
Combinatorics, Probability and Computing (2014) 23, 140–160. c© Cambridge University Press 2013

doi:10.1017/S0963548313000345

Concentration of Lipschitz Functionals of

Determinantal and Other Strong Rayleigh Measures

ROBIN PEMANTLE1†and YUVAL PERES2

1Department of Mathematics, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, USA

(e-mail: pemantle@math.upenn.edu)
2Microsoft Research, 1 Microsoft Way, Redmond, WA 98052, USA

(e-mail: peres@microsoft.com)

Received 4 August 2011; revised 10 May 2013; first published online 19 September 2013

Let {X1, . . . , Xn} be a collection of binary-valued random variables and let f : {0, 1}n → R

be a Lipschitz function. Under a negative dependence hypothesis known as the strong

Rayleigh condition, we show that f − Ef satisfies a concentration inequality. The class

of strong Rayleigh measures includes determinantal measures, weighted uniform matroids

and exclusion measures; some familiar examples from these classes are generalized negative

binomials and spanning tree measures. For instance, any Lipschitz-1 function of the edges

of a uniform spanning tree on vertex set V (e.g., the number of leaves) satisfies the Gaussian

concentration inequality

P(f − Ef � a) � exp

(
− a2

8 |V |

)
.

We also prove a continuous version for concentration of Lipschitz functionals of a

determinantal point process.

2010 Mathematics subject classification: 60G55

1. Introduction

Our goal in this paper is to prove concentration inequalities for Lipschitz functions of

certain collections of negatively dependent binary-valued random variables. To illustrate

our general methods we state our main result in a special case that was motivated by a

question of E. Mossel (personal communication).

Theorem 1.1. Let G = (V , E) be a finite connected graph, let P be the uniform measure on

the spanning trees of G, and for e ∈ E let Xe be the indicator function of the event that e is

in the chosen spanning tree. Let f : {0, 1}E → R be any function with Lipschitz constant 1.
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Then

P(f − Ef � a) � exp

(
− a2

8 |V |

)
.

For example, we might take f to be one half the number of vertices whose degree in

the random tree is odd. This result is a consequence of more general results stated in

Sections 3 and 5.

1.1. Classical concentration inequalities

Let {Xn : n � 1} be independent Bernoulli random variables with respective means {pn}.
Let Sn :=

∑n
k=1Xk denote the partial sums, μn := ESn =

∑n
k=1 pk denote the means and

Vn :=
∑n

k=1 pk(1 − pk) denote the variance of Sn. The simple and well-known one-sided

tail estimate for Sn is the classical Gaussian bound

P(Sn − μn � a) � exp

(
−2a2

n

)
. (1.1)

Replacing Xn with 1 −Xn gives the two-sided bound

P(|Sn − μn| � a) � 2 exp

(
−2a2

n

)
. (1.2)

The bound (1.1) may be found, among other places, in [22, Corollary 5.2]. The references

given there include [13, (2.3)] as well as [4], which proves the result for identically

distributed variables.

When pn and 1 − pn are bounded away from zero, the variance of Sn is of order n

and this kind of bound is the best one can expect. However, when n � μn, one might

hope for uniformity in n via bounds in which the exponent depends on μn and not

on n. For example, if maxj�n pj is small then Sn is well approximated by a Poisson

variable with mean μn. The upper tail of a Poisson is not as thin as a Gaussian, being

exp[−Θ(a log(a/μ))] rather than exp[−Θ(a2/μ)]. The bound

P(Sn � a+ μ) � ea
(

μ

a+ μ

)a+μ

� exp

[
− a2

2(a+ μ)

]
(1.3)

is proved in [13, Theorem 1] and asymptotically matches the Poissonian upper tail.

1.2. Generalizations

Our aim is to generalize (1.1) or its Poissonian version (1.3) in two ways. Instead of Sn we

consider arbitrary Lipschitz functions of X1, . . . , Xn, and instead of independent Bernoullis

we consider a more general negatively dependent collection of binary random variables.

We will give a number of applications, but before this, we briefly discuss what is known

about each of the two generalizations separately.

For the first generalization, let Bn denote the rank-n Boolean lattice {0, 1}n and let

f : Bn → R be Lipschitz with respect to the Hamming distance. Replacing f by f/c

if necessary, we will lose no generality in assuming our Lipschitz functions to have

Lipschitz constant 1, and we do so hereafter; thus |f(x) − f(x′)| � 1 whenever x and x′
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are two strings differing in only one position. When P is a product measure, a well-known

generalization of (1.1) [22] is

P(f − Ef � a) � e−2a2/n. (1.4)

For the second generalization, we say that a collection of random variables {Xj} in

{0, 1} is negatively cylinder-dependent if

P(Xj = 1 for all j ∈ S) �
∏
j∈S

pj (1.5)

and

P(Xj = 0 for all j ∈ S) �
∏
j∈S

(1 − pj). (1.6)

Negative cylinder dependence implies the inequalities (1.1)–(1.2) (see, e.g., [23, Theorem 3.4]

with λ = 1). Lyons [21, Section 6] lists extensions and applications including one to balls

in bins [5] and one to determinantal measures [26].

It is not known whether these two generalizations can be combined. The random

variables {Xj : 1 � j � n} are said to be negatively associated if Efg � (Ef)(Eg) for every

pair f, g of increasing functions on {0, 1}n such that f(X1, . . . , Xn) depends only on the

values {Xi : i ∈ S} and g(X1, . . . , Xn) depends only on the values {Xi : i /∈ S}, for some

subset S ⊆ {1, . . . , n}. By induction, this implies the weaker property of negative cylinder

dependence. E. Mossel (personal communication, 2009) asked us whether the following

holds.

Conjecture 1.2. Let X1, . . . , Xn be negatively associated binary-valued random variables. Let

f : {0, 1}n → R be Lipschitz-1 and denote fn := f(X1, . . . , Xn). Then (1.4) holds with the

bound exp(−2a2/n) replaced by c0 exp(−c a2/n) for some positive constants c0 and c.

