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The interaction of a thin viscous film with an elastic sheet results in coupling of
pressure and deformation, which can be utilized as an actuation mechanism for surface
deformations in a wide range of applications, including microfluidics, optics and soft
robotics. Implementation of such configurations inherently takes place over finite
domains and often requires some pre-stretching of the sheet. Under the assumptions
of strong pre-stretching and small deformations of the lubricated elastic sheet, we
use the linearized Reynolds and Föppl–von Kármán equations to derive closed-form
analytical solutions describing the deformation in a finite domain due to external
forces, accounting for both bending and tension effects. We provide a closed-form
solution for the case of a square-shaped actuation region and present the effect of
pre-stretching on the dynamics of the deformation. We further present the dependence
of the deformation magnitude and time scale on the spatial wavenumber, as well as the
transition between stretching- and bending-dominant regimes. We also demonstrate
the effect of spatial discretization of the forcing (representing practical actuation
elements) on the achievable resolution of the deformation. Extending the problem to
an axisymmetric domain, we investigate the effects arising from nonlinearity of the
Reynolds and Föppl–von Kármán equations and present the deformation behaviour
as it becomes comparable to the initial film thickness and dependent on the induced
tension. These results set the theoretical foundation for implementation of microfluidic
soft actuators based on elastohydrodynanmics.

Key words: Hele-Shaw flows, MEMS/NEMS, Microfluidics

1. Introduction
Elastohydrodynamic interaction between an elastic substrate and a thin liquid film

is of interest in the study of various natural processes, such as passage of air flow in
the lungs (Grotberg & Jensen 2004) and geological formation of laccoliths (Michaut

† Email addresses for correspondence: amirgat@technion.ac.il, mberco@technion.ac.il
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2011), as well as in the dynamic control of elastic structures for applications in soft
robotics, adaptive optics and reconfigurable microfluidics (Thorsen, Maerkl & Quake
2002; Chronis et al. 2003; Kim, Laschi & Trimmer 2013). In particular, the case of a
viscous fluid confined between an elastic sheet and a rigid surface has been extensively
studied in the context of viscous peeling (Hosoi & Mahadevan 2004; Lister, Peng
& Neufeld 2013; Hewitt, Balmforth & De Bruyn 2015), suppression of viscous
fingering instabilities (Pihler-Puzović et al. 2012, 2013; Al-Housseiny, Christov &
Stone 2013; Pihler-Puzović, Juel & Heil 2014), impact mitigation (Tulchinsky & Gat
2016), elastohydrodynamic wakes (Arutkin et al. 2017) and dynamics of wrinkling
of a lubricated elastic sheet (Kodio, Griffiths & Vella 2017).

In the field of microfluidics, where channels are often fabricated from soft materials
such as poly(dimethylsiloxane) (PDMS), there is growing interest in exploring the
effect of elasticity on the resulting flow and pressure fields, and several theoretical
works have addressed this subject (Gervais et al. 2006; Dendukuri et al. 2007;
Hardy et al. 2009; Panda et al. 2009; Mukherjee, Chakraborty & Chakraborty 2013;
Christov et al. 2018). For example, Gervais et al. (2006) used a one-dimensional
model, based on the assumption of a linear relation between fluidic pressure and
channel deformation, to estimate the effect of elasticity on the pressure field in
a shallow elastic micro-channel, showing good agreement with their experimental
results. Recently, Christov et al. (2018) applied the lubrication approximation and the
Kirchhoff–Love bending model to derive the relation between flow rate and pressure
drop for a deformable shallow micro-channel. In tandem with the effect of elasticity
on the flow field, the use of fluidic forces as an actuation mechanism for deformation
of elastic substrates has also been exploited in a variety of applications, primarily as
an on-chip valving method (Unger et al. 2000; Grover et al. 2006), and recently also
for other applications including adaptive optics (Jeong et al. 2004) and soft robotics
(Shepherd et al. 2011).

Of particular interest are soft planar microfluidic configurations, which may serve
as a platform for re-configurable microstructures. For such configurations, thin
elastic sheets (e.g. a ∼10 µm polymer sheet) are a natural choice for maximizing
deformations. While tension reduces elastic deformations, it is difficult to implement
robust set-ups without introducing some pre-stretching of the sheets. Thus, pure
bending models (e.g. such as the one considered by Rubin et al. (2017) in previous
work from our group) are insufficient for describing the behaviour of realistic systems.
Furthermore, accurate prediction of the deformation field requires accounting for
the influence of the finite boundaries of the sheet. As an example, and to relate
the theoretical model studied in this work to realistic configurations, figure 1(a,b)
presents an experimental set-up in which a thin elastic membrane, pre-stretched
on a rigid frame, serves as the ceiling of a Hele-Shaw chamber. The elastic sheet
is actuated by an internal pressure gradient formed by opposing electro-osmotic
flows (EOF) within the chamber. Additional details are provided in appendix A of
the supplementary material is available online at https://doi.org/10.1017/jfm.2018.967.
Figure 1(c) presents experimental results showing that indeed EOF-based deformations
are feasible in practice. We note that, since the presented measurements are focused
on a single point, the observed over-damped response can be easily fitted with various
sets of realistic physical parameters and thus cannot be used for proper validation
of the model. Such validation would require an imaging system which would allow
much faster data acquisition as well as imaging of complete surfaces rather than
an individual point. We are currently developing this infrastructure, which will be
reported in the future.
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FIGURE 1. (Colour online) (a) Illustration and (b) image of an experimental set-up
for deformation of an elastic sheet, actuated by non-uniform electro-osmotic flow. The
configuration consists of a 12 µm thick low-density polyethylene sheet stretched over a
rigid frame that is supported by 100 µm tall pillars from a rigid glass substrate, forming
a Hele-Shaw chamber. The glass surface is patterned with three parallel electrodes and
coated with an insulating oxide layer, excluding a rectangular actuation region at the
centre. The chamber is filled with an aqueous solution, and the voltage is set to drive
electro-osmotic flow from the outer electrodes to the inner ones, resulting in internal
pressure gradients. (c) Experimental results showing the growth and decay of deformation
at the centre of the elastic membrane, in response to sudden actuation and cessation of
the electric field. Error bars indicate a 95 % confidence on the mean based on six repeats,
and the red curve represents the corresponding applied voltage as a function of time.

