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We prove certain L2pRnq bilinear estimates for Fourier extension operators
associated to spheres and hyperboloids under the action of the k-plane transform. As
the estimates are L2-based, they follow from bilinear identities: in particular, these
are the analogues of a known identity for paraboloids, and may be seen as
higher-dimensional versions of the classical L2pR2q-bilinear identity for Fourier
extension operators associated to curves in R2.

Keywords: k-plane transform; Fourier extension operators; bilinear identities

2010 Mathematics Subject Classification: 42B37, 35A23

1. Introduction

For n ě 2, let U be an open subset in R
n´1 and φ : R

n´1 Ñ R be a smooth function
parametrizing a hypersurface S “ tpξ, φpξqq : ξ P Uu. Associated to S, define the
Fourier extension operator

Efpzq :“
ż

U

eipx¨ξ`tφpξqqfpξq dξ,

where z “ px, tq P R
n´1 ˆ R and f P L1pUq. The terminology extension comes from

the fact that E is the adjoint operator to the restriction of the Fourier transform to
S, that is E˚hpξq “ phpξ, φpξqq. Stein observed in the late 1960s that under certain
curvature hypothesis on S it is possible to obtain LppUq ´ LqpRnq estimates for E
besides the trivial L1pUq ´ L8pRnq estimate implied by Minkowski’s inequality. In
particular, the Fourier restriction conjecture asserts that if S is compact and has
everywhere nonvanishing Gaussian curvature

}Ef}LqpRnq ď C}f}LppUq
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should hold for all q ą 2n{pn ´ 1q and 1{q ď ppn ´ 1q{pn ` 1qqp1{p1q. This conjec-
ture is fully solved for n “ 2 [17,36], but is still open for n ě 3 and constitutes one
of the main open problems in Euclidean Harmonic Analysis. The first fundamental
result in this direction was the Stein–Tomas [34,31] restriction estimate

}Ef}L2pn`1q{pn´1qpRnq ď C}f}L2pUq; (1.1)

note that this estimate is best possible in terms of the exponent q for f P L2pUq.
Over the last few years, there has been a great interest in establishing the sharp
value of C and the existence and characterization of extremizers in (1.1) depending
on the underlying surface S: see, for instance, [18] or the most recent survey [21].

Substantial improvements on (1.1) have been achieved over the last few decades.
An important ingredient for this has been the bilinear and multilinear approach.
Multilinear restriction estimates generally adopt the form››››› kź

j“1

Ejfj

›››››
Lq{kpRnq

ď C
kź

j“1

}fj}LppUjq, (1.2)

where the Ej are associated to hypersurfaces Sj satisfying certain transversal-
ity hypotheses. A key feature of these inequalities is that, under such additional
hypotheses, it is possible to obtain estimates for p “ 2 and 2n{pn ´ 1q ă q ă
2pn ` 1q{pn ´ 1q. The interested reader is referred, for instance, to [35,32] for the
theory of bilinear restriction estimates and to [4] for the multilinear approach; see
also the survey papers [33,1].

An elementary instance of a bilinear estimate is in fact the identity

}E1f1E2f2}2
L2pR2q “ p2πq2

ż
U1ˆU2

|f1pξ1q|2|f2pξ2q|2
|φ1

1pξ1q ´ φ1
2pξ2q| dξ1 dξ2, (1.3)

which follows from an application of Plancherel’s theorem and a change of variables;
note that under the transversality hypothesis |φ1

1pξ1q ´ φ1
2pξ2q| ą c ą 0 for ξ1 P U1,

ξ2 P U2, one may interpret the identity (1.3) in the framework of (1.2). Of course,
the presence of L2 on the left-hand side in (1.3) is key for the use of Plancherel’s
theorem. This bilinear approach has its roots in the work of Fefferman [17] and
may also be extended to higher dimensions. Identifying Ejfj “ {gjdμj ,1 where gj :
R

n Ñ R is the lift of fj to Sj , i.e., gjpξ, φjpξqq “ fjpξq and dμj is the parametrized
measure in Sj defined viaż

Rn

gpηq dμpηq “
ż

Uj

gpξ, φjpξqq dξ,

one may obtain the L2pRnq bilinear estimate

}E1f1E2f2}2
L2pRnq ď }|g1|2dμ1 ˚ |g2|2dμ2}L1pRnq}dμ1 ˚ dμ2}L8pRnq

ď C}f1}2
L2pU1q}f2}2

L2pU2q (1.4)

after an application of Plancherel’s theorem and the Cauchy–Schwarz inequality,
provided one assumes the transversality condition }dμ1 ˚ dμ2}L8pRnq ď C ă 8. It

1See § 2.1 for the nonstandard normalization chosen for the Fourier transform p̈.
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should be remarked that the Lebesgue exponent 2 on the left-hand side of (1.4)
corresponds to q “ 4 ě 2pn ` 1q{pn ´ 1q if n ě 3; note that in a bilinear formulation
the Lebesgue exponent is interpreted as q{2. This is very much in contrast to the
setting described in (1.2), in which the main goal is to obtain estimates when
q ă 2pn ` 1q{pn ´ 1q; bilinear and multilinear estimates of that type are deep and
difficult and will not be explored in this paper.

It is interesting to compare (1.3) and (1.4). The first observation is that (1.3) is an
identity, whilst (1.4) is an inequality. The second is the presence of the weight factor
|φ1

1pξ1q ´ φ1
2pξ2q|´1 in (1.3); the transversality weight |dμ1 ˚ dμ2| in (1.4) does not

necessarily have a closed form in terms of the variables of integration of f1 and f2.
The main purpose of this paper is to further exploit the elementary 2-dimensional

analysis in (1.3) in a higher dimensional setting. More precisely, we wish to obtain
a bilinear identity in higher dimensions which incorporates an explicit weight
factor amounting to some transversality condition; we note that an alternative
higher dimensional version of (1.3) has recently been obtained by Bennett and
Iliopoulou [5] in a n-linear level. In our goal of obtaining bilinear identities, we
shall replace the L2pRnq in (1.4) by a mixed-norm L1pRn´2q ˆ L2pR2q. Given
x “ px̄, x1q P R

n´2 ˆ R
2, taking the L1-norm in the x̄ variables will essentially

reduce matters to a 2-dimensional analysis in the x2 “ pxn´1, xnq variables, where
the resulting extension operators E1 and E2 will correspond to sections of the orig-
inal surfaces by 2-dimensional planes parallel to ξ1 “ ¨ ¨ ¨ “ ξn´2 “ 0. The existence
of such bilinear identities has already been established by Planchon and the sec-
ond author [29] if the underlying hypersurfaces are paraboloids. The motivation in
their work came from the relevant role played by these types of inequalities in the
global behaviour of large solutions of nonlinear Schrödinger equations; see the next
subsection for further details. Here we further explore whether bilinear identities
hold for two other fundamental surfaces: the sphere and the hyperboloid.

Before describing our results in detail we shall first review the known results in the
case of paraboloids, as they will provide the framework and context to understand
our results.

1.1. Estimates for paraboloids and connections to Schrödinger
equations

In recent years, starting with the work of Ozawa and Tsutsumi [28] for the
paraboloid S1 “ S2 “ tpξ, |ξ|2q : ξ P R

n´1u, there has been an increasing interest in
understanding the weight |dμ1 ˚ dμ2| in (1.4) so that a L2-bilinear estimate

}E1f1E2f2}2
L2pRnq ď C

ż
U1ˆU2

KS1,S2pξ1, ξ2q|f1pξ1q|2|f2pξ2q|2 dξ1 dξ2 (1.5)

holds for some kernel KS1,S2 and such that the constant C is best possible; in many
cases, extremizers for the above kinds of inequalities have also been characterized.
This has been mostly studied for paraboloids [10], cones [7], spheres [20,11] and
hyperboloids [27,23], with the corresponding natural interpretations in PDE.

It should be noted that the bilinear estimates (1.3) and (1.4) also hold when
E2f2 is replaced by its complex conjugate E2f2. This is, of course, of interest when
S1 “ S2 and f1 “ f2, as then the bilinear estimates can be reinterpreted as L2
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estimates of |Ef |2. In particular, in the case of paraboloids, the identity (1.3) may
be reinterpreted asż

RˆR

|Dx|u|2|2 dxdt “ 1
2p2πq2

ż
RˆR

|ξ ´ η||xu0pξq|2|xu0pηq|2 dξ dη (1.6)

or simply ż
RˆR

|D1{2
x |u|2|2 dxdt “ 1

2
}u0}2

L2pRq}u0}2
L2pRq (1.7)

in order to avoid the singularity of the resulting weight |φ1pξq ´ φ1pηq| “ 2|ξ ´ η|;
here we interpret the extension operator upx, tq “ E|u0px, tq as the solution of
the free Schrödinger equation iBtu ´ Δu “ 0 in R

d associated to the initial data
upx, 0q “ u0pxq, with the normalization of the Fourier transform considered in § 2.1.
Note that, for this specific case, it is crucial that the multiplier associated to Dx

coincides precisely with |φ1pξq ´ φ1pηq|. Moreover, Ozawa and Tsutsumi [28] made
use of the Radon transform to obtain the higher dimensional version

}p´Δqp2´dq{4|u|2}2
L2

x,tpRdˆRq ď OTpdq}u0}2
L2pRdq}u0}2

L2pRdq (1.8)

where the constant OTpdq “ 2´dπp2´dq{2{Γpd{2q is sharp after verifying that for
u0pxq “ e´|x|2 the inequality becomes an identity; see also [10,3].

