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Abstract. In this paper the notion of sub-exponential measure complexity for an invariant
Borel probability measure of a topological dynamical system is introduced. Then a
minimal distal skew product map on the torus with sub-exponential measure complexity is
constructed.

1. Introduction

Let (X, T) be a topological dynamical system (t.d.s. for short), that is, X is a compact
metric space and 7 : X — X is a continuous self map. The distance on X will be denoted
by d(-, -) and the set of all T-invariant Borel probability measures on X will be denoted
by M(X, T).

In the measurable dynamics, there are several ways to measure the complexity of a
system. Kolmogorov introduced the notion of entropy that measures the average growth
rate of the orbits. Positive entropy means the average growth rate of the orbits is
exponential. The other well-known definitions of the complexity are due to Katok [7]
using Bowen balls and to Ferenzi [1] using the Hamming distance. To study the Sarnak
conjecture, recently Huang, Wang and Ye [5] introduced a notion of measure complexity
following the idea of Ferenczi in [1] using mean distance instead of the Hamming distance,
and showed that the Sarnak conjecture holds for all systems with sub-polynomial measure
complexity.

In 1968 Parry proved any invariant Borel probability measure of a distal system has zero
measure entropy [11]. By the Furstenberg structure theorem, any minimal distal system is
the inverse limit of equicontinuous extensions [2]. It seems that such a system should have
lower measure complexity. Surprisingly, this is not the case. Namely, we can construct a
minimal distal system with sub-exponential measure complexity for any invariant Borel
probability measure of the system.
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We now outline the construction. To do so, first we introduce notions of measure
complexity and sub-exponential measure complexity. For any t.d.s. (X, T), p € M(X, T)
and any n € N, we consider the mean metric d,, on X,

1 n—1
dy(x,y)=—Y d(T'x, T'y),
n(x, ) =~ ; ( y)
for any x, y € X. See [5, 10, 14] for the role of this metric in studying mean dimension
and measure complexity.
Forany e > 0andn € N, let

m
S,(d, p, €) =min{m eN:3dxy, x2, ..., x, € X st p(U B(;n(xi, 6)) >1-— 6},
i=1
where By, (x,€):={ye X :d,(x,y) <e}foranyx € X. Weremark that S, (d, p, €) < oo.
We say that the measure-theoretic dynamical system (X, B, p, T) has sub-exponential
measure complexity if, forany 0 < 7 < 1,
lim liminf 285742 _ L and lim fim sup 2250 P € _
e—0 n—>00 nt €e>0 n—oo n
The definition of sub-exponential measure complexity is independent of the metric
(see [5]). Thus, we can simply say that the measure complexity of (X, T, p) is sub-
exponential. We note that the above definition is also applied to any measurable system
(X, B, T, u) when X is a metrizable space. We also note that in this case it may
happen that S, (d, p, €) = co. In [5] the first and third authors showed that for any ergodic
o € M(X, T), we have

0.

1 1
lim lim sup — log S, (d, p, €) =h,(T) = lim lim inf — log S, (d, p, €).
e—0 n— n

e—>0 poo00 N

So when an ergodic system has sub-exponential measure complexity, the entropy £, (T') is
Zero.

We are now ready to explain the idea of the construction. We construct our example
in the following way. First we construct a measurable map /4 : R — {0, 1} and obtain a
measurable distal system (X, Bx, T, p) on T2 such that

T(x,y)=(x+a, y+3h(x), x,yeT,
where X =T, « is irrational, By is the Borel o-algebra and p is measure preserving.
Using a complicated computation, we show that the measure complexity of the system
is sub-exponential. By a result of Lindenstrauss (see [9, Theorem 3.1]), there exist a
measurable function p : T — T and continuous function / : T — T such that
h(x) = 3h(x) + p(x +a) = p(x)
for mp-almost every x € T. We define a distal system 7 : T> — T2 such that
T(x,y) =@ +a, y+h).

Then we prove that the measure complexity of (T2, T, p) is the same as T for any p €
M(T2, T), and (T2, T) is minimal, and thus finish the construction. We remark that to
show the minimality we use the following proposition (Proposition 4.3): if a skew product
map W : T2 — T2 over an irrational rotation on T is not minimal then it is equicontinuous.

To conclude the introduction we make the following remarks.
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Remark 1.1. Define a skew product map T : T? — T2 with T'(x, y) = (x + @, y + k(x)),

where « is irrational and k : T — R is continuous.

(1) Ifk(x) =B, and o and B are rationally independent, then 7 is minimal and uniquely
ergodic. Thus, the measure complexity is bounded for the unique measure (in [4] the
authors construct a uniquely ergodic, minimal, distal and non-equicontinuous map
on T? with bounded measure complexity for the unique measure).

(2) If k is a homotopically trivial C*°-function, Huang, Wang and Ye [5] showed
that the measure complexity is sub-polynomial (i.e. for any € > 0 and any 7 > 0,
lim inf,_, o (log S,(d, p, €)/n%) = 0) for any p € M(T?, T).

(3) If k has a bounded variation, Qiao [12] showed that the measure complexity is
polynomial.

(4) If k = h, then the measure complexity is sub-exponential.

This indicates that the simple system (T2, T') (depending on k) may have various measure

complexities, from the simplest to the most complicated (for a zero-entropy system). Thus,

the system is a good touchstone to study the Sarnak conjecture.

Remark 1.2. Let (T2, T) be the system we defined above and

dy(x,y)= . max ld(f"ix, Tiy).

<i<n—
It is clear that d, (x, y) <d,(x,y) forx,ye T2. Thus, By, (x,€) C Bd_n (x, €). Define

m

r,{((d, P, €) :min{m eN:3dxy, x2, ..., x, € Xs.t. ,O(U By, (xi, 6)) > 1 —6}.

i=1
It is easy to see that S, (d, p, €) < rf (d, p, €) for any n € N. So the measure complexity

of (T2, f", 0, d) is also sub-exponential in Katok’s sense if p is ergodic (see [7]).
Topologically, we may also define the complexity in the same fashion. Namely, let

m
rn(d, €) :min{m eN:3dxy, xp,...,x, € X sit. U By, (xi, €) :X}

i=1

and

m
S,(d, €) :min{m eN:3xy, x2, ..., x € X sit. U B[;n(x,', €)= X}
i=1
Then we have
rf(d, p,€) <r,(d, ¢e)and S,(d, p, €) < S,(d, €)

for any p € M(T?2, T). Thus, the topological complexity of (T2, T, d) in both senses is
also sub-exponential, since the topological entropy of (T2, T') is zero.

