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We prove certain L2(R™) bilinear estimates for Fourier extension operators
associated to spheres and hyperboloids under the action of the k-plane transform. As
the estimates are L2-based, they follow from bilinear identities: in particular, these
are the analogues of a known identity for paraboloids, and may be seen as
higher-dimensional versions of the classical L?(R?)-bilinear identity for Fourier
extension operators associated to curves in R2.
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1. Introduction

For n > 2, let U be an open subset in R"~! and ¢ : R»~! — R be a smooth function
parametrizing a hypersurface S = {(£,¢(£)) : £ € U}. Associated to S, define the
Fourier extension operator

Ef(z) = fU € £(¢) d,

where z = (z,t) e R"! x Rand f € L'(U). The terminology extension comes from
the fact that F is the adjoint operator to the restriction of the Fourier transform to
S, that is E*h(&) = h(£, ¢(£)). Stein observed in the late 1960s that under certain
curvature hypothesis on S it is possible to obtain LP(U) — L(R"™) estimates for F
besides the trivial L'(U) — L*(R"™) estimate implied by Minkowski’s inequality. In
particular, the Fourier restriction conjecture asserts that if S is compact and has
everywhere nonvanishing Gaussian curvature
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should hold for all ¢ > 2n/(n —1) and 1/¢ < ((n—1)/(n + 1))(1/p’). This conjec-
ture is fully solved for n = 2 [17, 36], but is still open for n > 3 and constitutes one
of the main open problems in Euclidean Harmonic Analysis. The first fundamental
result in this direction was the Stein—Tomas [34, 31] restriction estimate

1E fll 2t niomn- ®ny < Cllfllzzwy; (1.1)

note that this estimate is best possible in terms of the exponent ¢ for f e L?(U).
Over the last few years, there has been a great interest in establishing the sharp
value of C' and the existence and characterization of extremizers in (1.1) depending
on the underlying surface S: see, for instance, [18] or the most recent survey [21].

Substantial improvements on (1.1) have been achieved over the last few decades.
An important ingredient for this has been the bilinear and multilinear approach.
Multilinear restriction estimates generally adopt the form

k
[ 154
j=1

where the E; are associated to hypersurfaces S; satisfying certain transversal-
ity hypotheses. A key feature of these inequalities is that, under such additional
hypotheses, it is possible to obtain estimates for p =2 and 2n/(n—1) < ¢ <
2(n +1)/(n —1). The interested reader is referred, for instance, to [35, 32] for the
theory of bilinear restriction estimates and to [4] for the multilinear approach; see
also the survey papers [33, 1].

An elementary instance of a bilinear estimate is in fact the identity

9 B 2 | f1(&0) ] f2(&2)]?
1BV /1 Exfol 2wy = (2) Llwg 61(6) — 0 (E2)]

which follows from an application of Plancherel’s theorem and a change of variables;
note that under the transversality hypothesis |¢} (1) — ¢5(&2)| > ¢ > 0 for & € Uy,
& € Us, one may interpret the identity (1.3) in the framework of (1.2). Of course,
the presence of L? on the left-hand side in (1.3) is key for the use of Plancherel’s
theorem. This bilinear approach has its roots in the work of Fefferman [17] and

k
<C[]Iflerw,) (1.2)

La/k (R™) Jj=1

dé; d&s, (1.3)

may also be extended to higher dimensions. Identifying E; f; = m , where g; :
R™ — R is the lift of f; to S;, i.e., g;(&, ¢,;(€)) = f;(£) and dy; is the parametrized
measure in S; defined via

Jn g(n)du(n) = f _g(£,¢j(£))d£,

Uj

one may obtain the L?(R") bilinear estimate
| By fLEa fol 72 gny < llgr?dpn # |g2?dpa]l o1 ey [dps # dpss|| oo gy
< Ol AlZ2 ol 220 (1.4)

after an application of Plancherel’s theorem and the Cauchy—Schwarz inequality,
provided one assumes the transversality condition |duy * dpal po@n) < C < 0. It

ISee §2.1 for the nonstandard normalization chosen for the Fourier transform ~.
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should be remarked that the Lebesgue exponent 2 on the left-hand side of (1.4)
corresponds to ¢ =4 = 2(n + 1)/(n — 1) if n = 3; note that in a bilinear formulation
the Lebesgue exponent is interpreted as ¢/2. This is very much in contrast to the
setting described in (1.2), in which the main goal is to obtain estimates when
q <2(n+1)/(n—1); bilinear and multilinear estimates of that type are deep and
difficult and will not be explored in this paper.

It is interesting to compare (1.3) and (1.4). The first observation is that (1.3) is an
identity, whilst (1.4) is an inequality. The second is the presence of the weight factor
|97 (&1) — h(&2)|7t in (1.3); the transversality weight |dguy = dus| in (1.4) does not
necessarily have a closed form in terms of the variables of integration of f; and fs.

The main purpose of this paper is to further exploit the elementary 2-dimensional
analysis in (1.3) in a higher dimensional setting. More precisely, we wish to obtain
a bilinear identity in higher dimensions which incorporates an explicit weight
factor amounting to some transversality condition; we note that an alternative
higher dimensional version of (1.3) has recently been obtained by Bennett and
Iliopoulou [5] in a n-linear level. In our goal of obtaining bilinear identities, we
shall replace the L?(R™) in (1.4) by a mixed-norm L'(R"~2) x L?(R?). Given
r = (Z,7') e R""2 x R?, taking the L'-norm in the Z variables will essentially
reduce matters to a 2-dimensional analysis in the 2" = (z,_1, z,) variables, where
the resulting extension operators E; and Es will correspond to sections of the orig-
inal surfaces by 2-dimensional planes parallel to & = --- = &,_5 = 0. The existence
of such bilinear identities has already been established by Planchon and the sec-
ond author [29] if the underlying hypersurfaces are paraboloids. The motivation in
their work came from the relevant role played by these types of inequalities in the
global behaviour of large solutions of nonlinear Schrodinger equations; see the next
subsection for further details. Here we further explore whether bilinear identities
hold for two other fundamental surfaces: the sphere and the hyperboloid.

Before describing our results in detail we shall first review the known results in the
case of paraboloids, as they will provide the framework and context to understand
our results.

1.1. Estimates for paraboloids and connections to Schrédinger
equations

In recent years, starting with the work of Ozawa and Tsutsumi [28] for the
paraboloid S; = Sz = {(&, |€[?) : € € R*7}, there has been an increasing interest in
understanding the weight |du; * dus| in (1.4) so that a L2-bilinear estimate

| EvfiBa fol 2 ggny < CJ Ks,.5,(6,8) 16| f2(&)? d6d&e (1.5)

U1 ><U2

holds for some kernel Kg, s, and such that the constant C is best possible; in many
cases, extremizers for the above kinds of inequalities have also been characterized.
This has been mostly studied for paraboloids [10], cones [7], spheres [20,11] and
hyperboloids [27, 23], with the corresponding natural interpretations in PDE.