The interest of Ozawa and Tsutsumi comes from the nonlinear Schrödinger
equation

iBtu ` B2u “ iλpB|u|2qu ` fpuq, (1.9)

where λ P R and f is a nonlinear interaction, which can be taken to be zero for
simplicity of this exposition. In [28] the authors proved a well-posedness result in
the Sobolev space H1{2pRq. This was a nontrivial task due to the presence of the
derivative term B|u|2 on the right-hand side of the equation (1.9). The advantage
of (1.7) (or (1.8) when d “ 1) as opposed to an inequality of the type (1.5) is the
gain in derivatives of the solution with respect to the initial data, which allowed
the authors to treat the term B|u|2 as a perturbation.

The result by Ozawa and Tsutsumi was not further explored until [29], where
Planchon and the second author established certain higher dimensional analogues
of the R

1`1 identity (1.6). Their identities also involved the Radon transform in the
spatial variables2, which in fact features in the statement. Recall that given a linear
k-dimensional subspace π P Gk,n and y P πK, the k-plane transform of a function f
belonging to a suitable a priori class is defined as

Tk,nfpπ, yq :“
ż

π

fpx ` yq dλπpxq,

where Gk,n denotes the Grassmanian manifold of all k-dimensional subspaces in R
n

and dλπ is the induced Lebesgue measure on π. The cases k “ 1 and k “ n ´ 1

2Note that the Radon transform in the spatial variables in upx, tq amounts to a pn ´ 2q-plane
transform in the context of the extension operators Efpzq.

https://doi.org/10.1017/prm.2019.74 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.74


Bilinear identities involving the k-plane transform and Fourier extension3353

correspond to the X-ray transform X and the Radon transform3 R respectively.
With this notation, the following was shown in [29].

Theorem 1.1 ([29]). Let n ě 2 and ω P S
d´1. Then,ż

R

ż
R

|BsRp|up¨, tq|2qpω, sq|2 dsdt ` Jωpuq

“ π

p2πq2d`1

ż
Rd

ż
Rd

|pξ ´ ηq ¨ ω||xu0pξq|2|xu0pηq|2 dξ dη, (1.10)

where

Jωpuq :“
ż

R

ż
R

ż
pxωyKq2

ˇ̌
upx ` sω, tqBsupy ` sω, tq ´ upy ` sω, tqBsupx ` sω, tqˇ̌2

dλpxωyKq2px, yq dsdt.

Note that fixing ω “ ed (or any other coordinate vector) in (1.10) above, the first
term on the left-hand side amounts to }Bs}|u|2}L1pRd´1q}2

L2
xd,tpR2q, which in the

absence of the derivative Bs becomes }u}4
L4

xd,tpR2;L2pRd´1qq; note the contrast with

the L4-nature of (1.3) and (1.4).
The approach used in [29] to establish theorem 1.1 uses integration-by-parts argu-

ments and extends to versions of (1.10) for nonlinear Schrödinger equations with
nonlinearity of the type ˘|u|p´1u, where p ě 1. The motivation in [29] is similar
to that of Ozawa and Tsutsumi, and comes, more precisely, from the breakthrough
result by Colliander, Keel, Staffilani, Takaoka, and Tao in [16], who established
global well-posedness of the critical defocusing 3d nonlinear Schrödinger equation
(NLS)

iBtu ` Δu “ u|u|4
in the energy space. This builds up on a previous result of Bourgain [9], who showed
the well-posedness under the assumption of radial symmetry. Bourgain used an
ad hoc modification of a well-known weighted estimate, typically referred to as
Morawetz inequality, proved in [24]; see also [25]. The weights are of the type |x|´1

and therefore not translation invariant, leading to the well-posedness only under
the radial assumption. To overcome that obstacle, the authors in [16] established
a bilinear Morawetz estimate that avoids the loss of the translation symmetry.
Whilst their strategy was successful in dimension 3, the method has some obstruc-
tions when considering nonlinear Schrödinger equations in dimensions 1 and 2. The
nonlinear versions of the identities (1.10) were then used in [29] to prove certain
lower dimensional well-posedness results, also obtained independently by Collian-
der, Grillakis and Tzirakis [15] by different methods. It is remarked that (1.10) has
further applications, such as well-posedness in 3d for exterior domains, scattering
of solutions (see also [26]) or recovering Bourgain’s [8] bilinear refinement of the
Strichartz estimate; the reader is referred to [29] for further details.

3The Radon transform Rf is identified with a function in S
n´1
` ˆ R setting Rfpω, sq ”

RfpxωyK, sωq.
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Unfortunately, the bilinear identities (1.10) (or more precisely, the integration-
by-parts proof method) are extremely rigid and they rely on the fact that the
Schrödinger equation is a system with a quadratic dispersion relation. However,
the connections of these estimates with Strichartz inequalities suggest that similar
identities should also be true for general dispersion relations. This is what we start
to explore in this paper for the particular case of the Helmholtz and Klein-Gordon
equations. Our approach completely relies on Fourier Analysis techniques, after
noting that (1.10) can be obtained from applications of Plancherel’s theorem, in
the spirit of (1.3) and (1.4). Of course, such a proof method only applies to linear
problems, and it is therefore more natural to understand our results in the context
of the interaction of the k-plane transform and |Ef |2, where the Fourier extension
operator E is associated to spheres and hyperboloids; see also the recent paper
[2] or the preprint [6] for further examples of this interaction. Despite the lack
of nonlinear results, we expect that the identification of bilinear identities for the
linear Helmholtz and Klein–Gordon equations presented in this article will provide
some light to develop methods based on direct integration by parts, which would
be more amenable to nonlinear counterparts. This will be explored somewhere else
in the future.

1.2. Estimates for the sphere

In the case of the sphere S
n´1
r ” rS

n´1 of radius r in R
n, consider the more

classical form of the extension operator

g ÞÑ zgdσn
r ,

where dσn
r denotes the induced normalized Lebesgue measure on S

n´1
r and g P

L1pSn´1
r q. The following L2-identities for Tn´2,np {g1dσn

r
{g2dσn

r q are obtained.

Theorem 1.2. Let n ě 3. Let π P Gn´2,n and let πK denote the orthogonal subspace
to π. For each z P R

n, write z “ zπ ` zK, where zπ is the orthogonal projection of
z into π. Thenż

πK

ˇ̌̌
p´Δyq1{4Tn´2,np {g1dσn

r
{g2dσn

r qpπ, yq
ˇ̌̌2

dλπK pyq

“ CSn´1

ż
pS

n´1
r q2

Kπ,Sn´1
r

pξ, ζqg1pξqḡ2pξπ ` ξ̃Kqg2pζqḡ1pζπ ` ζ̃Kq dσn
r pξq dσn

r pζq
(1.11)

where

Kπ,Sn´1
r

pξ, ζq :“ 2
|ξK ` ζK| , CSn´1 :“ p2πq2pn´1q,

rξ “ a
r2 ´ |ξπ|2 and ξ̃K, ζ̃K P πK are the reflected points of ξK and ζK in πK with

respect to the line passing through the origin and ξK ` ζK, that is ξK ` ζK “ ξ̃K ` ζ̃K
psee figure 1q.

Of course, the L2-nature of the inequality on its left-hand side allows one to
take advantage of Plancherel’s theorem. As briefly described before § 1.1, the key
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Figure 1. The new points ξ̃K P rπ
ξ S

1 and ζ̃K P rπ
ζ S

1 in πK are the reflected points of ξK

and ζK with respect to ξK ` ζK.

presence of the pn ´ 2q-plane transform reduces the problem to a 2-dimensional
analysis, and one is left to understand the convolution of two weighted measures
associated to concentric circles of different radii in the subspace πK » R

2. The
main advantage with respect to (1.4) is that in this setting it is possible to express
h1dσ2

r1
˚ h2dσ2

r2
pξK ` ζKq as the weight dσ2

r1
˚ dσ2

r2
pξK ` ζKq times an evaluation

of the functions h1 and h2 at points depending on ξK and ζK.
Several interesting corollaries can be deduced from theorem 1.2; their short proofs

will be given in $ 5. Given complex numbers a, b, c, d P C, the well-known identity

ab̄c̄d “ 1
2

`|ac|2 ` |bd|2 ´ |ac̄ ´ bd̄|2˘ ` i Impab̄c̄dq (1.12)

may be used in theorem 1.2 to replace the 4-linear wave interaction

g1pξqḡ2pξπ ` ξ̃Kqg2pζqḡ1pζπ ` ζ̃Kq
in (1.11) by an alternative expression involving |g1pξq|2|g2pζq|2 and which is closer
in spirit to (1.10).