In this work, we aim to set the theoretical framework for addressing such
configurations, where finite boundaries, pre-stretching and fluidic actuation dominate
the physical response of the system. In § 2, we present the problem formulation and
the equations governing the deformation dynamics, accounting for both bending and
stretching, as well as for forces applied either through the non-uniform slip velocity
in the fluid or due to the pressure applied directly to the elastic sheet. We provide
their scaling and summarize the key assumptions used in the derivation of the model.
Focusing on electro-osmotic actuation, in § 3 we present a closed-form solution for the
practical case of a square-shaped actuation region within a finite rectangular domain.
We present the effect of pre-stretching on the steady-state deformation pattern and
magnitude, and examine the time scales for development of pressure and deformation.
Using a Fourier decomposition, in § 4 we further study the trade-off between the
amplitude and time scale of deformations and the attainable spatial resolution, and
show their different scaling in tension- versus bending-dominant regimes. In § 5, we
examine the effect of spatial discretization of the forcing (representing, e.g. actuation
electrodes) on the resulting deformation, minimizing the error between the resulting
and desired deformation using a least-squares method. Considering an axisymmetric
domain, in § 6 we employ asymptotic and numerical methods to explore the effects
arising from nonlinearity of the Reynolds and Föppl–von Kármán equations, and
further examine the influence of these effects on the deformation and tension field.
We conclude with a discussion of the results in § 7.

2. Problem formulation and governing equations
We study the viscous–elastic dynamics of a viscous fluid of density ρ̃ and viscosity

µ̃ confined between a flat rigid surface and a pre-stretched elastic sheet of length
l̃m, width w̃m, thickness h̃m, Young’s modulus ẼY and Poisson’s ratio ν, as shown
in figure 2. We denote dimensional variables by tildes, normalized variables without
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FIGURE 2. Schematic illustration showing the centreline cross-section of the examined
configuration. A thin viscous fluid layer of initial thickness h̃0 is confined between a rigid
surface and a pre-stretched elastic sheet supported at its boundaries. Non-uniform and time-
varying slip velocity ũslip(x̃, ỹ, t̃) and external pressure p̃e(x̃, ỹ, t̃) drive the viscous–elastic
interaction and create the deformation field d̃(x̃, ỹ, t̃).

tildes and characteristic values by an asterisk superscript. We employ a Cartesian
coordinate system (x̃, ỹ, z̃), and adopt the ‖ and ⊥ subscripts to denote parallel and
perpendicular directions to the x̃− ỹ plane, respectively.

The fluid velocity is ũ= (ũ‖, ũ⊥)= (ũ, ṽ, w̃) and fluid pressure is p̃. The total gap
between the plates is h̃(x̃, ỹ, t̃)= h̃0 + d̃(x̃, ỹ, t̃), where t̃ is time and h̃0 is the initial
gap. The deformation field d̃(x̃, ỹ, t̃) is induced either due to an external pressure
p̃e(x̃, ỹ, t̃), acting directly on the elastic sheet, or due to an internal pressure formed
by a non-uniform slip velocity ũslip(x̃, ỹ, t̃) on the rigid surface, which varies over a
characteristic length scale l̃∗ in the x̃ − ỹ plane. The characteristic velocities in the
x̃− ỹ plane and ẑ direction are respectively ũ∗ and w̃∗, and the characteristic pressure,
deformation and time are respectively denoted as p̃∗, d̃∗, and t̃∗.

The most general description for the dynamics of a thin elastic sheet is given by the
nonlinear Föppl–von Kármán equations (Timoshenko & Woinkowsky-Krieger 1987;
Howell, Kozyreff & Ockendon 2009), which account for bending and tension forces,
external traction, as well as the solid’s inertia. In this work, we assume that the solid’s
inertia is negligible and focus on the case of a strongly pre-stretched elastic sheet with
isotropic tension T̃ , assumed to be much larger than any internal tension, T̃in, forming
in the system during actuation of the sheet. From scaling of the Föppl–von Kármán
equation that couples the spatial variations in internal tension to Gaussian curvature
(Howell et al. 2009, p. 176), we find T̃in ∼ (d̃∗/l̃∗)2ẼY h̃m, and define

α =
T̃in

T̃
=

(
d̃∗

l̃∗

)2
ẼY h̃m

T̃
� 1. (2.1)

Expanding the deformation field and the tension in powers of α and considering
the leading order, the nonlinear Föppl–von Kármán equations reduce to a single
linear plate equation containing bending and pre-stretching terms (see Timoshenko &
Woinkowsky-Krieger 1987; Howell et al. 2009)

p̃= B̃∇̃4
‖
d̃− T̃∇̃2

‖
d̃+ p̃e, (2.2)

where ∇̃‖= (∂/∂ x̃, ∂/∂ ỹ) is the two-dimensional gradient and B̃= ẼY h̃3
m/12(1− ν2) is

the bending stiffness.
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We restrict our analysis to shallow geometries, to negligible fluidic inertia,
represented by small Womersley and reduced Reynolds numbers, and to small elastic
deformations,

ε =
h̃0

l̃∗
� 1, Wo=

ρ̃h̃2
0

µ̃t̃∗
� 1, εRe= ε

ρ̃ũ∗h̃0

µ̃
� 1, β =

d̃∗

h̃0

� 1. (2.3a−d)

The first three assumptions (2.3a–c) allow us to apply the lubrication approximation
and to obtain a nonlinear Reynolds equation (Leal 2007), and the last assumption,
β� 1, enables its linearization (see e.g. Tulchinsky & Gat 2016; Kodio et al. 2017).

In § 6 we relax the assumptions (2.1) and (2.3d), and explore the effects of
nonlinearity of the Reynolds and Föppl–von Kármán equations on the deformation
and tension fields, considering an axisymmetric geometry.

Based on (2.3), the fluid motion is governed by the lubrication equations (Leal
2007)

∇̃ · ũ= 0, ∇̃‖p̃= µ̃
∂2ũ‖
∂ z̃2

,
∂ p̃
∂ z̃
= 0. (2.4a−c)

We assume that the fluid is subject to the slip and the no-penetration boundary
conditions on the bottom surface. Horizontal motion of the elastic sheet is negligible
in the small-deformation limit, implying the no-slip and the no-penetration boundary
conditions along it,

(ũ‖, ũ⊥)|z̃=0 = (ũslip(x̃, ỹ, t̃), 0), (ũ‖, ũ⊥)|z̃=h̃ =

(
0,
∂ d̃
∂ t̃

)
. (2.5a,b)

In this work, we consider a non-uniform slip velocity and specifically focus on
the electro-osmotic slip which arises over electrically charged surfaces due to
interaction of an externally applied electric field with the excess of net charge
in the electric double layer. In the thin-double-layer limit, such interaction results in
bulk fluid motion outside the outer edge of the electric double layer according to the
Helmholtz–Smoluchowski equation (Hunter 2000),

ũslip =−
ε̃ζ̃ (x̃, ỹ)
µ̃

Ẽ, (2.6)

where ε̃ is the fluid permittivity, ζ̃ is the zeta potential on the bottom surface and Ẽ
is the tangential imposed electric field.