It should be noted that the bilinear estimates (1.3) and (1.4) also hold when
FEs fo is replaced by its complex conjugate Fs fo. This is, of course, of interest when
S1 =S, and f1 = fo, as then the bilinear estimates can be reinterpreted as L2

https://doi.org/10.1017/prm.2019.74 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2019.74

3352 David Beltran and Luis Vega

estimates of |E f|2. In particular, in the case of paraboloids, the identity (1.3) may
be reinterpreted as

212 - 1 N1 () |12
| Pzt = g [ - al@@P@0Paan 00

or simply

1
f | D3/ |uf?|? de dt = 3 ol Zz g luol 72wy (1.7)
RxR

in order to avoid the singularity of the resulting weight |¢'(£) — ¢'(n)| = 2|¢ — n];
here we interpret the extension operator u(z,t) = Eug(z,t) as the solution of
the free Schrodinger equation id,u — Au = 0 in R? associated to the initial data
u(z,0) = up(z), with the normalization of the Fourier transform considered in § 2.1.
Note that, for this specific case, it is crucial that the multiplier associated to D,
coincides precisely with |¢'(£) — ¢/(n)|. Moreover, Ozawa and Tsutsumi [28] made
use of the Radon transform to obtain the higher dimensional version

(=)D )72 ger < OT(d)[uo 72 (gaylluo] 72 gy (1.8)
2 )

where the constant OT(d) = 2-97(2=9/2/I'(d/2) is sharp after verifying that for
up(z) = e~1#I” the inequality becomes an identity; see also [10, 3.

The interest of Ozawa and Tsutsumi comes from the nonlinear Schrodinger
equation

i0pu + 0%u = i\(O|u|®)u + f(u), (1.9)

where A € R and f is a nonlinear interaction, which can be taken to be zero for
simplicity of this exposition. In [28] the authors proved a well-posedness result in
the Sobolev space H'/2(R). This was a nontrivial task due to the presence of the
derivative term Jlu|? on the right-hand side of the equation (1.9). The advantage
of (1.7) (or (1.8) when d = 1) as opposed to an inequality of the type (1.5) is the
gain in derivatives of the solution with respect to the initial data, which allowed
the authors to treat the term d|u|? as a perturbation.

The result by Ozawa and Tsutsumi was not further explored until [29], where
Planchon and the second author established certain higher dimensional analogues
of the R!*1 identity (1.6). Their identities also involved the Radon transform in the
spatial variables?, which in fact features in the statement. Recall that given a linear
k-dimensional subspace 7 € Gy, ,, and y € 7+, the k-plane transform of a function f
belonging to a suitable a prior: class is defined as

Tonf(my) = f f(@ +y) drs(a),

where Gy, , denotes the Grassmanian manifold of all k-dimensional subspaces in R"
and d)\; is the induced Lebesgue measure on 7. The cases k=1 and k=n—1

2Note that the Radon transform in the spatial variables in u(z,t) amounts to a (n — 2)-plane
transform in the context of the extension operators Ef(z).
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correspond to the X-ray transform X and the Radon transform® R respectively.
With this notation, the following was shown in [29].

THEOREM 1.1 ([29]). Let n =2 and w € S¥~1. Then,
f f |0 R(|u(-,1)|?)(w, s)|* ds dt + J,,(u)

- W f f (& =) - wl [T (&) 2@ ()| € dn, (1.10)
where
Julu) = f J J< y1)2 |u(x + sw,t)Osu(y + sw,t) — u(y + sw, t)dsu(x + sw,t)‘2
A (wytyz (z,y) ds dt.

Note that fixing w = e4 (or any other coordinate vector) in (1.10) above, the first
term on the left-hand side amounts to [0 [ul?|| 1 @ra-1)]7 2 (r2y> Which in the
x gt

. . 4 . .
absence of the derivative 0, becomes HuHLidﬁt(Rz;LQ(Rdﬂ)), note the contrast with

the L*-nature of (1.3) and (1.4).

The approach used in [29] to establish theorem 1.1 uses integration-by-parts argu-
ments and extends to versions of (1.10) for nonlinear Schrédinger equations with
nonlinearity of the type &|u|P~!u, where p > 1. The motivation in [29] is similar
to that of Ozawa and Tsutsumi, and comes, more precisely, from the breakthrough
result by Colliander, Keel, Staffilani, Takaoka, and Tao in [16], who established
global well-posedness of the critical defocusing 3d nonlinear Schrédinger equation
(NLS)

i0pu + Au = uful*

in the energy space. This builds up on a previous result of Bourgain [9], who showed
the well-posedness under the assumption of radial symmetry. Bourgain used an
ad hoc modification of a well-known weighted estimate, typically referred to as
Morawetz inequality, proved in [24]; see also [25]. The weights are of the type |x|~*
and therefore not translation invariant, leading to the well-posedness only under
the radial assumption. To overcome that obstacle, the authors in [16] established
a bilinear Morawetz estimate that avoids the loss of the translation symmetry.
Whilst their strategy was successful in dimension 3, the method has some obstruc-
tions when considering nonlinear Schréodinger equations in dimensions 1 and 2. The
nonlinear versions of the identities (1.10) were then used in [29] to prove certain
lower dimensional well-posedness results, also obtained independently by Collian-
der, Grillakis and Tzirakis [15] by different methods. It is remarked that (1.10) has
further applications, such as well-posedness in 3d for exterior domains, scattering
of solutions (see also [26]) or recovering Bourgain’s [8] bilinear refinement of the
Strichartz estimate; the reader is referred to [29] for further details.

3The Radon transform Rf is identified with a function in Si_l x R setting Rf(w,s) =
Rf((w)t, sw).

https://doi.org/10.1017/prm.2019.74 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2019.74

3354 David Beltran and Luis Vega

Unfortunately, the bilinear identities (1.10) (or more precisely, the integration-
by-parts proof method) are extremely rigid and they rely on the fact that the
Schrédinger equation is a system with a quadratic dispersion relation. However,
the connections of these estimates with Strichartz inequalities suggest that similar
identities should also be true for general dispersion relations. This is what we start
to explore in this paper for the particular case of the Helmholtz and Klein-Gordon
equations. Our approach completely relies on Fourier Analysis techniques, after
noting that (1.10) can be obtained from applications of Plancherel’s theorem, in
the spirit of (1.3) and (1.4). Of course, such a proof method only applies to linear
problems, and it is therefore more natural to understand our results in the context
of the interaction of the k-plane transform and |E f|?, where the Fourier extension
operator F is associated to spheres and hyperboloids; see also the recent paper
[2] or the preprint [6] for further examples of this interaction. Despite the lack
of nonlinear results, we expect that the identification of bilinear identities for the
linear Helmholtz and Klein—Gordon equations presented in this article will provide
some light to develop methods based on direct integration by parts, which would
be more amenable to nonlinear counterparts. This will be explored somewhere else
in the future.

1.2. Estimates for the sphere

In the case of the sphere S?~! =rS"~! of radius r in R", consider the more
classical form of the extension operator

g+ gdoy,

where do” denotes the induced normalized Lebesgue measure on S and g€

LY(Sr~1). The following L?-identities for Tn_g,n(g/laa\;LM) are obtained.

THEOREM 1.2. Letn > 3. Letm € G,,_2,, and let w1 denote the orthogonal subspace
to m. For each z € R™, write z = 2™ + z+, where 2™ is the orthogonal projection of
z into . Then

J.