Corollary 1.3. Let n ě 3 and π P Gn´2,n. Thenż
πK

ˇ̌̌
p´Δyq1{4Tn´2,np {g1dσn

r
{g2dσn

r qpπ, yq
ˇ̌̌2

dy

“ CSn´1

ż
pS

n´1
r q2

Kπ,Sn´1
r

pξ, ζq|g1pξq|2|g2pζq|2 dσn
r pξq dσn

r pζq ´ Iπ,Sn´1
r

pg1, g2q,
(1.13)

where

Iπ,Sn´1
r

pg1, g2q :“ CSn´1

2

ż
pS

n´1
r q2

Kπ,Sn´1
r

pξ, ζq

|g1pξqg2pζq ´ g2pξπ ` ξ̃Kqg1pζπ ` ζ̃Kq|2 dσn
r pξq dσn

r pζq.
Of course, the term Iπ,Sn´1

r
pg1, g2q ě 0 and is identically zero if g1 and g2 are con-

stant functions, so it may be dropped from (1.13) at the expense of losing the
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identity, leading to a sharp inequality which fits in the context of (1.5). Thus, the
term Iπ,Sn´1

r
pg1, g2q may be interpreted as the distance of such a resulting inequality

to become an identity.4

As the k-plane transform satisfies the Fourier transform relation

FyTk,nfpπ, ξq “ pfpξq for ξ P πK, (1.14)

one may easily obtain by means of Plancherel’s theorem the relation

}f}2
L2pRnq “ p2πq´k

|Gn´k´1,n´1| }p´Δyqk{4Tk,nf}2
L2pGk,n,L2pπKqq; (1.15)

see § 2 for further details. Thus, on averaging theorem 1.2 over all π P Gn´2,n one
has the following.

Corollary 1.4. Let n ě 3. Then

}p´Δqp3´nq{4p {g1dσn
r

{g2dσn
r q}2

L2pRnq

ď p2πq2´nCSn´1

ż
pS

n´1
r q2

K
S

n´1
r

pξ, ζq|g1pξq|2|g2pζq|2 dσn
r pξq dσn

r pζq

where

K
S

n´1
r

pξ, ζq :“ 1
|G1,n´1|

ż
Gn´2,n

Kπ,Sn´1
r

pξ, ζq dμGpπq.

In the particular case n “ 3 and after setting g1 “ g2, the right-hand side in
corollary 1.4 amounts to a bilinear quantity appearing in the work of Foschi [19]
on the sharp constant in the Stein–Tomas inequality (1.1) for S

2. Thus, appealing
to his work, one can deduce the following.

Corollary 1.5 (Stein–Tomas [34], Foschi [19]).

}zgdσ3}L4pR3q ď 2π}g}L2pS2q. (1.16)

Besides the value for the sharp constant, Foschi [19] also showed that the only
real valued extremizers are constant functions; the existence of extremizers was
previously verified in [13,14].

Solution to the Helmholtz equation Consider the Helmholtz equation Δu ` k2u “ 0
in R

n. If supRą0p1{Rq ş
BR

|u|2 ă 8, then there exists g P L2pSn´1
k q such that u “{gdσ

S
n´1
k

. Theorem 1.2 and the subsequent corollaries may be then interpreted in
that context.

4The inequality resulting from dropping I
π,Sn´1

r
pg1, g2q in (1.13) may be obtained more directly

by an application of the Cauchy–Schwarz inequality: see § 5.1
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1.3. Estimates for the hyperboloid

A similar analysis to the one described for S
n´1 may be carried for one of the

components of the elliptic hyperboloid in R
d`1, defined by

H
d
m :“ tpξ, ξd`1q P R

d ˆ R : ξd`1 “ φmpξq :“ a
m2 ` |ξ|2u

and equipped with the Lorentz invariant measure dσHd
m

(see § 2.3), defined byż
Hd

m

gpξ, ξd`1q dσHd
m

pξ, ξd`1q “
ż

Rd

gpξ, φmpξqq dξ

φmpξq . (1.17)

A function f P L1pRdq is identified with its lift g to H
d
m, given by gpξ, φmpξqq “ fpξq,

and note {gdσHd
m

px, tq “
ż

Rd

eix¨ξeit
?

m2`|ξ|2fpξq dξa
m2 ` |ξ|2

where px, tq P R
n “ R

d ˆ R. A natural reason to split into a space-time domain is
in view of the connection of {gdσHd

m
with the Klein–Gordon propagator eit

?
m2´Δf ;

this will be further discussed below. Thus, considering the Radon transform in the
space variables—as in (1.10) and as opposed to theorem 1.2, where no time role
is given and therefore pn ´ 2q-plane transform is taken—one obtains the following
(see § 2.3 for the definition of Lorentz transformation).

Theorem 1.6. Let d ě 2. Let ω P S
d´1` and let π :“ xωyK P Gd´1,d be the orthogonal

subspace to xωy. For each x P R
d, write x “ xπ ` xωω, where xω “ x ¨ ω. Thenż

R

ż
R

ˇ̌̌
B1{2

s Rp {g1dσHd
m

p¨, tq {g2dσHd
m

p¨, tqqpω, sq
ˇ̌̌2

dsdt

“ CHd

ż
pRdq2

Kω,Hd
m

pξ, ζqf1pξqf̄2pξπ ` ξ̃ωωqf2pζqf̄1pζπ ` ζ̃ωωq dξ

φmpξq
dζ

φmpζq
where

Kω,Hd
m

pξ, ζq :“ |ξω ´ ξ̃ω|1{2|ζω ´ ζ̃ω|1{2

|ξωφmpζq ´ ζωφmpξq| and CHd “ p2πq2d.

Above, the points pξ̃ω, φmπ
ξ

pξ̃ωqq P H
1
mπ

ξ
and pζ̃ω, φmπ

ζ
pζ̃ωqq P H

1
mπ

ζ
are the image

under L´1 of the reflected points of Lppξω, φmπ
ξ

pξωqqq and Lppζω, φmπ
ζ

pζωqqq in
R

2 with respect to the vertical axis respectively, where L is the unique Lorentz
transformation mapping pξω ` ζω, φmπ

ξ
pξωq ` φmπ

ζ
pζωqq to the vertical axis and

mπ
ξ :“ a

m2 ` |ξπ|2 psee figure 2).

As in the case of the sphere, the use of the Radon transform in R
d and

Plancherel’s theorem reduces the above estimate to explicitly understand h1dσH1
m1

˚
h2dσH1

m2
pξω ` ζω, φm1pξωq ` φm2pζωqq. In fact, note that the value of Kω,Hd

m

amounts to the expression
ˇ̌̌
p 1 1

φ1
mπ

ξ
pξωq φ1

mπ
ζ

pζωq q
ˇ̌̌

corrected with the natural weight
1{φmπ

ξ
pξωqφmπ

ζ
pζωq coming from the definition of dσH1

m
. This should be compared
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Figure 2. If ξω ` ζω lies in the vertical axis, the new points ξ̃ω and ζ̃ω are the reflected
points of ξω and ζω with respect to that axis. For ease of notation, ξω is identified with the
point pξω, φmπ

ξ
pξωqq P H

1
mπ

ξ
, and similarly for the other points. Note that, in this situation,

the Lorentz transformation L in theorem 1.6 is the identity. In general, the above situation
results after applying L, which maps ξω ` ζω to the vertical axis.

with the elementary two-dimensional identity (1.3). The presence of the numerator

|ξω ´ ξ̃ω|1{2|ζω ´ ζ̃ω|1{2 is due to the action of B1{2
s on Rp {g1dσHd

m
p¨, tq {g2dσHd

m
p¨, tqq.

Moreover, one can explicitly write ξ̃ω and ζ̃ω in terms of ξ, ζ and ω, leading to the
more compact expression

Kω,Hd
m

pξ, ζq “ 2pφmpξq ` φmpζqq
pφmpξq ` φmpζqq2 ´ ppξ ` ζq ¨ ωq2 .

As in the case of the sphere, several corollaries can be deduced from theorem 1.6.
As for corollary 1.3, one may use (1.12) to rewrite theorem 1.6 in the spirit of
theorem 1.1.

Corollary 1.7. Let d ě 2 and ω P S
d´1` . Then

ż
R

ż
R

ˇ̌̌
B1{2

s Rp {g1dσHd
m

p¨, tq {g2dσHd
m

p¨, tqqpω, sq
ˇ̌̌2

dsdt

“ CHd

ż
pRdq2

Kω,Hd
m

pξ, ζq|f1pξq|2|f2pζq|2 dξ

φmpξq
dζ

φmpζq ´ Iω,Hd
m

pf1, f2q

where

Iω,Hd
m

pf1, f2q :“ CHd

2

ż
pRdq2

Kω,Hd
m

pξ, ζq|f1pξqf2pζq ´ f2pξπ ` ξ̃ωωqf1pζπ ` ζ̃ωωq|2

dξ

φmpξq
dζ

φmpζq .

As R “ Td´1,d, the use of the Plancherel’s relation (1.15) after averaging over
ω P S

d´1` yields the following analogue of corollary 1.4 for hyperboloids.

https://doi.org/10.1017/prm.2019.74 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.74


Bilinear identities involving the k-plane transform and Fourier extension3359

Corollary 1.8. Let d ě 2. Then

}p´Δxqp2´dq{4p {g1dσHd
m

{g2dσHd
m

q}2
L2

x,tpRdˆRq

ď p2πq1´dCHd

ż
pRdq2

KHd
m

pξ, ζq|f1pξq|2|f2pζq|2 dξ

φmpξq
dζ

φmpζq
where

KHd
m

pξ, ζq :“ 1
2

ż
Sd´1

Kω,Hd
m

pξ, ζq dσdpωq.

The Klein–Gordon propagator The solution to the Klein–Gordon equation ´B2
t u `

Δu “ m2u in R
d ˆ R, with initial data upx, 0q “ f0pxq, Btupx, 0q “ f1pxq is given

by

upx, tq “ eit
?

m2´Δf´pxq ` e´it
?´Δf`pxq

where f` “ 1
2 pf0 ` ip?

m2 ´ Δq´1f1q and f´ “ 1
2 pf0 ´ ip?

m2 ´ Δq´1f1q and

e˘it
?

m2´Δfpxq :“ 1
p2πqd

ż
Rd

eix¨ξe˘it
?

m2`|ξ|2 pfpξq dξ.