This paper is organized as follows. In §2 we construct a measurable map 4 : R — {0, 1}
with some properties we will need later. In §3 we compute the measure complexity of the
measurable distal system (X, By, T, p). Then, in the final section, we use Lindenstrauss’s
result to get a t.d.s. (T2, T') and show that the measure complexity of (T2, T, 0) is sub-
exponential for any 5 € M(T?, T).
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2. The construction of the function h

In this section we will construct a measurable map 4 : R — {0, 1} with some properties
we will need later. To do so, we fix an irrational number & and an 7 € (0, ﬁ). Let
Ry :T— T, x — x + « be the rotation on T by «.

2.1. Preparation. Given an interval E = [0, a) C T with 0 < a < 1, define
fi1:T—R with fi(x) = xg(x) xE(Ryx) forany x € T
and f; : T — R with
fi0) = xe@) xEe (Rex) - - - xee (R ) xe(Ryx) forany x €T,
and foranyi =2, 3,....Forgiveni e N, x e Tandn > i, set
s(i, n, E,x):#{0§j§n—i—1:f,~(R({;x)=1}. (2.1)

LEMMA 2.1. For a fixed i €N, the sequence {(1/n)s(i,n, E, x)}fj":l.Jrl uniformly

converges to a constant p; (E) for all x € T. Moreover,
{i e N:p;(E) >0}
is a finite set and

+00
> ip(E)=1.
i=l1

Proof. Set Ey =EN R(;IE and
Ei=EﬂRl;1ECﬂ...mR;(i—l)EcmR;iE’

fori =2, 3, .... Clearly, E; is a finite union of disjoint intervals of T or E; = . Let mT
be the Lebsegue measure on T. For i € N, we put p;(E) =mT(E;). Then, for a fixed
i € N, by the unique ergodicity of Ry,

1 1 n—i—1 ‘
LSS B = 3 fi(RGx)
j=0
n—i—1

1 .
=— > xR > /T xg, dmt = m1(E;) = pi(E)
j=0

uniformly as n goes to oo for all x € T, as xg; (R({;x) <lforallm—i<j<n-—1.

In fact, that {i € N : p; (E) > 0} is finite follows from the fact that E; = ¢ for large i.
That is, there exists N € N large enough so that {x, Ryx, ..., RY~!x}is a/2 dense in T
foy any x € T. This means that for any x € E, there is 1 < j = j(x) < N — 1 such that
Rlx € E. Hence, E; = ¢ and f;(x) =0 forany x € T and i > N, which implies that there
are only finitely many indices i € N such that p; (E) > 0.

By the Poincaré recurrence theorem, the map ng : E — N,

ng(x) =inf{n > 1: R} (x) € E}
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is well defined for m-almost every x € E. It is well known that fE ng(x)dmrt(x) =1by
Kac [6]. Thus

oo

Y ipi(E)= ZlmT(E)—Zf ng (x) dmr(x) = /nE(x)qur(x):l.

i=1 i=1
We conclude that there exists some index i € N such that p; (E) > 0. O

Set
IZ(E)={ieN:p;(E)>0} and p(E)= % min{p;(E) :i € Z(E)}.

By Lemma 2.1, it is clear that Z(E) is a non-empty finite set and p(E) > 0.
For n € Z and k € Z., the binomial coefficients are given by the formula

k .
n+1—i
—— ifkeN,
Ck'z 1_[ l !

n: i=1

1 if k=0.
By Stirling’s approximation, there exists C > 0 such that
Clml < ce®Mn with a(n) = —5n log(5n) — (1 — 5n) log(1 — 5n), (2.2)
foranyn e Z.

LEMMA 2.2. Let E=1[0,a) CTand 0 <t < 1. Then there exists N(E, t) € N such that,
foranyn> N(E,t),i € Z(E) and x € T, one has:

(1) (1/n) ZieI(E)i-s(i,n,E,x)>1—17;
(2) (A/m)s@,n, E, x) > p(E);
(3)  (1/n")(np(E)(log 2 — a(n)) — log(10#Z(E)Cn)) > %

Proof. (1), (2) and (3) follow from Lemma 2.1 and the fact lim,_, . o, (n/n') = +o00. In

fact, since Z(E) is a finite set, when n is large we have

1 1
— Z i-s(i,n, E,x)= Z i-—s@,n E,x)>0-—n) Z ipi(Ey=1—n. O
i€Z(E) ieZ(E) i€Z(E)
Let [a, b) € R. We write
P(la, b)) = {A : Ais afinite partitiona = a; <az < - - - < ar = b of [a, b)}.
ForA:a=ay<ay<---<ap=>beP(a,b)), we define

*(Aa) = max {ai+1 —a;} and [(A) = mm {al-‘rl_al}
1<i<k-—1 <i<k—

We also consider the function £A (x) on [a, b):

0 1fer|:a,,al >

a; +a 1
1fx€U|:al e ai+1).

ai + ai+1 )

Ea(x) =
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For § > 0, let B C [a, b) be some disjoint union of intervals with length not less than §,
and set
Ba = U lai, aiv1). (2.3)
1<i<k—1 and [a;,a;+1)CB
Then
m(Ba) - 8 —2I*(A)
m(B) — 8 ’
where m is the Lebesgue measure on R.
Fora<b<c, Aita=a1<ay<---<ar=beP(a,b)) and Ary:b=by <by <
-+ <bg=ceP(b, c)), we combine A| and A; to define a new finite partition

2.4)

AlUAyia=ai<ap<---<apr=bi<by<---<by=c

of [a, c).

