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In this work we present and demonstrate the reliability of a theoretical framework
for the study of thermally driven turbulence. It consists of scale-by-scale budget
equations for the second-order velocity and temperature structure functions and their
limiting cases, represented by the turbulent kinetic energy and temperature variance
budgets. This framework represents an extension of the classical Kolmogorov and
Yaglom equations to inhomogeneous and anisotropic flows, and allows for a novel
assessment of the turbulent processes occurring at different scales and locations in
the fluid domain. Two relevant characteristic scales, `u

c for the velocity field and
`θc for the temperature field, are identified. These variables separate the space of
scales into a quasi-homogeneous range, characterized by turbulent kinetic energy and
temperature variance cascades towards dissipation, and an inhomogeneity-dominated
range, where the production and the transport in physical space are important. This
theoretical framework is then extended to the context of large-eddy simulation to
quantify the effect of a low-pass filtering operation on both resolved and subgrid
dynamics of turbulent Rayleigh–Bénard convection. It consists of single-point and
scale-by-scale budget equations for the filtered velocity and temperature fields. To
evaluate the effect of the filter length `F on the resolved and subgrid dynamics,
the velocity and temperature fields obtained from a direct numerical simulation are
split into filtered and residual components using a spectral cutoff filter. It is found
that when `F is smaller than the minimum values of the cross-over scales given by
`θ∗c,min = `

θ
c,minNu/H = 0.8, the resolved processes correspond to the exact ones, except

for a depletion of viscous and thermal dissipations, and the only role of the subgrid
scales is to drain turbulent kinetic energy and temperature variance to dissipate them.
On the other hand, the resolved dynamics is much poorer in the near-wall region
and the effects of the subgrid scales are more complex for filter lengths of the order
of `F ≈ 3`θc,min or larger. This study suggests that classic eddy-viscosity/diffusivity
models employed in large-eddy simulation may suffer from some limitations for large
filter lengths, and that alternative closures should be considered to account for the
inhomogeneous processes at subgrid level. Moreover, the theoretical framework based
on the filtered Kolmogorov and Yaglom equations may represent a valuable tool for
future assessments of the subgrid-scale models.
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1. Introduction
Since the beginning of computational fluid dynamics, large-eddy simulation (LES)

of thermally driven flows has been the subject of many studies, in particular for
meteorological applications (Smagorinsky 1963; Lilly 1967; Deardorff 1974). The
original motivation was driven by the failure of analytical methods to describe
the dynamics of the atmosphere, together with the intrinsic limitations of both
experimental measurements and numerical solutions of the full governing equations
(Lilly 1962). The computational resources required for a direct numerical simulation
(DNS) are still prohibitive nowadays for most engineering and geophysical flows.
However, the steady increase of computing power over the last decades has aroused
new interest in the LES technique and great effort has been spent to improve its level
of feasibility and accuracy (Piomelli 1999).

Correct treatment of the near-wall region represents one of the main challenges in
LES because production and transport mechanisms induced by spatial inhomogeneity
involve even smaller scales as the boundaries are approached (Porté-Agel et al. 2001);
hence, the local integral scale of the flow steeply decreases from the bulk to the wall,
and such a drop can be of several orders of magnitude in systems of practical interest
(Piomelli & Balaras 2002). The result is that the computational cost required by a
wall-resolved LES, in terms of CPU time and memory, cannot be afforded in the case
of high-Reynolds-number flows. To overcome this limitation, a significant reduction of
the near-wall resolution is demanded. In this context, it is fundamental to understand
which turbulent mechanisms are going to be captured and which are going to be
filtered out by an LES. This is important for two distinct but interrelated reasons. In
the first place, a clear overview of the resolved dynamics allows for the identification
of a minimum resolution requirement, namely the smallest scale of the flow that we
aim to solve numerically in order to capture the structures that are more energetic
and less universal (Bryan, Wyngaard & Fritsch 2003). Secondly, the analysis of the
subgrid dynamics represents an ideal premise for the formulation of a physically based
subgrid-scale (SGS) model capable of reproducing, as best as possible, the effects of
the unresolved scales (Mason 1989).

Following this line of research, the main goal of the present paper is to shed light
on the resolved and subgrid dynamics of thermally driven turbulence via the analysis
of a filtered DNS dataset. This methodology, called a priori in LES studies, can
serve as an efficient tool for checking to what extent the resolved physics reproduces
the real one and how the SGS model copes with the interplay between resolved and
subgrid scales. Owing to the inherent complexity of natural and technological flows,
we focus our investigation on a canonical system, Rayleigh–Bénard convection (RBC),
commonly defined as a fluid layer confined between two infinite horizontal walls,
heated from below and cooled from above (Siggia 1994; Chillà & Schumacher 2012).
RBC is simple enough to treat by theoretical, numerical and experimental studies,
although it preserves the essential features of thermally driven flows, namely the
balance between buoyancy force and viscous/diffusive damping (Ahlers et al. 2012;
Gayen, Hughes & Griffiths 2013). Some studies have been devoted to the assessment
of SGS models for RBC (Cabot 1993; Kimmel & Domaradzki 2000; Sergent, Joubert
& Le Quéré 2006; Dabbagh et al. 2016, 2017); however, the literature lacks a detailed
a priori analysis of this system, unlike other paradigmatic flows such as the round
jet (Liu, Meneveau & Katz 1994), the transitional (Piomelli et al. 1991) and the
stationary channel flows (Härtel et al. 1994).

The identification of the local integral scales in RBC is presented in the first part
of this work. For this purpose, a DNS dataset at Rayleigh number Ra = 1.0 × 107
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and Prandtl number Pr= 0.7 is analysed with the Kolmogorov and Yaglom equations
(Kolmogorov 1941a; Yaglom 1949) extended to an inhomogeneous and anisotropic
flow (Hill 2002; Marati, Casciola & Piva 2004; Burattini, Antonia & Danaila 2005;
Valente & Vassilicos 2015). These are the evolution equations for the second-order
velocity and temperature structure functions, which can be exactly derived from
the governing equations and allow for a neat description of the turbulent processes
occurring at different scales and locations in physical space. Two characteristic scales
are identified using these budgets, one for the velocity field, `u

c , and one for the
temperature field, `θc , which depend on the wall distance and separate the large
inhomogeneous scales from the small dissipative ones.

In the LES framework, the relative position of the filter length, `F, with respect to
`u

c and `θc determines up to what extent the flow dynamics is going to be captured and
what should be reproduced by the SGS model. In particular, for filter lengths smaller
than the identified cross-over scales, the most inhomogeneous and energetic features
of the flow are arguably captured and the purely dissipative role of the subgrid scales
can be reproduced by means of simple and rather universal closures. In the second
part of this work, the effect of the filter length on the resolved and subgrid dynamics
is rigorously assessed. For this purpose, the velocity and the scalar fields obtained
from a DNS are split into resolved and subgrid components using a spectral cutoff
filter and analysed by means of filtered single-point and two-point budgets. While the
filtered Kolmogorov equation has already been employed by Cimarelli & De Angelis
(2011), the filtered Yaglom equation is presented and discussed here for the first time.

The paper is organized as follows. The theoretical framework consisting of single-
point and scale-by-scale budgets is presented in § 2. The fully resolved dynamics of
RBC is then discussed in § 3, followed by the analysis of the filtered dataset in § 4.
A summary of the main findings and some concluding remarks are made in § 5.

2. The Kolmogorov and Yaglom equations

In the framework of homogeneous and isotropic turbulence transporting a passive
temperature, the Kolmogorov–Obukhov–Corrsin (K41-OC) theory states that, at
sufficiently high Reynolds numbers, a range of scales exists where turbulent kinetic
energy and temperature variance are only transferred from large to small scales
(Kolmogorov 1941b; Corrsin 1951; Obukhov 1968). This exact and non-trivial result
can be derived from the equations for the second-order velocity and temperature
structure functions 〈δu2

〉 = 〈δuiδui〉 and 〈δθ 2
〉 = 〈δθδθ〉. Here the angular brackets

〈·〉 denote the spatial average along the homogeneous directions, and the ensemble
average over different configurations, δui = ui(xj + rj/2) − ui(xj − rj/2) and δθ =

θ(xj + rj/2) − θ(xj − rj/2) are the fluctuating velocity and temperature increments
between the points xj + rj/2 and xj − rj/2, and the indices i, j = 1, 2, 3 denote the
Cartesian components.