Note that e˘it
?

m2´Δfpxq “ p2πq´dppgdσHd
m

q p px, tq; where pg is the lift ofpfa
m2 ` | ¨ |2 to H

d
m. Thus, theorem 1.6 and corollaries 1.7 and 1.8 may be re-

interpreted in terms of eit
?

m2´Δ; in particular, setting KGpdq “ p2πq´4dCHd , the
estimate in corollary 1.8 reads as

}p´Δxqp2´dq{4peit
?

m2´Δf1eit
?

m2´Δf2q}2
L2

x,tpRd`1q

ď KGpdq
ż

pRdq2
KHd

m
pξ, ζq| pf1pξq|2| pf2pζq|2φmpξqφmpζq dξ dζ.

Structure of the paper

Section 2 contains some notation and standard observations which will be useful
throughout the paper. In § 3 we revisit the convolution of weighted measures of
circles and hyperbolas. Section 4 contains the proofs of theorems 1.2 and 1.6 whilst
§ 5 is concerned with the derivation of the several corollaries. Finally, we provide a
Fourier analytic proof of theorem 1.1 in § 6, together with a further discussion on
Fourier bilinear identities associated to paraboloids.

2. Notation and preliminaries

2.1. Fourier transform

We work with the normalization of the Fourier transform

Fpfqpξq “ pfpξq “
ż

Rn

eiz¨ξfpzq dz and F´1pfqpzq “ 1
p2πqn

ż
Rn

e´iz¨ξfpξq dξ.
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With this normalization,

zf ˚ g “ pf ¨ pg, xfgpξq “ p2πq´n pf ˚ pgpξq, ppfpzq “ p2πqnf̃pzq, p̄pfpzq “ p2πqnf̄pzq,
where f̃pzq :“ fp´zq, Plancherel’s theorem adopts the form

} pf}L2pRnq “ p2πqn{2}f}L2pRnq.

The n-dimensional Dirac delta, denoted by δn is understood as

δnpaq “ 1
p2πqn

ż
Rn

eia¨z dz.

2.2. k-plane transform

The Grassmannian manifold Gk,n of all k-dimensional subspaces of R
n is equipped

with an invariant measure dμG under the action of the orthogonal group. This
measure is unique up to a constant, and is chosen to be normalized as

|Gk,n| “
ż
Gk,n

dμGpπq “ |Sn´1| ¨ ¨ ¨ |Sn´k|
|Sk´1| ¨ ¨ ¨ |S0| .

Given π P Gk,n and ξ P πK, the relation (1.14) between the k-plane transform Tk,n

and the Fourier transform easily follows from the definition

FyTk,nfpπ, ξq “
ż

πK
eiy¨ξTk,nfpπ, yq dλπK pyq

“
ż

πK
eiy¨ξ

ż
π

fpx ` yq dλπpxq dλπK pyq “ pfpξq (2.1)

after changing variables z “ x ` y and noting that ξ ¨ x “ 0 for ξ P πK. This and
the known identity (see, for instance, [22, Chapter 2])ż

Sn´1
fpωq dσnpωq “ 1

|Gn´k´1,n´1|
ż
Gk,n

ż
Sn´1XπK

fpωq dσn
πK pωq dμGpπq, (2.2)

yield via Plancherel’s theorem and a change to polar coordinates the Plancherel-
type identity (1.15) for the k-plane transform.

2.3. Lorentz transformations

The Lorentz group L is defined as the group of invertible linear transformations
in R

d`1 preserving the bilinear form

pz, uq ÞÑ zd`1ud`1 ´ zdud ´ ¨ ¨ ¨ ´ z1u1.

It is well-known that the measure dσHd
m

is invariant under the action of the subgroup
of L that preserves the hyperboloid H

d
m, denoted by L`. More precisely,ż

Hd
m

f ˝ LdσHd
m

“
ż

Hd
m

f dσHd
m

for all L P L`. It is also a well-known fact that given P “ pξ, τq P R
d`1 with τ ą |ξ|,

there exists a Lorentz transformation L P L` such that Lpξ, τq “ p0,
a

τ2 ´ |ξ|2q;
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see, for instance, [30]. For d “ 1, this transformation is given by

L ” LγP
:“

ˆ
cosh γP ´ sinh γP

´ sinh γP cosh γP

˙
, where γP :“ ln

d
τ ` ξ

τ ´ ξ
; (2.3)

recall that P may be expressed in hyperbolic coordinates as P “ pξ, τq “
prP sinh γP , rP cosh γP q, where rP :“ a

τ2 ´ ξ2. The inverse Lorentz transforma-
tion that maps p0, rP q back to pξ, τq is given by L´γP

.

3. Convolution of weighted measures

As is discussed in the introduction, a key ingredient in the proofs of theorems 1.2 and
1.6 is to understand convolutions of two weighted measures associated to concentric
circles of different radii in R

2 and to hyperbolas in R
2 with the same perpendicular

asymptotes and foci lying on the same line but with different major axis. The
computation of such convolutions is standard; see, for instance, [19,11] for the
circular case or [30,12] for the hyperbolic case. The main feature here is that
the convolution is carried with respect to weighted measures, and, since the analysis
is restricted to R

2, one can give a precise evaluation of such weights at certain points.

3.1. Circles

Given r P R`, let dσ2
r denote the normalized Lebesgue measure of S

1
r ” rS

1, that
is ż

S1
r

gpωq dσ2
rpωq “

ż
S1

gprωq dσ2pωq,

and recall that dσ2pωq “ δ1p1 ´ |ω|q dω “ 2δ1p1 ´ |ω|2q dω, where dω denotes the
Lebesgue measure on R

2 and δn denotes the n-dimensional Dirac delta.
Given 0 ă r1 ď r2, the domain of integration in dσ2

r1
˚ dσ2

r2
pxq is S

1
r2

X ptxu `
S

1
r1

q. This set is nonempty if and only if |x| P rr2 ´ r1, r2 ` r1s and consists of one
point in the tangent case |x| “ r2 ´ r1 or |x| “ r2 ` r1 and of two points otherwise.
In the nonempty case, let vx P S

1 denote the π{2 degrees rotation of x{|x| in the anti-
clockwise direction, and let P `

2 pxq and P ´
2 pxq denote the points in S

1
r2

X ptxu ` S
1
r1

q
such that P `

2 pxq ¨ vx ě 0 and P ´
2 pxq ¨ vx ď 0 respectively; note that P `

2 pxq “ P ´
2 pxq

in the tangent case. Define P ´
1 pxq :“ x ´ P `

2 pxq P S
1
r1

and P `
1 pxq :“ x ´ P ´

2 pxq P
S

1
r1

; note that P `
1 pxq, P ´

1 pxq P S
1
r1

X ptxu ` S
1
r2

q. Observe that P `
j pxq and P ´

j pxq
are reflected points one another with respect to the line passing through the origin
containing x: see figure 3.

Lemma 3.1. Let r1, r2 P R such that 0 ă r1 ď r2. Then

g1dσ2
r1

˚ g2dσ2
r2

pxq “ 2g1pP `
1 pxqqg2pP ´

2 pxqq ` 2g1pP ´
1 pxqqg2pP `

2 pxqqa´p|x|2 ´ pr2 ` r1q2qp|x|2 ´ pr2 ´ r1q2q
if |x| P rr2 ´ r1, r2 ` r1s.
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Figure 3. The points P `
2 pxq, P ´

2 pxq P S
1
r2Xptxu` S

1
r1q and the points P `

1 pxq :“ x ´ P ´
2 pxq,

P ´
1 pxq :“ x ´ P `

2 pxq P S
1
r1 . Note that P `

1 pxq, P ´
1 pxq P S

1
r1 X ptxu ` S

1
r2q.

Proof. A standard computation shows (see for instance [19, Lemma 2.2] or
[11, Lemma 5] for similar arguments)

g1 dσ2
r1

˚ g2 dσ2
r2

pxq
“

ż
S1

ż
S1

g1pr1ω1qg2pr2ω2qδ2px ´ r1ω1 ´ r2ω2q dσ2pω1q dσ2pω2q

“ 2
r2
2

ż
S1

ż
R2

g1pr1ω1qg2pr2ω2qδ2

´ x

r2
´ r1

r2
ω1 ´ ω2

¯
δ1p1 ´ |ω2|2q dσ2pω1q dω2

“ 1
r1|x|

ż
S1

g1pr1ω1qg2px ´ r1ω1qδ1

´ r2
2

2r1|x| ´ |x|
2r1

´ r1

2|x| ` x

|x| ¨ ω1

¯
dσ2pω1q

“: I`pxq ` I´pxq,
where I`pxq corresponds to the integration over S

1`pxq :“ tω P S
1 : x ¨ ω ě 0u and

I´pxq to the integration over S
1´pxq :“ S

1zS1`pxq “ tω P S
1 : x ¨ ω ď 0u.