2.2. The construction. Set s; =1— (1/2') and E; = [0, 1/2%) for i € N. Fix a small
positive real number g such that

00 < l >ﬂ/+l 9
[1(5 > —.
-0 2 10
As in Lemma 2.2, we let N; = N(E;, s;) for i € N. Without loss of generality, we assume

that N;4+1 > N; fori e N.
We now define a real function z(x) on (0, 1) with range {0, 1} by induction for i € N.

To do so, first we choose K| < K> < - - - such that, for each k € N,
Niv1 7
Kk < > (2.5)
and
. 1
#{05i5Nk+1:R;(x)ey+[0, W)}Sl’ (2.6)

for any x, y € T. Recall that 7 is fixed with 5 € (0, 135)-
We also define a counting function c(k) such that ¢(1) =1 and, for k > 1,

clk+1) = c(k) + 25+,
We are now ready to define 4 using induction.
Step 1. Fori =1, we put Ay : % =a1<ay=1 EP([%, D) ,hl[% 1 =8a;-

Step k. Fori = k > 1, suppose /(x) has been defined on [1/2K, 1) with hl[]/zkﬁ]) =&, for
some defined Ay € P([1/25, 1)).
We divide E;, = [0, 1/ 2k ) into 2K« —k subintervals
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where 0 <[ < 2Kk—k _ 1 (see Figures 1 and 2 below). Note that
1 1 1 1 1 1 1
Ek,ZKk_k—l == 0, 27’( ..... Ek’sz—k—l_l B W, W + 2TA ..... Ek’() = 27 _— 27’(, 27 .

Remark 2.3. Since we divided Ejy into finitely many intervals Ey; and Ay is a finite

partition, we can find §; > 0 small enough such that we can find a Borel set M C T

satisfying mp(My) > 1 — (n/2), and if 0 <n < Ni41, x € My, then:

(1) Rlx e Ey implies [R)x, Rlx 4 6;) C Eg ¢ forsome 0 </ < 2Kk=k _ 1,

(2) R'x e[1/2K, 1) implies that [R"x, R"x + &) C [1/2%, 1) and h is constant on
[Rlx, Rix + 8k).

In fact any §; > 0 with Sk(ZKk_k ~+ 2#Ax) Ni+1 < (n/2) is the number we want.

Step k + 1. Now let AZJFLO = Ay and 8 o = % min{Jg, l*(AZJFLO)}. By (2.4), we can find

Ag,0 € P(Ek,0) such that

S0 — 2" (Ako) _ (1)
5](,0 —\2
Suppose, for £ € [0, 2Kk=k=1 _ 2]  that we have defined Ako € P(Eko), ..., Are €
'P(Ek,g) and

Apr0=8k6  Appy =28k j-1U A o forl<j<¢,
such that, foreach 0 < j < ¢,

5/{,]‘ — 2[*(Ak’j) - (l)
Ok, j 2

gitertl

)

where 8 ; = 5 min{3, L(Af 4y )
Next let
AIt-H,Z—H = Ay, U Az+1,€ =Agg U U A U A

and & p41 = % min{8g, Ly (AF D} By (2.4), we can find Ag ¢41 € P(Eg ¢+1) such

k+1,0+
that
L+14c(k)+1
O e+1 = 20 (Akev1) (l)ﬁ
Sk e+1 —\2
We repeat the above process until £ = 25<=%=1 _ 1 Then we get
Ak.0 € P(Ek,0), Ak.1 € P(Ek.1),s - - -, Apoke—k-1_y € P(Ek’sz—k—lil)
and

* _ * _ . *
Apr10=Bk Bppyj =Bk j—1U Ay 1

forl <j< 2Kk=k=1 _ 1 guch that, for each 0 < Jj< 2Kk—k=1_ 1

Ok,j — 21*(Ak,j) - (l)
Ok, j 2

/3/’+c(k)+l

’

where 8 j = 3 min{3, L(Afiy, Y-
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| | |
1 1 1
0§ 1 3 1
FIGURE 1. Ej, = [0, 1/2%).
. Bk 3EBp2Bp1Fr o
L 1 1 1 1 ]
0 1

2k

FIGURE 2. Ey ;.

It is clear that A*

rol ok € P([1/2%F1, 1)). Now we put

— A¥ —
Agy1 = Ak_’_l,ZKk—k—l_l and h|[2k1+,1 = NI

Then it is clear that (hAk+1)|[1/2k,1) = é:Ak'
By the induction, we have defined /(x) on (0, 1) as above. Then we set £(0) = 1 and
by the periodic extension we define

h(x) = h({x})

for any x € R, where {x} is the decimal part of x.
With the above construction, we now define T : T? — T? such that

T(x,y)=(x+a, y+shx)

for (x, y) € T2. It is clear that T is a Borel measurable map from T? to T2. Note that, for

any n € N,
n—1

T"(x, y) = (x +na, y + % Zh(x —l—ia)).

i=0

In the following remark we extend the definition of A ; for 2Kk—k=1 < Jj< 2Kk—k _ 9

Remark 2.4. For k>0 and 0< < 2Kk=k _ 2 there exists a unique partition in
P(Ex.j) (which will also be denoted by A j when j > 2Kc7%=1) such that &g, ; (x) =
éa,; and if B C Ej is any disjoint union of intervals with length not less than
3 min{8g, (A, L(Ak), 0 <i < j — 1), then

/3_/'+c(k)+l

mr(Ba, ;) - (l) @7
mr(B) T \2 ' ’

Proof. In fact, given 2Kk—k=1 < Jj< 2Kk=k _ 2 et k(j) be the unique integer such
that (1/2K+1y < (1/2%) — (j + 1)/2K% < (1/2K()). We have k + 1 < k(j) < Ky since
2Kk=k=1 < j < 2Ki=k _ 2 Note that (1/25())) is an endpoint of E} oK~k _pki—k(). One
has

1 1 j+1 1 j 1

T Sk T Ke Sk 2Ki = 2k()”
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Set
j1 = 2Kk =k _ oKk =k 4 i oKk =Kk and = i 4 2Kk =Kk,
One has
Evi= || Exju
N1=l<ja
Put
Ak,j = Bk jn U Bk i+ Y U Bk, jo—1-

One has

I*(Ag,j) <I*(Axjy,j,) and %0<Itn<i;1_l{5k,l*(Ak),l*(Ak,i)}=5k(j),j1.

