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ABSTRACT

The hydrogen concentration and composition of garnets in the ultrahigh pressure eclogites at Shuanghe,
castern Dabieshan, were investigated using Fourier transform infrared spectroscopy and electron
microprobe analysis. The OH absorption bands can be divided into four groups: (1) 3635-3655 cm™!;
(2) 3600-3630 cm ™ !; (3) 3540-3580 cm™!; and (4) 3400-3450 cm ! and the water content ranges from 45
t0 2529 ppm. Based on the behaviour of the OH absorption band and the relationship between water content
and the composition of garnets, the samples can be divided into two classes: samples with >400 ppm H,O
and samples with <400 ppm H,O. The water content of the former shows an obvious positive correlation
with Ca atoms and a negative correlation with the Si, Mg and Fe?" atoms per 12 anions, whereas the water
content of the latter shows no obvious linear correlation with cations. It is concluded that the major
mechanism of hydroxyl incorporation in garnets with >400 ppm H,O is by the coupled substitution 4H
+Z[] — [+ %Si in the tetrahedral site, and that several mechanisms are responsible for OH incorporation in
garnets with <400 ppm H,O.

KevywoRrbps: Dabieshan, Shuanghe, ultrahigh pressure eclogite, garnet, water incorporation.

found that hydrogen is an element in some
approved species of garnet (such as Kkatoite,
holtstamite and henritermierite) (Armbruster

Introduction

SINCE the 1960-70s, it has been shown that almost

all nominally anhydrous minerals (NAMs) such as
quartz, garnet, pyroxene, olivine, and their high-
pressure phases contain small amounts of hydrogen
in the crystal defects, present as OH™ groups or H,O
molecules, and water content ranges from <1 ppm
to several thousand ppm (Martin and Donnay,
1972; Wilkins and Sabine, 1973; Rossman, 1996;
Keppler and Smyth, 2006; Steven and Suzan, 2006;
Geiger, 2013). As the major mineral in eclogite and
other metamorphic rocks, garnet is an important
subject in studying the water of NAMs; it has been
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et al., 2001; Ferro et al., 2003; Hélenius et al.,
2005). Due to the complexity of its composition
and its stability over a wide range of pressures and
temperatures, the mechanisms of OH incorporation
in garnet are not yet well understood (Ingrin and
Skogby, 2000; Beran and Libowitzky, 2003, 2006;
Johnson, 2006; Libowitzky and Beran, 2006). The
composition and crystal structure of garnet can
significantly influence the OH incorporation mech-
anism and its content. In hydrous garnets, the major
mechanism of hydroxyl incorporation is by the
coupled substitution 4H +Z[]— []+728i, i.e. the
hydrogen ions occupy a separate site of general
symmetry (Wyckoff position 96/) coordinated to
the 4 O coordinated originally to Si, which is
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absent. The hydrogen ion has been investigated by
Fourier transform infrared (FTIR) spectroscopy,
nuclear reaction analysis (NRA), neutron magnetic
resonance (NMR), as well as by neutron and X-ray
diffraction and by computer simulation (Foreman,
1968; Aines and Rossman, 1984a; Lager et al.,
1987, 1989; Beran et al., 1993; Cho and Rossman,
1993; Wright et al., 1994; Milman et al., 2000;
Maldeneret al., 2003; Beran and Libowitzky, 2006;
Wright, 2006; Grew et al., 2013). However, most
natural garnet contains much less H,O, and their IR
spectra are more complex, which suggests that OH
groups have been incorporated by mechanisms
other than 4H+Z[]—[]+%Si (Birkett and
Trzcienski, 1984; Kalinichenko et al, 1987,
Geiger et al., 1991; Khomenko et al., 1994; Lu
and Keppler, 1997; Armbruster et al., 1998; Ingrin
and Skogby, 2000; Andrut and Wildner, 2001;
Andrut et al., 2002; Johnson, 2003; Beran and
Libowitzky, 2003; Blanchard and Ingrin, 2004;
Kurka et al., 2005).