= Cgn J(Snl)z K, 51609168267 + €)92(O71 (¢ + () do!(€) do' ()
' (1.11)

PEE— 2
(*Ay)IMTn—Q,n (gldaﬁggdaﬁ) (m,y)] dAze(y)

where
2
K_gn1(£,¢) i= =, Cga1:= (2m)*71),
Sy ( ) ‘gj_ +<J_| ( )
re = /12 — [£7]2 and &+, ¢ et are the reflected points of €& and ¢t in wt with
respect to the line passing through the origin and £+ + (*, that is €+ + ¢+ = €- + ¢4
(see figure 1).

Of course, the L2-nature of the inequality on its left-hand side allows one to
take advantage of Plancherel’s theorem. As briefly described before §1.1, the key
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€

Figure 1. The new points fl € rgSl and Cl € rgSl in 7= are the reflected points of &L

and CJ‘ with respect to §J‘ + CJ‘.

presence of the (n — 2)-plane transform reduces the problem to a 2-dimensional
analysis, and one is left to understand the convolution of two weighted measures
associated to concentric circles of different radii in the subspace 7+ ~ R2. The
main advantage with respect to (1.4) is that in this setting it is possible to express
hido? « hodo? (€5 + ¢F) as the weight do?, * do? (¢+ + ¢F) times an evaluation
of the functions h; and hy at points depending on &+ and ¢*.
Several interesting corollaries can be deduced from theorem 1.2; their short proofs
will be given in $5. Given complex numbers a, b, ¢, d € C, the well-known identity
abéd = %(|ac|2 + |bd|* — |ac — bd|?) + i Im(abcd) (1.12)
may be used in theorem 1.2 to replace the 4-linear wave interaction

91(9)72(€™ + £)92(0) 1 (€™ + ¢F)

in (1.11) by an alternative expression involving |g1(€)|?|g2(¢)|* and which is closer
in spirit to (1.10).

COROLLARY 1.3. Letn >3 and m € G,_2,. Then

J.

= Cgons j( o, Kei €Ol Plaa(OF o7 (€ do7(O) = s o1, 02),
' (1.13)

—_— 2
(=AY T2 (g1do? godo?) (m,y)| dy

where

Cgn-1
Iﬂysrl(gl,gz) - 82 f KW,S?’I(E’C)
(spmh)2

191()g2(C) — g2 (€™ + €)1 (¢C™ + 1) dor (€) do(C).

Of course, the term I, gn—1 (91,92) = 0 and is identically zero if g; and g2 are con-
stant functions, so it may be dropped from (1.13) at the expense of losing the
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identity, leading to a sharp inequality which fits in the context of (1.5). Thus, the
term I g1 (91, 92) may be interpreted as the distance of such a resulting inequality

to become an identity.*
As the k-plane transform satisfies the Fourier transform relation

FyTenf(m,6) = f(&)  for gent, (1.14)

one may easily obtain by means of Plancherel’s theorem the relation

(2m)~*

= mH(_Ay)k/4Tk,nf|‘2L2(gk’mLz(ﬂ,L)); (115)

112 ey

see §2 for further details. Thus, on averaging theorem 1.2 over all 7 € G,,_5 ,, one
has the following.

COROLLARY 1.4. Let n > 3. Then
[(=2) B4 (grdop gadop) |72 gy

<@ G [ Ko a6 OlnOPlaa(OF dat(€) dor(<)

(812

where

1

ng—l(ﬁ,é) = m o Kw,s;}*l(va) dpig(m).

In the particular case n =3 and after setting g; = go, the right-hand side in
corollary 1.4 amounts to a bilinear quantity appearing in the work of Foschi [19]
on the sharp constant in the Stein—Tomas inequality (1.1) for S?. Thus, appealing
to his work, one can deduce the following.

COROLLARY 1.5 (Stein—Tomas [34], Foschi [19]).

19d® | s roy < 27lgl 12 (e- (1.16)

Besides the value for the sharp constant, Foschi [19] also showed that the only
real valued extremizers are constant functions; the existence of extremizers was
previously verified in [13,14].

Solution to the Helmholtz equation Consider the Helmholtz equation Au + k?u = 0
in R™. If supp.((1/R) SBR lu|? < oo, then there exists g € L2(S}™") such that u =
g@l. Theorem 1.2 and the subsequent corollaries may be then interpreted in
that context.

4The inequality resulting from dropping I n (g91,92) in (1.13) may be obtained more directly

N
by an application of the Cauchy—Schwarz inequality: see § 5.1
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1.3. Estimates for the hyperboloid

A similar analysis to the one described for S*~! may be carried for one of the
components of the elliptic hyperboloid in R%*+!, defined by

HY, = {(& €ar1) ER? X R : Egp1 = ¢ (€) 1= /m2 + [€]2}

and equipped with the Lorentz invariant measure doga (see §2.3), defined by

_ dg
J,, o€ Cdong €6 = [ steom@s g 01D
A function f € L*(RY) is identified with its lift g to HY,, given by g(&, ¢, (€)) = £(£),

and note

. . 3 B d
o (a,0) = [ sV f(ﬁ)\/%m?

where (z,t) € R” = R? x R. A natural reason to split into a space-time domain is
in view of the connection of gﬁl with the Klein-Gordon propagator e®*Vm* =4 f
this will be further discussed below. Thus, considering the Radon transform in the
space variables—as in (1.10) and as opposed to theorem 1.2, where no time role
is given and therefore (n — 2)-plane transform is taken—one obtains the following
(see §2.3 for the definition of Lorentz transformation).

THEOREM 1.6. Letd = 2. Letw € S‘i‘l and let 1= (w)* € G4_1.4 be the orthogonal
subspace to {w). For each x € R?, write x = 2™ + 2¥w, where ¥ = x - w. Then

— ——— 2
[ [ [e¥2Reoidom, . Ogadoag (e )] dsa
RJR

¢ d¢

=Gt | | Kum € ORORE + EDRORC + )50 5%

|62 — @ |12)¢w — (|2 2d

Ko &0 = Ty - cogmgy ¢ O =1
Above, the points (g“’7¢mg(§~“’)) EHrlng and (5‘”7¢mg(5‘”)) E]HI:,ZZr are the image
under L™ of the reflected points of L((£”, pmz (£7))) and L((C¥, dmz (C*))) in
R? with respect to the vertical axis respectively, where L is the unique Lorentz
transformation mapping (&¢ + (¥, Omg (&) +¢mg(C“’)) to the wertical axis and

mg i=/m? + |£7|2 (see figure 2).

As in the case of the sphere, the use of the Radon transform in R? and
Plancherel’s theorem reduces the above estimate to explicitly understand hy dUH}n1 *

hadom, (£ + (¥, dm, (§) + &m, (¢¥)). In fact, note that the value of K, o

amounts to the expression ’( ¢(mgl(5W) o Zl(gW) )‘ corrected with the natural weight
1/¢m§ (éw)qﬂmg (¢¥) coming from the definition of dog: . This should be compared
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N .
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Figure 2. If £ + ¢ lies in the vertical axis, the new points £ and ¥ are the reflected
points of £ and ¢“ with respect to that axis. For ease of notation, £ is identified with the
point (£, qﬁmg (Y) e H}ng: and similarly for the other points. Note that, in this situation,

the Lorentz transformation L in theorem 1.6 is the identity. In general, the above situation
results after applying L, which maps £“ + ¢* to the vertical axis.

with the elementary two-dimensional identity (1.3). The presence of the numerator
|ev — €w|1/2|¢w — ¢¥|Y/2 is due to the action of oY% on R(gl/d;mn(-,t)g%n(-,t)).