Hence, if B C Ej ; is any disjoint union of intervals with length not less than

% ming<;<;j—1{8k, L+ (Ax), L+ (Ak,i)} = dk(j), j,» then by (2.4) and the construction we have

Jie®()+1 e+
mrBa) ki = 2 Bkri) (l)ﬂ > <l>ﬁ
mt(B) Sk 2 2
Moreover, it is clear that h|g, ; (x) =§&a, ;. O

3. The measure complexity
For a topological space X, let M (X) be the collection of all Borel probability measures on
X and (X, T) be the system defined in the previous section. For p € M (T?), we say that
p is T-invariant, if p(7 "' A) = p(A) for any Borel set A of T2. We denote by M(T2, T)
the set of all 7-invariant measures in M (T?). It is clear that the Haar measure my2 €
M(T2, T).

For any (x1, y1), (x2, y2) € T2, the metric

d((x1, y1), (x2, y2)) :==max{[[x; — x2|l, lly1 — y21l},

where ||z|| = ming¢z |z — k| for z € R.

In this section we compute the measure complexity of (X, T, p) forany p € M (T2, T).
Since the computation is long we will put the proofs of some technical lemmas in
subsections.

3.1. The computation. Before stating the following proposition, let us recall some
notation. Let s; =1 —1/2/ and E; = [0, 1/2) for i € N. Fix a small 8 > 0 such that
120" > 2. Foreach k € N, (Nis1/257%) < (/2) with 0 < 5 < 1/100.

PROPOSITION 3.1. Forany p € M(T?, T),

e—>0 n—>00 nt

+00 (3.1)
forany0 <t < 1.

Proof. Let p EM(TZ, T). Fix keN and Ny <n < Nyti. By the definition of
Sn(d, p, n/2), there exist z1, 22, . . . , 25,(d,p,n/2) € T2 such that

Sn(d,p,n/2)
p( U Bgn<z,~,n/2>>>1—n/2.

i=1
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Fre " " === 1

| |
Py |
R — 4

| |

Py 1 1
b o o 5

by |

P

-2

FIGURE 3. Py and H = n(P).

Set , =T x[i/4,i+1/4),i =0, 1, 2, 3 (see Figure 3). There must be some 0 <i < 3,
such that p(P;) > zl;- Without loss of generality, we suppose p(Pp) > }‘. Write

_ Sn(d,p,n/2)
Py=PyN ( U B; (zi, 77/2)>-
i=1
Clearly, ,0(150) > 41'1 —n. Letm: T2 — T be the projection of the first coordinate. Notice
that the marginal of p on the first coordinate is the Haar measure mT, and we have p o m =
mT. Set
H = (Py).
Since Py is a Borel set of T2, H is an analytic subset of T (see [3] for the definition) with
mr(H) > }1 — 1. Moreover, for any x € H, we fix some z(x) € Py such that 7 (z(x)) = x.
At this point let us explain the main idea of the proof. For x1, xo € H and j € N, we
have
d(T/ (z(x1)), T/ (z(x2)) = 3 — Iy1 — 2l = 3

if 2(x1) = (x1, Y1), 2(02) = (v2, y2) and 3720 hxy + i) # Y120 h(xa + i) (mod 1),
since y1, y2 € Pg. This implies that

I I
_ 1 . .
dn(z(x), z(x")) > E#{O <l<n-2: Z h(R]x) # Z h(R}x")(mod 1)}.
j=0 j=0
So the computation of the measure complexity can be reduced to the study of properties of
h. To estimate S, (d, p, n/2) we construct a subset J,, ; C T and consider
W={l=<i=<S8:d, p,n/2):{z(x):x € Jy,,s NH} N B; (zi, n/2) # ¥}

Using results in Claims 1 and 2 below, we may get a lower bound of W which is the one
we need.
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We now begin the proof of the proposition. Setting

J={x eT:mr(x, x + &) N H) > (3 — 208}, (3.2)

1 %
(Z _ U)Sk < / / xH(x +y)dmr(x)dy
0 T

Sk
=// xH(x +y) dy dmT(x)
T JO

we have

1
=m1(J)é + (4_1 - 277)5k(1 —mt(J))

3 1
ZmT(J)<Z -I-277>5k + (Z - 277)3k,

which implies mt(J) > (n/(3/4) 4+ 2n) > n and J N (Mi\ U}, R0, 1/25%)) £ @ by
(2.5) and the fact that mp(My) > 1 — (n/2) (see Remark 2.3). Pick xo € J N (M \
U R, 10, 1/2K%)) and set Jy, = [x0, x0 + &)
Let
J=1{0<j<n—1:Rjx€E},

and s =#J — 1. Denote the elements in J by ji, j2, ..., js+1 WithO<ji < jp<--- <
Js+1 <n—1.LetS=[l,s]NNand

Si={l:1<l<sand ji;+1 — ji=i}.

We remark that by the definition s(i, n, Ey, x0) =#0<j<n—i—1: f,-(R({;xo) =
1}. Thus, we have #S; = s(i, n, E, xo) (see (2.1) for the definition).
For a given x € Jy,, and any x’ € Jy, let

0<jix, x") < jalx, x") <+ < jyaanx, x') < js

be the collection of j € J \ {js+1} such that h(R,{;x) * h(R({;x/). This means that if
ji(x, x") < p < jiy1(x, x") for some i, then h(RYx) = h(REx").
Set js’(x,x’)+l (x, x/) = Js+1 and put

Kew= |J W:ijielipal,x), jalx, x), 1<1<s).
0<2i<s'(x,x")+1

It is clear that K, - is a subset of S. We remark that if j; € [j2i—1(x, x7), j2i (x, x")) then
Lits Ji+1) C Lj2i—1(x, x7), joi(x, x)) as joi(x, x") € J. Thus

U UnjsnnN= |J {reNirelpix) @ )} (3.3)
lelCy v 0<2i<s'(x,x")+1

is a subset of 0 <i <n —2 for which 23:0 h(R,{;x) #* 23:0 h(R,{;x/)(mod 1) (see
Remark 2.3(2)).
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We have the following claim, whose proof will be given in the next subsection.