2.1. Scaling analysis and non-dimensionalization
Scaling by the characteristic dimensions, we define the following normalized
quantities: (x, y, z) = (x̃/l̃∗, ỹ/l̃∗, z̃/h̃0), (u, v, w) = (ũ/ũ∗, ṽ/ũ∗, w̃/w̃∗), p = p̃/p̃∗,
t= t̃/t̃∗, d= d̃/d̃∗ and h= h̃/h̃0. As noted by Peng et al. (2015), the bending-tension
length scale l̃BT =

√
B̃/T̃ determines the relative importance of bending and tension

forces in the elastic response of the sheet; for l̃∗ � l̃BT bending forces dominate,
whereas for l̃∗ � l̃BT tension forces dominate. A convenient dimensionless number
when scaling (2.2) is λ, defined as

λ≡
Bending

Stretching
=

(
l̃BT

l̃∗

)2

=
B̃

T̃ l̃∗2
=

1
12(1− ν2)

ẼY h̃m

T̃

(
h̃m

l̃∗

)2

. (2.7)
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In this study, our main focus is on deformations which are comparable to, or larger
than the sheet thickness, and therefore the appropriate scaling for deformation is based
on tension and not on bending

d̃∗ =
p̃∗ l̃∗2

T̃
, (2.8)

with which the elastic equation (2.2) takes the form

p= λ∇4
‖
d−∇2

‖
d+ pe. (2.9)

From order-of-magnitude analysis of the continuity and in-plane momentum equations
(2.4a,b), it follows that the perpendicular velocity and the pressure scale as w̃∗ ∼ εũ∗

and p̃∗ ∼ 12µ̃ũ∗/ε2 l̃∗, respectively. Using the kinematic boundary condition (2.5b) we
obtain the scaling for the viscous–elastic time scale t̃∗ ∼ d̃∗/w̃∗ ∼ d̃∗/εũ∗. Owing to a
linear relation between d̃∗ and p̃∗ as well as between p̃∗ and ũ∗, the ratio d̃∗/ũ∗ is not
dependent on actuation force, nor on ũslip or p̃e. Thus, the viscous–elastic time scale
solely depends on the properties of the fluid and the elastic medium, specifically the
ratio µ̃/T̃ and the geometry:

t̃∗ =
12µ̃l̃∗4

T̃h̃3
0

=
12µ̃l̃∗

ε3T̃
. (2.10)

Based on this scaling, and following standard lubrication theory, from (2.4), (2.5) and
(2.10) we obtain the normalized Reynolds equation (Leal 2007, p. 313)

∂d
∂t
−∇‖ · [h3

∇‖p] =−
1
2
∇‖ · [huslip], (2.11)

where using the definition (2.3d), the fluid thickness h can be expressed as h= 1+βd.

2.2. Viscous–elastic governing equations for a pre-stretched elastic sheet
Substituting (2.9) into (2.11), yields the nonlinear governing equation

∂d
∂t
−∇‖ · [h3

∇‖(λ∇
4
‖
d−∇2

‖
d)] =−∇‖ · [hf F] +∇‖ · [h

3
∇‖fE], (2.12)

where we define f F = fFxx̂ + fFyŷ = uslip/2 and fE = pe as the actuation mechanisms.
The subscript F refers to driving force applied to the sheet due to the non-uniform
slip velocity in the fluid and the subscript E refers to driving force due to the pressure
applied directly to the elastic sheet.

Assuming small elastic deformations, d̃∗� h̃0, yields the linearized viscous–elastic
governing equation in terms of deformation accounting for both bending and
pre-stretching (Kodio et al. 2017), which contains a source term that depends on
the external forces

∂d
∂t
− λ∇6

‖
d+∇4

‖
d=−∇‖ · f F +∇

2
‖
fE. (2.13)

For completeness, the corresponding dimensional equation is given by

∂ d̃
∂ t̃
−

h̃3
0

12µ̃
∇̃‖ · [∇̃‖(B̃∇̃4

‖
d̃− T̃∇̃2

‖
d̃)] =−h̃0∇̃‖ · f̃ F +

h̃3
0

12µ̃
∇̃

2
‖
f̃E. (2.14)
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The governing equations (2.12)–(2.14) are supplemented by the boundary conditions

d= 0,
∂2d
∂x2
= 0,

∂4d
∂x4
= 0 at x= 0, lm and 0 6 y 6 wm, (2.15a−c)

d= 0,
∂2d
∂y2
= 0,

∂4d
∂y4
= 0 at y= 0,wm and 0 6 x 6 lm, (2.16a−c)

and the initial condition d(x, y, t= 0)= 0. The first two boundary conditions (2.15a,b)
and (2.16a,b) correspond to no deflection and no moment at the boundaries, whereas
the last conditions (2.15c) and (2.16c) are obtained from (2.2) by further assuming that
the fluidic and external pressures are both zero at the boundaries, p= pe= 0 (see, e.g.
Kodio et al. 2017). We note that the condition p= 0 is motivated by the experimental
set-up shown in figure 1, where the fabricated chamber has open boundaries, which
are well represented by zero gauge pressure. In addition, for the case of a tension-
dominant regime, which is the main focus of this work, setting λ = 0 in (2.12)–
(2.14) yields fourth-order governing equations. The boundary conditions (2.15a,b) and
(2.16a,b) hold for this case, with the second derivative requirement arising directly
from the zero pressure condition (rather than from the no-moment requirement in the
sixth-order case).

The governing equation (2.13) can be solved by several methods. For the boundary
conditions under consideration (2.15)–(2.16), eigenfunction expansions or a Green’s
functions approach are particularly suitable. We refer the reader to Prosperetti (2011)
for both methods of solution, and note that in practice these calculations may be
cumbersome. The general solution based on a Green’s function approach for the case
presented here is provided in appendix B of the supplementary material. However,
we stress that both eigenfunctions and Green’s functions approaches would be far
more complex to implement if boundary conditions other than those presented here
are adopted. Furthermore, analytical treatment would be greatly complicated, if at all
possible, in non-rectangular and non-circular domains of interest.