Following the heuristic approach proposed by Davidson, Pearson & Staplehurst
(2004), the second-order structure functions 〈δu2

〉 and 〈δθ 2
〉 can be interpreted as

the turbulent kinetic energy and the temperature variance, respectively, contained by
the eddies of length scale smaller than r =

√
riri. Indeed, turbulent scales less than

r can actively modulate the signal at xj + rj/2 or xj − rj/2 but not at both locations
simultaneously; thus, they contribute significantly to the structure function. On the
other hand, eddies of size much larger than r tend to induce similar signals at both
points, with consequent little contribution to the fluctuating increment. In summary,
the structure function can be considered along the same line as a high-pass filter,
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capable of retaining the fluctuations at scales smaller than the filter length r and
of damping the information from eddies of size larger than r. Hence, together with
the turbulent spectrum, it can be used to study the multiscale features of turbulence
(see e.g. Dupuy, Toutant & Bataille 2018). In view of this, throughout this paper we
will refer to 〈δu2

〉 and 〈δθ 2
〉 also as scale energy and scale variance, respectively,

adopting the nomenclature introduced by Danaila et al. (2001) and employed later
by Marati et al. (2004), Cimarelli & De Angelis (2011), Cimarelli, De Angelis &
Casciola (2013) and Togni, Cimarelli & De Angelis (2015).

In general, the second-order structure function depends both on the separation
vector rj and on the spatial location of the midpoint xj. However, in the case of
homogeneous turbulence, the dependence of the scale energy and the scale variance
on the midpoint xj drops and, starting from the governing equations, it is possible to
derive the following exact equations for 〈δu2

〉 and 〈δθ 2
〉:

−
∂〈δu2δui〉

∂ri
+ 2〈δf u

i δui〉 + 2ν
∂2
〈δu2
〉

∂rj∂rj
− 4〈ε〉 = 0, (2.1)

−
∂〈δθ 2δui〉

∂ri
+ 2〈δf θi δui〉 + 2κ

∂2
〈δθ 2
〉

∂rj∂rj
− 2〈χ〉 = 0, (2.2)

where ν is the kinematic viscosity, κ is the thermal diffusivity, ε = 2ν(SijSij) is the
dissipation of turbulent kinetic energy, Sij = 0.5(∂ui/∂xj + ∂uj/∂xi) is the fluctuating
strain-rate tensor, χ = 2κ(∂θ/∂xi)(∂θ/∂xi) is the dissipation of temperature variance,
and 2〈δf u

i δui〉 and 2〈δf θi δui〉 are the homogeneous source terms due to the external
forcing f u

i and f θi active at large scales. The first term in (2.1) and (2.2) denotes
the rate at which scales smaller than r receive (release) turbulent kinetic energy and
temperature variance from (to) larger ones via inertial mechanisms, whereas the third
term in (2.1) and (2.2) is indicative of the amount of turbulent kinetic energy and
temperature variance diffused in the space of scales. In the case of high-intensity
turbulent flows, an inertial range is supposed to develop for ηk, ηb� r� `0, where
ηk, ηb and `0 are the Kolmogorov, the Batchelor and the integral scales, respectively.
Both production and viscous diffusion effects are negligible within this range, thus
(2.1) and (2.2) reduce to

∂〈δu2δui〉

∂ri
=−4〈ε〉, (2.3)

∂〈δθ 2δui〉

∂ri
=−2〈χ〉, (2.4)

stating that the amount of turbulent kinetic energy and temperature variance transferred
per unit time to scales less than r is equal to the average dissipation rates. It should
be pointed out that (2.3) and (2.4) further simplify to the familiar four-fifths and four-
thirds laws, respectively, if turbulence is assumed to be also isotropic.

The fundamental aspect of actual turbulent flows is the presence of a cycle
along which fluctuations are generated, transported among different scales and space
locations, and finally dissipated. Inhomogeneity modifies the scale-by-scale budgets
(2.1) and (2.2) by introducing an autonomous production, a transport in physical space
and by spatially modulating the balances. Fully developed turbulence in laterally
unbounded RBC is statistically inhomogeneous in the wall-normal direction but
homogeneous and isotropic in the wall-parallel planes. We exploit these symmetries,
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FIGURE 1. Sketch of the Rayleigh–Bénard convection set-up.

and in particular the isotropy in the wall-parallel planes, by considering a cylindrical
coordinate system (ρ, φ, z) rather than a Cartesian one (x, y, z); see the sketch in
figure 1. The wall-parallel coordinates are x = x1 and y = x2 while the wall-normal
coordinate, z = x3, is zero at the lower wall. The cylindrical coordinates are defined
such that ρ =

√
x2 + y2 and φ = arctan(y/x). The scale-by-scale budgets for RBC

can be derived starting from the continuity, momentum and energy equations under
the Boussinesq approximation (Hill 2002) and, for a cylindrical coordinate system,
result in

−
∂〈w†δu2

〉

∂z
− 2

∂〈δpδw〉
∂z

+
ν

2
∂2
〈δu2
〉

∂z2
−

1
rρ

∂

∂rρ
(rρ〈δu2δuρ〉)

−
∂〈δu2δw〉
∂rz

+ 2αg〈δθδw〉 +
2ν
rρ

∂

∂rρ

(
rρ
∂〈δu2

〉

∂rρ

)
+ 2ν

∂2
〈δu2
〉

∂r2
z

− 4〈ε̃†
〉 = 0 (2.5)

and

−
∂〈w†δθ 2

〉

∂z
+
κ

2
∂2
〈δθ 2
〉

∂z2
−

1
rρ

∂

∂rρ
(rρ〈δθ 2δuρ〉)−

∂〈δθ 2δw〉
∂rz

− 2〈w†δθ〉
∂δΘ

∂z
− 2〈δwδθ〉

(
dΘ
dz

)†

+
2κ
rρ

∂

∂rρ

(
rρ
∂〈δθ 2

〉

∂rρ

)
+ 2κ

∂2
〈δθ 2
〉

∂r2
z

− 2〈χ †
〉 = 0, (2.6)

where g is the gravity acceleration, α is the thermal expansion coefficient and
ε̃ = ν(∂ui/∂xj)(∂ui/∂xj) is the pseudo-dissipation of turbulent kinetic energy. The
dagger † denotes the midpoint average, β†

= (β(xj − rj/2) + β(xj + rj/2))/2 for the
generic quantity β. The radial, the circumferential and the vertical components of
the separation vector are rρ , rφ and rz, whereas the same components of the velocity
structure function are δuρ , δuφ and δw. Let us note that all the rφ-derivative terms
arising from the formulation in cylindrical coordinates are zero for statistical isotropy
while, for statistical homogeneity, also the φ- and ρ-derivatives are null.

An additional class of terms, namely the ones with the z-derivative, appear in
the inhomogeneous case, denoting the amount of scale energy and scale variance
received (released) from (to) other wall distances. Moreover, 2αg〈δθδw〉 and
−2〈w†δθ〉(∂δΘ/∂z) − 2〈δwδθ〉(dΘ/dz)† are the inhomogeneous production terms,
where Θ is the mean temperature. At sufficiently high Reynolds numbers, an inertial
range of scales is assumed to exist in which turbulence is locally homogeneous and
isotropic, viscous effects are negligible, and temperature acts as a passive scalar
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(Lohse & Xia 2010). In this case, it is easy to demonstrate that (2.5) and (2.6)
simplify to (2.3) and (2.4) and, with further manipulations, to the four-fifths and
four-thirds laws, respectively.

Equations (2.5) and (2.6), written in the complete three-dimensional (rρ, rz, z) space,
are the Kolmogorov and Yaglom equations for RBC. The Kolmogorov equation for
an axisymmetric flow has already been proposed by Danaila et al. (2012), while
the Yaglom equation has been extended before only to homogeneous anisotropic
turbulence (Gauding et al. 2014). For the sake of simplicity, we restrict the following
analysis to the reduced (rρ, z) space, where rz = 0 (Cimarelli et al. 2016). The
reduced scale-by-scale budgets are non-dimensionalized using H, 1Θ =Θ1 −Θ2 and
Uf =

√
gα1ΘH as characteristic length, temperature and velocity scales, where H

is the height of the fluid layer, Θ1 and Θ2 are the temperature of the lower and
upper walls, respectively, and Uf is the free-fall velocity. The resulting equations,
hereafter referred to as reduced Kolmogorov and Yaglom equations, can be written
in a compact form, i.e.

