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We derive single integral representations for the exact distribution of the sum of inde-
pendent generalized Pareto random variables. The integrands involve the incomplete and
complementary incomplete gamma functions. Applications to insurance and catastrophe
bonds are described.
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1. INTRODUCTION

The Pareto distribution due to Pareto [17] is the most popular statistical model in eco-
nomics, finance and related areas. A most general form of the Pareto distribution is the
generalized Pareto distribution due to Pickands [18]. Its cumulative distribution function
(CDF) and probability density function (PDF) are specified by

F (x) = 1 −
[
1 +

ξ(x − μ)
σ

]−1/ξ

(1)

and

f(x) =
1
σ

[
1 +

ξ(x − μ)
σ

]−1/ξ−1

, (2)
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respectively, for μ < x < ∞ if ξ ≥ 0 and μ < x < μ − σ/ξ if ξ < 0, where −∞ < μ < ∞
is the location parameter, σ > 0 is the scale parameter, and −∞ < ξ < ∞ is the shape
parameter. The case ξ = 0 should be interpreted as a limiting case. In this case, (1) and (2)
give the exponential distribution with location parameter −∞ < μ < ∞ and scale parameter
σ > 0. The case ξ > 0 gives a heavy tailed distribution. The case ξ < 0 gives a light tailed
distribution.

Many authors have attempted to find the exact distribution of the sum of independent
generalized Pareto or Pareto random variables: (Hitha [9], p. 9) says “The distribution of
a sum of Pareto variables that are independent and identically distributed is difficult to
obtain”; (Bean [5], p. 235) says “There is no simple relationship for an independent sum of
Pareto random variables”; (Goovaerts et al. [7], Theorems 2.1 and 2.2) derive asymptotic
forms for the distribution of a sum of Pareto random variables; Zaliapin, Kagan, and Schoen-
berg [25] present five different approximations for the sum of independent Pareto random
variables; Hempel [8] says “Unfortunately, the performance of this test statistic is impossible
to compute analytically and difficult to compute numerically because the exponential terms
in the last summation are Pareto distributed. Pareto distributions are very heavy tailed
and the distribution of the natural logarithm of a sum of Pareto random variables cannot
be derived analytically”; R-forge distributions Core Team [19] say “The convolution (i.e.
sum) of Pareto I distributions does not have any particular form, but the product of Pareto
I distributions does have an analytical form”; (Albrecher and Kortschak [2], Theorem 2.1)
derive an integral representation for the tail of the distribution of a sum of Pareto random
variables; Bonfiglioli and Gancia [6] say that the “sum of Pareto distributions is intractable”;
to mention just a few.

Areas where sums of generalized Pareto or Pareto random variables arise include:
ruin theory and reinsurance pricing (Morales, [12]); modeling of natural and human-
induced processes (Zaliapin et al. [25]); models for significant wave height (Bazargan,
Bahai, and Aminzadeh-Gohari [4]); track initialization for multi-static active sonar sys-
tems (Hempel, [8]); portfolio’s aggregate losses and waiting time distributions (Ramsay,
[20–23]).

To the best of our knowledge, there is only one paper on the exact distribution of the
sum of generalized Pareto or Pareto random variables, that of Nguyen and Robert [16].
Their main theorem (Theorem 1) gives an expression for the CDF of X1 + X2 + · · · + Xn,
a sum of n-independent Pareto random variables. The expression involves multiple infinite
sums, multiple products and multiple finite sums. In fact, it is easy to see that the expression
given by Theorem 1 of Nguyen and Robert [16] involves

2n +
2n−2∑
i=1

2|θi,n|+1

infinite sums, where {θ1,n, θ2,n, . . . , θ2n−2,n} is the set of all subsets of {1, 2, . . . , n}, exclud-
ing the empty set and the full set. In addition, the expression given by Theorem 1 of Nguyen
and Robert [16] involves at least

1 +
2n−2∑
i=1

[
1 +

∞∑
k=0

(
k + 1∣∣θc

i,n

∣∣)
]

products, where θc
i,n denotes the complement of θi,n. In addition, the expression given by

Theorem 1 of Nguyen and Robert [16] involves an infinite number of finite sums. Clearly,
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this is a complicated expression. Its computation will become prohibitive as n becomes
large. In this note, we give expressions for the PDF and CDF of X1 + X2 + · · · + Xn taking
the form of single integrals, much simpler than the expression in Nguyen and Robert [16].
For generality, we consider generalized Pareto random variables and not Pareto random
variables.