As in the previous studies, the water content of
garmet from the ultrahigh-pressure (UHP) eclogites in
eastern Dabieshan showed a large variation, ranging
from <100 ppm to >1800 ppm, and the OH incorp-
oration mechanism is not yet well understood (Zhang
et al., 2001; Sheng et al., 2005; Xia et al., 2005). In
this paper, we report our investigations by FTIR and
electron microprobe analysis (EMPA) of the relation-
ship between hydrogen concentration and compos-
ition of garnet from the UHP eclogites in Shuanghe,
eastern Dabieshan.

epidote amphibolites + narrow blueschist belt (V)
along the southern margin of the Dabie Block
(Zhang et al., 2009).

In this study, ten eclogite samples were collected
from Shuanghe UHP metamorphic rocks of the
central Dabie UHP belt (Fig. 1b). Eclogites crop out
either within orthogneisses (Shw2, Shx1 and Shx4)
and marbles (Shx7, Shx8, Shx9 and Shx13) or
together with UHP jadeite quartzite (Shx15, Shx17
and Shx18). They are preserved as folded layers and
lenses in the epidote two-mica schist and also as
folded lenses and smaller nodules in the marble. The
age of peak metamorphism is ~220-230 Ma, when
P>~27-28 kbar and 7=700+50°C (Cong et al.,
1995; Liou et al., 1997; Li et al., 2000; Liu et al.,
2006; Wang et al., 2010). Most of the Shuanghe
eclogites are foliated, and the UHP minerals such as
garnet, omphacite and rutile are stretched substan-
tialy. The critical temperature (lower limit for ductile
deformation) under which plastic deformation of
garnets took place is estimated to correspond to the
coesite eclogite phase condition (Xu et al, 1999,
2008; Liu et al., 2005, 2006).

In this study, the samples of Shx1, Shx7, Shx8,
Shx9 and Shx13 are strongly retrograded (Fig. 2a),
consisting of large garnet porphyroblasts set in a
matrix of finer-grained amphibole, quartz and
plagioclase. Nearly all of the omphacites have
been replaced by symplectites of Ca-pyroxene and/
or Ca-amphibole with sodic plagioclase. In con-
trast, the sample of Shw2, Shx4, Shx15, Shx17 and
Shx18 are fresh or slightly retrograded (Fig. 2b),
and the garnet and omphacite are coarse-grained
and equigranular in texture. The garnets investi-
gated are large crystals that are free of visible cracks

Geological background and sample : : :
description and inclusions under the microscope.
The Dabie-Sulu orogenic belt in China is the largest

(>30,000 km?) and one of the best-exposed UHP Analytical methods

metamorphic terranes known. Numerous studies
have shown that this belt resulted from the
subduction of the South China Block beneath the
North China Block followed by rapid exhumation
(Zheng, 2008; Zhang et al., 2009) during the
Mesozoic. The Dabie orogen is located in central-
eastern China, and it is bounded by the strike-slip
Tan-Lu (Tancheng-Lujiang) fault with the Sulu belt
to the east, and it connects with the Qinling orogen
in the west (Fig. 1a). From north to south, the Dabie
Block is divided into: (I) a low-grade metamorphic
belt; (II) the north Dabie high-T/P amphibolite/
granulite belt; and (IIT) the central Dabie UHP belt.
The UHP belt grades southwards to a narrow
coesite-free eclogite belt (IV); and there is an
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Double-sided polished chips ~2 cm x 1 cm in area
and ~0.2-0.4 mm thick were prepared. Because the
precision of measuring thickness by micrometer of
the chips is <10% at any one point, the average of
more than 35 points obtained from measurements
over the entire chip was applied to individual grains
in the chip (Table 1, and Supplementary file 1.
Supplementary files have been deposited with the
Principal Editor of Mineralogical Magazine and are
available from www.minersoc.org/pages/e-jour-
nals/dep_mat mm.html). The cleaning procedure
included >8 h of dissolution of the chips in ethanol
or acetone, followed by repeated cleaning with
ethanol and distilled water. To remove the surface-

https://doi.org/10.1180/minmag.2016.080.034 Published online by Cambridge University Press


https://doi.org/10.1180/minmag.2016.080.034

WATER INCORPORATION IN GARNETS

N5°E 16°E N"7°E
| L |

—31°N
&
lIICamﬂmcmmm éﬁ
[ Luzhenguang G & 3:."2”9h°
ig. 1{B)
5] Foziing G nshan
Ll Gneiss-migmatite
Eluwr aclogite belt 30 km
I HP ecogite belt
Amphibolite-facies
[ Blueschist-gresnschist facies I3 Coesite eclogite
[ 4k granitic plutons M Quartz eclogite
(5] maic-ultramatic plutons O Coesite in gneissic [-ao°n
=] Peridotite ., ypp boundary zircon