To see why the exponent must be weakened, consider the example of Bernoulli random

variables X1, . . . , Xn with n even, {X1, . . . , Xn/2} independent with mean 1/2, and Xn/2+j =

1 −Xj for 1 � j � n/2. These are negatively associated, and yet the Lipschitz-1 function

f :=

n/2∑
j=1

Xj −
n∑

j=n/2+1

Xj

has tail probabilities on the order of e−a2/n. It is possible that this is the worst example

and that the conjecture holds with c = 1, but a resolution of the conjecture would be

interesting even without the optimal value of c. A recent paper [7] appears to settle this

conjecture and more, but the relevant result in that paper, Theorem 2, is not correct, the

proof therein failing at equation (6).

Recent investigations of negative dependence properties indicate that negative associ-

ation may not be sufficiently robust to use as a hypothesis in this context. The problem

was posed in [24] to find a more useful negative dependence property; this was answered

in [2], who showed that the strong Rayleigh property implies negative association and
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many other desirable consequences, and is stable under probabilistic operations such as

conditioning, symmetrizing and reweighting.

Our main result implies that Conjecture 1.2 holds with c = 1/8 if one assumes the strong

Rayleigh property rather than just negative association. The strong Rayleigh property

is known to hold for most standard examples in which negative association is known

to hold, so this gives up little generality, and moreover the strong Rayleigh property is

usually easier to check than is negative association. Indeed, for some of the measures

described below, the only way we know they are negatively associated is by establishing

the strong Rayleigh property. Several classes of measures satisfying the strong Rayleigh

property are:

• determinantal measures and point processes,

• Bernoullis conditioned on the sum,

• measures obtained by running exclusion dynamics from a deterministic starting state

(or more generally, exclusion with birth and death).

An overview of the rest of the paper is as follows. In the next section we introduce the

strong Rayleigh property and discuss its consequences. One important consequence for us

will be the stochastic covering property , which is all we use to derive our basic concentration

inequality. In Section 3 we state our results, and these are proved in Section 4. Section 5

contains a number of applications.

2. Strong Rayleigh property, stochastic covering property, and other negative

dependence conditions

Let [n] denote {1, . . . , n} and let Bn := {0, 1}n denote the Boolean lattice of rank n,

with coordinatewise partial order. The function N : Bn → Z
+ will be used throughout to

denote the counting function defined by N(ω) :=
∑n

j=1 ωj . A measure ν on Bn is said

to be k-homogeneous if ν is supported on the set of {ω : N(ω) = k}. The probability

measure ν on Bn is said to be negatively associated if
∫
fg dν � (

∫
f dν)(

∫
g dν) for every

pair of non-negative monotone functions f and g such that, for some set S ⊆ [n], the

function f depends only on coordinates {ωj : j ∈ S} while the function g depends only

on coordinates {ωj : j ∈ Sc}.
The strong Rayleigh condition is said to hold for a measure P on Bn if the generating

function

∑
ω∈Bn

P(ω)

n∏
j=1

z
ωj
j

has no roots (z1, . . . , zn) all of whose coordinates lie in the (strict) upper half-plane. This

and many consequences are given in [2], including (implicitly) the stochastic covering

property (see Proposition 2.1), which was conjectured [24, Conjecture 9] to follow from

something a little weaker. Some of the relevant implications are summarized in Figure 1.

The definition of the stochastic covering property requires a few preliminary definitions.

Recall that a measure ν on a partially ordered set is said to stochastically dominate a

measure ρ, denoted ν � ρ, if ν(A) � ρ(A) for every upwardly closed set A. An equivalent
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Figure 1. Relations among negative dependence properties.

condition is that there exists a coupling, that is a measure Q on Bn × Bn with respective

marginals ν and ρ, supported on the set {(x, y) : x � y}. If P is a measure on Bn making

the coordinate variables {Xi : 1 � i � n} negatively associated, an immediate consequence

of negative association is that the conditional measure (P |Xn = 0) on Bn−1 stochastically

dominates the conditional measure (P |Xn = 1).

We say that the probability measure ν on Bn stochastically covers another probability

measure ρ if there is a measure on B2
n with first marginal ν and second marginal ρ (in

other words, a coupling) supported on the set of pairs (x, y) for which x = y or x covers

y in the coordinatewise partial order; here x is said to cover y when x > y but there

is no z such that x > z > y. We denote the covering relation in Bn by x ·> y, and one

measure covering another by ν � ρ. Stochastic covering is strictly stronger than stochastic

domination, and may be thought of as ‘stochastic domination, but by at most 1’.

Stochastic covering combines stochastic ordering with closeness in the so-called L∞-

transportation metric, defined on probability measures on a given metric space as follows:

d∞(μ, ν) is the least ρ such that there is a coupling of μ and ν supported on the set

{(x, y) : |x− y| � ρ}. Thus μ � ν implies d∞(μ, ν) � 1. This is useful because if ||f||Lip

denotes the Lipschitz norm on Lipschitz functions, then∣∣∣∣
∫
f dμ−

∫
f dν

∣∣∣∣ � ||f||Lip d∞(μ, ν). (2.1)

Suppose that x � y and we compare the conditional laws Px := (P |Xj = xj, j ∈ S) and

Py := (P |Xj = yj , j ∈ S) on the remaining coordinates, that is, as laws on {0, 1}Sc . If P

and all its conditionalizations are negatively associated, it follows that Px 
 Py .

Definition (stochastic covering property). We say that a probability measure ν on Bn has

the stochastic covering property if, for every S ⊆ {1, . . . , n} and for every x, y ∈ {0, 1}S
with x ·> y, the conditional law (ν |Xj = xj, j ∈ S) is covered by the conditional law

(ν |Xj = yj , j ∈ S).