Tu
c + Iu

r +Π
u
+ Eu

e = 0, (2.7)
Tθc + Iθr +Π

θ
+ Eθe = 0, (2.8)

where Tu
c = Iu

c + P + Du
c and Tθc = Iθc + Dθ

c represent the sum of the transport terms
in physical space and hence will be hereafter called the overall transports. On the
other hand, Eu

e = Du
r + Eu and Eθe = Dθ

r + Eθ represent the overall effect of viscosity
on transporting scale energy and scale variance to the smallest scales of the flow by
Du

r and Dθ
r , where they are finally dissipated by Eu and Eθ . Accordingly, Eu

e and Eθe
will be hereafter called effective dissipations. The different contributions to the overall
transports and to the effective dissipations are, in order,

Iu
c =−

∂〈w†δu2
〉

∂z
, P=−2

∂〈δpδw〉
∂z

, Du
c =

1
2

√
Pr
Ra
∂2
〈δu2
〉

∂z2
,

Iθc =−
∂〈w†δθ 2

〉

∂z
, Dθ

c =
1

2
√

PrRa

∂2
〈δθ 2
〉

∂z2
,

 (2.9)

and

Du
r = 2

√
Pr
Ra

1
rρ

∂

∂rρ

(
rρ
∂〈δu2

〉

∂rρ

)
+ 2

√
Pr
Ra
∂2
〈δu2
〉

∂r2
z

∣∣∣∣
rz=0
, Eu

=−4〈ε̃〉,

Dθ
r =

2
√

PrRa

1
rρ

∂

∂rρ

(
rρ
∂〈δθ 2

〉

∂rρ

)
+

2
√

PrRa

∂2
〈δθ 2
〉

∂r2
z

∣∣∣∣
rz=0
, Eθ =−2〈χ〉,

 (2.10)

while the transports in the space of scales and the production terms are

Iu
r =−

1
rρ

∂

∂rρ
(rρ〈δu2δuρ〉)−

∂〈δu2δw〉
∂rz

∣∣∣∣
rz=0
, Π u

= 2〈δθδw〉,

Iθr =−
1
rρ

∂

∂rρ
(rρ〈δθ 2δuρ〉)−

∂〈δθ 2δw〉
∂rz

∣∣∣∣
rz=0
, Π θ

=−2〈δwδθ〉
dΘ
dz
.

 (2.11)

It must be pointed out that the contribution of the term −2〈w†δθ〉(∂δΘ/∂z) to
the production of scale variance vanishes, since δΘ = 0 for rz = 0. Finally, the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

11
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.119


912 R. Togni, A. Cimarelli and E. De Angelis

non-dimensional groups appearing are the Rayleigh number, Ra= gα1ΘH3/νκ , and
the Prandtl number, Pr= ν/κ .

Let us extend the Kolmogorov and Yaglom equations to filtered velocity and
temperature fields. Starting from the filtered continuity, momentum and energy
equations under the Boussinesq approximation and by following the same procedure
used to derive (2.5) and (2.6) (Hill 2002), it is possible to obtain the budgets of
resolved scale energy 〈δū2

〉 = 〈δūiδūi〉 and resolved scale variance 〈δθ̄ 2
〉 = 〈δθ̄δθ̄〉:

−
∂〈w̄†δū2

〉

∂z
− 2

∂〈δp̄δw̄〉
∂z

+
ν

2
∂2
〈δū2
〉

∂z2
−

1
rρ

∂

∂rρ
(rρ〈δū2δūρ〉)

−
∂〈δū2δw̄〉
∂rz

+ 2αg〈δθ̄δw̄〉 +
2ν
rρ

∂

∂rρ

(
rρ
∂〈δū2

〉

∂rρ

)
+ 2ν

∂2
〈δū2
〉

∂r2
z

− 4〈¯̃ε†
〉

−
∂〈δτi3δūi〉

∂z
−

4
rρ

∂

∂rρ
(rρ〈τ †

ij δūiρ̂j〉)− 4
∂〈τ

†
i3δūi〉

∂rz

∣∣∣∣
rz=0
− 4〈εsgs〉 = 0 (2.12)

and

−
∂〈w̄†δθ̄ 2

〉

∂z
+
κ

2
∂2
〈δθ̄

2
〉

∂z2
−

1
rρ

∂

∂rρ
(rρ〈δθ̄ 2δūρ〉)−

∂〈δθ̄ 2δw̄〉
∂rz

− 2〈w̄†δθ̄〉
∂δΘ̄

∂z
− 2〈δw̄δθ̄〉

(
dΘ̄
dz

)†

+
2κ
rρ

∂

∂rρ

(
rρ
∂〈δθ̄ 2

〉

∂rρ

)
+ 2κ

∂2
〈δθ̄ 2
〉

∂r2
z

− 2〈χ̄ †
〉 −

∂〈δqzδθ̄〉

∂z
−

4
rρ

∂

∂rρ
(rρ〈q†

ρδθ̄〉)− 4
∂〈q†

zδθ̄〉

∂rz

∣∣∣∣
rz=0
− 2〈χsgs〉 = 0. (2.13)

Equations (2.12) and (2.13) share several types of terms with the corresponding
unfiltered equations (2.5) and (2.6) which can be better highlighted by considering
the filtered reduced Kolmogorov and Yaglom equations,

T̄u
c + Īu

r + Π̄
u
+ Ēu

e + Tu
c,sgs + Tu

r,sgs + Eu
sgs = 0, (2.14)

T̄θc + Īθr + Π̄
θ
+ Ēθe + Tθc,sgs + Tθr,sgs + Eθsgs = 0, (2.15)

where it is possible to recognize that the first four terms in (2.14) and (2.15) are
the same terms composing the unfiltered reduced budgets (2.7) and (2.8), with the
difference that they are constituted by the filtered velocity, temperature and pressure
fields. Indeed, the completely new terms in the filtered budgets are entirely due to
subgrid-scale effects, i.e.

Tu
c,sgs =−

∂〈δτi3δūi〉

∂z
, Tu

r,sgs =−
4
rρ

∂

∂rρ
(rρ〈τ †

ij δūiρ̂j〉)− 4
∂〈τ

†
i3δūi〉

∂rz

∣∣∣∣
rz=0
,

Eu
sgs =−4〈εsgs〉,

Tθc,sgs =−
∂〈δqzδθ̄〉

∂z
, Tθr,sgs =−

4
rρ

∂

∂rρ
(rρ〈q†

ρδθ̄〉)− 4
∂〈q†

zδθ̄〉

∂rz

∣∣∣∣
rz=0
,

Eθsgs =−2〈χsgs〉,


(2.16)

and represent the transport in physical space, the transport in the space of scales
and the dissipation of resolved scale energy and resolved scale variance due to the
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fluctuating SGS stress tensor, τij = uiuj − uiuj, and the fluctuating SGS heat flux, qi =

uiθ − uiθ . Here, qρ and qz are the radial and vertical components of the SGS heat flux,
ρ̂j is the radial unit vector, ¯̃ε =

√
Pr/Ra(∂ ūi/∂xj)(∂ ūi/∂xj) is the pseudo-dissipation

of resolved turbulent kinetic energy, and χ̄ = 2(PrRa)−1/2(∂θ̄/∂xi)(∂θ̄/∂xi) is the
dissipation of resolved temperature variance. The subgrid dissipations are εsgs=−τijS̄ij

and χsgs = −2qiQ̄i, where S̄ij = 0.5(∂ ūi/∂xj + ∂ ūj/∂xi) is the resolved fluctuating
strain-rate tensor and Q̄i = ∂θ̄/∂xi is the gradient of the resolved fluctuating
temperature.

Let us point out that the filtered reduced Kolmogorov equation (2.14) has already
been employed for the a priori (Cimarelli & De Angelis 2012) and the a posteriori
(Cimarelli & De Angelis 2014) testing of some SGS models for the turbulent channel
flow, proving to be a precious framework for the assessment of the dynamics induced
by τij. The filtered reduced Yaglom equation (2.15), on the other hand, is presented
here for the first time.