200m  400m  G00m
I

ZSICS

204 |45

s.m Sample locality

Biotite-feldspar gneiss Quaternary sediments
—
Two-mica gneiss Met itoi == Dam
& etagrani OIQ :
Bl Eclogite Reservoir
3 | Amphibolite ] Monzo-granitic gneiss _/ River
| Alkali-granitic gneiss
o I Jadeite-quartzite 7 g g
[ Marble f Wide shear zone
Bl Calcsilicate gneiss / Fault Manoing by Lu W
apping by Lu Wang,
I serpentinite Geological boundary and Ruth Prelicz,2000
. Map compiled
Bl Talc-schist Geolr{){gi:albg;mdery January 2009
nferre

Fic. 1. (a) General geological and tectonic map of the Dabie Mountains (modified after Zhang, et al. 2009);
(b) Geological map of Shuanghang area, Pailou, Anhui Province (modified after Wang ez al. 2010).

961

https://doi.org/10.1180/minmag.2016.080.034 Published online by Cambridge University Press


https://doi.org/10.1180/minmag.2016.080.034

XIANG-WEN LIU ETAL.

F1G. 2. Photomicrographs of the eclogites. (a) Retrograded

eclogite of sample Shx1; (b) fresh eclogite of sample

Shx17. (Grt, garnet; Omp, omphacite; Qz, quartz; R,

rutile; Sym, symplectite. All the photographs were taken
under plane polarized light).

absorbed water, the thin chips were heated for >6 h
in an oven at ~110°C. Infrared spectra were
obtained at room temperature in the range 650—
4000 cm ™! on a Nicolet 6700 FTIR spectrometer at
the State Key Laboratory of Geological Process and
Mineral  Resources, China University of
Geosciences, Wuhan, China. Measurements were
carried out with unpolarized radiation with an IR
light source, a KBr beam-splitter, and an MCT-A
liquid N,-cooled detector. For each analysis, 128
scans at a resolution of 4 cm™! were recorded.

The compositions of all samples were determined
using EMPA on the JEOL JXA-733 electron
probe at the State Key Laboratory of Geological
Process and Mineral Resources, China University of
Geosciences, Wuhan, China. Measurements were
carried out at 15kV accelerating voltage, 20 nA
beam current, 10 um electron beam diameter and
20 s count times on the peaks. The EMPA standards
include the following minerals: jadeite for Na,

962

ilmenite for Ti and Fe, K-feldspar for K, wollas-
tonite for Si and Ca, MgO for Mg, Al,O; for Al,
MnSiOj; for Mn and Cr,Oj for Cr. In order to check
the accuracy of our EMPA data, duplicate analyses
were performed on five samples (Shw2, Shxl,
Shx4, Shx7, Shx13) with another electron probe, a
JEOL JXA-8230 at the Center of Testing and
Analysis, Wuhan University of Technology, Wuhan,
China, using 15 kV accelerating voltage, 20 nA
beam current and 5 um electron beam diameter. The
following standards were used: NaAlSi,Og for Na,
Mg, Fe),SiO, for Mg, KAISi;Og for K,
MgCaSi206 for Ca, T102 for Tl, Fe3AIZSi3012 for
Al, MgCaSi,Og for Si, Cr,0Oj3 for Cr, (Mn, Ca)SiO;
for Mn, Fe;AlSis0,, for Fe. The results
(Supplementary file 2) are consistent with our
analysis using the JEOL JXA-733 (Table 2,
Supplementary file 3) and previous research
(Cong et al., 1995; Wang et al., 2010). Formulae
were calculated by the Excel spreadsheet that Grew
etal. (2013) recommended, and most Si contents are
still >3 atoms per formula unit (apfu).