CLAM 1. Ifx € Jy, N H, then
#HEx v CS: x' e Jyo N H and dy(z(x), z(x")) < n}
< #I(Ek)c2sne—(log 2451 log(5m)+(1-5n) log(l—Sn))p(Ek)n‘
Let
Ly = {£ [0, 257% _17: RJi (x0) € Ey¢ for some i €[1, s1}.

By (2.6), )
#0<i<n:Ry(xo) € E;}=<1

for any 0 </ < 2Kx=% _ 1, Hence #£; = s and we rewrite
£k={0§£1<E2<...<Es§2Kk—k_1}'

By the selection of xp, one has €3 # 2Ke=k _ 1 (recall that Ey ok =10, 1/2K%y).
Moreover, for any / € Ly, we write as j(/) the only element in J \ {js+1} such that
R{ (xo) € Ej.1.

For i €[1,s], by Remark 2.4 there exists a unique Ay, € P(Ek,) such that
hlEy,, (x) =&a,,, and (2.7) holds. Suppose the partition A,y is

ai =aj1 <aj3<---<a =bj,
forl <i <s.Fori=1, welet
Ti={jell, ki —11:[a1, a1 j+1) C RIW Ty}
and

Jiol = Raf“l)( Jlar. ar, jm) =R (RI W T ay, -
JjeT,

It is clear that
Jio1 C R;'l(ll)(Ré(ll)Jxo) = Jy.

By induction, for 2 <i <, by (2.3), we put

T = {j €[, k; — 1]: there exists j/ € Z;_1 such that

() —j Ui ai—1,j +ai—1,j/+1
[ai,j,ai,j+1)CR¢{g(l) Ji 1)([6”_1’]_/’ i—1,j i—1,j+ )) or

2

i) —j e ai—1,j +ai—1,j'+1
[ai,j,ai,j+1)CR<Jx(’) / 1)([ ! 7 / aai—l,j’+1>>}

and

Jroi = Ra_j(li)<U lai,;, ai,j+1))

J€L;

. F(1Y— i (s ai_q j+aj—1,
:Rgm,)( U <Ré(l’) J(lz])(l:ai_l’j/’ -1, 21 u+1))) 3.4)
Akl

J'€Li—y i

it—jio (| ai-1,j0 +ai-1, 1
U <Ré() i 1)<[ Shhe vai—l,j’+1))) )
Apl;
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It is clear that

—id: j(li)—ji—
Jxo.i Cqu,)( U Ry 1)([ail,j’7ail,j/+1))>
J'€Ziy

—ji-
— R,/ 1)< U [ai—l,j’»ai—l,j/+1))

J'€Zi—y
= Jxg,i—1-
In this way we get Jy, s C - -+ C Jx,1 C Jy,. It is clear that each J ; is a finite union
of subintervals of J,.
Next for 7 = (1(j))}_; € {0, 1}*, we define
Jrpus(®) = 12 € Ty h(RA X = 1(j). 1< j <5s).

We have the following claim whose proof will be presented in the final subsection.

CLAIM 2. The following statements hold.
(1) mr(Jag,s NVH) > 155k
(2) mr(Jx s () = (1/2°)8 for any t = (1(j));_; € {0, 1}".
Recall that z; is the point defined at the beginning of the proof. We now let
W={iell, Su(d, p, n/2)]:{z(x) 1 x € Jx,,s NH}N By (zi. n/2) # ¥}
Fori € W, we put
Jro. s, H@) i={x € Jyys N H :2(x) € Bd-n (zi, n/2)}
and fix a point x; € Jy, s, g (i). Then let
Bi ={Ky, » CS:x" € Jy N H and dy(z(x;), 2(x")) < n}.
For any K € B;, set
JxO,IC(xi) = {xl € Jxo,s :’Cx,',x’ =K}
By the definition of 4 and xg € My, itis clear that J,, x(x;) is a union of finite sub-intervals
of Jy,,s. While x’ € Jy, xc(x;), for 1 <l <s, h(R(f;’x/) is decided by x; and /C, which will
be denoted by Ay, i, ;- Hence, by Claim 2(2),
mr(Jyy k() = mr((x" € Jry st R(REX) = by i jps 1 <1< 5))
< %sk. (35)
Let

Leon@ = Jox@).
ICEB,‘
Then J;‘O’S‘ (1) is also a union of finite sub-intervals of J,, s and

mr(JE g @)=Y mr(Jy k(i)
]CEB,‘

1 _ _ _ ’
< 53](4;#1'(1;’,()Czsne (log 2457 log(5n)+(1—5n) log(1—=5n)) p (Ex)n (3.6)
— (Sk#I(Ek)Cne_(log 2451 log(5m)+(1—5n) log(1-5n) p(Ex)n

by Claim 1 and (3.5).
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Since d, (z(x;), z(x)) < n for any x € Jxo.s,H (i), one has
Taos.t () S T5 o (D).