Moreover, one can explicitly write éw and f“’ in terms of ¢, ( and w, leading to the
more compact expression

2(¢m (&) + m (<))
(@m(§) + om(€)* — (€ +¢) - w)*

Kw,Hfﬁ (fa C) =

As in the case of the sphere, several corollaries can be deduced from theorem 1.6.
As for corollary 1.3, one may use (1.12) to rewrite theorem 1.6 in the spirit of
theorem 1.1.

COROLLARY 1.7. Let d > 2 and w € ST, Then

— ——— 2
| [ lovm(grdons, (- 0920 () w.5)| s
R JR

= d ” 2 2 d§ d¢ _ :
=Gt || Kum € OLAOPUAOP 5 iy 5 — Lo (512
where
Cpua I I
Ly ma (f1, f2) = 5 LRUWKw,an(f»C)|f1(§)f2(C)—fg(f + WA (CT + Cw)
_dg _d¢
Om(€) Pm(C)

As R =T, 4, the use of the Plancherel’s relation (1.15) after averaging over
w e Si‘l yields the following analogue of corollary 1.4 for hyperboloids.
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COROLLARY 1.8. Let d = 2. Then

[ (—Agg)@*d)/4 (gldngmg2d0H§n)Hii,t(Rd xR)

¢ d¢
Pm (&) Pm(C)

< 0! 1Cu | | Ky (6 OIROPILOP

where

K (€.0) - f K g (€,0) do(w).

The Klein—Gordon propagator The solution to the Klein-Gordon equation —d2u +
Au =m?u in R? x R, with initial data u(z,0) = fo(z), dsu(x,0) = fi(z) is given
by

u(a, 1) = VT L () 1 VB ()
where fi = 3(fo +i(vm? — A)7! f1) and f- = $(fo —i(v/m? — A)7'f1) and

eiit\/nﬂfAf(x) = 1 J JRER] +th/m2+\£|2f( )
(2m)¢ Jpa

Note that e**™Vm*=2f(z) = (2r)~%(gdogs )"~ (x,t); where g is the lLift of

f m?2 +|-|? to HY,. Thus, theorem 1.6 and corollaries 1.7 and 1.8 may be re-

interpreted in terms of ¢V =A; in particular, setting KG(d) = (27)~*Cpa, the
estimate in corollary 1.8 reads as

[(=20) =DV etV A )2 i

<KG(d) f Kaa (€, OLF O PIFOP b (€)bm(C) dE dC.

(R)?

Structure of the paper

Section 2 contains some notation and standard observations which will be useful
throughout the paper. In §3 we revisit the convolution of weighted measures of
circles and hyperbolas. Section 4 contains the proofs of theorems 1.2 and 1.6 whilst
§5 is concerned with the derivation of the several corollaries. Finally, we provide a
Fourier analytic proof of theorem 1.1 in §6, together with a further discussion on
Fourier bilinear identities associated to paraboloids.

2. Notation and preliminaries

2.1. Fourier transform

We work with the normalization of the Fourier transform

FUNO - 7@ = [ =@ md £ = G [ e as
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With this normalization,

~ =
—— =

Frg=1-3, f9©) =) "F«3©), Fz)=m"f(2), f(z)=n)"f(=),
where f(z) := f(—z), Plancherel’s theorem adopts the form
1flz2@ny = 7)™ fll L2 rn)-

The n-dimensional Dirac delta, denoted by 9,, is understood as

1 ia-z
5n ((L) = W fRn e dz.

2.2. k-plane transform

The Grassmannian manifold Gy, ,, of all k-dimensional subspaces of R™ is equipped
with an invariant measure dug under the action of the orthogonal group. This
measure is unique up to a constant, and is chosen to be normalized as

I
nl = d [ N S —
‘gk, ‘ Jk /"Lg(ﬂ-) ‘Sk_l‘ |SO‘

,n

Given m € Gy, and £ € 7+, the relation (1.14) between the k-plane transform T ,,
and the Fourier transform easily follows from the definition

Fflnf (€)= | eV Tinf () des )

~

[ e[ rerpin@aew=Fo e

after changing variables z = x 4+ y and noting that ¢ -z = 0 for ¢ € 7t. This and
the known identity (see, for instance, [22, Chapter 2])

LM flw)do™(w) = [ 1|L”Ln o opi(w)dug(m),  (22)

yield via Plancherel’s theorem and a change to polar coordinates the Plancherel-
type identity (1.15) for the k-plane transform.

2.3. Lorentz transformations

The Lorentz group L is defined as the group of invertible linear transformations
in R%*1! preserving the bilinear form

(z,0) ¥ Zg41Ugs1 — 2qUg — *++ — 2101

It is well-known that the measure dUH;{L is invariant under the action of the subgroup

of L that preserves the hyperboloid ng denoted by L£T. More precisely,

JHd foLdo-an = JHd de-HLTin

for all L € £LT. Tt is also a well-known fact that given P = (£, 7) € R4t with 7 > |¢],
there exists a Lorentz transformation L € £1 such that L(¢,7) = (0,4/72 — |£|?);
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see, for instance, [30]. For d = 1, this transformation is given by

T+E

coshyp —smh’yp> , where ~vp:=In ; (2.3)

—sinhyp  coshvyp

L=1L,, := ;
TP ( T — é-

recall that P may be expressed in hyperbolic coordinates as P = (,7) =

(rpsinhyp,rp coshyp), where rp :=+/72 — £2. The inverse Lorentz transforma-

tion that maps (0,rp) back to (§,7) is given by L_,,.

3. Convolution of weighted measures

As is discussed in the introduction, a key ingredient in the proofs of theorems 1.2 and
1.6 is to understand convolutions of two weighted measures associated to concentric
circles of different radii in R? and to hyperbolas in R? with the same perpendicular
asymptotes and foci lying on the same line but with different major axis. The
computation of such convolutions is standard; see, for instance, [19,11] for the
circular case or [30,12] for the hyperbolic case. The main feature here is that
the convolution is carried with respect to weighted measures, and, since the analysis
is restricted to R2, one can give a precise evaluation of such weights at certain points.

3.1. Circles

Given r € Ry, let do? denote the normalized Lebesgue measure of St = rS*, that
is

st

L 9102 = |, sty ao*w),

and recall that do?(w) = §1(1 — |w|) dw = 267 (1 — |w|?) dw, where dw denotes the
Lebesgue measure on R? and §,, denotes the n-dimensional Dirac delta.