In [2, Theorem 4.2] it was shown that strong Rayleigh property implies the projected

homogeneous Rayleigh property (PHR), meaning that the measure can be embedded as

the first n coordinates of a homogeneous measure ν ′ on Bm, for some m � n, that has the

ordinary Rayleigh property; the ordinary Rayleigh property is that the partial derivatives

of the generating function F(z1, . . . , zn) := E
∏n

j=1 z
Xj
j satisfy FiFj � FijF at any point with

positive real coordinates. We record two further consequences.
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Proposition 2.1. PHR (and hence strong Rayleigh) implies the stochastic covering property.

Proof. PHR implies negative association of all conditionalizations (CNA) [2, The-

orem 4.10]; the homogeneous extension ν ′ witnessing the PHR property is also PHR hence

also CNA. By negative association, if x ·> y then (ν ′ |Xj = yj , j ∈ S) � (ν ′ |Xj = xj, j ∈ S),

when viewed as measures on the coordinates in [m] \ S . Because ν ′ is homogeneous, the

coupling that witnesses this � relation in fact witnesses the relation �. Restricting to

[n] \ S we see that (ν |Xj = yj , j ∈ S) � (ν |Xj = xj, j ∈ S).

Proposition 2.2 ([2, Theorem 4.19]). Let P be a strong Rayleigh measure on Bn. Let Pk

denote P conditioned on N = k. Then for every 0 � k � n− 1 such that P(N = k) and P(N =

k + 1) are both non-zero, we have the covering relation Pk+1 � Pk .

3. Results

The chief consequence of the strong Rayleigh property that we use to prove concentration

inequalities is the stochastic covering property. Although all of our examples so far of

measures with the SCP are in fact strong Rayleigh, we note that this may not be the case

in the future, and with this in mind, we state a result that uses only the SCP.

Theorem 3.1 (homogeneity and SCP imply Gaussian concentration). Let P be a k-homo-

geneous probability measure on Bn satisfying the SCP. Let f be a Lipschitz-1 function on

Bn. Then

P(f − Ef � a) � exp

(
− a2

8k

)
.

Remarks. (i) Replacing f with −f gives immediate two-sided bounds:

P(|f − Ef| > a) � 2 exp

(
−a2

8k

)
. (3.1)

(ii) Replacing every Xi by 1 −Xi if necessary, we may assume without loss of generality

that k � n/2, whence

P(f − Ef > a) � exp

(
−a2

4n

)
. (3.2)

For strong Rayleigh measures that are not necessarily homogeneous, we have the

following result.
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Theorem 3.2 (Gauss–Poisson bounds for general strong Rayleigh measures). Let P be

strong Rayleigh with mean μ = EN. Let f : Bn → R be Lipschitz-1. Then

P(f − Ef > a) � 3 exp

(
− a2

16(a+ 2μ)

)
,

P(|f − Ef| > a) � 5 exp

(
− a2

16(a+ 2μ)

)
.

Remark. Because a, μ � n, the denominator in these inequalities may be replaced by 48n.

Continuous versions

Continuous versions of these results may be stated in terms of point processes, which we

now briefly review. Formally, a point process on a space S is a random counting measure

on S . In other words, a point process is a map Z defined on a probability space (Ω,F ,P)

taking values in the space of counting measures on S , a counting measure being one that

takes only integer values or +∞. Intuitively, one envisions the sample counting measure

Z(ω) as a set of points such that the sum of delta functions at these points is the sample

counting measure.

If the number k of points in the support of Z is deterministic, we may dispense with

much of the formalism by ordering the points in the support of Z uniformly at random

and identifying the process Z with the resulting exchangeable probability law on sequences

of length k in S . Notationally, if Z is a k-homogeneous point process on R
d with law

P, we denote by P↑ the corresponding exchangeable law on (Rd)k . For 1 � j � k, we use

Xj to denote the ‘jth random point’, that is, the jth coordinate function on (Rd)k . The

following sampling algorithm for any k-homogeneous point process is almost trivial once

one identifies Z with P↑, and yet it is a generalization of an algorithm previously proved

only in the case of determinantal point process in [15, Proposition 4.4.3].

Lemma 3.3 (sampling in k steps). Let Z be a k-homogeneous point process on a standard

Borel space S and let P↑ be the corresponding exchangeable measure on Sk . Then for 0 �
j < k there are regular conditional distributions Qx1 ,...,xj for the law of Xj+1 given X1 =

x1, . . . , Xj = xj such that the following procedure samples from P↑:

Sample X1 from Q∅.

Recursively, conditional on X1 = x1, . . . , Xj = xj , sample Xj+1 from Qx1 ,...,xj .

When S is finite, let R denote the random set {X1, . . . , Xn}. Then the law Qx1 ,...,xj is equal to

1/(k − j) times the conditional intensity measure of R \ {x1, . . . , xj} given x1, . . . , xj ∈ R.

Proof. Any standard Borel space admits regular conditional distributions [6, The-

orem 4.1.6]. The sampling algorithm essentially restates the definition of regular con-

ditional probabilities for sequential sampling. Because P↑ is exchangeable, conditioning on

Xi1 = x1, . . . , Xij = xj gives the same exchangeable measure on the sequence of remaining

elements of R for any i1, . . . , ij . Thus, for any x other than x1, . . . , xj , we have

P(x ∈ R | x1 ∈ R, . . . , xj ∈ R) = (k − j)P(Xj+1 = x |X1 = x1, . . . , Xj = xj)

which is the final conclusion.
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Remark. In the case of a measure on a finite set of size n, the main point of this

sampling scheme is to sample in k steps rather than n steps, so as better to control the

Azuma martingale. But also, sequential conditioning on x ∈ R can be easy to compute.

For example, conditioning on an edge being in a spanning tree replaces the original graph

by a contraction along that edge.