3. Deformations due to a square-shaped actuation region

We now consider the non-uniform slip velocity (2.6) as a driving force and
specifically focus on a square-shaped actuation of the form

fFx(x, y, t)=
{

E(t) |x− cx|6 L and |y− cy|6 L
0 otherwise, (3.1)

corresponding to a square-shaped zeta-potential distribution, where E(t) is a spatially
homogeneous and time-dependent electric field along the x̂ axis. Here 2L is the side
length of the actuation square, whereas cx and cy indicate the x- and y-coordinates of
its centre. For convenience, hereafter we set lm =wm =π.

For a suddenly applied actuation, E(t) = H(t), where H is the Heaviside step
function, using closed-form solutions derived in appendix B of the supplementary
material, we obtain the deformation field resulting from (3.1)

d(x, y, t)=
16
π2

∞∑
m,n=1

A(m, n; L, cx, cy)
sin(mx) sin(ny)

nF(m, n; λ)
(1− e−F(m,n;λ)t), (3.2a)
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FIGURE 3. (Colour online) Investigation of the deformation field resulting from two
square-shaped regions with opposite signs of zeta potential subjected to a constant electric
field suddenly applied at t = 0. (a) The deformation field (colour map) at t = 0.1,
superposed on a schematic illustration of the two oppositely directed electro-osmotic
actuation regions. (b) The scaled steady-state deformation d/dmax along the x̂ axis, showing
the evolution of the deformation for λ= 10−3, and a comparison between the steady-state
deformation at λ= 10−3 (tension dominant, with dmax = 3.7× 10−2) and λ= 10 (bending
dominant, with dmax = 1.2× 10−3). (c,d) The evolution of the maximum deformation and
pressure as a function of time. (e) The maximum deformation d̃max at steady state, scaled
by h̃0, as a function of λ, for ẼY = 1 MPa and ẼY = 1 GPa. The dashed and solid grey
lines indicate the validity boundaries d̃max/h̃0 = 0.1 and α = 0.1, respectively, where the
greyed-out region is beyond the validity of the model. All calculations were performed
using l̃∗= 5 mm, h̃0= 100 µm, p̃∗≈ 1 Pa, h̃m= 10 µm, ν = 0.5, cx,1= 2π/5, cx,2= 3π/5,
cy,1 = cy,2 =π/2 and L=π/10.

A= cos(mcx) sin(ncy) sin(mL) sin(nL), F= (m2
+ n2)2[λ(m2

+ n2)+ 1]. (3.2b,c)

In appendix C of the supplementary material, we use numerical computations to verify
the analytical solution (3.2) for the case of λ= 0, showing excellent agreement.

Figure 3(a) presents the deformation field (3.2) at t = 0.1, resulting from two
square-shaped regions with opposite signs of zeta potential, subjected to an electric
field suddenly applied at t= 0 (see also supplementary movie 1). The opposing flows
result in a positive internal pressure at the interface between the two regions, and
negative pressure at the far edges of the squares. Figure 3(b) presents the deformation
field (along the x̂ axis) as a function of time, for a pre-stretching-dominant regime
λ = 10−3. The steady-state deformation (t = 1) with dmax = 3.7 × 10−2 is compared
with that obtained for a bending-dominant regime (λ= 10) having dmax = 1.2× 10−3,
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showing that the higher order of the dominant term in the bending regime effectively
results in additional averaging of the fluidic pressure and thus reduces the spatial
resolution and the magnitude of the deformation field. Figure 3(c,d) presents the
development of the maximum pressure and deformation as a function of time towards
steady state, where pmax = 3.4 × 10−1 and dmax = 3.7 × 10−2. Importantly, while for
a rigid configuration actuation of the electric field would result in an instantaneous
jump in pressure (on an acoustic time scale), in the elastic case the evolution of the
pressure is coupled to that of the deformation, as given by (2.11). Nevertheless, for
the case presented, the rise time to 50 % of the final pressure is t = 10−3, nearly
two orders of magnitude shorter than the viscous–elastic time scale t= 0.7× 10−1 in
which the deformation reaches 50 % of its steady-state value. This time delay between
pressure and deformation is also evident in periodic actuations (see supplementary
movie 2) where the deformation phase lags behind that of the pressure. We note that
at extremely short time scales, inertial effects must be included to properly describe
the deformation dynamics. Figure 3(e) presents the maximum deformation (scaled by
h̃0) at steady state as a function of λ, for a fixed sheet thickness and two different
elastic moduli. Consistent with the scaling (2.8) and non-dimensional solution (3.2),
as λ increases (T̃ decreases), the magnitude of the deformation increases until it
reaches a constant value when the problem is dominated entirely by bending. The
dashed and solid grey lines respectively indicate the range of validity of the model,
where the deformation is no longer small, d̃max/h̃0= 0.1, and where internal stretching
is non-negligible, α= 0.1. For clarity, the regions of the graph which are beyond the
validity of the model are greyed out.

4. Effect of pre-stretching on the resolution, magnitude and time scale of the
deformation field
As we are aiming to utilize fluidic actuation as a mechanism to create desired

deformation in the elastic sheet, it is of interest to examine the trade-off between the
magnitude and time scale of deformation’s and the attainable resolution, for a given
amplitude of the actuation force. Any desired deformation can be written as a Fourier
series on a finite domain, where the resulting spectrum of frequencies would depend
on the desired shape and on the deformation’s position relative to the boundaries.
Consider a steady-state deformation of the form

d̃(x̃, ỹ)= d̃0 sin
(

kxπ
x̃

l̃m

)
sin
(

kyπ
ỹ

w̃m

)
, (4.1)

created due to a non-uniform Helmholtz–Smoluchowski slip velocity, (2.6), acting in
the x̂ direction. Here kx and ky are wavenumbers in the x̂ and ŷ directions, respectively,
and d̃0 is the amplitude yet to be determined. Using (2.6) and (2.14), the zeta potential
required for generating the deformation (4.1) is given by

ζ̃ (x̃, ỹ)=
h̃2

0

6ε̃Ẽ

∫
(−B̃∇̃6

‖
d̃+ T̃∇̃4

‖
d̃) dx̃= ζ̃0 cos

(
kxπ

x̃

l̃m

)
sin
(

kyπ
ỹ

w̃m

)
, (4.2)

enabling us to explicitly express the amplitude d̃0 in terms of relevant physical
quantities,

d̃0 =−
6̃εζ̃0Ẽ

π3h̃2
0

kx/l̃m

((kx/l̃m)2 + (ky/w̃m)2)2(π2B̃[(kx/l̃m)2 + (ky/w̃m)2] + T̃)
. (4.3)
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FIGURE 4. The effect of wavenumber on the magnitude of the deformation and the time
scale of viscous–elastic interaction. (a) Deformation in dimensional form along the x̂ axis
for various values of kx, with ky = 1 and h̃m = 10 µm. (b,c) The maximum (dimensional)
deformation d̃0 and time scale τ̃0, respectively, as a function of wavenumber kx, for ky= 1
and different values of the elastic sheet thickness, h̃m. All calculations were performed
using non-uniform electro-osmotic actuation as the driving mechanism, with h̃0= 100 µm,
l̃m = w̃m = 4 cm, ẼY = 0.3 GPa, ν = 0.5, T̃ = 15 Pa m, ζ̃0 = −70 mV, Ẽ = 100 V cm−1

and ε̃= 7.08× 10−10 F m−1.