Equations (2.7), (2.8) and (2.14), (2.15) manifest a well-defined asymptotic
behaviour as larger separations are approached. For rρ � `, where ` is the relevant
correlation length, quantities evaluated at (ρ + rρ/2, φ, z) and (ρ − rρ/2, φ, z) become
uncorrelated and (2.7), (2.8) reduce, within a factor of four and two, respectively, to
the budgets of turbulent kinetic energy 〈k〉 = 0.5〈uiui〉 and temperature variance 〈θ 2

〉,

4(tu
c + π

u
− 〈ε̃〉)= 0, (2.17)

2(tθc + π
θ
− 〈χ〉)= 0, (2.18)

where

tu
c =−

d〈kw〉
dz
−

d〈wp〉
dz
+

√
Pr
Ra

d2
〈k〉

dz2
, π u

= 〈wθ〉, (2.19)

tθc =−
d〈θ 2w〉

dz
+

1
√

PrRa

d2
〈θ 2
〉

dz2
, π θ =−2〈wθ〉

dΘ
dz
, (2.20)

are the overall transports and the productions of 〈k〉 and 〈θ 2
〉. Analogously, the filtered

reduced Kolmogorov and Yaglom equations converge respectively to four times the
budget of resolved turbulent kinetic energy k̄= 0.5(ūiūi) and two times the budget of
resolved temperature variance 〈θ̄ 2

〉,

4(t̄u
c + π̄

u
− 〈¯̃ε〉 + tu

c,sgs − 〈εsgs〉)= 0, (2.21)

2(t̄θc + π̄
θ
− 〈χ̄〉 + tθc,sgs − 〈χsgs〉)= 0, (2.22)

where the terms under the overbar and the corresponding ones without it are identical
except that they consider filtered quantities. Finally, the SGS transports of 〈k̄〉 and 〈θ̄ 2

〉

are

tu
c,sgs =−

d〈τi3ūi〉

dz
and tθc,sgs =−2

d〈qzθ̄〉

dz
. (2.23a,b)

It is well known that the thermal boundary layer thickness represents a characteristic
length scale in turbulent RBC. As a result of that, in what follows, we analyse
all the budgets presented up to now as a function of spatial variables that are
non-dimensionalized with respect to H/Nu instead of H, where Nu is the Nusselt
number, and we denote them with the superscript ∗. The choice of the length scale
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H/Nu, which is twice the commonly defined thermal boundary layer thickness, allows
for a more appropriate comparison of the results when different Rayleigh numbers
are considered. In particular, as shown in Togni et al. (2015), by normalizing the
independent variables with H/Nu, the shape of the temperature statistics becomes
Ra-invariant, whereas the velocity statistics exhibit a rather small drift in the profile
shape.

3. Study of the unfiltered dataset

The reduced Kolmogorov and Yaglom equations, equations (2.7) and (2.8),
respectively, represent two useful tools for investigating the self-sustained mechanisms
of convective turbulence at different scales and locations in physical space. The
essential features of the multiscale analysis are reported in this section, drawing
attention to their relevance in the LES framework. A thorough description of the
budgets is beyond the purpose of this work; hence, we would like to point the
reader to Togni et al. (2015) for further details. See also Antonia & Orlandi (2003)
for additional information on the temperature structure function scaling at different
Schmidt numbers.

Each term of (2.7) and (2.8) is computed using a DNS dataset of turbulent RBC
at Ra = 1.0 × 107 and Pr = 0.7. The numerical simulation solves the continuity,
momentum and energy equations under the Boussinesq approximation using a
pseudospectral method that discretizes the space with Chebyshev polynomials in
the wall-normal direction and with Fourier modes in the wall-parallel ones. Time
integration is performed with a fourth-order Runge–Kutta scheme for the nonlinear
terms and a second-order-accurate Crank–Nicolson scheme for the linear ones. The
dimensions of the numerical box are 8× 8× 1 along x, y, z, where periodic boundary
conditions are imposed at the lateral sidewalls and isothermal/no-slip boundary
conditions are used on the top and bottom plates. The DNS approach requires the
number of fully dealiased modes (Nx, Ny) and polynomials (Nz) to be sufficiently
high to resolve all the degrees of freedom of the system. The present simulation
is performed with Nx × Ny × Nz = 540 × 540 × 257 and, as shown in Togni et al.
(2015), where the details of the present simulation are reported, a posteriori tests
prove that this resolution is sufficient to capture the smallest scale of the flow.
Regarding the temporal advancement, an adaptive time step is set to ensure a
Courant–Friedrichs–Lewy number below 2.5. For the sake of statistical convergence,
after the initial transient of the flow, the DNS is run for a time period T = 250, which
corresponds to 125 times the large-eddy turnover time 2H/Uf = 2, and the fields are
stored every 1τ = 5 in order to collect samples that are likely to be uncorrelated.
An estimate of the statistical convergence of the data is given by the accuracy with
which the Kolmogorov and Yaglom equations are satisfied; see the circles shown in
figure 3.

Before presenting the scale-by-scale results, let us report a brief description of the
flow dynamics in terms of the single-point budgets of turbulent kinetic energy and
temperature variance; see equations (2.17) and (2.18), respectively. According to this
analysis, the domain can be split into three fundamental parts: a bulk region for 0.8.
z∗ < 7.8 (where z∗ = Nu/2= 7.8 corresponds to the centre of the cell), a transitional
layer for 0.2. z∗. 0.8 and a viscous layer for z∗. 0.2; see figure 2(a,b). The buoyant
production of turbulent kinetic energy overcomes the viscous dissipation inside the
bulk region and the resulting excess of energy is mostly transported towards the wall
by means of pressure mechanisms. The transitional region, located between the bulk
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FIGURE 2. (a) Terms of the turbulent kinetic energy budget (2.17) as a function of z∗:
inertial transport (dashed line), pressure transport (dotted line), viscous transport (long
dashed line), production (dot-dashed line) and dissipation (solid line). (b) Terms of the
temperature variance budget (2.18) as a function of z∗: inertial transport (dashed line),
viscous transport (long dashed line), production (dot-dashed line) and dissipation (solid
line).

and the viscous layer, is sustained by the inviscid transport coming from the core
rather than by the local production; from there, energy diffuses into the viscous layer
where it balances the local dissipation rate. Regarding the budget for the temperature
variance, the transitional layer is a source region that irradiates thermal fluctuations
towards the bulk and towards the viscous layer by means of inertial and viscous
mechanisms. The bulk region and the viscous layer are, on the other hand, two sink
regions for thermal fluctuations, as they mostly receive and dissipate the temperature
variance that is generated inside the transitional layer. See Togni et al. (2015) for a
detailed discussion of the turbulent kinetic energy and temperature variance budgets.

The mechanisms of production, transport and dissipation of turbulent fluctuations
are inherently multiscale; therefore, they depend not only on the location in physical
space but also on the length scale considered. The reduced Kolmogorov and Yaglom
equations partially describe this complex phenomenology by addressing the dynamics
at separations in the horizontal planes (i.e. for r∗z = 0), and at different wall
distances z∗. Here, to avoid the complexity that a detailed investigation would imply,
we only evaluate the Kolmogorov and Yaglom equations at two relevant distances
from the wall, z∗ = 6 and z∗ = 0.5, as representative of the typical scale-by-scale
behaviours in the bulk region and transitional layer, respectively.

Let us first consider the bulk region. As shown in figure 3(a), the examination of
the reduced Kolmogorov equation from large to small r∗ρ reveals a range of separations
where the production Π u is important (r∗ρ & 3), followed by a range dominated by
a positive inertial transfer, Iu

r > 0 (1 . r∗ρ . 3). Inside the inertia-dominated range,
scales smaller than those separations receive energy from larger ones via a direct
cascade rather than produce it by themselves. At even smaller separations (r∗ρ . 1), Du

r
increases up to Eu, which means that eddies of size less than r∗ρ start to be affected
by viscous mechanisms and to dissipate the energy cascading from larger ones.

It is worth noting that both the production Π u and the overall transport Tu
c reach

a well-defined maximum around r∗ρ = 40, meaning that turbulent kinetic energy is
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FIGURE 3. Scale-by-scale budgets (a,c) of 〈δu2
〉 and (b,d) of 〈δθ 2

〉 as functions of r∗ρ
inside (a,b) the bulk region at z∗ = 6 and inside (c,d) the transitional layer at z∗ = 0.5.
Curves: Π u and Π θ (solid line), Tu

c and Tθc (dot-dashed line), Iu
r and Iθr (dashed line),

Du
r and Dθ

r (dotted line), Eu and Eθ (long-dashed line), and Tu
c + Iu

r +Du
r +Π

u
+ Eu and

Tθc + Iθr + Dθ
r +Π

θ
+ Eθ (circles). The maximum separation r∗ρ = 60≈ 4Nu is limited by

periodicity along x and y.

essentially produced and transported by eddies smaller than this characteristic length.
Such an intriguing behaviour can be further investigated by expanding the production
term as follows:

Π u(rρ, z)=Π u
I (z)−Π

u
II(rρ, z), (3.1)

where

Π u
I = 4〈θw〉 and Π u

II = 4〈θ(ρ + rρ/2, φ, z)w(ρ − rρ/2, φ, z)〉 (3.2a,b)

are, in order, four times the production of turbulent kinetic energy and four times the
two-point cross-correlation between vertical velocity and temperature fluctuation. It is
evident that, for every wall distance, the maximum of Π u occurs at the separation
which maximizes −Π u

II or, in other words, at the distance where w and θ are
maximally anticorrelated. Hence, the characteristic length r∗ρ = 40 seems to be strictly
connected with the flow topology, as it represents a measure of the average distance
between warm fluid moving upwards and cold fluid moving downwards. Evidence
of large-scale circulations, namely clusters of ascending warm and descending cold
plumes, has been reported also in the absence of a lateral confinement and these
structures show a lateral size that is around two times the height of the domain,
i.e. comparable with the location of the maximum around r∗ρ = 40 (Van Reeuwijk,
Jonker & Hanjalić 2005).
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The terms of the reduced Yaglom equation are represented in figure 3(b) for the
same location in the bulk. In this case, the production Π θ is negligible in comparison
with the overall transport Tθc at every separation; however, a range dominated by the
term Tθc due to the spatial inhomogeneity (r∗ρ & 3), followed by a direct cascade (0.5.
r∗ρ . 3) and closed by dissipation (r∗ρ . 0.5) can be identified as in figure 3(a). Here, it
is worth noting that the overall transport in physical space does not exhibit an evident
peak like in the reduced Kolmogorov equation; thus, a characteristic length of the
inhomogeneous processes cannot be equally identified.