Given 0 <71 < ra, the domain of integration in do? xdo? (x) is S}, n ({z} +
S ). This set is nonempty if and only if || € [ry — 71,72 + 1] and consists of one
point in the tangent case |z| = ro —rq or |z| = ro + 71 and of two points otherwise.
In the nonempty case, let v, € S' denote the /2 degrees rotation of z/|z| in the anti-
clockwise direction, and let P;"(2) and P; (z) denote the points in S}, n ({} + S}.)
such that Py () - v, = 0 and P, (z) - v, < 0 respectively; note that Py (z) = Py ()
in the tangent case. Define Py (z) :=x — Py (z) €S, and P{ (z) :=x — Py (z) €
S;,; note that P/ (), Py (z) € S, n ({x} +S},). Observe that P} (z) and P; ()
are reflected points one another with respect to the line passing through the origin
containing z: see figure 3.

LEMMA 3.1. Let ri,7r9 € R such that 0 < ry < ro. Then

_ 2012 (2))g2(Py (%) + 201 (P (2))g2(Py' ()
V=22 = (r2 +r1)?)([2]? = (r2 = 1)?)

g1do?, # godo? ()

if |x| € [re — 71,72 + r1].
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Figure 3. The points P5" (z), Py () eSl, n({z}+S},) and the points Pl (z):=2— Py (z),
P (z):=2— Py ()€ Si,. Note that P (2), P] (z) € St A ({z} +Sh,).

Proof. A standard computation shows (see for instance [19, Lemma 2.2] or
[11, Lemma 5] for similar arguments)

g1 daf1 * go daf2 (x)

= f J a1 (7”1(4)1)92(7"2&)2)52(1’ —Trw; — TQwQ) d02(w'1) d0'2(LU2)
St Jst

2 r
= 72J J gl(rlwl)gg(rgwg)ég(— — —1w1 7(4)2)51(1 — |WQ|2)d(72(W1)dWQ
ray Jst Jr2 reo T2
[ et - nena (o - 2 ) o)
= riw Tr—riw — s T ot W o (w
2| Sl91 1W1)92 1W1)01 omlz]  2m 2] | || 1 1

=1"(z) + I (),

where I (z) corresponds to the integration over S! (z) := {w € S! : z-w > 0} and
I"(z) to the integration over S! (z) := SI\S! (z) = {we S' : - w < 0}.

Denoting by «a, the clockwise angle between e; and z and P,(u) = (cos(a, +
arccos(u)), sin(ay + arccos(u))), the expression for I*(z) becomes, after a change
of variable,

L ry [z n
I = 2 2 1 —2)" 12 P
e L‘Sl(%m o 20| +u) (1= )72, (1 Pa(w)
g2(r — 11 Py (u)) du
1 |z|? +r? —r2\2\~1/2 . B
- ] (FE T P P
- (o)) e @)err @)

X{Tz—ﬁ <lz|<ra+ri} (iE)

= 201 (Pr (2))92(P5 (x)) Xirsri<falr 1) ()
V(2P = (2 + D) (af = (ry —rp)?) 2SS

noting that 7P, (u) = P/ () after integrating in w. Indeed, if yeS} n

({a} +SL,) one has |y—z>=7r3 and |y[*> =rf. Therefore y/ly| z/|z|=
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Figure 4. The points Q;’ (), Q5 (x) € H}nQ ({x} — ml) and the points Q+( ) =
T —Qy (@),Q7 (x) =z — Qf (z) € Hy, .

(|z|? + 72 — r3)/2r1|x| = u, and 71 P, (u) = P;" (z) follows from noting that P," (z) €
. 0 ({2} +8S),) and P (x)-v, > 0. Arguing similarly for I (z) concludes the
proof. o

2. Hyperbolas

Consider the Lorentz invariant measure dog defined in (1.17). Given 0 < m; <
my, the domain of integration in dogy —+ doy; (z)is Hy,, n ({x} — H},,). Reason-
ing as in the previous case, this set is nonempty if and only if \/z3 — 22 > my + mo
and consists of one single point in the tangent case /3 — 2% = m; + ms and of
two points otherwise; here # = (21, x5) € R2. In the nonempty case, let QF (x) and
Q3 () denote the points in H},, ~ ({} —H}, ) such that (Q3 () —x)-e; > 0 and
(Q5 (x) — x) - e1 < 0 respectively; of course, Q3 (z) = Q5 (v) in the tangent case.
Define Q7 (z) = # — Q5 (z) € H},, and Q7 (z) = z — Q3 (x) € H},, (see figure 4).

LEMMA 3.2. Let my,mg € R such that 0 < m; < mg. For each x = (x1,22) € R?
such that 23 > 2% one has

grdom, # godom, (z)

_ _201(Q1 (1))92(@5 (3)) + 201(Q1 (1))92(@5 (%)) @
Vw3 =) =23 — ) (mE + mB) + (i —mg)e (VR tEmemal

Proof. By invariance of the measure dog: under Lorentz transformations, it suffices
to prove the above identity for z = (O z) Tndeed, note that if L, € £+ is the Lorentz

transformation satisfying L, (z) (0,+/23 — 2%), then
grdomy, * gadom ( J f (V)o2(r —w —v)dom (w)dowm (v)
o m, Jm, na L

Lﬂl le (@)g2(L3" (1)52((0,2) —w — )

dog, (w )d0H1 (¥)

mo

= hldUH}n,l * hng’H}nz (0, Z)
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where h; = gj o L;!; the reduction to the vertical axis then follows from noting
that h;(QF(0,2)) = g;(QF (z)) for j,£ = 1,2. Next,

hldUH}n,l * hgd()’]].][}n2 (0, Z)

= J J hi(w)ha(1)d2((0, 2) — (w1, ws) — (v1,12)) dow, (w) domy, (v)
oy iy
51(2 - ¢m1(wl) = Pm, (wl))

o @) (@)

- jRh1<wl,¢m1(w1))h2<—w1,¢m2<w1>)

Splitting R = R_ U R, and doing the change of variables

B R 2 S
v = ¢m1 (Wl) + ¢m2 (w1)7 with ¢m1 (W1)¢m2 (wl) wll},

on each half-line one has

0

hlda’H}nl * tha'H}n2 (0, Z) = f

mi+ma

(P21, G, (@) a1, G, (1)

dv

(01, O, (1)1, 6 (1)) D1 (2 —0)

where w; above is the function of v

Vvt =202(m? + m2) + (m? —m3)?

wi =wp(v) = %

NOtiEg that QT (0,v) = (w1 (v), om, (w1 (v))) and Q3 (0,v) = (Fw1 (v), Py (W1 (V))),

hldJH}nl * thJH}nz (0, Z)
_ 2m(Q7(0,2))h2(Q5 (0, 2)) + 2h1 (Q1 (0, 2))ha(Q3 (0, 2))

1 )
V2 =222(m2 + m2) + (m? —m3)? {z=m1+ma}

completing the proof. o

4. The proofs of theorems 1.2 and 1.6

4.1. Proof of theorem 1.2

For simplicity we work on the unit sphere r = 1; the result for S*~! follows
analogously. Given 7 e G,,_2,, let 71 denote its orthogonal subspace. For each

£eR", write &€ = &7 4+ &L, where €™ e and &+ e nt, and let rEi=4/1 = [§72
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Given z € 7 and y € 7+,

gido™(z +y) = L g dam(€)
:J e”‘f”f eV gy (€ + &) dofy (61) dAn (€7)
lemI<1 rest 5
_ J " F gy endoy ) (y) dAx (€7)
gml<1

where g ¢r(w) 1= g;(§™ + w), FL denotes the Fourier transform in 7+ and dofrEr

denotes the induced normalized Lebesgue measure of rgSl in 7+, which can be,
of course, identified with da,z.g. Then, by Plancherel’s theorem in 7 (with the

normalization for the Fourier transform taken in §2),
Tn72,n(gldgn92dan)(ﬂ-7 y)