Substituting (4.2) into (2.14), we obtain the corresponding time-dependent solution

d̃(x̃, ỹ, t̃)= d̃0 sin
(

kxπ
x̃

l̃m

)
sin
(

kyπ
ỹ

w̃m

)
(1− e−t̃/τ̃0), (4.4)

that evolves towards steady-state deformation d̃(x̃, ỹ), (4.1), and provides the viscous–
elastic time scale τ̃0 required to achieve this steady state,

τ̃0 =
12µ̃

π4h̃3
0

1

((kx/l̃m)2 + (ky/w̃m)2)2(π2B̃[(kx/l̃m)2 + (ky/w̃m)2] + T̃)
. (4.5)

Using the physical values noted in its caption, figure 4(a) presents the resulting
steady-state deformation (4.1) along the x̂ axis for various values of kx, with ky = 1
and h̃m = 10 µm, and clearly shows the reduction in deformation magnitude as
the wavenumber increases. Furthermore, (4.3) and (4.5) indicate that the scaling
of the amplitude d̃0 and time scale τ̃0 with the wavenumber depends on the relative
contribution of the bending and tension terms in the denominator.
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When π2B̃k2
x � T̃ l̃2

m, pre-stretching is dominant over bending forces and the
deformation d̃0 and time scale τ̃0 scale as k−3

x and k−4
x , respectively. However, when

π2B̃k2
x � T̃ l̃2

m, bending is dominant, and the deformation and time scale decrease as
k−5

x and k−6
x , respectively. From the definition of B̃, the condition for pre-stretching

dominance can be expressed as π2ẼY h̃3
mk2

x/12(1− ν2)T̃ l̃2
m� 1. Figure 4(b,c) presents

the maximum deformation and the time scale as a function of kx, respectively, for
three values of the membrane thickness, h̃m, showing that the deformation of a 10 µm
thick sheet scales as k−3

x throughout the investigated range, whereas the time scale
scales as k−4

x . As the membrane thickness increases, the bending effect becomes
apparent and for h̃m = 100 µm the amplitude and the time scale decrease as k−3

x and
k−4

x for sufficiently low kx values, but settle on a k−5
x and k−6

x dependence for high
wavenumbers. For h̃m= 1 mm, the bending effect is dominant and thus the amplitude
and the time scale decrease as k−5

x and k−6
x even for low wavenumbers. We note

that for the set of parameters chosen here, even the first modes corresponding to the
largest deformation satisfy the small-deformation requirement of the model.

5. Effect of discretized actuation on the deformation field
Equation (2.13) may be solved to obtain the actuation field required to achieve

pre-defined deformation patterns of elastic plates, which may be desired in engineering
applications. However, implementation of the resulting continuous actuation distribution
may be challenging in practice. We here consider a discrete actuation profile,
consisting of D × D individual squares, and seek to minimize the error between
the resulting and desired deformation, for a given level of discretization. Specifically,
actuating square i with amplitude ai yields a deflection aidi(x, y) given by (3.2a),
such that the resulting deformation is

∑D2

i=1 aidi(x, y). For a given desired deformation
d(x, y), we follow a least-squares method (Bjorck 1996) and seek to minimize the
error

∫ lm

0

∫ wm

0

 D2∑
i,j=1

aidi − d

2

dx dy=
D2∑

i,j=1

aiajAi,j − 2
D2∑
i=1

aibi + c, (5.1)

where

Ai,j =

∫ lm

0

∫ wm

0
didj dx dy, bi =

∫ lm

0

∫ wm

0
did dx dy, c=

∫ lm

0

∫ wm

0
d2 dx dy. (5.2a−c)

Differentiating (5.1) with respect to each ai and equating to zero yields the optimality
condition

Aa= b, (5.3)

where a = [a1, a2, . . . , aD2]
T, b = [b1, b2, . . . , bD2]

T and A is a symmetric D2
×

D2 matrix with rank D2
− D and thus is not invertible (singular). The singularity of

A stems from the fact that the source term in (2.13) depends on gradients of the
actuation field, thus allowing an associated gauge freedom in the choice of actuation
(coefficients ai) without modifying the resulting deformation. Specifically, for the case
of a driving force fFx acting in x̂ the direction, it follows that adding an arbitrary
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FIGURE 5. The effect of actuation discretization on the shape and the magnitude of the
deformation. (a) Deformation formed by the continuous driving force fFx shown in (c),
acting in the x̂ direction. (b) Deformation obtained from 4 × 4 square-shaped actuation
regions, each having a uniform value which is found by solving the least-squares problem
(5.3) and shown in (d). (e, f ) Deformation along the x̂ and ŷ axes, respectively, for
different levels of discretization.
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FIGURE 6. (Colour online) Demonstration of the use of a least-squares discretization
method for creation of a complex deformation. (a) Top view of a microfluidic
configuration, in which black lines represent the confining walls, characterized by step-like
behaviour. (b) The deformation field (colour map) obtained from 28 × 28 square-shaped
actuation regions, each having a uniform value found by solving the least-squares problem
(5.3). (c) Deformation along the two cross-sections, depicted in (a) and (b), showing that
discretization results in undesired oscillations of the deformation field. Dashed and solid
lines correspond to the chosen and obtained deformation, respectively.

function f0(y) to the driving force, which has D values in discrete form, will not
modify the resulting deformation.