A completely different scenario occurs inside the transitional layer. As shown in
figure 3(c), the analysis of the reduced Kolmogorov equation at z∗ = 0.5 reveals that
a production-dominated range, followed by an inertial direct cascade, is no longer
recognizable. Indeed, both the production and the transport in physical space are
important throughout the entire range of separations, while the viscous dissipation is
not restricted only to the small scales but substantially affects also the larger ones, as
can be seen from the well-defined peak of Du

r at r∗ρ ≈ 35. For r∗ρ & 5, the net amount
of energy produced and transported at scales less than r∗ρ cannot be entirely dissipated
at this wall distance, i.e. Π u

+ Tu
c > −Eu

e ; hence velocity fluctuations start to flow
towards larger scales in a reverse cascade process, Iu

r < 0, to be finally dissipated at
other locations in physical space (Cimarelli et al. 2013).

The analysis of the reduced Yaglom equation, shown in figure 3(d) for z∗ = 0.5,
leads to similar conclusions. Both the inhomogeneous production Π θ and the overall
transport Tθc are dominant down to very small scales. A reverse cascade, Iθr <0, can be
identified for separations r∗ρ & 1.5 due to the imbalance between the high production
and the weak drain associated with transport and dissipation at scales less than r∗ρ .

The complex picture emerging from the scale-by-scale analysis can be rationalized
by isolating some fundamental regions inside the reduced (r∗ρ, z∗) space. In light
of the observations made in the previous few paragraphs, it is reasonable to
split the separations into an inhomogeneity-dominated range at large r∗ρ and a
quasi-homogeneous range at small r∗ρ , where the cross-over scales are denoted as
`u∗

c and `θ∗c , and satisfy the relations

Π u(`u∗
c , z∗)+ Tu

c (`
u∗
c , z∗)= Iu

r (`
u∗
c , z∗)+Du

r (`
u∗
c , z∗), (3.3)

Π θ(`θ∗c , z∗)+ Tθc (`
θ∗
c , z∗)= Iθr (`

θ∗
c , z∗)+Dθ

r (`
θ∗
c , z∗). (3.4)

While a direct cascade towards dissipation represents the fundamental mechanism
for r∗ρ . `u∗

c and r∗ρ . `θ∗c , the behaviour due the spatial inhomogeneity cannot be
neglected for r∗ρ & `

u∗
c and r∗ρ & `

θ∗
c . Inside the inhomogeneous range, the joint action

of production and overall transport in physical space actively modulates the transfer
in space of scales leading to a reverse cascade. Hence, the additional scales `u∗

b and
`θ∗b , satisfying Iu

r (`
u∗
b ) = 0 and Iθr (`

θ∗
b ) = 0, can be introduced to mark the boundary

between the direct cascade and the reverse cascade, completing a concise picture of
the flow that accounts only for the most relevant processes.

The velocity and temperature characteristic scales are represented as a function of
the wall distance in figure 4(a,b) for Ra= 1.7× 105, Ra= 1.0× 106 and Ra= 1.0×
107, where the Prandtl number is equal to 0.7. The supplementary datasets at lower
Ra come from two DNS performed with the same numerical domain and boundary
conditions as the main DNS at Ra=1.0×107. As shown in figure 4(a,b), the boundary
scales between forward and reverse cascades, `u∗

b and `θ∗b , exceed the corresponding
cross-over scales between small homogeneous and large inhomogeneous scales, `u∗

c
and `θ∗c , at every wall distance. All the characteristic scales reach a minimum value in
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FIGURE 4. (a) Velocity cross-over scale `u∗
c (solid lines) and boundary scale `u∗

b (dashed
lines), and (b) temperature cross-over scale `θ∗c (solid lines) and boundary scale `θ∗b
(dashed lines) for Ra= 1.7× 105, Ra= 1.0× 106 and Ra= 1.0× 107, where the Rayleigh
number increases in the direction of the arrows.

the near-wall region around z∗≈ 0.2/0.6, and then increase inside the viscous/diffusive
layer. However, while `u∗

c and `θ∗c are defined along the entire domain, `u∗
b and `θ∗b are

defined in a region close to the wall, where the reverse cascades occur.
Interestingly, the characteristic scales of the temperature are shown to be substantially

Ra-independent while those of the velocity increase monotonically with the Rayleigh
number. What we observe is due to the fact that the terms of the Yaglom equation do
not change their shape with respect to r∗ρ and z∗; hence the cross-over and boundary
scales are unaltered by Ra. On the other hand, the Rayleigh number slightly modulates
the shape of the Kolmogorov equation terms; thus `u∗

c and `u∗
b are Ra-dependent. In

view of this, the smallest characteristic scale of the flow is imposed by the temperature
field and it is equal to `θ∗c,min ≈ 0.8 independently of the Rayleigh number. Moreover,
we expect the temperature field to determine the minimum characteristic scale also
for higher Pr due to the augmented separation between diffusive and viscous scales.

In the context of LES, the relative position of the filter length `∗F with respect to
the cross-over scales is indicative of what mechanisms can be directly solved and
what others should eventually be accounted for by an SGS model. If we consider a
primary task to capture the large production and energy-containing scales, then the
LES should employ filter lengths smaller than lθ∗c,min. Let us point out that such a
constraint for the filter width is Ra-invariant; hence, it can be quantified a priori for
different Rayleigh numbers and for a fixed Prandtl number, as long as an estimation
of the Nusselt number is available (Grossmann & Lohse 2000). In accordance with
the definition, for filter lengths smaller than `θ∗c,min, the unresolved mechanism that
needs to be modelled is essentially the dissipation of turbulent kinetic energy and
temperature variance; therefore, classic eddy-viscosity and eddy-diffusivity closures
should be capable of providing good results. On the other hand, for filter lengths
falling outside the homogeneous range, the physics captured by the LES is expected
to be rather poor and the complexity of the phenomena occurring at subgrid level
may bring some modelling issues. Regarding the latter point, an increase of the filter
length beyond the boundary scales `u∗

b and `θ∗b could generate a net flux that originates
at subgrid level to feed the larger resolved scales via a reverse cascade, as shown
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by Cimarelli & De Angelis (2011) in the case of a turbulent channel flow. These
conditions are a challenge for LES models, which should take into account strong
backscatter effects (Cimarelli & De Angelis 2014).

4. Study of the filtered dataset
The filtering operation is a crucial stage in LES because it is conditioned by the

fundamental and competing tasks of obtaining a reliable and accurate solution on the
one hand, and to limit the computational expense on the other (Pope 2001). The
choice of wide filter lengths allows computations to be performed on coarse grids
and therefore it requires little computational resources; on the other hand, the physics
resolved by the LES is quite poor and the solution strongly depends on the choice of
the SGS model due to the large extent of the range of subgrid scales.

In order to disentangle the two distinct effects that the filtering operation has on
the LES result, namely the degree of resolution of the actual dynamics and the
influence of the modelling, a DNS dataset can be explicitly filtered to separate the
resolved from the subgrid components of the different fields. This a priori approach
has been pursued by many authors in order to compute quantities of interest, such as
the equations for the filtered turbulent kinetic energy (Härtel et al. 1994), the filtered
energy spectrum (Domaradzki et al. 1994) and the filtered scale energy (Cimarelli &
De Angelis 2011).