Denoting by αx the clockwise angle between e1 and x and Pxpuq “ pcospαx `
arccospuqq, sinpαx ` arccospuqqq, the expression for I`pxq becomes, after a change
of variable,

I`pxq “ 1
r1|x|

ż 1

´1

δ1

´ r2
2

2r1|x| ´ |x|
2r1

´ r1

2|x| ` u
¯

p1 ´ u2q´1{2g1pr1Pxpuqq

g2px ´ r1Pxpuqq du

“ 1
r1|x|

´
1 ´

´ |x|2 ` r2
1 ´ r2

2

2r1|x|
¯2¯´1{2

g1pP `
1 pxqqg2pP ´

2 pxqq

χtr2´r1ď|x|ďr2`r1upxq

“ 2g1pP `
1 pxqqg2pP ´

2 pxqqa´p|x|2 ´ pr2 ` r1q2qp|x|2 ´ pr2 ´ r1q2qχtr2´r1ď|x|ďr2`r1upxq

noting that r1Pxpuq “ P `
1 pxq after integrating in u. Indeed, if y P S

1
r1

X
ptxu ` S

1
r2

q one has |y ´ x|2 “ r2
2 and |y|2 “ r2

1. Therefore y{|y| ¨ x{|x| “
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Figure 4. The points Q`
2 pxq, Q´

2 pxq P H
1
m2 X ptxu ´ H

1
m1q and the points Q`

1 pxq :“
x ´ Q´

2 pxq, Q´
1 pxq :“ x ´ Q`

1 pxq P H
1
m1 .

p|x|2 ` r2
1 ´ r2

2q{2r1|x| “ u, and r1Pxpuq “ P `
1 pxq follows from noting that P `

1 pxq P
S

1
r1

X ptxu ` S
1
r2

q and P `
1 pxq ¨ vx ě 0. Arguing similarly for I´pxq concludes the

proof. ˝

3.2. Hyperbolas

Consider the Lorentz invariant measure dσH1
m

defined in (1.17). Given 0 ă m1 ď
m2, the domain of integration in dσH1

m1
˚ dσH1

m2
pxq is H

1
m2

X ptxu ´ H
1
m1

q. Reason-

ing as in the previous case, this set is nonempty if and only if
a

x2
2 ´ x2

1 ě m1 ` m2

and consists of one single point in the tangent case
a

x2
2 ´ x2

1 “ m1 ` m2 and of
two points otherwise; here x “ px1, x2q P R

2. In the nonempty case, let Q`
2 pxq and

Q´
2 pxq denote the points in H

1
m2

X ptxu ´ H
1
m1

q such that pQ`
2 pxq ´ xq ¨ e1 ě 0 and

pQ´
2 pxq ´ xq ¨ e1 ď 0 respectively; of course, Q`

2 pxq “ Q´
2 pxq in the tangent case.

Define Q`
1 pxq “ x ´ Q´

2 pxq P H
1
m1

and Q´
1 pxq “ x ´ Q`

2 pxq P H
1
m1

(see figure 4).

Lemma 3.2. Let m1,m2 P R such that 0 ă m1 ď m2. For each x “ px1, x2q P R
2

such that x2
2 ě x2

1 one has

g1dσH1
m1

˚ g2dσH1
m2

pxq

“ 2g1pQ`
1 pxqqg2pQ´

2 pxqq ` 2g1pQ´
1 pxqqg2pQ`

2 pxqqapx2
2 ´ x2

1q2 ´ 2px2
2 ´ x2

1qpm2
1 ` m2

2q ` pm2
1 ´ m2

2q2 χt
?

x2
2´x2

1ěm1`m2upxq.

Proof. By invariance of the measure dσH1
m

under Lorentz transformations, it suffices
to prove the above identity for x “ p0, zq. Indeed, note that if Lx P L` is the Lorentz
transformation satisfying Lxpxq “ p0, zq “ p0,

a
x2

2 ´ x2
1q, then

g1dσH1
m1

˚ g2dσH1
m2

pxq “
ż

H1
m1

ż
H1

m2

g1pωqg2pνqδ2px ´ ω ´ νq dσH1
m1

pωq dσH1
m2

pνq

“
ż

H1
m1

ż
H1

m2

g1pL´1
x pωqqg2pL´1

x pνqqδ2pp0, zq ´ ω ´ νq

dσH1
m1

pωq dσH1
m2

pνq
“ h1dσH1

m1
˚ h2dσH1

m2
p0, zq
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where hj “ gj ˝ L´1
x ; the reduction to the vertical axis then follows from noting

that hjpQ˘
� p0, zqq “ gjpQ˘

� pxqq for j, � “ 1, 2. Next,

h1dσH1
m1

˚ h2dσH1
m2

p0, zq

“
ż

H1
m1

ż
H1

m2

h1pωqh2pνqδ2pp0, zq ´ pω1, ω2q ´ pν1, ν2qq dσH1
m1

pωq dσH1
m2

pνq

“
ż

R

h1pω1, φm1pω1qqh2p´ω1, φm2pω1qqδ1pz ´ φm1pω1q ´ φm2pω1qq
φm1pω1qφm2pω1q dω1.

Splitting R “ R´ Y R` and doing the change of variables

v “ φm1pω1q ` φm2pω1q, with
dω1

φm1pω1qφm2pω1q “ dv

ω1v
,

on each half-line one has

h1dσH1
m1

˚ h2dσH1
m2

p0, zq “
ż 8

m1`m2

´
h1pω1, φm1pω1qqh2p´ω1, φm2pω1qq

` h1p´ω1, φm1pω1qqh2pω1, φm2pω1qq
¯
δ1pz ´ vq dv

ω1v

where ω1 above is the function of v

ω1 “ ω1pvq :“
a

v4 ´ 2v2pm2
1 ` m2

2q ` pm2
1 ´ m2

2q2
2v

.

Noting that Q˘
1 p0, vq “ p˘ω1pvq, φm1pω1pvqqq and Q˘

2 p0, vq “ p¯ω1pvq, φm2pω1pvqqq,
one has

h1dσH1
m1

˚ h2dσH1
m2

p0, zq

“ 2h1pQ`
1 p0, zqqh2pQ´

2 p0, zqq ` 2h1pQ´
1 p0, zqqh2pQ`

2 p0, zqqa
z4 ´ 2z2pm2

1 ` m2
2q ` pm2

1 ´ m2
2q2 1tzěm1`m2u,

completing the proof. ˝

4. The proofs of theorems 1.2 and 1.6

4.1. Proof of theorem 1.2

For simplicity we work on the unit sphere r “ 1; the result for S
n´1
r follows

analogously. Given π P Gn´2,n, let πK denote its orthogonal subspace. For each
ξ P R

n, write ξ “ ξπ ` ξK, where ξπ P π and ξK P πK, and let rπ
ξ :“ a

1 ´ |ξπ|2.
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Given x P π and y P πK,

{gjdσnpx ` yq “
ż

Sn´1
eipx`yq¨ξgjpξq dσnpξq

“
ż

|ξπ|ď1

eix¨ξπ

ż
rπ

ξ S1
eiy¨ξK

gjpξπ ` ξKq dσK
rπ

ξ
pξKq dλπpξπq

“
ż

|ξπ|ď1

eix¨ξπFKpgj,ξπdσK
rπ

ξ
qpyq dλπpξπq

where gj,ξπ pωq :“ gjpξπ ` ωq, FK denotes the Fourier transform in πK and dσK
rπ

ξ

denotes the induced normalized Lebesgue measure of rπ
ξ S

1 in πK, which can be,
of course, identified with dσ2

rπ
ξ
. Then, by Plancherel’s theorem in π (with the

normalization for the Fourier transform taken in § 2),

Tn´2,np {g1dσn {g2dσnqpπ, yq
“

ż
π

{g1dσnpx ` yq {g2dσnpx ` yq dλπpxq

“ p2πqn´2

ż
|ξπ|ď1

FKpg1,ξπdσK
rπ

ξ
qpyqFKpg2,ξπdσK

rπ
ξ

qpyq dλπpξπq.

A further application of Plancherel’s theorem in πK yieldsż
πK

|p´Δyq1{4Tn´2,np {g1dσn {g2dσnqpπ, yq|2 dλπK pyq

“ p2πq2pn´1q
ż

|ξπ|ď1

ż
|ζπ|ď1

ASn´1,πpξπ, ζπq dλπpξπq dλπpζπq.

where

ASn´1,πpξπ, ζπq
:“

ż
πK

|v|`g̃1,ξπdσK
rπ

ξ
˚K ḡ2,ξπdσK

rπ
ξ

˘pvq`
g̃1,ζπdσK

rπ
ζ

˚K ḡ2,ζπdσK
rπ

ζ

˘pvq dλπK pvq

and g̃p¨q “ gp´ ¨q. For fixed ξπ, ζπ with |ξπ| ď 1 and |ζπ| ď 1, ASn´1,πpξπ, ζπq equals
to ż

prπ
ξ S1q2ˆprπ

ζ S1q2
|ξK ´ ηK|1{2|ζK ´ μK|1{2g1,ξπ pξKqḡ2,ξπ pηKqg2,ζπ pζKqḡ1,ζπ pμKq

dΣK
ξπ,ζπ pξK, ηK, ζK, μKq (4.1)

where

dΣK
ξπ,ζπ pξK, ηK, ζK, μKq :“ δpξK ` ζK ´ ηK ´ μKq dσK

rπ
ξ

pξKq dσK
rπ

ξ
pηKq dσK

rπ
ζ

pζKq dσK
rπ

ζ
pμKq.
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Observe that one may rewrite the above integral as

