \leq d(W^{n}(x_{1}, y_{1} - h), W^{n}(x_{2}, y_{2}^{*} - h)) + d(W^{n}(x_{2}, y_{2}^{*} - h), W^{n}(x_{2}, y_{2} - h)) \\ < \epsilon/2 + 2\delta_{1} < \epsilon.$$

We conclude that (\mathbb{T}^2, W) is equicontinuous.

As a corollary we have the following statement.

COROLLARY 4.4. $(\mathbb{T}^2, \tilde{T})$ is a minimal distal system with sub-exponential measure complexity for any invariant measure in $\mathcal{M}(\mathbb{T}^2, \tilde{T})$.

Proof. The corollary follows by the fact that any equicontinuous t.d.s. has bounded complexity. \Box

Acknowledgements. Huang is partially supported by NNSF of China (11731003), and all authors are supported by NNSF of China (11371339, 11431012).

REFERENCES

- [1] S. Ferenczi. Measure-theoretic complexity of ergodic systems. Israel J. Math. 100 (1997), 189–207.
- [2] H. Furstenberg. The structure of distal flows. Amer. J. Math. 85 (1963), 477–515.
- [3] E. Glasner. *Ergodic Theory via Joinning (Mathematical Surveys and Monographs, 101).* American Mathematical Society, Providence, RI, 2003.
- [4] W. Huang, J. Li, J. Thouvenot, L. Xu and X. Ye. Bounded complexity, mean equicontinuity and discrete spectrum. *Preprint*, 2018, arXiv:1806.02980.
- [5] W. Huang, Z. Wang and X. Ye. Measure complexity and Möbius disjointness. *Preprint*, 2017, arXiv:1707. 06345.
- [6] M. Kac. On the notion of recurrence in discrete stochastic processes. Bull. Amer. Math. Soc. 53 (1947), 1002–1010.
- [7] A. Katok. Lyapunov exponents, entropy and the periodic orbits for diffeomorphisms. Publ. Math. Inst. Hautes Études Sci. 51 (1980), 137–173.
- [8] A.V. Kočergin. The homology of functions over dynamical systems. Dokl. Akad. Nauk SSSR 231(4) (1976), 795–798 (Russian).
- [9] E. Lindenstrauss. Measurable distal and topological distal systems. Ergod. Th. & Dynam. Sys. 19(4) (1999), 1063–1076.
- [10] E. Lindenstrauss and M. Tsukamoto. From rate distortion theory to metric mean dimension: variational principle. *IEEE Trans. Inform. Theory* **64**(5) (2018), 3590–3609.
- [11] W. Parry. Zero entropy of distal and related transformations. *Topological Dynamics (Symposium, Colorado State University, Ft. Collins, CO)*. Benjamin, New York, 1967, pp. 383–389.
- [12] Y. Qiao. Topological complexity, minimality and systems of order two on torus. Sci. China Math. 59 (2016), 503–514.
- [13] R.J. Sacker and G.R. Sell. Finite extensions of minimal transformation groups. *Trans. Amer. Math. Soc.* 190 (1974), 325–334.
- [14] A. Velozo and R. Velozo. Rate distortion theory, metric mean dimension and measure theoretic entropy. *Preprint*, 2017, arXiv:1707.05762.