Intuitively, there is a stochastic covering property for point processes defined to hold

when conditioning on the presence of a point depresses the process everywhere else but

by at most one point. To make this definition precise, start by extending the notion of

one measure stochastically covering another to point processes. We say the point process

Z stochastically covers the point process W if there is a coupling of these two laws on

counting measures supported on pairs (μ, ν) such that μ = ν or μ = ν + δx for some x.

Metrizing the space of finite counting measures on S by the total variation distance, we

see as before that if Z �W then d∞(L(Z),L(W)) � 1.

Next, given a k-homogeneous point process Z on a space S , we let Zx1 ,...,xj denote

the (k − j)-homogeneous point process whose law is the law of {Xj+1, . . . , Xk} when

sampling according to the procedure in Lemma 3.3 conditional on X1 = x1, . . . , Xj = xj .

The k-homogeneous point process Z is said to have the stochastic covering property if

Zx1 ,...,xj � Zx1 ,...,xj+1

for all choices of x1, . . . , xj+1. Note that the left-hand side is (k − j)-homogeneous while

the right-hand side is (k − j − 1)-homogeneous.

Theorem 3.4. Let Z be a k-homogeneous point process on a standard Borel space S and

let f be a Lipschitz-1 function (with respect to the total variation distance) on counting

measures with total mass k on R
d. If Z has the SCP, then

P(f − Ef � a) � exp

(
− a2

8k

)
.

For point processes that are not homogeneous, as in the discrete case, we require more

than the SCP. Rather than defining a notion of strong Rayleigh here, we will stick to

the case of determinantal point processes, this being where all of our examples arise; see

Section 6 for definitions.

Theorem 3.5. Let Z be a determinantal point process with EN = μ < ∞. Let f be a

Lipschitz-1 function on finite counting measures. Then

P(f − Ef � a) � 3 exp

(
− a2

16(a+ 2μ)

)
,

P(|f − Ef � a) � 5 exp

(
− a2

16(a+ 2μ)

)
.
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4. Proofs

4.1. The classical proofs

To prove bounds such as (1.1), one obtains an upper bound for EeλSn and then

applies Markov’s inequality, choosing λ optimally. Underlying the bounds on EeλSn are

corresponding bounds for compensated increments. Let Δ denote a variable with mean

zero. Three classical exponential bounds are as follows:

|Δ| � 1 ⇒ EeλΔ � eλ
2/2, (4.1)

Δ ∈ [r, s] ⇒ EeλΔ � eλ
2(s−r)2/8, (4.2)

Δ ∈ [r, s] ⇒ EeλΔ � exp
[
(eλ − 1 − λ) |rs|

]
, (4.3)

when |r − s| � 1. These are used together with the following two special cases of Markov’s

inequality:

EeλX � ecλ
2/2 =⇒ P(X � a) � e−a2/(2c), (4.4)

EeλX � eb (eλ−λ−1) =⇒ P(X > a) � ea
(

b

a+ b

)a+b

� exp

[
− a2

2(a+ b)

]
. (4.5)

These inequalities have appeared many times in the literature. Inequalities (4.1) and (4.4)

constitute the classical Azuma–Hoeffding inequality and imply

Eeλ(Sn−μn) � eλ
2n/2, (4.6)

P(Sn − μn � a) � e−a2/(2n). (4.7)

This is valid for any martingale with differences bounded by 1; an exposition can be

found in [1, Theorem 7.2.1]. The improvement to (4.2) is present already in [13], though

the exposition in [22] is clearer (see Lemma 5.8 therein). When the increments of Sn − μn
are compensated Bernoullis, one may take b− a = 1 rather than 2, resulting in an

improvement by a factor of 4 in the exponent,

Eeλ(Sn−μn) � eλ
2n/8, (4.8)

which together with (4.4) yields (1.1). Finally, (4.3) and induction yield

Eeλ(Sn−μn) � e(e
λ−λ−1)Vn � e(e

λ−λ−1) μn , (4.9)

where Vn :=
∑n

k=1 pk(1 − pk) is the variance of Sn; together with (4.5) this implies (1.3).

These results appear in [9, (1.3)–(1.6)], for example.

To prove the generalization to Lipschitz functions, let

Mk := E
(
f(X1, . . . , Xn) |X1, . . . , Xk

)
− Ef(X1, . . . , Xn).

It is immediate that {Mk} is a martingale and that, conditional on X1, . . . , Xk−1, the two

possible values ofMk differ by at most 1. Hence, conditional on X1, . . . , Xk−1, the increment

Δk := Mk −Mk−1 is constrained to an interval of length at most 1. Applying (4.2) then

yields (1.4).

The extension of inequalities (1.1)–(1.2) to negatively cylinder-dependent random

variables is established by examining the power series for eλSn . This may be expanded
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into positive sums of expectations of products of powers of the variables {Xj : 1 �
j � n}. Negative cylinder dependence implies that these are bounded from above by

the corresponding products of expectations. Therefore, (4.8) and (4.9) hold when the

assumption of independence is replaced by negative cylinder dependence, whence the

probability inequalities (1.1) and (1.3) hold as well. This and more is shown in [23,

Theorem 3.4], specializing their more general negative cylinder property to λ = 1. We

remark that only the first inequality (1.5) in the definition of negative cylinder dependence

is used to obtain bounds on EeλSn for λ > 0, which suffices for the upper tail bounds.

Lower tail bounds require these inequalities for λ < 0, for which the second inequality (1.6)

is required.

4.2. Proof of Theorems 3.1 and 3.4

Theorem 3.1 is a special case of Theorem 3.4. This is because any probability measure μ

on Bn may be viewed as the law of a point process on the n element set [n], where the

random counting measure Z(ω) is defined by Z(ω)(S) =
∑

j∈S ωj . Informally, the points

of the process are the coordinates of the ones in the sample ω. With this interpretation,

the SCP on Bn is inherited from the SCP for the point process Z , whence Theorem 3.4

with S = R (or any other standard Borel space containing [n]) implies Theorem 3.1. It

remains to prove Theorem 3.4.