ASn´1,πpξπ, ζπq “
ż

rπ
ξ S1ˆrπ

ζ S1
g1,ξπ pξKqg2,ζπ pζKq`

h2,ξdσK
rπ

ξ
˚K h1,ζdσK

rπ
ζ

˘pξK ` ζKq

dσK
rπ

ξ
pξKq dσK

rπ
ζ

pζKq

where h2,ξpηKq :“ ḡ2,ξπ pηKq|ξK ´ ηK|1{2 and similarly for h1,ζ . As πK – R
2, assum-

ing without loss of generality that rπ
ξ ď rπ

ζ , one can appeal to lemma 3.1 to
evaluate `

h2,ξdσK
rπ

ξ
˚K h1,ζdσK

rπ
ζ

˘pξK ` ζKq

“ 2h2,ξpξKqh1,ζpζKq ` 2h2,ξpξ̃Kqh1,ζpζ̃Kqb
´p|ξK ` ζK|2 ´ prπ

ζ ` rπ
ξ q2qp|ξK ` ζK|2 ´ prπ

ζ ´ rπ
ξ q2q

(4.2)

after noting that if x “ ξK ` ζK then pP `
1 pxq, P ´

1 pxq, P `
2 pxq, P ´

2 pxqq “ pξK, ξ̃K, ζK,
ζ̃Kq, where ξ̃K, ζ̃K P πK are the reflected points of ξK and ζK with respect to ξK ` ζK.
Note that the implicit support condition rπ

ζ ´ rπ
ξ ď |ξK ` ζK| ď rπ

ζ ` rπ
ξ in (4.2)

always holds under the assumption rπ
ξ ď rπ

ζ . Observe that h2,ξpξKq “ h1,ζpζKq “ 0,
so manipulating the denominator one has

`
hξdσK

rπ
ξ

˚K hζ dσK
rπ

ζ

˘pξK ` ζKq “
˜

|ξK ´ ξ̃K||ζK ´ ζ̃K|
prπ

ξ rπ
ζ q2 ´ pξK ¨ ζKq2

¸1{2
ḡ2,ξπ pξ̃Kqḡ1,ζπ pζ̃Kq

(4.3)
for all ξK P rπ

ξ S
1 and ζK P rπ

ζ S
1. Next note that |ξK ^ ζK|2 “ prπ

ξ rπ
ζ q2 ´ pξK ¨ ζKq2,

but also |ξK ^ ζK|2 “ 1
4 |ξK ` ζK|2|ξK ´ ξ̃K||ζK ´ ζ̃K|, as the points satisfy the

relation ξK ` ζK “ ξ̃K ` ζ̃K. Thus,˜
|ξK ´ ξ̃K||ζK ´ ζ̃K|

prπ
ξ rπ

ζ q2 ´ pξK ¨ ζKq2
¸1{2

“ 2
|ξK ` ζK| ,

and combining the above estimates one obtainsż
πK

|p´Δyq1{4Tn´2,np {g1dσn {g2dσnqpπ, yq|2 dλπK pyq

“ p2πq2pn´1q
ż

|ξπ|ď1

ż
|ζπ|ď1

ż
rπ

ξ S1ˆrπ
ζ S1

Kπ,Sn´1pξ, ζqg1,ξπ pξKqg2,ζπ pζKq

ḡ2,ξπ pξ̃Kqḡ1,ζπ pζ̃Kq dΣπpξ, ζq
“ p2πq2pn´1q

ż
pSn´1q2

Kπ,Sn´1pξ, ζqg1pξqg2pζqḡ2pξπ ` ξ̃Kqḡ1pζπ ` ζ̃Kq

dσnpξq dσnpζq,
completing the proof of theorem 1.2; above dΣπpξ, ζq :“ dσK

rπ
ξ

pξKq dσK
rπ

ζ
pζKq dλπpξπq

dλπpζπq. ˝

https://doi.org/10.1017/prm.2019.74 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.74


Bilinear identities involving the k-plane transform and Fourier extension3367

4.2. Proof of theorem 1.6

Given ω P S
d´1` and π “ xωyK P Gd´1,d write, for each ξ P R

d, ξ “ ξπ ` ξωω,
where ξω “ ξ ¨ ω and let mπ

ξ :“ a
m2 ` |ξπ|2. Given s P R and x P π,

{gjdσHd
m

px ` sω, tq

“
ż

Rd

eipx`sωq¨ξ`it
?

m2`|ξ|2fjpξq dξa
m2 ` |ξ|2

“
ż

π

eix¨ξπ

ż
R

eisξω`it
?

m2`|ξπ |2`|ξω |2fjpξπ ` ξωωq dξωa
m2 ` |ξπ|2 ` |ξω|2 dλπpξπq

“
ż

π

eix¨ξπF2pgj,ξπdσH1
mπ

ξ

qps, tq dλπpξπq,

where fj,ξπ pνq :“ fjpξπ ` νωq for all ν P R and gj,ξπ denotes the lift of fj,ξπ to H
1
mπ

ξ
,

and F2 denotes the 2-dimensional Fourier transform. Reasoning as in the proof of
theorem 1.2, ż

R

ż
R

|B1{2
s R` {g1dσHd

m
qp¨, tq {g2dσHd

m
p¨, tq˘pω, sq|2 dsdt

“ p2πq2d

ż
π

ż
π

AHd
m,πpξπ, ζπq dλπpξπq dλπpζπq,

where

AHd
m,πpξπ, ζπq :“

ż
R

ż
R

|v|pg̃1,ξπdσH1
mπ

ξ

˚2 ḡ2,ξπdσH1
mπ

ξ

qpv, τq

pg̃1,ζπdσH1
mπ

ζ

˚2 ḡ2,ζπdσH1
mπ

ζ

qpv, τq dv dτ.

Note that

AHd
m,πpξπ, ζπq “

ż
R

ż
R

f1,ξπ pξωqf2,ζπ pζωq`
H2,ξdσH1

mπ
ξ

˚ H1,ζdσH1
mπ

ζ

˘pPξ,ζ,ωq
dξω

φmπ
ξ

pξωq
dζω

φmπ
ζ

pζωq ,

where H2,ξ is the lift of h2,ξpηq :“ f̄2,ξπ pηq|ξω ´ η|1{2 to H
1
mπ

ξ
(similarly for H1,ζ)

and Pξ,ζ,ω denotes the point

Pξ,ζ,ω :“ `
ξω ` ζω, φmπ

ξ
pξωq ` φmπ

ζ
pζωq˘

.

Denoting by rP the hyperbolic radius of Pξ,ζ,ω, that is, r2
P “ pφmπ

ξ
pξωq `

φmπ
ζ

pζωqq2 ´ pξω ` ζωq2, lemma 3.2 yields`
H2,ξdσH1

mπ
ξ

˚ H1,ζdσH1
mπ

ζ

˘pPξ,ζ,ωq

“ 2h2,ξpξωqh1,ζpζωq ` 2h2,ξpξ̃ωqh1,ζpζ̃ωqb
r4
P ´ 2r2

P

`pmπ
ξ q2 ` pmπ

ζ q2˘ ` `pmπ
ξ q2 ´ pmπ

ζ q2˘2
(4.4)
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where pξ̃ω, φmπ
ξ

pξ̃ωqq “ Q´
1 pPξ,ζ,ωq P H

1
mπ

ξ
and pζ̃ω, φmπ

ζ
pζ̃ωqq “ Q`

2 pPξ,ζ,ωq P H
1
mπ

ζ
.

After an algebraic manipulation and noting that h1,ζpζωq “ h2,ξpξωq “ 0, (4.4)
becomes`

H2,ξdσH1
mπ

ξ

˚ H1,ζdσH1
mπ

ζ

˘pPξ,ζ,ωq “ |ξω ´ ξ̃ω|1{2f̄2,ξπ pξ̃ωq|ζω ´ ζ̃ω|1{2f̄1,ζπ pζ̃ωq
|ξωφmπ

ζ
pζωq ´ ζωφmπ

ξ
pξωq| .

Putting all the estimates together as in the proof of theorem 1.2 concludes the
proof. ˝

Remark 4.1. As the points in the pairs pQ`
1 p0, zq, Q´

1 p0, zqq and pQ`
2 p0, zq,

Q´
2 p0, zqq are symmetric with respect to the vertical axis, it is a simple exercise

to obtain an expression for ξ̃ω and ζ̃ω via Lorentz transformations. Indeed, let γP

denote the hyperbolic angle of Pξ,ζ,ω and let LγP
denote, as in (2.3), the Lorentz

transformation such that LγP
pPξ,ζ,ωq “ p0, rP q. Then

Q`
1 p0, rP q “ LγP

pξω, φmπ
ξ

pξωqq “ pmπ
ξ sinhpγξ ´ γP q,mπ

ξ coshpγξ ´ γP qq
Q´

2 p0, rP q “ LγP
pζω, φmπ

ζ
pζωqq “ pmπ

ζ sinhpγζ ´ γP q,mπ
ζ coshpγζ ´ γP qq.