Moreover, as

B Sn(d,p,n/2)
zx):xelysNHYS P C | By (Gion/2.

i=1

we have

Jxo,s NHC U Jxo,s,H(i)-
ieW
By (3.7) and (3.8) we obtain
Jros VH C | gt ) S | T35 5 ().
ieW ieW
Combining (3.9) with (3.6) and Claim 2(1), we have

#W - (Sk#I(Ek)Cne_(IOg 2+5n log(5n)+(1—>5n) log(1=5n)) p(Ex)n

= Z mT(J;FO,S,H(i)) = m’ll‘(U J;FO,S,H(i)>

ieW ieW
Ok
> mT(-’xo,s NH)> 1_07

which implies

1
)
Sn(d, p, n/2) = #W > 109k

— (108 245 log(5m)+(1=5n) log(1=5n)) p (Ex)n—log(10#L(Ex)Cn)

Thus by Lemma 2.2 (3), we deduce that

log Sn(dv 107 77/2) > l
nsk -2
for Ny <n < Ni41. Notice that s; ' 1 when k goes to infinity, hence

1 S d’ ’ 1 3 1 S ds ’ 2
lim lim inf 28502 €) 108 S £ 0/2)

e—~>0 n—>o0 n n— 00 nt
- . log Sy(d, p, n/2)
>liminf min _
k—>+00 Np<n=<Nj4 nt

=Iliminf min
k—+00 Ny<n<Njyi nsk

1
>liminf min #%7"=  (by (3.10)
k—~+00 Nx<n<Nj4+i 2

:+oo

for any 0 < v < 1. That is, (3.1) holds.
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3.2. Proof of Claim 1. In this subsection we prove Claim 1.

Proof of Claim 1. Fix x € Jy, N H. For any x" € Jy, N H, it is clear that

dy (z(x), 2(x"))

v

14 l
%#{0 <l<n-2: Z h(R]x) # Z h(RJx")(mod 1)}

J=0 J=0

I . .
> E#{l eN:le U e, X)), it x’))}
0<2i<s'(x,x")+1

# J Ui s NN,
le,cx,x’

O
~ dn

Now if, in addition, d, (z(x), z(x")) < n, then
1 -
—# | J L jis) NN <4,
n
IEICX‘x/
This implies
1 #, v NS)) #S;
4 1 Co e ARy w11 0i) #Oi
DD N D D T
leInyX/ i€L(Ey)
where #S; = s(i, n, Eg, x9). Thus by Lemma 2.2(1),
#(C, v NS)) i#S;
= (=) D ——o— e
ieT(Ep) i 2 jeTiEy) J#S)
Hence, there exists i € Z(Ey) such that
#(ch,x’ N St) < 477
#S,' 11— n

<57

when d, (z(x), z(x')) <.
Now, we have the following approximation:
#{Ky v CS:x' € Jy and dy (z(x), z(x")) < n}
#ICr NS
< Z #{ICX,X/ cS: M <5p,x € JXO}

i€L(Ey) #Si
[5ns(i.n. Ey.x0)]

—s(i,n, Ex,x0) J
= Z Z 2 e CS(i,”,Eksxo)

i€T(Ep) j=0
= > 2RO S, B xo)ICy ey
i€T(Ep)
< Z Zs—s(i,n,Ek,xo)ncglﬁfl(iéz‘fg),xo)]

i€L(Ey)
22 S C2tpem o 25ulogGm+(1=5n) log(1=Sm)s(i.n Ex.x0)

i€Z(Ey)
Lem. 2.2(2)

< I(Ek)czsne—(log 2+5n log(5n)+(1—-5n) log(1—-5n)) p(Ex)n )

This completes the proof of Claim 1. O
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3.3. Proof of Claim 2. In this subsection we prove Claim 2.
Proof of Claim 2(1). Fori =1, by (2.7) we have
mr(Jyy,1) =mr(R W (RIW T )
=mr (R Txg)ans,)

11 +c(k)+1 : I 4c)+1
> (HF! mr(RI T) = (5P mt(Jyy).

For 2 <i <s,by (2.7) and (3.4) we have

(1)~ - 4i—1,j +di-1,j/+1
mr(Jyi) = Y mT<<Ré() I 1)<|:ai1,j/, —! 21 ! ))) )
A,

J'€Liy

i) —j i ai—1 j+ai—1, 41
. mT<<R,§() i 1><[ i-1,j 2z j aai—l,j’-i-l))) )
J'€Li—y Akl
Lite()+1
1\#" i a1+ a1
3(5) <Z mT<Ré<) i 1)([%1% SSALSH

J'€Liy

i1 —j i a1y +ai—1, 41
s mT<Ré() i 1>([z j 21 j aai—l,j’-i-]))))-
J'€Liy

It is clear that the right-hand side is equal to

plitetr+l

1
<§> Z (@i—1,jr+1 — Gi—1,j)
J'€Tiy
plitett1
il
=<§> Z mr(Ry ¢ 1)([ai—1,j’vai—1,j’+l)))
J'€Ziy

lite+l

=13 mr (Jxg,i—1)-

Thus

ﬂl_/+v(k)+l ﬂl+c(k)+1

i 00 1 9
mT(Jxo,i) = mT(JX()) H(E) > 8]( l_[(§> > ﬁak

j=1 =0

for 1 <i <s. Hence

mr([xo0, X0 + 8k) \ Jxy.s) = mr([x0, X0 + 8)) — mr(Jxys) < 158k

Moreover, by (3.2), we have
mt(Jxy,s N H) > mr([x0, X0 + 8&) N H) — m1([x0, X0 + 8&) \ Jxg,5)

1 1 1
> - —2n )6 — —96 — . 3.11
_(4 Tl>k 0% > 10% (3.11)
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Proof of Claim 2(2). Fix t € {0, 1}*. We will prove that mr (Jy, (1)) < (%)S«Sk. First we
let
Teoi (1) ={x" € Jypi : R(RYx) =1(i), 1 <7 <i}

forl <i <s.
Next fori = 1, we set

Lii=Ti={jell, ki —1]:[aj, a1 j+1) C RID ).