Let (Ω,F ,P) be a probability space on which is constructed the generalized sampling

scheme described in Lemma 3.3. Let Fj := σ(X1, . . . , Xj) and let

Mj := E(f |Fj) − Ef (4.10)

denote the martingale of sequential revelation. Applying the method of bounded differ-

ences is now mostly a matter of bookkeeping. At a sample point where Xi = xi, 1 � i � k,

the quantity Mj may be written as the integral of f against the law of the point process

Zx1 ,...,xj +

j∑
i=1

δxi .

By the SCP, we have Zx1 ,...,xj � Zx1 ,...,xj+1
, whence

d∞

(
Zx1 ,...,xj +

j∑
i=1

δxi , Zx1 ,...,xj+1
+

j+1∑
i=1

δxi

)
� 2.

By the Lipschitz assumption on f, it follows that |Mj+1 −Mj | � 2. We now apply the

basic Azuma–Hoeffding inequality (4.7) to {Mj/2}1�j�k , yielding

P(f − Ef � a) = P

(
Mk

2
>
a

2

)
� exp

(
− a2

8k

)
.

4.3. Proof of Theorem 3.2

In this section we assume P is the law of a strong Rayleigh measure on Bn with finite mean

EN = μ. We also let f denote an arbitrary but fixed Lipschitz-1 function on configurations,
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and define a function φ on Z
+ by

φ(k) := E(f |N = k).

Lemma 4.1. The variable N is distributed as the sum of independent Bernoullis.

Proof. In the definition of the strong Rayleigh property, setting the variables z1, . . . , zn
equal produces a univariate polynomial with no roots in the upper half-plane. As pointed

out at the beginning of Section 3 of [2], such a polynomial with real coefficients must

have all its roots real. Since the coefficients are non-negative, this implies that it is the

generating function for a convolution of Bernoullis.

Lemma 4.2. The variable N satisfies

Eeλ(N−μ) � exp
[
μ(eλ − 1 − λ)

]
and consequently, for any a > 0,

P

(
N � μ+

a

2

)
� exp

(
− (a/2)2

2(μ+ a/2)

)
.

Proof. By Lemma 4.1 N is distributed as the sum of independent Bernoullis, which

implies the first inequality; this implies the second inequality by (4.5).

Lemma 4.3. The function φ is Lipschitz-1.

Proof. By Proposition 2.2 in the case of strong Rayleigh measures on Bn, we know that

Pk+1 � Pk . By definition of the stochastic covering relation, (φ(k + 1), φ(k)) may be written

as E(f(η), f(ξ)) where d(η, ξ) = 1 almost surely. The conclusion then follows from the fact

that f is Lipschitz-1.

Lemma 4.4. The random variable φ(N) satisfies the concentration inequality

Eeλ(φ(N)−Eφ(N)) � eμ(e
λ−1−λ).

Consequently, the upper tails of φ(N) obey the bound

P(φ(N) − Eφ(N) > t) � e− t2

2(t+μ) .

Proof. Pursuant to Lemma 4.1, let {Yj} be a finite or countably infinite collection of

independent Bernoulli variables whose sum has the same law as N; we may therefore

prove the statements with N replaced by
∑

j Yj . Write

φ

(∑
j

Yj

)
− Eφ

(∑
j

Yj

)
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as the final term of a martingale {M�}, where

M� := E

(
φ

(∑
j

Yj

)
|F�

)
− Eφ and F� := σ(Y1, . . . , Y�).

If the number of Bernoullis is infinite, the final term is a limit almost surely and in L2. The

martingale {M�} is a binary martingale, meaning that conditional on F�, the distribution

of M�+1 is concentrated on two values. In other words,

(M�+1 |F�) = pδr + (1 − p)δs,

where p is the mean of the Bernoulli variable Y�+1. More importantly, r =
∫
f dμ and

s =
∫
f dν, where μ is the conditional law of

∑
j Yj given the values of Y1, . . . , Y� (which

are measurable with respect to F�) and given Y�+1 = 1, and ν is the conditional law of∑
j Yj given the values of Y1, . . . , Y� and given Y�+1 = 0. Clearly μ and ν are probability

measures on Z
+ satisfying d∞(μ, ν) � 1, whence, because φ is Lipschitz-1, we see that

|r − s| � 1. From (4.3) we then obtain

E
(
eλ(M�+1−M�) |F�

)
� exp

(
p(1 − p)(eλ − 1 − λ)

)
.

The lemma follows by induction.

Proof of Theorem 3.2. The event {f − Ef > a} is contained in the union of three events:{
N > μ+

a

2

}
∪

{
φ(N) − Ef >

a

2

}
∪

{
f − φ(N) >

a

2
, N � μ+

a

2

}
.

Thus P(f − Ef > a) is bounded above by the sum of the corresponding probabilities. Each

of the first two pieces is bounded above by exp[−a2/(4(a+ 2μ))]: the first follows from

Lemma 4.2 and the second uses Lemma 4.4, noting that Eφ = E E(f |N) = Ef. The last

piece is bounded above by exp[−a2/(16(a+ 2μ))]. To see this, observe that the measures

Pk are all strong Rayleigh (this is [2, Corollary 4.18]). For any k � μ+ a/2, we can apply

Theorem 3.1 to the homogeneous measure Pk , obtaining

P

(
f − φ(N) >

a

2
|N = k

)
� exp

(
− (a/2)2

8k

)
� exp

(
− a2

16(a+ 2μ)

)
.

Reassembling these gives the upper bound

P

(
f − φ(N) >

a

2
, N � μ+

a

2

)
� exp

(
− a2

16(a+ 2μ)

)
.

This last piece has the worst bound; using it for all three pieces gives the first inequality

of the theorem; we remark that the better upper bound of

2 exp[−a2/(4(a+ 2μ))] + exp[−a2/(16(a+ 2μ))]

is in fact valid.