_ J G1do (@ + y)gado (z + ) dAn ()
=t P e dn) 0 F e o)) (€
T <1
A further application of Plancherel’s theorem in 71 yields
| AT, 0 (0187 a0 ) s (1)
= (27)2(n—1) f f Agn1 1 (€7,¢T) AN (€7) dA (C7).
lem|<1 Jjem|<t

where

AS”*I,‘IT (67\" Cﬂ-)

= JL |’U‘ (glyfﬂdafg st g%fﬂda'rlg)(U) (gLdeU#g x4 £72,C"d‘7rLg)(U) d)\ﬂ_l (1})

and g(-) = g(— ). For fixed {7, (™ with |7 < 1 and (™| < 1, Agn-1 ({7, (™) equals

to
J( P [ 77l|1/2|Cl - MLWZQLU (fl)ng" (Ul)gzc" (Cl)gm" (nh)
rg X TZI
dzé",(”(éL?nlvglauL) (41)
where

ASgr en (€707, ¢ uT) i=6(67 + ¢ = — p7) doyz (€7) dogz (™) doyz

3
—~
'
F
(ol
Q
3
3
—
=
}7
~—
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Observe that one may rewrite the above integral as

Agn-1 (&7,¢7) = J

7’281 Xré‘Sl

dort () dors (1)

167 (€)92,07 (¢1) (hagdory - hy cdors ) (6 + ¢F)

where ha ¢ () = Goer () |€L — 0+ |Y/? and similarly for by . As 7 =~ R?, assum-
ing without loss of generality that r¢ <rl, one can appeal to lemma 3.1 to
evaluate

(h2edoyy + hycdogs ) (65 +¢F)
2R, (€)1, (¢1) + 2o (€)1 (CH)

= (4.2)
y/ U6+ P = 07+ DI + 2 = (= rg)?)

after noting that if z = &+ 4 ¢+ then (P (z), P (z), Py (z), Py (x)) = (et et ¢t
¢1), where €4, (L € 7+ are the reflected points of £+ and ¢+ with respect to £+ + ¢+.
Note that the implicit support condition rf —rf < |-+ ¢ < ré+rf in (4.2)
always holds under the assumption rf < r7. Observe that ho ¢ (€1) = hic(¢h) =0,
so manipulating the denominator one has

¢ = E-c - ¢
(g7 — (€D

1/2
2) 2,67 (€5)F1.¢ (CF)

(4.3)
for all ¢+ € r7S! and ¢* € 7S Next note that €= A (5[ = (r7r7)? — (64 - ¢1)?,
but also [&+ A ¢(H|? = F|¢t + CHPEE - EH|¢t — ¢, as the points satisfy the
relation &+ + ¢+ = fl + Cl. Thus,

-t =&\ e
G St et

and combining the above estimates one obtains

(hedorz ** hedoyz) (€5 +¢H) = (

[ 80T, 2 (3107520 7. 9) P s ()
= (2m)*("= D J J J Kopsn-1(£,0)g1.67 (€1) 92,67 (¢F)
€7 |<1 JI¢mI<1 JrfStxrTSt

2,67 (E1)71,¢7 (CH) AR (£,0)
— (2m)2nD) J K gnt (6,091 (€)g2(Q)g(€™ + E9)ga (€7 + &)

(Sn—1)2
do™ (€) o™ (C),
completing the proof of theorem 1.2; above dX(, () := daﬂ:ér (&) daf:Zr (CH)dA. (€M)
dA-(¢™M). o

https://doi.org/10.1017/prm.2019.74 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2019.74

Bilinear identities involving the k-plane transform and Fourier extension3367
4.2. Proof of theorem 1.6

Given we ST and 7= (w)' € Gg_1,4 write, for each £ e R?, ¢ =¢™ + ¢,
where §¥ = ¢ - w and let mf := /m? + |{7[2. Given s € R and z € ,

gjdoga (z + sw, )

:f 6i(m+sw)-§+it\/m2+\§|2fj(E) d§

R A/ m? + [€]?

_ J eix{” J eisf“’+it m2+|£"|2+|§“’\2fj(€7r + gww> dfw
T R

Vm? + [67[% + |62

dAx(€7)

— J e F2 (g en dUH},Lg )(s,t) dA=(§7),

where fj ¢ (V) := f;(§" + vw) for all v € R and g; ¢~ denotes the lift of f; ¢~ to H,lng,

and F? denotes the 2-dimensional Fourier transform. Reasoning as in the proof of
theorem 1.2,

f f 1012R (grdogs ) )gadoms (1)) (w, ) ds
R JR

— (2m) f f Aggs (67, C7) dAn (€7) dAn(CT),

where
Apg, (€7, C7) = J f [0|(g1,¢xdog  +° g2 exdo)(v,7)
R JR 3 A
(G1,crdogr %2 gg exdogn ) (v, 7) dvdr.
me "y
Note that
g, (5, 7) :f J Fren (€ f2,67(¢°) (Hogdow  + Hcdow ) (Pec.w)
R JR g r
dgv d¢e
Qsmg (gw) (bmz (Cw)’

where Hy ¢ is the lift of hog(n) i= faoex(7)|€¥ —n|Y? to Hing (similarly for Hy )
and P ¢ ., denotes the point
Pecw = (€7 + % dmz (€9) + dmz (¢¥))-
Denoting by 7p the hyperbolic radius of Pe¢,, that is, 7% = (¢mg (&9) +
gbmg(C“’))z — (& 4 ¢¥)?%, lemma 3.2 yields
(Hoedog |+ Hycdog ) (Pecw)
' <

L eel€)nc(6) + e (E) )

\/rjg — 2r%((m§)2 + (mg)Q) + ((mg)2 — (mg)2)2
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where (ng (Zsmg (gw)) = QI(PE7C7W) € H'}ng and (va (bmzr (Ew ) = Q; (PS»C,W) € H'rlnzr
After an algebraic manipulation and noting that hi (((¥) = ho¢(§¥) =0, (4.4)
becomes

€ — €12 Faen (€2)1¢ — ¢ fr,e- (C¥)
|§w¢mg (Cw) - Cwﬁbmg (Ew)|

Putting all the estimates together as in the proof of theorem 1.2 concludes the

proof. o

(Hzgdog: * Hycdog ) (Pecw) =
3 <

REMARK 4.1. As the points in the pairs (Qf(0,2),Q7(0,2)) and (Q5 (0,2),
Q5 (0, 2)) are symmetric with respect to the vertical axis, it is a simple exercise
to obtain an expression for £“ and (“ via Lorentz transformations. Indeed, let vp
denote the hyperbolic angle of P ¢, and let L., denote, as in (2.3), the Lorentz
transformation such that L., (P¢ ¢ o) = (0,7p). Then