By induction, for 2 <i <, we put

. i(d)—jd;— ai—1,j +ai—1,j'+1
{]G[l,ki—1]2[ai,j,ai,j+1)CRi£() I 1)[611'—1,1'/, s . )

2
for some j' el},,‘_l} ift(i—1)=0
Iti = . . . . . .
' ; =jUi—n[Fi—=1,j' T Gi—1,j/+1
[ etk =1t apun € REOTOV[FL T )
for some j' el},i_l} ifrGi—1)=1.
It is clear that
I;,i cI

forl <i<s.
Then we will show that

Jxo,i(t)zR;f(m( U I(i,j:t(i))) (3.12)
JeL i
for1 <i <s, where
|:ai’j’ aj,j +2ai,j+1) ifr =0,
aij +aij+1
2

fori e[l,s],je[l,ki—1]andr € {0, 1}.
First, fori =1,

1@, j;r)=
,ai,j+1) ifr=1,

Jig1 (1) = {x/ € R;J'(’l)(U [a1,;, al,jﬂ)) Ch(RIWxy = 1(1)}

i€

_ R ({x e Uty ajin hi) = r(l)})

J€Ty

Ra“")(Ujezt.l [au, W)) if (1) =0,
—ia ayj+apj+i .
Ra](l)<UjeIt,1 [%vauﬂ» ifr(l) =1,
=Raj(11)< U I(l,j:t(i))).
Jj€Lin
That is, (3.12) holds fori = 1.
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Assume that (3.12) holds fori =k € [1, s — 1]. Then, fori =k + 1,

Jxo,k+l (t)
i (¢
= Teg k() N {x' € Tey ka1 - h(REVxy = £ (k + 1))

—jd i (€
= Jy k(N {x/ € Ra](kH)( U [ar+1, ), ak+1,j+1)> Z/’l(ROJ[( kﬂ)x/) =tk + 1)}

J€Lk+1

= xo’k(t)ﬂR;j(l"“){xe U lacsijs arrnjon) s he) =tk + 1)})

J€Lk+1

=R;j<zk>< U 1) t(k))> mR;jakH)(

J€Tik

U I(k+1,j:t(k+1)))

€Tkt

=Raj(l"“)<< U rI%T W, j:t(k))> m( U 1¢+1j 0k + 1))))

€Ltk J€TLk11

=RV T+ jrk+ 1))).
J€Lt k+1
That s, (3.12) holds for i = k + 1. Thus by induction, we obtain (3.12) holds for 1 <i <'s.
Next,
mr (T, 1 (1) = 3m1(Jxe,1) < 3mT(Jxy) = 5%
We suppose
mr(Jxg,i (1) < (3) 8k,
forsome 1 <i <s — 1. Then

—jlis1) ait+1,j T ait1,j+1
(519 [ 228 g2))

€Lt i1

if (i +1) =0,

—j; Ait1,j + @it1,j+1
m’]I‘<RaJ( +1)( U [t J 2! J ,ai+1,j+1>>)

€Lt i1

ifri+1)=1.

mr (Jxg,i+1(8)) =

By induction, we have
1 1 (@i, jrv1 — ai,j)
m (Jxg,i+1(1)) = | > St —aivj) = 5 Z R —
J€Ls i1 J'€Lyi

1 1 i+1
= Em’]l‘(-]xo,i([)) < <§> .

This implies mr (Jx,,s (1)) < (3)*8.

4. The final construction: sub-exponential measure complexity
As in §2, we fix an irrational number « and an 5 € (0, ﬁ). LetRy, . T—>T,z—~>z4+«
be the irrational rotation of T by «. Let & be the function defined in §2.2. Then we set

T(x,y) =& +a,y+ 5hx))
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for (x, y) € T>2. The following result was first proved by Kocergin [8] (one can also
see Lindenstrauss [9, Theorem 3.1] for a more general setting): there exist a measurable
function p : T — T and a continuous function /# : T — T such that

h(x) = $h(x) + p(x + &) — p(x)

for mr-almost every x € T.
We now define a skew product T : T? — T2 such that T (x, V=x+ao y+ h(x)) for
(x,y) e T2.

THEOREM 4.1. (T2, By, p, T) has sub-exponential measure complexity for any p €
M(T?, T),

Proof. We follow the arguments in the proof of [5, Proposition 2.2]. Let 5 € M (T2, T).
Denote ¢ : (x, y) = (x, y — p(x)) and p=n*(p)=po¢!. It is not too hard to
see that p € M (T2, T) and ¢ : (T2, Br2, o, T) — (T2, Br2, p, T') is a measure-theoretic
isomorphism.

‘We choose a Borel subset B of T such that mT(B) =1, Ry(B) = B and

h(x) = 1h(x) + p(x + @) — p(x)

forany xe B. Let Z=Z=B xT. Then T(Z)=Z, T(Z)=Z, $(Z)=Z and ¢ o
TG =Top() forallZe Z.

Fix € > 0. By Lusin’s theorem there exists a compact subset A of Z such that 5(A) >
1—(e /4)2 and ¢|4 is a continuous function. Choose § € (0, €/2) such that V268 < (e/6)
and

d¢(?), () < g forany 7,7 € Awithd(Z, 7) < V2s. 4.1

Now we show that S, (d, p, §) > S,,(d, p, €) foralln € N.
FixneN.Forze A, let EZ)={i >0:T'Z € A} and let

EG N[0, n —1]]
’ n

Enz{ZeA 51—6/4}.

Note that

n—1
E N[0,n—1 e 1 ~e .
f [Ex) 1%, — 1] dp(z)zf =S (T dpE) = F(A) > 1 — (e/H)
T2 n ™ n im0

‘We have

[E(Z) N[0, n —1]|
n

(1 —€/Hp(Ep) + 1 —p(En) = /Tz dp(z) > 1 — (¢/4)?

which implies that p(E,) < €/4.
Forz, 7 € A,ifd,(Z, 7)) = (1/n) Z?;ol d(T'Z, T'Z') < 28 then it is easy to see that

1 Y
~#iel0,n—1]1:d(T'zZ, T'Z) > V28} < /28,
n
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and so, for z,7 € A'=: A\ E, with d,(Z,%) <28 (note that p(A") > 1 — (¢/4)* —
(e/4) > 1 — (¢/2)), one has

n—1 n—1
— 1 . . 1 . -
d(§@), ¢@N =~ dT'9p@), T'¢E) =~ d@1'2), p(T'7))

i=0 i=0

1 . .
< @i €[0,n—1]:d(T'z, T'3) > V25)
n
1 . -,
+—<#{iE[O,n—l]:T’Z¢AorT’Z’¢A}
n
+ g#{i €l0,n—1]:d(T'z, T') < @}) (by (4.1))
<28+ : + ‘ <e
23
Pick %1, %2, . . ., Zm € T2 such that m = S, (d, §, §) and
m
/5(U By (Zi, 5)) >1-3.
i=1

Let I, ={r e[l, m]: Bgn (Zr, 8) N A" #@}. For r € I, we choose Z! € Bd] (Z, ) NA.