For the two-sided bound, we need to consider two more events in addition to the three

already considered, namely the events

{φ(N) − Eφ(N) < −a/2} and {f − φ(N) < −a/2, N � μ+ a/2}.
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Figure 2. Some classes of strong Rayleigh measures.

The arguments for these two extra events are exactly analogous to two of the three

arguments we have already seen, leading to a bound of exp[−a2/(16(a+ 2μ))] for each of

the two new summands and establishing the two-sided bounds.

5. Applications

In this section we discuss some classes of measures known to satisfy the hypotheses of our

concentration results. The Venn diagram in Figure 2 gives a sense of how these classes

intersect each other.

5.1. Matroids

A collection C of subsets of a finite set E, all of a given cardinality, k, is said to be

the set of bases of a matroid if it satisfies the base exchange axiom (see, e.g., [27]): if

A and B are distinct members of C and a ∈ A \ B, then there exists b ∈ B \ A such that

A ∪ {b} \ {a} ∈ C. Given a matroid, it is natural to consider the uniform measure on C.

More generally, the weighted random base is chosen from the probability measure

νw(B) := C
∏
e∈B

w(e),

where {w(e) : e ∈ E} is a collection of non-negative real numbers (weights) and C is

a normalizing constant. Identifying E with the set {1, . . . , |E|}, the measure νw and the

random variables Xe := 1e∈B can be thought of as living on B|E|.

For general matroids, EXeXf may be greater than (EXe)(EXf). Some speculation has

been given to the most natural class of matroids for which negative correlation or negative

association must hold. Feder and Mihail [8] define a balanced matroid to be a matroid
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all of whose minors satisfy pairwise negative correlation. Their proof of the following fact

was the basis for the original proof of negative association for determinantal processes [21,

Theorem 6.5].

Proposition 5.1 ([8, Theorem 3.2]). The law νw of a random base of a balanced matroid,

multiplicatively weighted by the weighting function w, has the SCP.

Because measures supported on the bases of a matroid are homogeneous, there is

nothing gained by improving the SCP to the strong Rayleigh property, and we have the

following immediate corollary.

Corollary 5.2. Let f be a Lipschitz-1 function with respect to Hamming distance on the

bases of a balanced matroid of rank k on n elements. Then

P(f − Ef > a) � exp

(
− a2

8k

)
.

Example 5.3 (spanning trees). One of the most important examples of a matroid is the

set of spanning trees of a finite, connected, undirected graph. To spell this out, a spanning

tree for a finite graph G = (V , E) is a subset E ′ ⊆ E such that (V , E ′) is a connected and

acyclic. The set of spanning trees is a matroid on E. The weighted random spanning tree

was shown to be a balanced matroid by [3, Theorem 1]. In fact they showed that it is

determinantal (see also [21, Example 1.1] and [15, Example 4.3.2]), though at the time

consequences of being determinantal, such as the strong Rayleigh property, had not been

developed. Spanning trees are the only well-known class of matroid whose uniform (or

weighted) measure is determinantal.

Let f0 : {0, 1}E → Z count the number of vertices of odd degree in the graph defined by

any subset of the edges. Deleting or adding an edge changes f0 by at most 2. Let f be the

random variable resulting from applying (1/2)f0 to a the weighted random spanning tree

on a graph G. Thus f is a Lipschitz-1 function that counts half the number of vertices that

have odd degree in the random tree. Random variables that count local properties such

as this are of natural graph-theoretic interest. Parity counting variables similar to f play

a role, for example, in the randomized TSP approximation algorithm of [11]. The number

of edges in any spanning tree is |V | − 1. An application of Corollary 5.2 immediately

gives the concentration inequality in Theorem 1.1; note that |V |, rather than |E|, appears

in the denominator of the exponent.

Example 5.4 (conditioned Bernoullis, weighted matroids). Let λ1, . . . , λn > 0 be real num-

bers and let μ be the measure on the subsets of [n] of cardinality k given by

μ(x1, . . . , xn) =

∏n
j=1 λ

xj
j∑

N(y)=k

∏n
j=1 λ

yj
j

.

We may think of μ in two ways. The first is as a special case of the weighted random

base, specialized to M(n, k), the matroid whose bases are all the subsets of [n] that have
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cardinality k. The second is that it is the law of independent Bernoulli variables Xj with

EXj = λj/(1 + λj), conditioned on
∑n

j=1Xj = k. We see from Proposition 5.1 that μ is

strong Rayleigh. Alternatively, we may deduce this from the strong Rayleigh property for

product measures along with closure under conditioning on the sum [2, Corollary 4.18].

Restricting to [m], for m < n, gives a joint distribution on Bm which may be thought of

as a multivariate generalization of the hypergeometric distribution. Because the strong

Rayleigh property is inherited, this restriction is strong Rayleigh as well. The resulting

concentration properties of these measures have been exploited in [11] in connection with

TSP approximation. We remark that more general conditioning, such as conditioning

N :=
∑

j Xj to lie in an interval of more than two points, does not preserve the strong

Rayleigh property.

5.2. Exclusion measures

The symmetric group Sn acts on Bn by permuting the coordinates. Suppose a non-negative

rate r(τ) is given for each transposition τ ∈ Sn. Define a random evolution on Bn by letting

each pair of coordinates (i, j) transpose independently at rate r(τij). In other words, we

have a continuous time chain on Bn which jumps from x to τ(x) at rate r(τ) for each

transposition τ. This process is known as the symmetric exclusion process.

Borcea, Branden and Liggett [2, Proposition 5.1] prove that the strong Rayleigh property

is preserved under this evolution. In particular, because the point mass at a single state

is always strong Rayleigh, it follows that the time t distribution of a symmetric exclusion

process started from a deterministic state is strong Rayleigh. The stochastic covering

property follows, as do PHR and negative association. Interestingly, before the publication

of [2], all that was known about this model was negative cylinder dependence [20,

Lemma 2.3.4]).