Clearly,

Q´
1 p0, rP q “ p´mπ

ξ sinhpγξ ´ γP q,mπ
ξ coshpγξ ´ γP qq

Q`
2 p0, rP q “ p´mπ

ζ sinhpγζ ´ γP q,mπ
ζ coshpγζ ´ γP qq

and

Q´
1 pPξ,ζ,ωq “ L´γP

pQ´
1 p0, rP qq “ pmπ

ξ sinhp2γP ´ γξq,mπ
ξ coshp2γP ´ γξqq

Q`
2 pPξ,ζ,ωq “ L´γP

pQ`
2 p0, rP qq “ pmπ

ζ sinhp2γP ´ γζq,mπ
ζ coshp2γP ´ γζqq,

so ξ̃ω “ mπ
ξ sinhp2γP ´ γξq and ζ̃ω “ mπ

ζ sinhp2γP ´ γζq. In particular, this allows
one to rewrite the kernel as

Kω,Hd
m

pξ, ζq

“
`
mω

ξ mω
ζ | sinhpγξ ´ γP q|| coshpγξ ` γP q|| sinhpγζ ´ γP q|| coshpγζ ` γP q|˘1{2

mω
ξ mω

ζ | sinhpγξ ´ γζq| .

Remark 4.2. Note that

|ξω ´ ξ̃ω| “ |pL´1
γP

pLγP
pξω, φmπ

ξ
pξωqq ´ LγP

ppξ̃ω, φmπ
ξ

pξ̃ωqqqq1|
“ |pL´1

γP
p2a, 0qq1| “ 2|a| coshpγP q,

where a :“ mπ
ξ sinhpγξ ´ γP q. As |ξω ´ ξ̃ω| “ |ζω ´ ζ̃ω| and the denominator in

(4.4) is easily seen to be equal to |a|rP (see the proof of lemma 3.2), the kernel
Kω,Hd

m
may then be expressed as

Kω,Hd
m

“ 2pφmπ
ξ

pξωq ` φmπ
ζ

pζωqq
pφmπ

ξ
pξωq ` φmπ

ζ
pζωqq2 ´ pξω ` ζωq2

after noting that coshpγP q “ pφmπ
ξ

pξωq ` φmπ
ζ

pζωqq{rP .
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5. Corollaries

5.1. Proof of corollary 1.3

By (1.11) it is clear that the expression

g1pξqḡ2pξπ ` ξ̃Kqg2pζqḡ1pζπ ` ζ̃Kq (5.1)

on its right-hand side is real and positive. The identity (1.12) then yields that (5.1)
equals to

1
2

`|g1pξqg2pζq|2` |g2pξπ` ξ̃Kqg1pζπ` ζ̃Kq|2 ´ |g1pξqg2pζq ´ g2pξπ` ξ̃Kqg1pζπ` ζ̃Kq|2˘
.

The negative term above immediately gives raise to the expression Iπ,Sn´1pg1, g2q,
whilst the positive terms amount to the same expression over the integral sign,
finishing the proof. ˝

Remark 5.1. Observe that the resulting sharp inequalityż
πK

ˇ̌̌
p´Δyq1{4Tn´2,np {g1dσn {g2dσnqpπ, yq

ˇ̌̌2
dy

ď CSn´1

ż
pSn´1q2

Kπ,Sn´1pξ, ζq|g1pξq|2|g2pζq|2dσnpξq dσnpζq (5.2)

obtained from dropping the negative term in (1.13) may be deduced more directly
via a simple application of the Cauchy–Schwarz inequality. Note that (4.1) is a
positive quantity, so in particular equals to its modulus. By the triangle inequality,
the left-hand side of (1.11) is controlled byż

|ξπ|ď1

ż
|ζπ|ď1

ż
prπ

ξ S1q2ˆprπ
ζ S1q2

|ξK ´ ηK|1{2|ζK ´ μK|1{2|g1,ξπ pξKq||g2,ξπ pηKq|

|g2,ζπ pζKq||g1,ζπ pμKq| dΣK
ξπ,ζπ pξK, ηK, ζK, μKq dλπpξπq dλπpζπq. (5.3)

Applying the Cauchy–Schwarz inequality with respect to the measure
dΣK

ξπ,ζπ dλπpξπq dλπpζπq, the above is further controlled by

ż
|ξπ|ď1

ż
|ζπ|ď1

ż
rπ

ξ S1ˆrπ
ζ S1

|g1,ξπ pξKq|2|g2,ζπ pζKq|2`
hξdσK

rπ
ξ

˚K hζdσK
rπ

ζ

˘pξK ` ζKq

dσK
rπ

ξ
pξKq dΣπpξ, ζq

where hξpηKq :“ |ξK ´ ηK|1{2 and similarly for hζ ; above dΣπpξ, ζq :“ dσK
rπ

ζ
pζKq dλπ

pξπq dλπpζπq. Evaluation of the innermost convolution as in (4.3) yields then the
desired inequality (5.2).
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5.2. Proof of corollary 1.4

Given π P Gn´2,n, Plancherel’s theorem and the relation (2.1) yieldsż
πK

ˇ̌̌
p´Δyq1{4Tn´2,nhpπ, yq

ˇ̌̌2
dλπK pyq “ p2πq´2

ż
πK

|ξK||phpξKq|2dλπK pξKq.

Averaging over all π P Gn´2,n, and using (2.2) and polar coordinatesż
Gn´2,n

ż
πK

|ξK|3´n|phpξKq|2|ξK|n´2dλπK pξKq dμGpπq

“
ż
Gn´2,n

ż 8

0

ż
Sn´1XπK

r3´n|phprωq|2rn´2r dr dσn,Kpωq dμGpπq

“ |G1,n´1|
ż 8

0

ż
Sn´1

r3´n|phprωq|2rn´1 dr dσnpωq

“ |G1,n´1|p2πqn

ż
Rn

||∇|p3´nq{2hpxq|2 dx,

which completes the proof on taking h “ {g1dσn {g2dσn. ˝

5.3. Proof of corollary 1.5

Recall ξ “ ξπ ` ξK. For n “ 3, π “ xωy, where ω P G1,3 » S
2`. Then ξπ “ pξ ¨ ωq ω

and ξK “ ξ ´ pξ ¨ ωq ω, so

|ξK ` ζK|2 “ |ξ ` ζ|2 ` |pξ ` ζq ¨ ω|2 ´ 2ppξ ` ζq ¨ ωq2

“ |ξ ` ζ|2
´
1 ´

´ pξ ` ζq
|ξ ` ζ| ¨ ω

¯2¯
.

Noting that |G1,2| “ π,

KSn´1pξ, ζq “ 2
|G1,2|

ż
S2`

dσ3`pωq
|ξK ` ζK| “ 2π

π|ξ ` ζ|
ż 1

´1

du?
1 ´ u2

“ 2π

|ξ ` ζ| .

Thus

}zgdσ3}4
L4pR3q ď p2πq4

ż
S2

ż
S2

1
|ξ ` ζ| |gpξq|2|gpζq|2 dσ3pξq dσ3pζq

and the desired sharp Stein–Tomas inequality for the sphere follows from the
following fact due to Foschi [19]:ż

S2

ż
S2

1
|ξ ` ζ| |gpξq|2|gpζq|2 dσ3pξq dσ3pζq ď }g}4

L2pS2q, (5.4)

which holds for g antipodally symmetric. The reduction to the antipodally sym-
metric case may be done as in [19], using the Cauchy–Schwarz inequality for real
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numbers

ac ` bd ď
a

a2 ` b2
a

c2 ` d2. (5.5)

Indeed, note that in the proof of (5.2) via the Cauchy–Schwarz inequality given in
§ 5.1, one may replace |gξπ pξKq||gξπ pηKq| in the innermost integral in (5.3) by

|gξπ pξKq||gξπ pηKq| ` |gξπ p´ξKq||gξπ p´ηKq|
2

,

and using (5.5) this is bounded by |g#
ξπ pξKq||g#

ξπ pηKq|, where for any function h, the
function h# denotes h#pξq :“ aphpξq ` hp´ξqq{2, which is antipodally symmetric.
One can argue similarly to replace |gζπ pζKq||gζπ pμKq| by |g#

ζπ pζKq||g#
ζπ pμKq|. Thus,

the right-hand side in (5.2) is replaced by

CSn´1

ż
|ξπ|ď1

ż
|ζπ|ď1

ż
rπ

ξ S1ˆrπ
ζ S1

2
|ξK ` ζK| |g#

ξπ pξKq|2|g#
ζπ pζKq|2

dσ1
rξπ pξKq dσ1

rζπ pζKq dλπpξπq dλπpζπq. (5.6)

One desires, however, to have g# rather than g#
ξπ and g#

ζπ . By a change of variables,
the integrand 4|g#

ξπ pξKq|2|g#
ζπ pζKq|2 may be further replaced by`|g#

ξπ pξKq|2 ` |g#
´ξπ pξKq|2˘`|g#

ζπ pζKq|2 ` |g#
´ζπ pζKq|2˘

,

which equals

|g#pξq|2|g#pζq|2 ` |g#pξq|2|g#pζK ´ ζπq|2 ` |g#pξK ´ ξπq|2|g#pζq|2
` |g#pξK ´ ξπq|2|g#pζK ´ ζπq|2.

A further change of variables in each of the terms allows one to see that (5.6) equals

CSn´1

ż
pSn´1q2

Kπ,Sn´1pξ, ζq|g#pξq|2|g#pζq|2 dσnpξq dσnpζq,

as desired for the later application of Foschi’s identity (5.4) on antipodally
symmetric functions. ˝

5.4. Proof of corollary 1.7

This follows the same argument as that of corollary 1.3. ˝

5.5. Proof of corollary 1.8

The proof follows from the same argument as in § 5.2. Indeed, the elementary
argument therein yields the relation

}p´Δq�{2f}2
L2pRdq “ p2πq´pd´1q}Bpd´1q{2`�

s Rf}2
L2

ω,spS
d´1
` ,Rq,

from which corollary 1.8 follows from taking � “ p2 ´ dq{2 after averaging over
ω P S

d´1` ; note that ω in the Radon transform R only runs over S
d´1` » Gd´1,d. ˝
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6. The bilinear identity (1.10) for paraboloids revisited

The purpose of this final section is to provide an alternative proof of theorem 1.1
via Fourier analysis. The proof follows the same scheme as those of theorems 1.2
and 1.6 with a little twist, which is available when taking one full derivative in the
s-variable in the case of paraboloids.