Then
m
U@, @ 20na) 2By, G Hna)= (U By, Gi, 5)) na'
rely rel, i=1
Thus
m ¢ 2 €
5 (B (31, 28)0A’)> > (( By (z»,a)) ﬂA’) >1-58— (-) ——>l-e
"(Hﬂdﬂ pgd"l 4) 4

Since d, (¢ (2), ¢(Z')) < e forz, 7 € A’ with d,(Z, Z') < 28, one has
¢(Bg (z,28)NA") C By ($(Z)), €)

for r € I,,. Thus

p< U B3, @G0, e)) > p( U o8,G 280 A/))

rel, rel,
= p(¢( U Bg”(zzl, 28) N A/>>
rel,
:,3( U By (Z,28)N A’> >1—e.
rely
Hence S,,(d, p, €) <|I,| <m = S,(d, p, §). This implies
log S, (d, p, ... . logS,(d,p,$
lim lim inf M < lim lim inf M
e—>0 n—>o0 nt §—0 n—>00 nt

for any 0 < 7 < 1. Moreover, by Proposition 3.1 we have

lim Tim inf 285702 € _

e—0 n—>00 nt

+009
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for any 0 < 7 < 1. It follows that

log S,(d, p, 8

lim lim inf 20850 _
§—0 n—oo nt

forany0 <7 < 1.

Finally, since (T2, T) is distal, the topological entropy of (T2, T) is zero [11]. This

implies
log S,(d, p, 8
lim lim sup M =0.
§—0 n—oo n
Hence, (T2, B2, p, T) has sub-exponential measure complexity. O

Remark 4.2. (1) In general, it is true that sub-exponential measure complexity is a
measure-theoretic invariant. One can see this by using the methods in [5]. (2) The
topological complexity of the system (T2, T;) is also sub-exponential, since the system
has zero topological entropy and the topological complexity is not less than the measure
complexity.

We have the following proposition related to skew product maps on T2.

PROPOSITION 4.3. If a skew product map W : T% — T2 over an irrational rotation on T
is not minimal then it is equicontinuous.

Proof. Let W : T2 — T2 be a skew product map on T2 such that W(x, y) = (x + «, y +
k(x)) for any (x, y) € T2, where « is irrational and k : T — T is continuous.

Let Y be a minimal subset of (']I‘z, W). Then Y # T2, First, we consider that T acts on
T2 by Sp(x, y) = (x,y+ h) forany h € T. Itis clear that S, o W = W o S, forany h € T.
Thus if 2 € T, then S, (Y) is a minimal subset of T2 and Sp(Y)=YorS,(Y)NnY =4.

Let H={h eT:S,(Y)=7Y}. Then H is a non-empty closed subgroup of T. Moreover,
H # T since Y # T2. This implies that H is a finite subgroup, since a closed subgroup of
T is T or a finite group.

Next, forx e T,put Y(x) ={y € T: (x, y) € Y}. Then Y (x) is a closed subset of T and

Y(x)-Y(x)=H.

In fact, for h € H, one has Y(x) +h =Y (x) since S,(Y)=Y. Thus he Y(x) — Y(x)
when h € H. Conversely, let h € Y(x) — Y (x). Then h = y; — y, for some y1, y» € Y (x)
and so (x, y2) € §,(Y) N Y. This implies S,(Y) =7, thatis, h € H.

Combining the fact that Y (x) — Y (x) = H and the fact that H is a finite closed subgroup
of T, we know that Y (x) is a finite set and #Y (x) = #H.

Let m:Y — T be the projection m(x,y) =x for (x,y)eY. Then 7 : (Y, W) —
(T, Ry) is a factor map between two minimal systems. Since (T, Ry) is minimal
equicontinuous and 7 is a #H-to-1 extension, that is, #Y (x) =#H for any x € T, one
has that (¥, W) is also a minimal equicontinuous t.d.s. by [13, Theorem 2].

We now show that (T2, W) is equicontinuous itself. —Let € >0. By the
equicontinuity of (Y, W), there is 0 < 8; < €/4 such that if (x, y1), (x2, y2) € Y and
d((x1, y1), (x2, y2)) < 81 then d(W"(x1, y1), W' (x2, y2)) < €/2 for all n € Z. It is clear
that 7/ : X — 2% x > 7~ 1(x) is continuous since 7 is a distal extension. This means
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that there is 8, > 0 such that if ||x; — x2|| < 8> then dy (7w’ (x1), 7’ (x2)) < 81, where dy is
the Hausdorff distance. Let § = min{§;, §7}.

Assume that d((x1, y1), (x2, y2)) < §. There is h € T such that (x1, y;1 — h) € Y. This
implies that there is y; € T such that (x2, y5 —h) € Y and [[(y; — h) — (y5 — h)|| < b1,
since ||x; — x2|| < 82. Thus, d((x1, y1 — h), (x2, yi" — h)) < é1. Then, for any n € Z,

d(W"(x1, y1), W"(x2, ¥2))
=d(W"(x1, y1 —h), W'(x2, y2 — h))
<d(W"(x1, y1 — h), W'(x2, y; — h) +d(W"(x2, y; — h), W' (x2, y2 — h))
<€/24 261 <e.

We conclude that (T2, W) is equicontinuous. O
As a corollary we have the following statement.

COROLLARY 4.4. (T2, T) is a minimal distal system with sub-exponential measure
complexity for any invariant measure in M(T?, T).

Proof. The corollary follows by the fact that any equicontinuous t.d.s. has bounded
complexity. O
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