Q1 (0,7p) = Ly (€7, iz (€7)) = (m sinh(ye — vp), m{ cosh(ve — 7p))
Q3 (0,7p) = Ly, (C¥, dmz (¢¥)) = (m sinh(y¢ — yp), m¢ cosh(ye —7p)).
Clearly,
Q1 (0,7p) = (—=mg sinh(ye — vp), m¢ cosh(ve —vp))
Q3 (0,7p) = (—m¢ sinh(v¢ — yp), m{ cosh(v¢c — 7p))

Q1 (Pe¢w) = Ly (@1 (0,7p)) = (mg sinh(2yp — ve), mg cosh(2yp — 7))
Q3 (Pegw) = Ly (QF(0,7p)) = (m{ sinh(2yp — 7¢), m{ cosh(2yp — 7)),

S0 &Y = m sinh(2yp — 7¢) and (v = m¢ sinh(2yp — 7¢). In particular, this allows
one to rewrite the kernel as

Kw,lHIfn (f, C)

. . 1/2
_ (mgm¢|sinh(ye — yp)[| cosh(e + yp)|| sinh(yc — vp)|| cosh(vc + 7p)]) /
mgm¢|sinh(ye — v¢)| '

REMARK 4.2. Note that
169 = &%) = [(L3 A (L (€5 bz (6)) = Ly (€9, bz (€)1
= [(L5,(2a,0))1| = 2|a| cosh(vp),

where a :=m sinh(ye —yp). As [£¥ — €| = [¢* — ¢¥| and the denominator in
(4.4) is easily seen to be equal to |a|rp (see the proof of lemma 3.2), the kernel
K, ma may then be expressed as

L 2omE) + o)
D Gz (69) + Pz (¢¥))2 — (€ + ()2
after noting that cosh(yp) = (¢mg (&) + Py ¢))/rp-
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5. Corollaries

5.1. Proof of corollary 1.3
By (1.11) it is clear that the expression

91()g2(€7 +E5)g2(Og (¢ + ¢F) (5.1)

on its right-hand side is real and positive. The identity (1.12) then yields that (5.1)
equals to

%(|91(5)92(C)|2+ |92(7+EN)g1 (™ + CH)P = 191(6)92(C) — g2(€7+ €M) g1 (C"+CHP).

The negative term above immediately gives raise to the expression I sn-1(g1,92),
whilst the positive terms amount to the same expression over the integral sign,
finishing the proof. =

REMARK 5.1. Observe that the resulting sharp inequality

J.

SCpor || Kep @ Q@m0 @00 (52)

— T 2
(AT, 5 4 (grdomgado™) (m,y)| dy

obtained from dropping the negative term in (1.13) may be deduced more directly
via a simple application of the Cauchy—Schwarz inequality. Note that (4.1) is a
positive quantity, so in particular equals to its modulus. By the triangle inequality,
the left-hand side of (1.11) is controlled by

L L2l o L1/2), (el ik
O O O e e Sl T )
2. i, (| Em (™ R/ y T T . .
192.¢= (CH)llgn = (1) [ T = (€5, i) AA(ET) AAR(CT). - (5:3)

Applying the Cauchy—Schwarz inequality with respect to the measure

dEé‘W’U dA(€7) dA(¢™), the above is further controlled by

J f J |g1.¢ (€5) %92, (Cl)|2(h£dar7+g wt thng:Zf)(ﬁL +ch
l€m[<1 ¢ I<L JrEStxrzst

doz (67) dSx (£, €)
where ¢ (771-) = \SL _ nL|1/2 and similarly for h¢; above dX (£,¢) = doﬂ_}' (CJ‘) A\,

(£™)dA-(¢™). Evaluation of the innermost convolution as in (4.3) yields then the
desired inequality (5.2).
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5.2. Proof of corollary 1.4

Given 7 € G2 5, Plancherel’s theorem and the relation (2.1) yields

J.

Averaging over all T € G,,_3 ,,, and using (2.2) and polar coordinates

(A Tz h(m)| Do) = 20 [ JEHREL) Pre (6°),

| iR P ) digtr
: } )
= f f f r3_”|h(rw)|27“"_2r dr do”’l(w) dpg(m)
gn72yn 0 Sn=1n~gl

loe]
=1G1,n—-1] .[ J r3_"|h(rw)|2r"_1 drdo"(w)
0 Jsn—1

— Gupa|(2m)" J 9]~/ () ? i,
Rn

which completes the proof on taking h = mgg/a?z. o

5.3. Proof of corollary 1.5
Recall € = (™ + ¢4 Forn = 3, 7 = (w), wherew € Gy 3 ~ S%.Then¢™ = (£ w)w
and ¢+ = ¢ — (£ -w)w, so
€5+ P =16+ P HIE+ Q) w —2((E +¢) - w)?

_ |§+g|2(1f ((é:g') -w)2).

Noting that |Gy | =,

2 do? (w) 2w ! du 27
o0 =gl L e+ i ~ 7+ @ L=
Thus
34 4 1 2 2473 3
o0y < 2" [ | g (O Plol0) do(€) a0

and the desired sharp Stein—Tomas inequality for the sphere follows from the
following fact due to Foschi [19]:

1 5 ) ,
Lz L T 9OP 9O do*(€) 4o () < llglia(en) (5.4)

which holds for g antipodally symmetric. The reduction to the antipodally sym-
metric case may be done as in [19], using the Cauchy—Schwarz inequality for real
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numbers
ac+bd < Aa? + b2/ 2 + d?. (5.5)

Indeed, note that in the proof of (5.2) via the Cauchy—Schwarz inequality given in
§5.1, one may replace |ger (€1)||gex (n1)] in the innermost integral in (5.3) by

|ge= (E5)lger ()] + |ger (=€) llge= (=)
2 b

and using (5.5) this is bounded by |g?fr (fl)Hg?fr (n1)|, where for any function h, the
function h# denotes h# (&) := 1/(h(§) + h(—€))/2, which is antipodally symmetric.

One can argue similarly to replace |gc= (¢1)|[gen (ut)| by |g?fr (Cl)||g?fr (ut)|. Thus,
the right-hand side in (5.2) is replaced by

2
Cont | | |l Pt
[ 1<1 J|¢m[<1 Jr7StxrTS? ‘gj' + <L| ¢ ¢

doy, (€7) oy, (¢F) dAx(€7) A (CT). (5.6)

T{W ’[‘<7r

One desires, however, to have ¢# rather than g?i and g?f,. By a change of variables,
the integrand 4|g§’fr (fJ-)|2|g?'fr (¢1)|? may be further replaced by

(I (€)1 + 97 e (EP) (|92 (CHIP + 97 e (CH ),
which equals
g (P97 (OF + 197 (P97 (¢ = NI + g (€ = €M Plg™ (O
+ g7 (€5 = €M) Plg™ (¢t = ¢TI

A further change of variables in each of the terms allows one to see that (5.6) equals
Coms [ Keons €0l @I (O do"(©)do™(0),

as desired for the later application of Foschi’s identity (5.4) on antipodally
symmetric functions. =

5.4. Proof of corollary 1.7

This follows the same argument as that of corollary 1.3. =

5.5. Proof of corollary 1.8

The proof follows from the same argument as in §5.2. Indeed, the elementary
argument therein yields the relation

H(_A)Z/ZfH%Q(]Rd) = (277)_((1_1)"agd_l)/2+enf“ii,.§(Si—le)’

from which corollary 1.8 follows from taking ¢ = (2 — d)/2 after averaging over
we Si‘l; note that w in the Radon transform R only runs over Si‘l ~Gi_14. ©
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6. The bilinear identity (1.10) for paraboloids revisited

The purpose of this final section is to provide an alternative proof of theorem 1.1
via Fourier analysis. The proof follows the same scheme as those of theorems 1.2
and 1.6 with a little twist, which is available when taking one full derivative in the
s-variable in the case of paraboloids.