To see this, let P
d
a :“ tpξ, |ξ|2 ` aq : ξ P R

du denote the paraboloid in px, tq P R
d ˆ

R with tangent plane t “ a at its vertex; if a “ 0 we simply denote it by P
d. Let

dσPd
a

denote the parametrized measure on P
d
a, which satisfies {gdσPd

a
px, tq “ Efpx, tq

where E is the extension operator associated to φpξq :“ |ξ|2 ` a and g is the lift of
the function f : R

d Ñ C to P
d
a.

Given ω P S
d´1` and π “ xωyK P Gd´1,d write, for each ξ P R

d, ξ “ ξπ ` ξωω,
where ξω “ ξ ¨ ω. Given s P R and x P π,

{gjdσPdpx ` sω, tq “
ż

Rd

eipx`sωq¨ξ`it|ξ|2fjpξq dξ

“
ż

π

eix¨ξπ

ż
R

eisξω`it|ξπ |2`it|ξω |2fjpξπ ` ξωωq dξω dλπpξπq

“
ż

π

eix¨ξπF2pgj,ξπdσP2
|ξπ |2

qps, tq dλπpξπq,

where fj,ξπ pνq :“ fjpξπ ` νωq, F2 denotes the 2-dimensional Fourier transform and
gj,ξπ is the lift of fj,ξπ to P

2
|ξπ |2 . Reasoning as in the proof of theorem 1.2,

ż
R

ż
R

|BsR
` {g1dσPdp¨, tq {g2dσPdp¨, tq˘pω, sq|2 dsdt

“ p2πq2d

ż
π

ż
π

ż
R4

|ξω ´ ηω||ζω ´ μω|f1,ξπ pξωqf̄2,ξπ pηωqf̄1,ζπ pμωqf2,ζπ pζωq
dΣξπ,ζπ pξω, ηω, μω, ζωq

where

dΣξπ,ζπ pξω, ηω, μω, ζωq :“ δpξω ´ ηω ` ζω ´ μωqδppξωq2 ´ pηωq2 ` pζωq2 ´ pμωq2q
dξωdηωdμω dζωdλπpξπqdλπpζπq.

Arguing similarly,

Jωp {g1dσPd , {g2dσPd q

“ p2πq2d

ż
π

ż
π

ż
R4

pζωμω ´ ζωηω ´ ξωμω ` ξωηωqf1,ξπ pξωqf̄2,ξπ pηωqf̄1,ζπ pμωqf2,ζπ pζωq
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with respect to the measure dΣξπ,ζπ pξω, ηω, μω, ζωq, where JωpG1, G2q is the
bilinearization of Jωpuq; namely the integrand is replaced by

G1px ` sω, tqBsG2py ` sω, tq`BsḠ1py ` sω, tqḠ2px ` sω, tq ´ Ḡ1py ` sω, tqBsḠ2px ` sω, tq˘
´ G2py ` sω, tqBsG1px ` sω, tq`

Ḡ2px ` sω, tqBsḠ1py ` sω, tq ´ BsḠ2px ` sω, tqḠ1py ` sω, tq˘
.

Noting that

|ξω ´ ηω||ζω ´ μω| ` pζωμω ´ ζωηω ´ ξωμω ` ξωηωq “ |ξω ´ μω|2 (6.1)

if pξω, ηω, μω, ζωq P supp pdΣξπ,ζπ q, one can combine the two terms above to obtain

ż
R

ż
R

|BsR
` {g1dσPdp¨, tq {g2dσPdp¨, tq˘ps, ωq|2 dsdt ` Jωp {g1dσPd , {g2dσPdq

“ p2πq2d

ż
π

ż
π

ż
R4

|ξω ´ μω|2f1,ξπ pξωqf̄2,ξπ pηωqf̄1,ζπ pμωqf2,ζK pζωq
dΣξπ,ζπ pξω, ηω, μω, ζωq. (6.2)

For fixed ξω and μω, the only solution for the equations in the δ function is ηω “ ξω

and ζω “ μω. Thus, the right-hand side above equals

p2πq2d

2

ż
ξπ

ż
ζπ

ż
R2

|ξω ´ μω|f1,ξπ pξωqf̄2,ξπ pξωqf̄1,ζπ pμωqf2,ζπ pμωq

dξω dμω dλπpξπq dλπpζπq

and if f1 “ f2,

p2πq2d

2

ż
π

ż
π

ż
R2

|ξω ´ μω||fξπ pξωq|2|fζπ pμωq|2 dξω dμω dλπpξπq dλπpζπq

which, of course, is

p2πq2d

2

ż
Rd

ż
Rd

|pξ ´ ηq ¨ ω||fpξq|2|fpηq|2 dξ dη.

In the language of the Schrödinger equation, u “ E|u0, so the right-hand side is

π

p2πqd`1

ż
Rd

ż
Rd

|pξ ´ ηq ¨ ω||xu0pξq|2|xu0pηq|2 dξ dη

and one obtains the desired identity (1.10), finishing the proof of theorem 1.1. ˝
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Remark 6.1. Averaging over all ω P S
d´1` after dropping the term Jωpuq from the

obtained identity and noting that

ż
Sd´1

|pξ ´ ηq ¨ ω| dσnpωq “ 2|ξ ´ η|
ż 1

0

up1 ´ u2q d´3
2 du “ 2|ξ ´ η|π d´1

2

Γppd ` 1q{2q ,

one has

}p´Δxqp3´dq{4p|u|2q}2
L2

x,tpRdˆRq

ď p2πq1´d π

p2πqd`1

πpd´1q{2

Γppd ` 1q{2q
ż

Rd

ż
Rd

|ξ ´ η|xu0pξq|2|xu0pηq|2 dξ dη (6.3)

and the constant simplifies as PVpdq :“ 2´3dπp1´5dq{2{Γppd ` 1q{2q; this inequality
was also obtained in [3] in a more direct way.

Finally, it is noted that the honest analogue of theorems 1.2 and 1.6 in the context
of paraboloids is given by the following bilinear identity.

Theorem 6.2. Let d ě 2 and ω P S
d´1` . Then

ż
R

ż
R

|B1{2
s R` {g1dσPd p¨, tq {g2dσPd p¨, tq˘ps, ωq|2 ds dt

“ p2πq2d

2

ż
π

ż
π

ż
R2

f1,ξπ pξωqf̄2,ξπ pζωqf̄1,ζπ pξωqf2,ζπ pζωq dξω dζω dλπpξπq dλπpζπq.
(6.4)

The proof of theorem 6.2 is a minor variant of the one for theorem 1.1 exposed
above: the main difference is that here one solves the equations in the δ functions
in terms of ξω and ζω; the solution in terms of ξω and μω is now degenerate in
terms of the weight |ξω ´ ηω|1{2|ζω ´ μω|1{2, which vanishes in this case. Note that,
in (6.2), the fact of taking one full derivative with respect to s and adding the
term Jωp {g1dσPd , {g2dσPdq had the effect of replacing the weight |ξω ´ ηω||ζω ´ μω|
by |ξω ´ μω|2 thanks to the algebraic identity (6.1), allowing one to solve in those
variables.

Corollaries in the spirit of those obtained for spheres and hyperboloids can also
be deduced from theorem 6.2. In particular, the identity for complex numbers (1.12)
allows one to rewrite (6.4) as the following.

Corollary 6.3. Let d ě 2 and ω P S
d´1` . Thenż

R

ż
R

|B1{2
s R` {g1dσPdp¨, tq {g2dσPdp¨, tq˘ps, ωq|2 dsdt

“ p2πq2d

2

ż
π

ż
π

ż
R2

|f1,ξπ pξωq|2|f2,ζπ pζωq|2 dξω dζω dλπpξπq dλπpζπq ´ Iωpf1, f2q
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where

Iωpf1, f2q :“ p2πq2d

4

ż
π

ż
π

ż
R2

|f1,ξπ pξωqf2,ζπ pζωq ´ f1,ζπ pξωqf2,ξπ pζωq|2

dξω dζω dλπpξπq dλπpζπq.
Note that, unlike Jωpfq, the term Iωpf, fq does not have an obvious closed expres-
sion in terms of physical variables. Setting f1 “ f2 and averaging over all ω P S

d´1`
after dropping Iωpf, fq one obtains

}p´Δxqp2´dq{4p|u|2q}2
L2

x,tpRdˆRq ď p2πq1´d p2πq2d

2
|Sd´1|

2
}|u0}4

L2pRdq

“ 2´dπp2´dq{2

Γpd{2q }u0}4
L2pRdq,

which is the Ozawa–Tsutsumi estimate (1.8); note that for d “ 2 this amounts to the
L4pR2`1q Strichartz estimate. The interested reader should look at the work of Ben-
nett, Bez, Jeavons and Pattakos [3] for a unified treatment of the Ozawa–Tsutsumi
estimates (1.8), the inequalities deduced from (6.3), and a more general case with
an arbitrary number of derivatives on the left-hand side of such inequalities.
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