To determine the coefficients ai, we first reduced the matrix A and vector b only
to rows with corresponding non-zero eigenvalues of A, obtaining a (D2

− D)× (D2)

matrix and a (D2
−D)× (1) vector, respectively. We then solved the reduced system

(5.3) and found the vector a using MATLAB’s routine lsqminnorm (release R2017b,
Mathworks, USA), which computes the minimum least-squares solution of the system.
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As an illustrative example, we consider a localized deformation,

d(x, y)= (2/π)12x3(π− x)3y3(π− y)3, (5.4)

shown in figure 5(a), and for simplicity assume a membrane regime (dominant pre-
stretching, λ = 0). Using (2.13), the continuous driving force fFx required to create
this deformation (at steady state) is given by

fFx(x, y)=−
∫ x

π/2
∇

4
‖
d(x′, y) dx′, (5.5)

and shown in figure 5(c). Figure 5(d) shows the discretization of this field into
4 × 4 square-shaped regions, each assigned with a uniform value obtained from the
least-squares method solution of (5.3). Figure 5(b) presents the resulting deformation
obtained by superposition of solutions for individual squares (3.2), using the values
for forcing shown in figure 5(d). Figure 5(e, f ) presents the deformation along the
x̂ and ŷ axes, respectively, for different levels of discretization. While, as expected,
discretization results in undesired oscillations of the deformation field due to high
wavenumbers which are unbalanced, even a relatively coarse discretization with D= 4
allows maintaining of a fairly localized deformation, with amplitude only larger by
4 % than the desired one. For higher levels of discretization (D= 6 and D= 8), the
difference between the resulting and desired deformations is almost indistinguishable.

To challenge our method of solution, we consider the microfluidic configuration
shown in figure 6(a), in which the deformation magnitude is dictated strictly
by 0 and 1, represented in the figure by white and black colours, respectively.
Clearly, the exact description of this deformation field requires an infinite number of
wavenumbers which cannot be represented by a finite grid discretization. Nevertheless,
the deformation obtained using 28 × 28 square-shaped actuation regions is able to
reproduce the main features of the geometry as shown in figure 6(b), although with
undesired oscillations. For further clarification, figure 6(c) presents the deformation
along the two cross-sections, illustrated in figure 6(a,b), showing that the maximal and
minimal deformations are approximately by 11 % and 18 % larger than the desired
one, respectively.

6. Investigation of nonlinear effects
In the previous sections we restricted our analysis to a strongly pre-stretched elastic

sheet, α� 1, and small elastic deformations, β� 1, and solved the linear governing
equation (2.13) for the deformation field. In this section, we relax these restrictions
and explore the nonlinear effects arising from the hydrodynamic nonlinearity in
the Reynolds equation, h3, and the nonlinear coupling between the tension and
deformation in the Föppl–von Kármán equations. However, we limit our nonlinear
analysis to positive deformations, d > 0. We first study theoretically the weakly
nonlinear effect of internal tension on the deformation (§ 6.2) and then investigate
numerically the nonlinear effects considering finite α and β (§ 6.3). To this end,
we consider an axisymmetric geometry which allows reduction to a single spatial
variable and thus greatly simplifies theoretical and numerical investigation. This
simple case is useful in providing physical insight on the nonlinear effects of α and
β on the deformation and tension field. We also note the analysis of the axisymmetric
configurations is relevant to adaptive optics applications, in which the liquid within
a circular microchamber, covered with a thin elastic membrane, is pressurized to
deform the membrane forming a plano-convex microlens (Chronis et al. 2003).
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6.1. Coupled Reynolds and nonlinear Föppl–von Kärmán equations

We consider a circular elastic sheet of radius R̃m subjected to axisymmetric driving
forces acting either through the pressure applied directly to the elastic sheet or
through the non-uniform slip velocity in the fluid. For simplicity, we neglect the
effect of bending and consider a membrane (tension-dominant) regime, λ� 1. Based
on these assumptions, the deformations of the elastic membrane are described by the
axisymmetric Föppl–von Kármán equations for the membrane (see Landau & Lifshitz
1959; Lister et al. 2013; Zheng, Griffiths & Stone 2015)

p̃=−∇̃r · (T̃r∇̃rd̃)+ p̃e, (6.1)

and

1
r̃
∂

∂ r̃

(
r̃3 ∂T̃r

∂ r̃

)
=−

ẼY h̃m

2

(
∂ d̃
∂ r̃

)2

, (6.2)

where ∇̃r = (∂/∂ r̃)r̂ is the gradient in polar coordinates, r̃ =
√

x̃2 + ỹ2 is the radial
coordinate and T̃r(r̃, t̃) is the radial tension resulting from both external and internal
tension formed in the membrane.

We define the normalized radial coordinate r = r̃/l̃, radial tension Tr = T̃r/T̃ and
dimensionless size of the membrane Rm = R̃m/l̃. Substituting the normalized variables
into (6.1)–(6.2) and using the results of scaling analysis in § 2.1 we obtain the non-
dimensional Föppl–von Kármán equations

p=−∇r · (Tr∇rd)+ pe, (6.3)

1
r
∂

∂r

(
r3 ∂Tr

∂r

)
=−

1
2
α

(
∂d
∂r

)2

. (6.4)

Substituting (6.3) into the nonlinear Reynolds equation (2.11), we obtain

∂d
∂t
+∇r · [h3

∇r[∇r · (Tr∇rd)]] =−∇r · [hf F] +∇r · [h3
∇rfE]. (6.5)

The evolution equation (6.5) and the second Föppl–von Kármán equation (6.4) are two-
way coupled nonlinear equations, governing the fluid–structure interaction, that should
be solved at once to obtain both deformation and tension fields.

The governing equations (6.4) and (6.5) are supplemented by six boundary
conditions. At the centre of the membrane, we require regularity of d(r, t) and
Tr(r, t)

∂d
∂r
= 0 and

∂Tr

∂r
= 0 at r= 0. (6.6a,b)

We also assume a zero flux q at the origin, given by q= r(−h3∂p/∂r + (1/2)huslip),
that under assumptions of finite uslip and ∂pe/∂r at r= 0 from (6.1) implies

lim
r→0

rh3 ∂

∂r

[
1
r
∂

∂r

(
rTr
∂d
∂r

)]
= 0. (6.7)
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At the edge of the membrane, we consider the following boundary conditions:

d= r
∂Tr

∂r
+ (1− ν)(Tr − 1)=

∂

∂r

(
rTr
∂d
∂r

)
= 0 at r= Rm. (6.8a−c)

The first two conditions (6.8a,b) correspond to no transverse displacement, and fixed
horizontal displacement at an outer circular frame holding the membrane, respectively.
The last condition (6.8c) is obtained, as previously, from the elastic balance (6.3) by
assuming the fluidic and external pressures are both zero at the boundaries, p= pe= 0.