FTIR analysis results

The FTIR spectrum of the 22 garnet grains
investigated (91 spots) show at least two absorption
bands in the typical OH-stretching vibration region
of ~3000-3800 cm™! (Fig. 3a,b; Table 1). The
broad absorption rising towards higher wave-
numbers is due to an electronic transition in Fe**
(Aines and Rossman, 19845b; Bell and Rossman,
1992), and the weak band at ~3710 cm ™! in some
spectra is probably due to contamination from water
vapour in air. After background correction, the
spectra  were resolved into Gaussian- and
Lorentzian-shaped absorption bands, and their
band centre, their full width at half-height
(FWHH), and their integral intensity were deter-
mined with the software of PeakFit V4.12 by Jandel
Scientific (Andrut ez al., 2002). The OH-absorption
bands can be divided into four groups: (I) 3635—
3655em™!; (II) 3600-3630 cm™'; (III) 3540—
3580 cm™!; and (IV)) 3400-3450 cm™' (Table 1,
Supplementary file 4; Fig. 3¢,d). The position of
the first three groups of bands are in the energy
range (generally 3500-3700 cm!) of structural
OH", and are composed of relatively sharp bands
with FWHH<160 cm ™. They are considered to be
the result of OH-vibrations of the tetrahedral site in
garnet similiar to those observed in hydrogrossular
(Aines and Rossman, 1984a; Birkett and
Trzcienski, 1984; Rossman and Aines, 1991; Cho
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FiG. 3. Representative IR spectra (a, b; normalized to 1 mm; C: Core, M: Mantle, R: Rim) and its fitted result (¢, d) of

garnets from UHP eclogites at Shuanghe, Dabieshan.

and Rossman, 1993; Beran et al., 1993; Xia et al.,
2005). In contrast, several spectra have group IV
bands, and these are much broader. These bands are
typical of the stretching vibrations of molecular
water, which can occur in submicroscopic fluid
inclusions in garnets. The results of this study are
consistent with previous investigations of natural
and synthesized garnets (Keppler and Smyth, 2006;
Steven and Suzan, 2006).

The water content (H,O ppm wt.) of garnet was
calculated by the Beer-Lambert law (absorbance =
absorption coefficient x thickness x water content).
Absorbance is expressed as the integrated absorp-
tion of OH"; the integrated molar absorption
coefficient is from Bell et al. (1995): 1.39 ppm
H,O cm™2. The thickness of the samples was
measured by a micrometer. As we interpreted the
group IV band and the 3710 cm ! band to be
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caused by submicroscopic fluid inclusions and
vapour, respectively, they were not included in the
total integrated absorbance used for structural water
content calculation. The amount of H,O corre-
sponding to the intrinsic hydroxyl contents of
garnets from Shuanghe UHP eclogites ranges from
45 to 2529 ppm (Fig. 4).

The results show that the water contents are
heterogeneous among the different grains of the
same sample and within different zones of the same
grain, but the trend of variation from core to rim
differs from one garnet grain to another (Fig. 5).
The water contents of different samples vary
substantially and can be divided into two classes:
(1) Shw2, Shx1 and Shx4 have low water content,
with 45-398 ppm; (2) Shx7, Shx8, Shx9, Shx13,
Shx15, Shx17 and Shx18 have high water content,
with 459-2529 ppm.
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FiG. 3. Continued

Compositions of garnets

In order to determine the relationship between the
water content and the chemical composition of
garnets, based on the FTIR analysis results, 21
garnet grains (35 spots) with different water
contents were investigated in situ by EMPA. The
composition of garnets is given in Table 2, and
cations per formula unit were calculated using the
Excel spreadsheet of Grew et al. (2013)
(Supplementary file 3).

The EMPA results showed that the major-oxide
composition (such as SiO,, FeO, Al,O3, MnO, MgO
and CaO) is homogenous among different grains in
the same sample and that there is no obvious
compositional zoning within the same grain
(Table 2), although there is a little heterogeneity
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among the different samples, and these data are
consistent with previous studies (Cong et al., 1995;
Xuet al., 1999; Liu et al., 2006; Wang et al., 2010).