The mathematical tools that we propose in this study are the filtered single-point
budgets, equations (2.21) and (2.22), and their multiscale generalization, namely the
filtered reduced Kolmogorov equation (2.14) and Yaglom equation (2.15). The filtered
turbulent kinetic energy and temperature variance equations, to the authors’ knowledge,
have never been completely analysed in the case of RBC; thus § 4.1 has the purpose
to present some results that are both novel and preparatory to the filtered multiscale
analysis presented in the following sections, §§ 4.2 and 4.3. The DNS dataset at Ra=
1.0 × 107 is split into resolved and subgrid components by applying a sharp cutoff
filter in Fourier space in each of the wall-parallel directions, x and y, but not in the
wall-normal direction, z (Domaradzki et al. 1994; Härtel et al. 1994). In what follows,
the filtered budgets are analysed for filter lengths `∗F = (πH)/(κcNu) ranging from 0.7
to 3.1, where κc is the cutoff wavenumber. This range of values has been chosen in
order to analyse the behaviour of the resolved and subgrid velocity and temperature
fields when the filter length is larger and smaller than the cross-over scales `u∗

c,min and
`θ∗c,min, respectively. We report the results for only two filter lengths, specifically `∗F = 1
and `∗F = 3.1 for the analysis of the velocity field, and `∗F = 0.7 and `∗F = 2.1 for the
analysis of the temperature field. In terms of relative dimensions, the smallest filter
width is comparable to the thickness of the thermal boundary layer (`∗F=0.7), whereas
the largest one is slightly less than one-quarter of the height of the channel (`∗F= 3.1).
Let us note that the number of filter lengths that have been considered for this study is
actually larger (`∗F ={0.7, 1, 1.4, 2.1, 3.1, 5.1}), but these results are not shown for the
sake of conciseness. However, the main differences will be specifically stated when
relevant.

4.1. Analysis of the filtered single-point budgets
The main panels of figure 5(a,b) display the production of resolved turbulent kinetic
energy, π̄ u, and resolved temperature variance, π̄ θ , for two relevant filter lengths,
together with their fully resolved counterparts, π u and π θ . It can be observed
that the depletions of π̄ u and π̄ θ with respect to the unfiltered terms can be
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FIGURE 5. Unfiltered and resolved production of (a) the turbulent kinetic energy (circles
for the unfiltered case, solid line for `∗F = 1.0 and dashed line for `∗F = 3.1) and (b) the
temperature variance (circles for the unfiltered case, solid line for `∗F= 0.7 and dashed line
for `∗F= 2.1). Insets: unfiltered and resolved dissipation of (a) turbulent kinetic energy and
(b) temperature variance for the same filter lengths as the corresponding main panels.

considered negligible when the filter width falls inside the homogeneous range,
i.e. `∗F < `

u∗
c,min ≈ 2.1 and `∗F < `

θ∗
c,min ≈ 0.8, whereas they become important for large

filter lengths. In particular, the difference between unfiltered and resolved productions
is maximum in the near-wall region at z∗ ≈ 1 and z∗ ≈ 0.5; see figure 5(a) and 5(b),
respectively. This behaviour is not surprising if we consider that the small scales that
are filtered out produce mainly in the transitional layer rather than in other locations
(see figure 3a–d); hence, the depletion that follows the filtering is expected to be
more intense here than anywhere else.

The resolved dissipations 〈¯̃ε〉 and 〈χ̄〉 are affected by stronger depletions as larger
filter lengths are employed, as can be seen from the insets of figure 5(a,b). Inside
the bulk region, the resolved dissipations are negligible with respect to the fully
resolved ones if the filter length is sufficiently larger than the minimum cross-over
scales, which means that the subgrid scales are the only ones involved in dissipative
mechanisms away from the wall. On the other hand, the resolved scales start to make
an important contribution to the dissipation inside the transitional and viscous layers;
indeed the ratios 〈¯̃ε〉/〈ε̃〉 and 〈χ̄〉/〈χ〉 have been found to increase monotonically as
the wall is approached.

The different contributions to the overall transport of 〈k̄〉 and 〈θ̄ 2
〉, namely the

inertial, pressure and viscous transports of resolved turbulent kinetic energy and the
inertial and viscous transports of resolved temperature variance, are represented in
figure 6(a,b). As well as the resolved productions, the resolved transports overlap
the unfiltered counterparts when `∗F < `θ∗c,min and `∗F < `u∗

c,min in accordance with the
definition of the cross-over scales `u∗

c and `θ∗c . The component that seems to be more
affected by the increase of the filter length is the inertial transport, whereas the
viscous and pressure contributions are barely depleted with respect to the unfiltered
references. The inertial transports are negative inside the transitional layer, meaning
that turbulent velocity and temperature fluctuations are carried away by inviscid
mechanisms and swept towards the wall and towards the core.
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FIGURE 6. Unfiltered and resolved inertial transport of (a) the turbulent kinetic energy
(circles for the unfiltered case, solid line for `∗F = 1.0 and dashed line for `∗F = 3.1) and
(b) the temperature variance (circles for the unfiltered case, solid line for `∗F = 0.7 and
dashed line for `∗F=2.1). Insets: unfiltered and resolved (a) viscous and pressure transports
of turbulent kinetic energy and (b) viscous transport of temperature variance for the same
filter lengths.

The rates at which energy and temperature variance are extracted by inertial
mechanisms inside the transitional layer are particularly affected by depletions. This
behaviour could be reasonably explained in terms of the coherent structures that
populate turbulent convection, i.e. the so-called thermal plumes. (See Togni et al.
(2015) for a detailed analysis of thermal plumes conducted using the same DNS
dataset as in the present work.) These structures, which have a diameter comparable
with the thermal boundary layer thickness (δ∗p ≈ 0.5), eject from the near-wall region
and contribute significantly to the advective transport of turbulent kinetic energy and
temperature variance towards the bulk. Hence, by filtering out the scales smaller
than `∗F = 2.1 or `∗F = 3.1, we lose trace of the coherent modes of convection and a
depletion of the inertial transport is somehow expected.

Let us now consider the average subgrid dissipations 〈εsgs〉 and 〈χsgs〉, represented as
a function of z∗ in the main panels of figures 7(a) and 7(b), respectively. Both terms
are non-negative at every wall distance and for both large and small filter lengths,
meaning that subgrid scales behave, on average, as sinks of turbulent kinetic energy
and temperature variance. The shape of the profiles changes quite evidently passing
from small to large filter lengths and this alteration is marked for 〈χsgs〉, where a
local minimum appears around z∗ = 0.5. The only a priori calculation of subgrid
dissipations in RBC known to the authors is the one by Kimmel & Domaradzki (2000)
for Ra= 6.3× 105 and it shows a reasonable agreement with the present results.

The subgrid transports tu
c,sgs and tθc,sgs can be considered negligible for `∗F < `u∗

c,min

and `∗F <`
θ∗
c,min, whereas they become relevant at large filter widths. In the latter case,

the subgrid transports and the corresponding inertial transports have similar profiles,
i.e. the subgrid scales, apart from extracting a net amount of turbulent kinetic energy
and temperature variance from the resolved ones (−〈εsgs〉 < 0 and −〈χsgs〉 < 0),
transport resolved fluctuations from the transitional layer towards the bulk and the
near-wall region. It can be seen by comparing the main panels in figure 6(a,b)
with the insets in figure 7(a,b) that the resolved inertial transport and the subgrid
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FIGURE 7. Profiles of subgrid dissipations (a) 〈εsgs〉 and (b) 〈χsgs〉 as a function of z∗, for
`∗F = 1.0 (solid line) and `∗F = 3.1 (dashed line). Inset: profiles of SGS transport (a) tu

c,sgs

and (b) tθc,sgs as a function of z∗, for `∗F = 0.7 (solid line) and `∗F = 2.1 (dashed line).

redistribution terms are fairly comparable in magnitude inside the transitional layer,
meaning that the nonlinear interactions between the resolved and the subgrid scales
are as important as the ones between resolved scales. In terms of flow topology, this
could be related to the nonlinear interactions between a hierarchy of structures living
at subgrid level, namely the thermal plumes, and the large-scale circulation belonging
to the resolved motion.

In closing this section, let us remark upon the role of the position of the filter
length with respect to the characteristic scales `u∗

c and `θ∗c . In accordance with their
definition, the cross-over scales `u∗

c and `θ∗c split the spectrum of convective turbulence
into a range of large scales, where the anisotropic production and inhomogeneous
transport phenomena prevail, and a range of small scales, where turbulent cascade and
dissipation processes dominate. This picture is also confirmed by considering low-pass-
filtered velocity and temperature fields, since, as shown by the filtered single-point
budgets analysed so far, the production and transports of turbulent kinetic energy and
temperature variance are correctly reproduced by the filtered fields when `∗F < `

u∗
c,min

and `∗F <`
θ∗
c,min. See appendix A for further details on the transition from well-resolved

to poorly resolved physics.

4.2. Analysis of the filtered reduced Kolmogorov equation
In this section we analyse the filtered reduced Kolmogorov equation (2.14) at two
distinct locations in physical space as representative of the scale-by-scale dynamics
inside the bulk region and inside the transitional layer, and for two relevant filter
lengths, `∗F = 1.0 and `∗F = 3.1, which are respectively smaller and larger than the
minimum cross-over scale identified for the velocity field, `u∗

c,min≈ 2.1; see figure 4(a).
The terms of the filtered budget are reported for r∗ρ > `

∗

F to highlight that the range of
scales for r∗ρ<`

∗

F actually belongs to the subgrid motion. Indeed, for r∗ρ<`
∗

F, the terms
of the filtered budget are still formally defined but, numerically, the only collocation
point defined by the filtered resolution is located at the trivial separation, r∗ρ = 0.