Recently, it was shown by [28] that one can add birth and death to the exclusion

dynamics and still preserve the strong Rayleigh property. More specifically, let {αi, βi :
1 � i � n} be positive real numbers and let ωi change to one at rate αi and to zero at rate

βi, along with the exclusion dynamics. Then the evolution preserves the strong Rayleigh

property and in particular, if the starting state is deterministic, all time t marginals are

strong Rayleigh.

Corollary 5.5. Let P be the law on Bn resulting from running an exclusion process for a

fixed time, starting from a deterministic state with k sites occupied. Then

P(f − Ef � a) � e−a2/(8k).

Example 5.6. Let n > 0 be even and populate an n× n square of the integer lattice in Z
2

(with torus boundary conditions) by filling all sites in the left half and leaving empty all

sites in the right half. Run the symmetric exclusion process for time t with rate 1 on each

edge. Let ft(ω) denote the number of edges at time t with exactly one endpoint occupied.

The mean of ft starts at n at time 0 and approaches its limiting value of n2 − O(1) as
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t → ∞. Once t = Θ(n2), the variance of ft becomes Θ(n2) and the concentration inequality

P(f − Ef � a) � e−a2/(4n2),

which holds for all t, becomes a meaningful Gaussian tail bound (here k = n2/2).

5.3. Determinantal measures on a finite Boolean lattice

We say that a probability measure P on Bn is determinantal (in the general sense) if there

is an n× n real or complex matrix K such that, for every S ⊆ {1, . . . , n},

E

∏
j∈S

Xj = detKS , (4.1)

where KS is the submatrix of K obtained by choosing only those rows and columns whose

index is in S . In this definition, the phrase ‘general sense’ refers to the lack of further

assumptions on K . An important subclass is the Hermitian determinantal measures,

for which the matrix K is Hermitian. In this paper we will be interested only in the

Hermitian case and will use the term determinantal hereafter to refer only to the case

where K is Hermitian. Determinantal measures are known to be negatively associated [21,

Theorem 6.5]. In fact they are strong Rayleigh [2, proof of Theorem 3.4] and therefore

satisfy the stochastic covering property.

Example 5.7 (uniform or weighted spanning tree). As previously remarked, the uniform

or weighted random spanning tree is a determinantal measure.

In the next section we will extend the notion of a determinantal measure to the

continuous setting. The extension to a countably infinite set of variables is more

straightforward: the kernel K is now indexed by a countably infinite set, but (4.1) may

be interpreted as holding for all finite sets S . The following example of a determinantal

process on Z appeared first in [16].

Example 5.8 (positions of non-colliding RWs). Let {Y (k) : 1 � k � n} be n independent

time-homogeneous nearest-neighbour random walks on Z. Start the walks at locations

y1, . . . , yn, and assume that the event that the walks are all at their starting positions at

time 2n and have not intersected has positive probability. Conditional on this event, the

positions at time n form a determinantal measure. That is, the indicator functions {Xj}
have a determinantal law, where Xj = 1 if some Y (k) is at position j at time n, and zero

otherwise.

Remark. The positions of non-colliding random walks are given by a determinant under

more general conditions (see [18]). The present situation is arranged so as to make the

kernel Hermitian.

6. Determinantal point processes

We consider here only simple point processes and often assume EN < ∞ too. If ρk :

(Rd)k → R
+ are measurable functions, then the simple point process Z is said to have
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joint intensities {ρk} if, for any k and any family D1, . . . , Dk of disjoint Borel subsets of

R
d,

E

[ k∏
j=1

Z(Dj)

]
=

∫
∏

j Dj

ρk(x1, . . . , xk) dx1 · · · dxk.

In particular,

EN =

∫
Rd

ρ1(x) dx,

so under the assumption EN < ∞, we see that ρ1(x) dx is a finite measure on R
d. If ρ1 is

not finite, we will assume it is σ-finite. In any case, ρ1 is called the first intensity measure:

see [15, Sections 1.2 and 4.2] for further discussion of joint intensities and determinantal

measures.

Definition (determinantal point process). A point process Z is said to be determinantal

if it has joint intensities {ρk} and there is a measurable kernel K : (Rd)2 → C such that

ρk(x1, . . . , xk) = det
(
K(xi, xj)

)
1�i,j�k. (6.1)

IfK(y, x) = K(x, y) for every x, y, then the process is said to be Hermitian. When discussing

determinantal processes below, we will always assume they are Hermitian.

Stochastic covering carries over to the continuous case. To state the relevant results

we invoke the notion of the Palm process . This is a version of the process conditioned

on the (measure zero) event of a point at a specified location, x. It may be obtained by

conditioning on there being a point within distance ε of a given location x, then taking a

weak limit. A more complete treatment may be found in [17]. The following proposition

is proved in [12].

Proposition 6.1 ([12]). Suppose Z is a determinantal point process with continuous kernel

K and finite trace. Fix x and let Zx denote the Palm process that conditions on a point at

x. Let Z ′
x denote the result of removing the point at x from Zx. Then:

(i) whenever K − L is positive semidefinite, the process with kernel K stochastically dom-

inates the process with kernel L (this is Theorem 3 in [12]),

(ii) Z ′
x is determinantal with kernel L such that K − L is positive semidefinite,

(iii) consequently, Z � Z ′
x.

The continuous analogue of Proposition 2.2 is as follows.

Proposition 6.2. Let Z be a determinantal point process with finite mean EN = μ < ∞.