6.2. Asymptotic analysis for weakly nonlinear effects due to induced tension
In this section, we use asymptotic analysis to study the weakly nonlinear effects
arising from internal tension formed in the elastic sheet during the deflection. We
apply asymptotic expansions to decouple the two-way coupled nonlinear equations
(6.5) and (6.4), assuming small deformation and strong pre-stretching of the elastic
membrane, and obtain a correction for the effect of induced internal tension.

Assuming small elastic deformations, β= d̃∗/h̃0�1, we eliminate the hydrodynamic
nonlinearity in the Reynolds equation and obtain

∂d
∂t
+∇

2
r [∇r · (Tr∇rd)] =−∇r · f F +∇

2
r fE. (6.9)

For the case of strongly pre-stretched elastic membrane, α = T̃in/T̃ � 1, we expand
the deformation and the tension in powers of α

d= d(0) + αd(1) +O(α2), Tr = 1+ αT (1)r +O(α2), (6.10a,b)

where α is a small parameter satisfying max(εRe,Wo, ε2, β, λ)� α� 1. Substituting
(6.10) into the coupled governing equations (6.4) and (6.9), results in three one-way
coupled linear equations for the leading-order deformation and the first-order
correction for the deformation and tension fields. In appendix D of the supplementary
material, we present a detailed derivation of the governing equations and the
appropriate boundary conditions at each order, and provide closed-form solutions
for the leading-order deformation and the first-order correction for the tension.

Similarly to § 3, as an illustrative example we consider the non-uniform electro-
osmotic slip velocity as a driving force and specifically focus on a spatially non-
uniform actuation of the form

f F(r, t)= VrJ1

(
χnr
Rm

)
H(t)r̂, (6.11)

corresponding to a zeta-potential distribution of ζ (r) = rJ1(χ1r/Rm), subjected to a
suddenly applied electric field Vr/r in the r̂ direction, where J1(χnr/Rm) is the Bessel
function of the first kind and of the first order, and χn is the nth root of J0(χn)= 0.
In our analysis, we hereafter focus on the first root, χ1 = 2.4048.

Using the governing equations and closed-form solutions derived in appendix D
of the supplementary material, we can obtain analytical solutions for d(0)(r, t) and
T (1)r (r, t) resulting from (6.11). The leading-order deformation field is

d(0)(r, t)=−
VrR3

m

χ 3
n

J0

(
χnr
Rm

) [
1− exp

(
−
χ 4

n

R4
m

t
)]

, (6.12)
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FIGURE 7. The effect of weak nonlinearity due to induced tension. (a,b) Comparison
between asymptotic and numerical results for the maximum deformation and tension at
steady state as a function of α. Dashed black and grey lines correspond to the leading- and
first-order asymptotic solutions, respectively, while black dots correspond to the numerical
solution. (c,d) Comparison between asymptotic (dashed lines) and numerical (solid lines)
solutions for the steady-state deformation and tension, respectively, for α = 0, 0.5 and 1.
All calculations were performed using β = 0, Vr =−2, ν = 0.5 and Rm = 2.

while the first-order correction for tension distribution reads

T (1)r (r, t)=
V2

r R4
m

4χ 4
n

[
νJ1(χn)

2

1− ν
+ J0(r̄)2 + J1(r̄)2 −

J0(r̄)J1(r̄)
r̄

]
[1− e−(χ

4
n /R

4
m)t]

2, (6.13)

where r̄ = χnr/Rm. The maximum value T (1)r,max is obtained at the centre of the
membrane

T (1)r,max =
V2

r R4
m

4χ 4
n

[
νJ1(χn)

2

1− ν
+

1
2

]
. (6.14)

While it is difficult to obtain a closed-form solution for transient first-order
deformation d(1)(r, t), the corresponding steady-state deformation depends solely
on the spatial coordinate and admits a closed-form solution

d(1)s (r)=
∫ Rm

r
T (1)r,s

dd(0)s

dξ
dξ, (6.15)

where the subscript s denotes the steady state.
Figure 7 summarizes the effect of weak nonlinearity due to induced tension on the

deformation and tension resulting from the forcing (6.11). Figure 7(a,b) presents the
maximum deformation and tension at steady state as a function of α. Dashed black
and grey lines correspond to the leading- and first-order asymptotic solutions obtained
from (6.12), (6.14) and (6.15), whereas black dots correspond to the numerical
solution. While the leading-order deformation and tension are independent of α, the
first-order correction and numerical solution clearly show the reduction in deformation
magnitude and the increase in the resulting tension, respectively, as the parameter α
increases. In figure 7(c,d) we compare the asymptotic (dashed lines) and numerical
(solid lines) solutions for the steady-state deformation and tension fields in the case
of α= 0, 0.5 and 1, showing good agreement. As can be inferred from the results of
figure 7, for α � 1 the first-order asymptotic solutions (6.13) and (6.15) accurately
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FIGURE 8. Investigation of nonlinear effects on the transient behaviour and the magnitude
of deformation. (a,b) The time evolution of the deformation field for β = 0 (a) and
β = 0.1 (b), in the case of a strongly pre-stretched elastic membrane, α = 0. Grey solid
lines represent the numerical results and black dashed lines represent the leading-order
asymptotic solution (6.12). (c) The maximum deformation, obtained at the centre of the
membrane, as a function of time for various values of β, with α= 0. (d) The maximum
deformation, in dimensional form, scaled by the initial fluid thickness, d̃max/h̃0=βdmax as a
function of the parameter β, for various values of α. In (c,d) solid lines and dots represent
the numerical results, respectively, and the dashed black curve represents the asymptotic
solution (6.12). All calculations were performed using Vr =−2, ν = 0.5 and Rm = 2.

describe the behaviour of the deformation and tension fields, but as α approaches and
passes O(1) the asymptotic solutions overpredict them. Nevertheless, dmax and Tr,max

continue to decrease/increase monotonically with α and for α � 1 scale like α−1/3

and α1/3, respectively, as shown by the nonlinear investigation in figure 9.

6.3. Numerical investigation of nonlinear effects
To investigate the nonlinear effects of finite α and β on the deformation and tension
field, we proceed with a numerical analysis of the viscous–elastic governing equations
(6.4)–(6.5). To study the effect of hydrodynamic nonlinearity (h3) on the transient
behaviour and on the magnitude of deformation, we consider for simplicity the
case of a strongly pre-stretched elastic membrane with Tr = 1 (α = 0) and solve
numerically the nonlinear evolution equation (6.5) for the deformation using finite
differences. In addition, to explore the combined effect of internal tension and
hydrodynamic nonlinearity on the steady-state behaviour, we solve numerically the
corresponding steady-state boundary value problem (6.4)–(6.5) subject to the six
boundary conditions (6.6)–(6.8a-c) using MATLAB’s routine bvp4c. Further details
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FIGURE 9. (Colour online) Investigation of nonlinear effect of the induced tension on
the maximum displacement and tension. (a,b) Maximum displacement, βdmax= hmax− 1=
d̃max/h̃0 and tension, Tr,max, as a function of α, for β = 0.1, 0.5 and 1, obtained from
numerical solution of (6.4)–(6.5). For α�1, both deformation and tension are independent
of α, while for α� 1 the deformation decreases as α−1/3 and the tension increases as α1/3.
All calculations were performed using Vr =−2, ν = 0.5 and Rm = 2.

of the numerical procedures and their cross-validation are discussed in appendix E of
the supplementary material.