Discussion

The OH incorporation in garnets

The water content of garnet shows an obvious
positive correlation with Ca and a negative
correlation with Si, Fe*" and Mg per 12 O anions,
and this relationship is more evident where the
water content is >400 ppm, but there is no obvious
relationship between water content and the atoms of
Al and Mn (Fig. 6). This trend has been also shown
in some previous studies, in the case of pyrope-rich
garnets from UHP metamorphic rocks; mantle-
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FiG. 4. Distribution of the water content of garnets from Shuanghe eclogites.

derived xenoliths; and high-pressure-temperature
synthesized samples; mostly in samples with water
content <200 ppm but in a few cases, in samples
with as much as 1000 ppm H,0 (Ackermann et al.,
1983; Aines and Rossman, 1984a,c; Geiger et al.,
1991; Bell and Rossman, 1992; Lu and Keppler,
1997; Withers et al., 1998; Mookherjee and Karato,
2010). In contrast, the grossular- or andradite-rich
garnets generally have a higher water content of

3000

>600 ppm (Lager et al., 1989; Beran et al., 1993;
Maldener et al., 2003). Based on the FTIR and
other analytical methods, many of the naturally
occurring garnets containing substantial amounts
of the hydroxyl ion have compositions intermediate
between grossular (x=0) and katoite (x=3), i.e.
{Caz} [ALI(Si3[1)O012 4x(OH)4x Where 0 <x <3
and [] is a vacancy, and for the majority of these
garnets, x < 1.5 (Grew et al., 2013). Thus, the major
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F1G. 5. The distribution of water content in the same garnet grain.
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mechanism of hydroxyl incorporation in garnet is
by the coupled substitution 4H + %] — []+*Si at
the tetrahedral site, but significant incorporation of
OH by this substitution is limited mostly to garnet
in which the X site is occupied by Ca, i.e. katoite,
holtstamite and henritermierite. In summary, the
H,O contents of natural and synthetic garnets are
consistent with the conclusion reached by Lager
et al. (1989) that the extent of OH substitution in
garnets appears to be controlled structurally, i.e. it is
greater, when the effective ionic radius of the X-site
cation exceeds 1.0 A and the shared octahedral
edge is longer than the unshared edge, which is the

b

Atoms per 120 Atoms per 120

Atomsper120
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F1G. 6. The relationship between water content and composition of garnets from UHP eclogites at Shuanghe, Dabieshan.

case for natural and synthetic garnets with Ca
dominant at the X site (Novak and Gibbs, 1971;
Quartieri et al., 2006). This is an expected
behaviour as, on the basis of ionic radii, magnesium
is generally considered to be too small to occupy
the large dodecahedron, even in anhydrous pyrope.
An expansion of the pyrope structure caused by the
hydrogarnet substitution is thus energetically
unfavourable, as it involves an increase in the size
of the dodecahedron. It was found that the
hydrogarnet substitution in pyrope requires
186 kJ mol ™! more energy than in grossular, so
that katoite is significantly more stable than a
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hypothetical Mg-analogue of katoite. In addition, a
rough estimate of the formation energy of these two
hydrogarnets suggests that its value is close to zero
for katoite and close to —180 kJ mol ' for the Mg
analogue of katoite. These results show that the
expansion of the dodecahedral site due to the
hydrogarnet substitution can only be sustained
when the anhydrous structure contains a large
divalent cation (e.g. calcium) in the X site and a
small trivalent cation in the Y site. This implies that
none of the known pyrope- and majorite-rich garnet
in the deep earth are likely to exhibit a stable and
significant hydrogarnet substitution as the ratio of
ionic radii of X-site to Y-site cations is less in
pyrope- and majorite-rich garnet than in grossular
(Aines and Rossman, 1984a; Lager et al., 1989;
Milman et al., 2000; Thomas et al., 2015).