Figure 8(a,b) shows the budget in the bulk, z∗ = 3, and in the transitional layer,
z∗ = 0.7, for the smallest filter length considered, `∗F = 1.0. It can be seen that both
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FIGURE 8. (Colour online) Scale-by-scale budgets (2.7) and (2.14) at (a) z∗ = 3 and
(b) z∗ = 0.7 for `∗F = 1.0. The unfiltered quantities are coloured black, the others
are coloured blue (grey). Production (solid line), overall transport in physical space
(dot-dashed line), transfer in the space of scales (dashed line), effective dissipation
(long-dashed line), Tu

c,sgs (squares), Tu
r,sgs (diamonds), and Eu

sgs (triangles). The vertical
dashed lines denotes `∗F. (c) Main panel: behaviour of −〈εsgs〉 (circles), −〈ε̃ ′〉 (long-dashed
line), tu

c
′
− tu

c,sgs (dot-dashed line) and π u′ (solid line) as a function of z∗ and for `∗F = 1.0.
Inset: profiles of tu

c
′ (solid line) and −tu

c,sgs (dashed line).

production and transport mechanisms are very well captured by the filtered fields,
as the resolved terms Π̄ u and T̄c

u fairly overlap the unfiltered counterparts, Π u and Tu
c .

This qualitative behaviour has been observed at every wall distance and agrees with
the choice of a filter length that is small enough to fall inside the homogeneous range,
where the net source/drain of energy due to the inhomogeneous production and overall
transport is weaker than the direct cascade towards dissipation. In these conditions,
a single physical phenomenon is filtered out, namely the action of viscosity at the
smallest scales; indeed, a clear depletion of the effective dissipation is observed, |Ēu

e |<
|Eu

e |. Accordingly, the unique role of the subgrid scales is to drain resolved energy,
Eu

sgs < 0, as much as the missed dissipation due to resolved motion, i.e. the sum of
the resolved and subgrid dissipations recovers the unfiltered dissipation, Ēu

e +Eu
sgs≈Eu

e .
The transports of resolved energy in physical and scale space due to the action of
subgrid scales are, on the contrary, negligible, as Tu

c,sgs ≈ 0 and Tu
r,sgs ≈ 0.

For large filter lengths, we can observe a substantial change in the resolved
dynamics. Figure 9(a) shows the scale-by-scale budget in the bulk of the flow at
z∗ = 3 and for `∗F = 3.1. As we have `∗F > `u∗

c,min, we expect a depletion of the
effective amount of energy released at this wall distance by the production and
transport mechanisms, i.e. Π̄ u

+ T̄u
c < Π

u
+ Tu

c , in accordance with the definition of
the cross-over scale `u∗

c,min. The inspection of figure 9(a) proves this expectation to be
true and shows that the depletion is due only to the resolved production, Π̄ u < Π u,
while T̄u

c ≈ Tu
c . Also, the transport in the space of scales remains almost unaltered,

Īu
r ≈ Iu

r , whereas the effective dissipation is drastically reduced, |Ēu
e | � |E

u
e |. Contrary

to the previously shown cases where `∗F < `
u∗
c,min, now the effects of the SGS stresses

on the resolved motion are no longer due to viscous mechanisms. Indeed, the net
energy exchange between resolved and subgrid scales, Eu

sgs, is not given alone by the
dissipation occurring at subgrid level but also by a non-negligible production. This
fact leads to a value of the subgrid dissipation that is the balance between these two
concurrent mechanisms; hence, it does not allow the unfiltered dissipation nor the
unfiltered production to be recovered. Indeed, we found that the subgrid scales drain
energy from the resolved ones without recovering the actual value of dissipation, i.e.
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FIGURE 9. (Colour online) As figure 8 but for `∗F = 3.1.

|Ēu
+ Eu

sgs| < |E
u
|. Finally, the energy redistribution effect at resolved scales due to

SGS stresses is found to be negligible in this region of the flow as Tu
c,sgs ≈ 0 and

Tu
r,sgs ≈ 0.
Closer to the wall, inside the transitional layer at z∗ = 0.7, we still observe an

erosion of the real physics; see figure 9(b). However, contrary to the bulk region,
not only a depletion of the production mechanisms is observed here, Π̄ u < Π u, but
also a modification of the transports in physical and scale space becomes evident.
In particular, we observe that the reverse energy transfer at large scales, Iu

r < 0, is
not resolved, as Īu

r ≈ 0, while the forward cascade at small scales, Iu
r > 0, is partially

recovered. This aspect suggests that the reverse cascade is a non-local phenomenon
(in scale space) involving a wide range of scales, such that removing the eddies
smaller than this filter length entails also a reduction of the transfer at large scales.
The resulting depletion of the energy content of the large resolved scales is partially
mitigated by an increase of the energy source due to the resolved spatial flux, since
T̄u

c > Tu
c . Interestingly, the draining of the unfiltered spatial flux at small scales,

Tu
c < 0, is not reproduced by the resolved motion. As shown in Togni et al. (2015),

this double feature of the spatial flux is explained as a compound effect of spatial
fluxes and reverse cascades. More explicitly, the presence of a reverse transfer in
the space of scales deflects the spatial flux originating in the bulk so that in the
transitional layer the large scales are gaining from the flux while small scales are still
feeding the flux towards the wall. Since the reverse cascade occurring at large scale
is not resolved for `∗F > `

u∗
c,min, the deflection of the spatial flux does not take place

and, as a consequence, all the resolved scales gain energy from the bulk of the flow,
T̄u

c > 0. A difference with respect to the bulk region is that now the SGS stresses
contribute actively to the redistribution of resolved energy both in the physical space
and in the space of scales, since the terms Tu

c,sgs and Tu
r,sgs are different from zero;

see figure 9(b). The subgrid dissipation is negative, Eu
sgs < 0, as in the bulk of the

flow; however, here Eu
sgs seems to take into account solely the missed dissipation at

small scales, as Ēu
e + Eu

sgs ≈ Eu
e .

To understand the mechanisms determining the observed behaviour of the subgrid
dissipation, Eu

sgs=−4〈εsgs〉, we analyse in detail the equation for the subgrid turbulent
kinetic energy 〈k′〉 = 0.5〈u′iu

′

i〉, namely

tu
c
′
+ π u′

− 〈ε̃ ′〉 − tu
c,sgs + 〈εsgs〉 = 0, (4.1)

where the terms denoted with the prime symbol and the ones without it in (2.17) are
identical except for the replacement of velocity, temperature and pressure fields with
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the subgrid counterparts. Since we consider a spectral cutoff filter, we have 〈k̄〉+〈k′〉=
〈k〉 and the sum of the subgrid and the resolved budgets corresponds to the unfiltered
one.

Figure 8(c) shows the different terms of the budget (4.1) as a function of the wall
distance and for `∗F= 1.0. As can be seen from the main panel, the subgrid dissipation
of resolved energy 〈εsgs〉 is almost balanced by the viscous dissipation at subgrid level
〈ε̃ ′〉 at every z∗. Indeed, the terms tu

c
′
− tu

c,sgs and π u′, which are respectively the global
transport and production of subgrid turbulent kinetic energy, have a small magnitude
with respect to 〈ε̃ ′〉. These aspects support the previously mentioned single physical
role of the subgrid stresses for `∗F < `

u∗
c,min, consisting of a drain of resolved energy

due to viscous mechanisms. Although the sum tu
c
′
− tu

c,sgs is lower in magnitude with
respect to 〈ε̃ ′〉, the separate contributions of the two transport terms, tu

c
′ and −tu

c,sgs,
shown in the inset of figure 8(c), while small throughout the bulk of the flow, become
comparable to or even larger than 〈εsgs〉 closer to the wall.