One of the tools used to derive the distribution of sums of independent random vari-
ables is the characteristic function (CHF). The CHF of a random variable, X say, defined
by φX(t) = E exp{itX}, where i =

√−1, is a fundamental tool in probability. The CHF
can be used to derive the distribution of X1 + X2 + · · · + Xn when Xi, i = 1, 2, . . . , n are
independent generalized Pareto random variables.

If X is a generalized Pareto random variable with ξ = 0, then it is well known that

φX(t) =
exp (iμt)
1 − iσt

. (3)

The result in (3) has been used to derive the distribution of the sum of independent but not
necessarily identical exponential random variables (this distribution is in general different
from the gamma distribution); see Amari and Misra [3] and Khuong and Kong [10].

For generalized Pareto random variables with ξ < 0, closed form expressions for φX(t)
have not been known in the literature. Closed form expressions for φX(t) for some related
random variables, the extreme value random variables, were derived only recently; see
Nadarajah and Pogány [15].

The main results of this note are: explicit closed form expressions for the CHF for the
generalized Pareto random variable, a single integral representation for the PDF of the sum
of independent generalized Pareto random variables, and a single integral representation for
the CDF of the sum of independent generalized Pareto random variables; applications to
insurance and catastrophe bonds. The expressions given in Section 2 involve the incomplete
and complementary incomplete gamma functions defined by γ(a, z) =

∫ z

0
ta−1 exp(−t)dt and

Γ(a, z) =
∫∞

z
ta−1 exp(−t)dt, respectively.

Incomplete gamma functions are included as in-built functions in most mathematical
software packages, so they can be easily evaluated by the software packages Maple, Mat-
lab and Mathematica using known procedures. Using these in-built functions, Section 3
describes an application to insurance of the results in Section 2. Section 4 describes an
application to catastrophe bonds.

2. THE MAIN RESULT

Our main result is Theorem 2.1. It derives an explicit closed form expression for the CHF
for the generalized Pareto random variable.

Theorem 2.1: Let X denote the generalized Pareto random variable. Its CHF has the closed
form:

φX(t) =

{
−ξ−1/ξ−1 (tσ)1/ξ exp {it (μ − σ/ξ) − iπ/(2ξ)} γ (−1/ξ,−itσ/ξ) , if ξ < 0,
ξ−1/ξ−1 (tσ)1/ξ exp {it (μ − σ/ξ) − iπ/(2ξ)}Γ (−1/ξ,−itσ/ξ) , if ξ > 0

for all −∞ < μ < ∞ and σ > 0. The CHF for ξ = 0 is given by (3).
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Proof: The result for the case ξ > 0 follows from Nadarajah and Kotz [14]. Consider the
case ξ < 0. Then,

φX(t) =
1
σ

∫ μ−σ/ξ

μ

exp (itx)
[
1 +

ξ(x − μ)
σ

]−1/ξ−1

dx

= −ξ−1 exp {it (μ − σ/ξ)}
∫ 1

0

exp {− (−itσ/ξ) y} y−1/ξ−1dy.

The result follows from the definition of the incomplete gamma function. �

Suppose now Xi, i = 1, 2, . . . , N are independent generalized Pareto random variables
with parameters (μi, σi, ξi). By the inversion theorem, the PDF of Z = X1 + X2 + · · · + XN

for fixed N can be expressed as

fZ(z) =
1
2π

∫ ∞

−∞
exp

(
it

N∑
i=1

μi − izt

)

×
∏
ξi<0

[
−ξ

−1/ξi−1
i (tσi)

1/ξi exp {−itσi/ξi − iπ/ (2ξi)} γ (−1/ξi,−itσi/ξi)
]

×
∏
ξi>0

[
ξ
−1/ξi−1
i (tσi)

1/ξi exp {−itσi/ξi − iπ/ (2ξi)}Γ (−1/ξi,−itσi/ξi)
]

×
∏
ξi=0

(1 − iσit)
−1

dt (4)

for −∞ < z < ∞. By the inversion theorem of Wendel [24], the corresponding CDF can be
expressed as

FZ(z) =
1
2
− 1

π

∫ ∞

0

t−1Im

[
exp

(
it

N∑
i=1

μi − izt

)

×
∏
ξi<0

[
−ξ

−1/ξi−1
i (tσi)

1/ξi exp {−itσi/ξi − iπ/ (2ξi)} γ (−1/ξi,−itσi/ξi)
]

×
∏
ξi>0

[
ξ
−1/ξi−1
i (tσi)

1/ξi exp {−itσi/ξi − iπ/ (2ξi)}Γ (−1/ξi,−itσi/ξi)
]

×
∏
ξi=0

(1 − iσit)
−1

]
dt (5)

for −∞ < z < ∞, where Im(·) denotes the imaginary part. There is a variety of other
inversion formulas than those used. See Abate and Valkó [1], Ramsay [20,22] and Albrecher
and Kortschak [2]. Of these the first three have the advantage that the absolute value of
the integral is integrable. The last one is only an approximation.