Then for any k for which P(N = k + 1) and P(N = k) are both non-zero, the conditional

distributions of Z given N satisfy

(Z |N = k + 1) � (Z |N = k).
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Proof. The following facts may be found in [14, Theorem 7]. A determinantal point

process Z with mean μ < ∞ has a kernel K whose spectrum is countable, contained in

[0, 1], and sums to μ. Furthermore, Z may be represented as a mixture of homogeneous

determinantal processes as follows. Let {λi : i � 1} enumerate the eigenvalues with

multiplicities and let {φi} be a corresponding eigenbasis. For each i, flip an independent

coin with success probability λi. Let I denote the set of i for which the coin-flip was

successful. Let KI be the (random) projection operator onto the subspace spanned by

the eigenvectors φi for which the coin-flip was successful. Then KI is almost surely a

projection of finite dimension |I | and is the kernel of a |I |-homogeneous determinantal

point process. Choosing KI at random and then sampling from the corresponding process

recovers the law of Z .

Several consequences are apparent. First, conditioning on N = k is the same as

conditioning on exactly k successes among the Bernoulli trials. Secondly, the conditional

law of I given |I | = k + 1 stochastically dominates the conditional law of I given |I | = k.

When the number of Bernoullis is finite, this follows from the strong Rayleigh property

for independent Bernoullis; an easy limit argument extends the conclusion to the infinite

case. This fact about stochastic domination is equivalent to saying that the conditional law

of the random subspace KI given |I | = k + 1 stochastically dominates the conditional law

of the random subspace KI given |I | = k, in the sense that the two laws can be coupled

as (K,K ′) so that K ′ ⊆ K . When K ′ ⊆ K , the operator πK − πK ′ is positive semidefinite.

By Proposition 6.1(ii), we conclude that (Z |N = k + 1) � (Z |N = k), which is equivalent

to stochastic covering in this case.

Proof of Theorem 3.5. With f as in the statement of the theorem, and I the collection

of indices described in the previous proposition, define ψ(I) to be the expectation of f

applied to a configuration chosen from the determinantal process with kernel KI . Recall

the notation N = |I |.
The event {f − Ef > a} is contained in the union of three events:{

N > μ+
a

2

}
∪

{
ψ(I) − Ef >

a

2

}
∪

{
f − ψ(I) >

a

2
, N � μ+

a

2

}
.

Thus P(f − Ef > a) is bounded above by the sum of the corresponding probabilities.

Each of the first two pieces is bounded above by exp[−a2/(4(a+ 2μ))]: the first follows

from Lemma 4.2 and the second follows from the proof of Lemma 4.4 because ψ

is Lipschitz in the Bernoulli variables Yi := 1i∈I . The last piece is bounded above by

exp[−a2/(16(a+ 2μ))]. To see this, apply Theorem 3.4 to the homogeneous determinantal

processes PI with kernels KI , obtaining, when |I | = k, that

PI

(
f − ψ(I) >

a

2

)
� exp

(
− (a/2)2

8k

)
� exp

(
− a2

16(a+ 2μ)

)
.

Reassembling these gives the upper bound

P

(
f − ψ(I) >

a

2
, N � μ+

a

2

)
� exp

(
− a2

16(a+ 2μ)

)
.

The rest of the argument is identical to the conclusion of the proof of Theorem 3.2.
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Example 6.3 (Ginibre’s translation-invariant process). Ginibre [10] considers the distri-

bution of eigenvalues of an k × k matrix with independent complex Gaussian entries.

In the limit as k → ∞, the density becomes constant over the whole plane. The limiting

process Z turns out to be a (Hermitian) determinantal point process with kernel

K(z1, z2) :=
1

π
ez1z2 exp

(
−|z1|2 + |z2|2

2

)
;

see, e.g., [26, (2.16)]. The process Z is ergodic and invariant under all rigid transformations

of the plane. Le Caer and Ho [19] suggested using this process as the set of centres for

a random Voronoi tesselation because the mutual repulsion of the points makes the

resulting tesselation more realistic than the standard Poisson-Voronoi tesselation for

many purposes. Some rigorous results along these lines were obtained in [12].

The mean number of points in any region D is 1/π times the area |D|, so the restriction

of ZD to such a region of finite area is a determinantal process with finite mean number

of points. Fix a finite region, D, and let f count the number of ‘lonely’ points in D, these

being such that no other point of Z in D is within distance 1. We claim that f is Lipschitz

with constant equal to 6. Clearly if a point z is added to the configuration η then f can

increase by at most 1. It is well known that the maximum number of points in a unit disk

that can be at mutual distance of at least 1 from one another is 6, which implies that the

addition of z can result in the loss of at most 6 lonely points. Applying Theorem 3.5 to

f/6 yields the concentration inequality

P(|f − Ef| � a) � 5 exp

(
− a2

96(a+ 12|D|/π)

)
.

Example 6.4 (zeros of random polynomials). Let {Xn} be IID standard complex Gaussian

random variables and define the random power series

h(z) :=

∞∑
n=0

Xnz
n.

It is easy to see that h is almost surely analytic on the open unit disk and the number

of zeros on any disk of radius ρ < 1 has finite mean. The remarkable properties of the

point process Z on the unit disk that is the zero set of h are detailed in [25]. It is a

determinantal process whose kernel is the Bergman kernel π−1(1 − zw)−2. It is invariant

under Möbius transformations of the unit disk and has intensity measure π−1/(1 − |z|2)2.
Endowing the unit disk with the hyperbolic metric, the Möbius transformations become

isometries, whence Z is hyperbolic isometry invariant.

Fix ρ < 1 and r > 0 and let f count the number of zeros of the restriction Zρ of Z to

the disk of radius 1 − ρ that are ‘hyperbolically lonely’, meaning that no other point of Zρ

is within a hyperbolic distance r. Let cr denote the maximum number of points at mutual

hyperbolic distance r that may be be placed in a disk of hyperbolic radius r. Arguing as

in Example 6.3 we see that f is Lipschitz with constant cr . The mean number of points

in Zρ is ρ2/(1 − ρ2), which for simplicity we can bound from above by 1/(1 − ρ2). An
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application of Theorem 3.5 to f/cr now yields

P(|f − Ef| � a) � 5 exp

(
− a2

16cra+ 32c2r (1 − ρ2)−1

)
.
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