As shown in figure 8(a), we first validate our time-dependent numerical solver by
comparing the numerically determined deformation field (solid lines) for α = β = 0
with the leading-order asymptotic solution (6.12) (dashed lines), showing very good
agreement for all times. Figure 8(b) presents the time evolution of the deformation
profile (solid lines), for β= 0.1 and α= 0. Figure 8(c) shows the time evolution of the
maximum deformation, obtained at the centre of the membrane, for β= 0, 0.1, 0.2, 0.5
and α= 0. Solid lines represent the numerical results, whereas dashed lines represent
the leading-order asymptotic solution (6.12). It follows from figure 8(b,c) that as β
increases the resulting maximum deformation in dimensionless form decreases. This
behaviour can be explained as follows: since the viscous resistance scales as h−3

=

(1+ βd)−3, the increase in β leads to lower internal pressure gradient and thus lower
deformation.

Figure 8(d) presents the scaled maximum deformation βdmax as a function of
β, where the dots represent the numerical results for α = 0, 2, 8, and the dashed
curve represents the asymptotic solution (6.12), corresponding to α= β = 0. We note
that when exploring the nonlinear effects on the resulting magnitude of maximum
deformation it is more convenient to discuss βdmax rather than dmax, since the former
can be expressed as βdmax = hmax − 1 = d̃max/h̃0, representing the relative magnitude
of d̃ in terms of the initial fluid thickness, h̃0. The numerical analysis reveals that
the scaled maximum deformation d̃max/h̃0 increases nonlinearly with β throughout
the investigated range, showing a sub-linear behaviour, which is more pronounced
as α increases. Physically, this means that when d̃ becomes comparable to h̃0, the
dependence of the deformation on the applied electric field is no longer linear
due to internal tension and reduction in pressure, resulting in deformation that is
lower than predicted by the linear response. However, in the small-deformation and
strong pre-stretching limits, d̃max/h̃0 increases linearly with β, consistent with the
leading-order asymptotic solution (6.12) (dashed line). Furthermore, figure 8(d) shows
that, as expected, (6.12) reasonably predicts the maximum deformation, yielding
modest relative error (|(dnum

max − d(0)max)/d
num
max |. 12 %) for up to β = 0.1.
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Figure 9 illustrates the nonlinear effect of induced tension on the scaled maximum
deformation and tension for different values of β. It is evident that at small values
of α, corresponding to strong pre-stretching, the resulting maximum deformation and
tension are almost independent of α, up to α = O(1) (see also figure 7). For α� 1
and β . 1, performing scaling analysis of (6.4)–(6.5) (with r∼ 1), we obtain Tr∼ αd2

and Trd∼ Vr thus yielding

d∼ V1/3
r α−1/3 and Tr ∼ V2/3

r α1/3 for α� 1, β . 1, (6.16a,b)

which is consistent with the numerical results shown in figure 9. As expected, for
β . 1 the resulting maximum tension Tr,max indicates weak dependence on β over the
entire range of values of the parameter α, as shown in figure 9(b).

7. Concluding remarks
In this work, we examined the effect of pre-stretching and finite boundaries on the

elastohydrodynamics of an elastic sheet lying on top of a thin liquid film. Assuming
strong pre-stretching and small deformations of the lubricated elastic sheet, we used
the linearized Reynolds and Föppl–von Kármán equations to derive general analytical
solutions describing the deformation in a finite domain due to external forces. These
closed-form solutions for realistic configurations allow one to study the relationship
between the magnitude, time scale and resolution of elastic deformations, as well
as to examine spatially discretized actuation. The asymptotic analysis of weakly
nonlinear effect due to induced tension for the case of an axisymmetric configuration
showed that the first-order asymptotic solutions for the deformation and tension field
accurately capture the nonlinear trend even for α of O(1).

We obtained that in the small-deformation (d̃ � h̃0) and strong pre-stretching
(T̃in � T̃) limits, the scaling d̃ ∼ ε̃ζ̃ Ẽl̃∗3/T̃h̃2

0 (obtained from (2.6) combined with
(2.8)) is appropriate, showing a linear relation between d̃ and Ẽ, and may be used to
estimate the resulting deformation. However, this linear dependence of the deformation
on the applied forcing breaks down as d̃ becomes comparable to h̃0, indicating a
sub-linear behaviour, which is more pronounced as α = T̃in/T̃ increases.

While our main focus was on actuations applied by the fluid (specifically by
non-uniform electro-osmotic flow), the governing equation (2.12) can be readily
utilized to investigate the viscous–elastic dynamics due to forces applied directly on
the elastic sheet. For such actuation, as shown by the Reynolds equation (2.11), the
viscous flow arises only from temporal variation of the solid deformation field. Fluid
velocity and gauge pressure vanish as the deformation reaches steady state. This is
in contrast to the steady state of forcing applied to the fluid, which involves both
non-zero fluid velocity and gauge pressure. Furthermore, with appropriate modification
of the boundary conditions (e.g. prescribing an external pressure drop), the theoretical
model we presented can be readily extended to the study of fluid–structure interaction
in elastic microfluidic chips, where micro-channel flow may be driven, for example,
by external pressure gradients or peristaltic actuation.

Actuation at the microscale is currently implemented mostly using microelectro-
mechanical technologies, characterized by discrete and rigid elements. The presented
results lay the theoretical foundation for implementation of actuation mechanisms
based on low Reynolds number fluid–structure interaction. While our analysis focused
on small deformations, we believe it may be directly useful for the design of soft
and continuous actuators. For example, relevant deformations in configurable optics
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would be of the order of a wavelength (i.e. <1 µm in the visible spectrum), and
thus could be well described by our model when implemented on a 10 µm liquid
layer. Similarly, the field of microfluidics would highly benefit from configurable
microstructures of the order of 10 µm, which may be implemented on a 100 µm
thick liquid layer.
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