The integrals in (4) and (5) do not appear to have closed forms. However, they can
be easily computed using known routines for incomplete and complementary incomplete
gamma functions. (4) and (5) can be easily extended to the case that N is a discrete
random variable. In this case, the PDF and the CDF of Z will take the form of a single
summation with each term involving a single integral.
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3. APPLICATION TO INSURANCE

A probability of importance associated with the sum of independent generalized Pareto or
Pareto random variables is

P = Pr (X1 + X2 + · · · + XN > u) , (6)

where N could be deterministic or stochastic. For example, (6) could represent the probabil-
ity that the total claim amount over some period exceeding a certain threshold (Klugman,
Panjer, and Willmot [11]).

The probability, P , in (6) follows from (5). That is,

P = 1 − FZ(u), (7)

where FZ(u) is a single integral of known special functions. This representation is per-
haps the simplest means to compute P . The probability, P , can also be computed in
other ways. For example, it can be computed by using the PDF of generalized Pareto
random variables. But P will then be an (N − 1)-fold integral, a much more complicated
representation than (7). Nadarajah [13] derives explicit expressions (involving the Appell
function of the first kind and the Gauss hypergeometric function) for P using this approach
when N = 2.

Figure 1 shows the Central Processing Unit (CPU) time in seconds taken to compute (7)
for u = 1, μi = 0, σi = 1, ξi = 0.3 and u = 1, μi = 0, σi = 1, ξi = −0.2. The figure shows
how the time varies with respect to N . The figure also shows the CPU times taken to
compute P by using the expansions in Nguyen and Robert [16]. The CPU times for (7)
appear much smaller for every N . The CPU time increases with N . The increase appears
steep. However, it is comforting to note that the CPU times for (7) are manageable even
for N as large as ten.

The computations for Figure 1 were performed using Mathematica. The accuracy of the
computations of (7) is not an issue as Mathematica (like most other algebraic manipulation
packages) allows for arbitrary precision.

Figure 1. CPU times taken to compute (7) and the corresponding in Nguyen and Robert’s
[16] method versus N when u = 1, μi = 0, σi = 1, ξi = 0.3 (left) and ξi = −0.2 (right).
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4. APPLICATION TO CATASTROPHE BONDS

Catastrophe risk bonds, also known as CAT bonds, are a specific insurance product that cre-
ates risk-linked securities which transfer a specific set of risks commonly through catastrophe
and natural disaster risks from an issuer or sponsor (insurance or reinsurance companies) to
the investors. In this scenario, the investors take on the liability of a specified catastrophe
or event occurring in return for an attractive rate of investment. However, in the event of
a catastrophe or an extreme event occurring, the investor will forgo the principal that they
invested and the issuer will receive this money to cover losses.

The data represent the value of monthly catastrophe bond deal (in millions of dollars)
executed from December 1996 to November 2016. The data were obtained from the Artemis
Catastrophe Bond deal directory; see http://www.artemis.bm/. The catastrophe bonds were
assigned into two broad location categories, these are the USA, and Asia / Europe. Within
the two categories, Catastrophe bonds were further sorted into three types of catastrophe
groups. These catastrophe groups are earthquakes, wind storms (hurricane, typhoon, and
cyclone), and other catastrophe (property catastrophe, mortgage, life insurance, and medical
benefit claims levels).

The following summary statistics of the data are given in Table 1: minimum, first quar-
tile (Q1), median, mean, third quartile (Q3), maximum, variance, skewness, kurtosis, and
coefficient of variation (CV). The data are generally positively skewed and have peakedness
greater than that of the normal distribution. For the USA, the minimum, first quartile,
median and mean are largest for other catastrophe while the third quartile, maximum,
variance, skewness, kurtosis, and CV are largest for wind storms. For Asia and Europe,
the minimum and first quartile are largest for other catastrophe; while the median, third
quartile, maximum, variance, skewness, kurtosis, and CV are largest for earthquakes.