Based on the OH absorption band behaviour of
the first three groups and the relationship between
water content and composition, we conclude that
the OH in garnets containing >400 ppm H,O was
incorporated by 4H + %[ ] — []+ ZSi at the tetrahe-
dral site (Aines and Rossman, 1984c¢; Beran et al.,
1993; Beran and Libowitzky, 2003; Birkett and
Trzcienski, 1984; Rossman and Aines, 1991).

However, garnets containing <400 ppm H,O
show no obvious linear correlation between water
content and composition, the OH incorporation
mechanism seems more complicated (Andrut and
Wildner, 2001; Andrut et al., 2002; Johnson, 2003;
Cho and Rossman, 1993; Khomenko et al., 1994).
In Ti-bearing garnets there is a possible substitution
of Ti*" by AI** in close proximity to the tetrahedral
(vacant) site, which is replaced by an incomplete
cluster of [(OH);0°~ (Andrut et al, 2002;
Johnson, 2003; Khomenko et al., 1994). A study
of birefringent natural uvarovite garnets concluded
that SiO;(OH) tetrahedral groups are an important
mechanism of OH defects in garnets with low water
content (Andrut and Wildner, 2001; Andrut et al.,
2002).

Geological implications

The high water content and how it is incorporated
into garnets from the Shuanghe eclogites have the
following geological implications:

(1) The high water content indicates that it is an
important mineral for recycling surface water into
the mantle during the bulk processes of continental
subduction and exhumation. The water contents of
garnets from the Shuanghe eclogites range from 45
to 2529 ppm, and the major mechanism of
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hydroxyl incorporation in garnet is by the coupled
substitution 4H +“[] — []+*Si at the tetrahedral
site. Although the water content in garnet is much
less than that of minerals containing essential water,
garnet is potentially a significant water reservoir in
the Earth’s mantle as it is relatively abundant.
Based on the above analysis, the OH in garnets is
present in the form of hydrogrossular substitution
(Aines and Rossman, 1984c¢; Beran et al., 1993;
Beran and Libowitzky, 2003; Rossman and Aines,
1991).

(2) Many studies have shown that under high-
temperature and -pressure conditions water can
significantly influence physical and chemical
properties of garnets, such as melting temperature,
electrical conductivity, fluid activity, mineral-phase
transitions, rheological properties, and plastic
deformation mechanisms (see for instance,
Keppler and Smyth, 2006). Our study shows that
garnet could contain few thousand ppm of water
providing strong evidence of water participation in
the processes of metamorphism and deformation of
garnets under high temperature and high pressure
(Beran and Libowitzky, 2006; Johnson, 2006; Su
et al., 2002a). Water can facilitate dislocation glide
(Liu et al., 2005; Su et al., 2002a,b) as well as
diffusion and grain boundary glide (Wang and Ji,
2000; Zhang and Green, 2007), all of which
enhance deformation of garnet. The eclogites
from Shuanghe in this study are foliated eclogites
and the garnets are obviously elongated, indicating
that the garnets have experienced plastic deform-
ation. According to the temperature conditions of
garnet plastic deformation, this process occurs in
the coesite eclogite facies (Xu et al., 1999).

Conclusion

(1) The FTIR analytical results show that all of the
garnets from the Shuanghe UHP eclogite have more
than two absorption bands between ~3000—
4000 cm!. The OH absorption bands can be
divided into four groups: (I) 3635-3655 cm™'; (II)
3600-3630 cmi”!; (IIT) 35403580 cm™'; and (IV)
3400-3450 cm ! — the first three groups result from
the garnet OH-stretching vibration and water content
ranging from 45 to 2529 ppm, whereas group IV is
caused by H,O, in grain boundaries or submicro-
scopic fluid inclusions. (2) The water content of
garnet shows an obvious positive correlation with Ca
and a negative correlation with Si, Fe>* and Mg per
12 O anions, and this relationship is more evident
when the water content is >400 ppm. It is concluded
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that the major mechanism of hydroxyl incorporation
in gamet is by the coupled substitution 4H
+7[]— []+7Si at the tetrahedral site; as a result,
grossular-rich garnet is potentially a significant
reservoir of water in the Earth’s mantle.
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