To see this, let P4 := {(¢, |€]? + a) : € € R} denote the paraboloid in (z,t) € R? x
R with tangent plane t = a at its vertex; if a = 0 we simply denote it by P?. Let
dopa denote the parametrized measure on P¢, which satisfies g/dc_TFZL (z,t) = Ef(x,t)
where E is the extension operator associated to ¢(¢) := |£|? + a and g is the lift of
the function f: RY — C to P,

Given we ST and 7 = (W)t € Gy, write, for each £ e R?, & = ¢ + ¢vw,
where £¥ = ¢ -w. Given s € R and z € 7,

gjdopa(z 4 sw,t) = J ei(x“‘”)'&”lﬂzfj(ﬁ) d¢
Rd
_ J eiz-f" f eis&“+it|§"\2+it|§“’\2fj(§7r + gww) dgw d/\ﬂ_(éwr)
™ R

_ J e P g erdoss | )(51) dAr(€7),

where fj¢r(v) i= f;(§™ + vw), F? denotes the 2-dimensional Fourier transform and

gj.¢~ is the lift of f; ¢ to 1P’|2§,r‘2. Reasoning as in the proof of theorem 1.2,

| [ 10.R (1000 )gadoes (. ) ) ds
R JR

=t [ [ [ 16 =l = 1 €) P () ) g (6°)

dEf”,C” (Ewa 77“}7 :U’wa Cw)
where

A8en cx (€907, 14, C¥) 1= 8(E% — 1 + ¢ — p?)((€°)? — (n”)? + (¢¥)* — (1*)?)
Ae“dn®dp® d¢@d (€7)dAR(CT).

Arguing similarly,

Jo(91d0pa, g2dosa)

= [ [ [ @ = - € € e € e () 1) e (€°)
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with respect to the measure d¥e~ ¢~ (€, 7%, p”,¢%), where J,(G1,G2) is the
bilinearization of J,(u); namely the integrand is replaced by

Gi(z + sw,1)0:G2(y + sw,t) (0sG1(y + sw, t)Ga(w + sw, t) — G1(y + sw,t)0sG2(z + sw, t))
— G2(y + sw, t)0sG1(x + sw,t) (G_g(x + 5w, 1)0sG1(y + sw, t) — 0sGa(x + sw, )G (y + sw,t)).

Noting that
€9 =0 |IC¥ — u®| 4+ (Cp = ¥ — €9 + €9 = €9 — (6.1)
if (£¥,n, ¥, (%) € supp (dX¢~ ¢~ ), one can combine the two terms above to obtain
f J 10 R (91009 (-, £)gadopa (- 1)) (5, 0)|? ds d + J, (g1d0pa, g2doms)
R JR

=t [ [ 16— P e 6 e ) i (5 oo 6°)
dXer ¢~ (6,07, 1, ¢¥). (6.2)

For fixed £ and p*, the only solution for the equations in the § function is n* = &
and (* = p®. Thus, the right-hand side above equals

27r 2d ) )
Jw fwf _Mw|f1x57 (fw)fZE" (gw)fl,cﬂ(liw)fz)gw(,u“’)

de® A e (€7) dAn (CT)

and if f1 = fa,
2 2d
C [ [ = e (6P ()P dg i aha(e) arn(7)
which, of course, is

(2)2d
2 f f (€ =)l FOP £ A& dy.

In the language of the Schrodinger equation, u = Etyg, so the right-hand side is

G ), |, 6= )Ll OPIT () dc an

and one obtains the desired identity (1.10), finishing the proof of theorem 1.1. o
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REMARK 6.1. Averaging over all w e S%! after dropping the term J,,(u) from the

obtained identity and noting that

20¢ —pln s

1
—7n) w|do"(w) = — w(l —u?) T dy= > T "
| Je =)ol don(w) =2l =l | w1 — )5 au = 2T

one has

[(=A2) =D (ul®) 12 | o xry

. pld=1)/2

< On) S R oy |, € RO @R dsdn (63

and the constant simplifies as PV (d) := 27347(1=54)/2)((d + 1)/2); this inequality
was also obtained in [3] in a more direct way.

Finally, it is noted that the honest analogue of theorems 1.2 and 1.6 in the context
of paraboloids is given by the following bilinear identity.

THEOREM 6.2. Letd = 2 and w € Sf'l[l. Then

|, || 194 R (610050 920054, ) (s, st
R JR

7r)2d

|| e (@) e () e (€) fage () € 40 ae(€) are (7).
(6.4)

The proof of theorem 6.2 is a minor variant of the one for theorem 1.1 exposed
above: the main difference is that here one solves the equations in the § functions
in terms of £¥ and (“; the solution in terms of £ and p® is now degenerate in
terms of the weight |£¥ — n*|Y/2|¢¥ — u|'/2, which vanishes in this case. Note that,
n (6.2), the fact of taking one full derlvatlve with respect to s and adding the
term J, (g 1dO'Ip>d g2dO'Ip>d) had the effect of replacing the weight [£¥ — n®||¢¥ — u*|
by |€¥ — u®|? thanks to the algebraic identity (6.1), allowing one to solve in those
variables.

Corollaries in the spirit of those obtained for spheres and hyperboloids can also
be deduced from theorem 6.2. In particular, the identity for complex numbers (1.12)
allows one to rewrite (6.4) as the following.

COROLLARY 6.3. Let d >2 and w e ST . Then
JJ|a;/2R(gE10\Pd(.,t)gZ’dand(.,t))(s,w)Fdsdt
R JR

_M w2 w2dwdwd>\ ™ d\ ™ _ T
D[ [ @R e (€7 a6 ac* arafen) dre(c™) — Lt 1)
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where

2d
L f) = & j J f [ Frer (€) acr (%) — fr.¢x (69) forgn (C9)
dév d¢® d, 5” d\, (Cr)

Note that, unlike J,,(f), the term I, (f, f) does not have an obvious closed expres-
sion in terms of physical variables. Setting f; = fo and averaging over all w € Sflfl
after dropping I,(f, f) one obtains

B (27T)2d |Sd—1| -
[(=20) D7 (Ju)? )Hm ((RIXR) S < (2m) 9 2 HUOHiZ(R”l)

9—d (2—d)/2 .
= WHUOHLQ(DW)’

which is the Ozawa-Tsutsumi estimate (1.8); note that for d = 2 this amounts to the
LA(R?*1) Strichartz estimate. The interested reader should look at the work of Ben-
nett, Bez, Jeavons and Pattakos [3] for a unified treatment of the Ozawa—Tsutsumi
estimates (1.8), the inequalities deduced from (6.3), and a more general case with
an arbitrary number of derivatives on the left-hand side of such inequalities.
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