We are interested in determining the distributions of the total catastrophe bond due
to earthquakes, the total catastrophe bond due to wind storms and the total catastrophe
bond due to other disasters. The total catastrophe bond due to earthquakes are the sum
of the catastrophe bonds for earthquakes in the USA and earthquakes in Asia and Europe.
Similarly, the total catastrophe bond due to wind storms are the sum of the catastrophe
bonds for wind storms in the USA and wind storms in Asia and Europe. Similarly, the total
catastrophe bond due to other disasters are the sum of the catastrophe bonds for other
disasters in the USA and other disasters in Asia and Europe.

Table 1. Some summary statistics of the data.

USA Asia/Europe

Earthquakes Wind storms Others Earthquakes Wind storms Others

Minimum 3.75 7.32 25.00 3.75 43.00 47.67
Q1 38.00 75.00 135.00 65.22 91.75 100.00
Median 150.00 187.50 234.00 150.00 108.00 130.00
Mean 176.00 215.40 238.00 188.30 150.90 170.80
Q3 259.00 300.00 300.00 265.20 200.00 235.00
Maximum 1100.00 1500.00 750.00 1100.00 400.00 700.00
Variance 29258.75 44148.33 20473.05 33355.73 7579.681 13021.26
Skewness 2.274 3.086 0.891 2.633 1.205 2.044
Kurtosis 11.883 17.961 4.100 13.015 3.566 9.455
CV 0.972 0.976 0.601 0.970 0.577 0.668
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The results in Section 2 can be used to estimate the distributions of the total catastrophe
bond. We fitted the generalized Pareto distribution to each of the six data sets. The method
of maximum likelihood was used. The parameter estimates and standard errors are given in
Table 2. The standard errors were obtained by inverting the observed information matrix.

The goodness of fit of the generalized Pareto distribution is assessed by the probability
and quantile plots shown in Figures 2 and 3. Also shown in these figures are simulated

Table 2. Fitted estimates of the generalized Pareto distribution.

USA Asia/Europe

Earthquakes σ̂1 = 179.130(25.119), σ̂2 = 192.119(32.487),

ξ̂1 = −0.023(0.091) ξ̂2 = −0.024(0.105)

Wind storms σ̂1 = 217.204(28.749), σ̂2 = 216.676(32.995),

ξ̂1 = −0.014(0.078) ξ̂2 = −0.508(0.104)

Others σ̂1 = 302.204(34.239), σ̂2 = 197.92(29.030),

ξ̂1 = −0.369(0.062) ξ̂2 = −0.214(0.074)

Figure 2. Probability plots of the fit of the generalized Pareto distribution to the catas-
trophe bond data for earthquakes in the USA (top left), wind storms in the USA (top
middle), other disasters in the USA (top right), earthquakes in Asia and Europe (bottom
left), wind storms in Asia and Europe (bottom middle) and other disasters in Asia and
Europe (bottom right).
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Figure 3. Quantile plots of the fit of the generalized Pareto distribution to the catastrophe
bond data for earthquakes in the USA (top left), wind storms in the USA (top middle),
other disasters in the USA (top right), earthquakes in Asia and Europe (bottom left), wind
storms in Asia and Europe (bottom middle) and other disasters in Asia and Europe (bottom
right).

Figure 4. Fitted PDFs of the total catastrophe bond data for earthquakes (left), wind
storms (middle), and other disasters (right).
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Table 3. Estimates of value at risk for Catastrophe bonds.

Level Earthquakes Wind storms Others

0.9 700.732 661.508 682.658
0.95 849.183 806.854 780.092
0.99 1171.807 1139.005 968.836
0.999 1599.569 1601.842 1176.331
0.9999 2000.824 2049.847 1328.213
0.99999 2382.421 2482.279 1439.309
0.999999 2748.23 2904.446 1517.236
0.9999999 3100.806 3310.414 1658.039

95 percent confidence intervals. The plots appear reasonable, showing that the fits are
reasonable.

We used Theorem 2.2 to estimate the PDFs of total catastrophe bond due to earth-
quakes, wind storms and other disasters. The estimated PDFs are shown in Figure 4. These
PDFs can assist in the pricing of catastrophe bonds for catastrophes around the world. We
can compute the Value at Risk for the different catastrophes, which can provide us with
information about the different quantile levels of the pricing of the catastrophe bonds.

Table 3 gives Value at Risk estimates of catastrophe bonds for the three types of catas-
trophes. For quantile levels from 0.9 to 0.99, the earthquakes give the largest Value at Risk
estimates. For quantile levels greater than 0.99, the wind storms give the largest Value at
Risk estimates. For all quantile levels, other catastrophes give the smallest Value at Risk
estimates.
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