For large filter lengths, the mechanisms driving the subgrid dissipation Eu
sgs become

more complex, as shown by figure 9(c) for `∗F = 3.1. In the bulk region, the resolved
energy released to the subgrid motion, 〈εsgs〉, is balanced by viscous dissipation
occurring at subgrid level 〈ε̃ ′〉 minus the production of the unresolved scales π u′,
while tu

c
′
≈ 0 and tu

c,sgs ≈ 0. The simplified relation −〈εsgs〉 ≈ π
u′
− 〈ε̃ ′〉 seems to

be satisfied for 2 < z∗ < 5. Closer to the wall, for z∗ < 2, the subgrid dissipation
〈εsgs〉 is still driven by the dissipation and the production of subgrid scales; however,
the global transport in physical space is increased in magnitude with respect to the
deep bulk; it grows even more on approaching the wall and eventually balances the
subgrid production around z∗ = 0.7, thus explaining why Ēu

e + Eu
sgs ≈ Eu

e inside the
transitional layer. It should be stressed that the subgrid dissipation Eu

sgs balances the
residual dissipation Eu

e − Ēu
e only in this case for `∗F >`

u∗
c,min, and that Eu

sgs is generally
modulated by the inhomogeneous mechanisms taking place at subgrid level, namely
the production and the transport of subgrid kinetic energy.

4.3. Analysis of the filtered reduced Yaglom equation
We proceed by analysing the filtered reduced Yaglom equation (2.15) inside the bulk,
z∗ = 3, and inside the transitional layer, z∗ = 0.4, for the filter lengths `∗F = 0.7 and
`∗F = 2.1, which are respectively smaller and larger than the smallest cross-over scale
`θ∗c,min≈0.8; see figures 10(a,b) and 11(a,b). In the case `∗F<`

θ∗
c,min, the resolved physics

is very rich. As shown in figure 10(a,b), the production and transport mechanisms are
captured well, Π̄ θ

≈Π θ , T̄θc ≈ Tθc , and so is the transfer between scales, Īθr ≈ Iθr . The
effect of the SGS heat flux is to drain temperature variance, Eθsgs < 0, with negligible
redistribution effects at resolved scales, since Tθc,sgs ≈ 0 and Tθr,sgs ≈ 0. Analogously to
the velocity field, the condition `∗F < `

θ∗
c,min allows the main inhomogeneous processes

to be resolved while leaving to the subgrid scales the duty of accounting solely for
the diffusive mechanisms. Indeed, the rate at which temperature variance is drained by
subgrid scales balances the missed dissipation at resolved scales, i.e. Ēθe + Eθsgs ≈ Eθe .

The picture changes when large filter widths are considered, as the resolved physics
is strongly affected by the filtering operation and a significant portion of the relevant
inhomogeneous mechanisms is left to be taken into account by the SGS heat flux.
Accordingly, the scale-by-scale analysis for `∗F = 2.1 reveals that Π̄ θ

+ T̄θc <Π
θ
+ Tθc

both in the bulk and in the transitional layer; see figure 11(a,b). In particular, the
production is adequately resolved in the bulk, where Π̄ θ

≈ Π θ , but not inside
the transitional layer. The reason is given by the fact that in the bulk region the
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FIGURE 10. (Colour online) Scale-by-scale budgets (2.8) and (2.15) at (a) z∗ = 3 and
(b) z∗ = 0.4 for `∗F = 0.7. The unfiltered quantities are coloured black, the others
are coloured blue (grey). Production (solid line), overall transport in physical space
(dot-dashed line), transfer in the space of scales (dashed line), effective dissipation
(long-dashed line), Tθc,sgs (squares), Tθr,sgs (diamonds), and Eθsgs (triangles). The vertical
dashed lines denotes `∗F. (c) Main panel: behaviour of −〈χsgs〉 (circles), −〈χ ′〉 (long-dashed
line), tθc

′
− tθc,sgs (dot-dashed line) and π θ ′ (solid line) as a function of z∗ and for `∗F = 0.7.

Inset: profiles of tθc
′ (solid line) and −tθc,sgs (dashed line).
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FIGURE 11. (Colour online) As figure 10 but for `∗F = 2.1.

production processes are weak and involve large scales while in the transitional
layer production is stronger and small scales are active in the relative mechanisms.
Contrary to the production, the transport mechanisms are poorly resolved throughout
the entire domain. Hence, the picture consists of resolved fields where the production
of temperature variance in the transitional layer is deteriorated and, as a consequence,
also the spatial flux that sustains the temperature fluctuations in the other regions
of the flow is drastically reduced, i.e. |T̄θc | � |T

θ
c |. For the same reasons, also the

resolved cascade mechanisms are strongly depleted, |Īθr | � |I
θ
r |. As can be expected,

this reduction of the forward and reverse transfers in the bulk and transitional layer,
respectively, is more pronounced at large resolved scales where the intensity of these
two resolved cascade phenomena is found to be almost null.

In agreement with these premises, the role of the SGS heat flux is relevant for the
evolution of the resolved fields. In particular, the transport of resolved temperature
variance in both physical and scale space is significantly determined by the interaction
between resolved and unresolved scales, meaning that the subgrid redistributions Tθc,sgs

and Tθr,sgs cannot be neglected. The net temperature variance exchange between
resolved and subgrid scales is negative both in the bulk and in the transitional layer,
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Eθsgs < 0. However, this draining is not driven solely by diffusive mechanisms but also
by inhomogeneous production and transport mechanisms, which are significant at
subgrid level for large filter lengths. As a consequence, the subgrid dissipation does
not allow one to recover the unfiltered rate of dissipation, i.e. |Ēθe + Eθsgs|< |E

θ
e |.

In order to analyse in more detail the mechanisms determining the behaviour of the
subgrid dissipation, Eθsgs =−2〈χsgs〉, we analyse in detail the equation for the subgrid
temperature variance 〈θ ′2〉, namely

tθc
′

+ π θ
′

− 〈χ ′〉 − tθc,sgs + 〈χsgs〉 = 0, (4.2)

where the terms denoted with the prime symbol and the ones without it in equation
(2.18) are identical except for the replacement of velocity and temperature fields with
the subgrid counterparts. Since we consider a spectral cutoff filter, 〈θ̄ 2

〉 + 〈θ ′
2
〉 = 〈θ 2

〉

and the sum of the subgrid and the resolved budgets corresponds to the unfiltered one.
Figures 10(c) and 11(c) show the budget (4.2) for `∗F=0.7 and `∗F=2.1, respectively.

In the case of `∗F <`
θ∗
c,min (see figure 10c), it can be seen that the subgrid dissipation is

almost perfectly balanced by the viscous dissipation due to the subgrid scales, 〈χsgs〉≈

〈χ ′〉. The reason is that subgrid production, transport and the subgrid redistribution,
π θ
′, tθc

′ and −tθc,sgs, are negligible inside the bulk of the flow. Closer to the wall,
these terms become significant; however, they balance each other and thus they do
not contribute to the subgrid dissipation. These results suggest that, for `∗F < `θ∗c,min,
the single relevant phenomenon that the SGS heat flux should take into account is
the dissipation occurring at subgrid level. For this reason, as anticipated so far in
the analysis of the scale-by-scale budgets, the combination of resolved and subgrid
dissipation allows us to recover the unfiltered rate of dissipation, i.e. Ēθe + Eθsgs ≈ Eθe .

The picture becomes more complicated when large filter widths are considered. As
can be seen in figure 11(c), the subgrid dissipation 〈χsgs〉 not only is driven by 〈χ ′〉
but also is influenced by the subgrid production, transport and subgrid redistribution,
in order π θ ′, tθc

′ and −tθc,sgs. In particular, in the bulk of the flow, subgrid production
is negligible and subgrid dissipation is driven by the balance between spatial transport
and dissipation at subgrid scales, −〈χsgs〉≈ tθc

′
− tθc,sgs−〈χ

′
〉. Close to the wall, also the

production at subgrid scales becomes very significant; hence, it does contribute to the
value of subgrid dissipation. In conclusion, for large filter lengths, subgrid scales are
involved in strong inhomogeneous processes, so that subgrid dissipation does not take
into account solely the dissipation at subgrid scales but also production and transport
mechanisms. As a result, the sum of resolved and subgrid dissipation does not allow
one to recover the unfiltered rate of dissipation, since |Ēθ + Eθsgs|< |E

θ
| as previously

shown in the analysis of the filtered Yaglom equation.
The analysis of the filtered dataset has important implications in LES. Classic

eddy-viscosity/diffusivity models may provide a good estimation of the transfers
between resolved and subgrid scales when `∗F <`

θ
c,min, as the main unresolved physics

is the dissipation of turbulent kinetic energy and temperature variance. However,
the inhomogeneous mechanisms become poorly resolved for larger filters and the
SGS fields include highly dynamic eddies that contribute a significant portion of the
production and transport besides dissipation, which may lead to modelling issues.
Indeed, Smagorinsky-like models cannot account for the inhomogeneous mechanisms
occurring at subgrid level; thus the exchanges between resolved and subgrid scales
can hardly be copied.

Because the filtered Kolmogorov and the Yaglom equations have been proved to be
of great support in describing the turbulent processes at different scales, locations in
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physical space and filter lengths, then we might consider the filtered scale-by-scale
analysis as a valuable tool for testing the SGS models that are commonly employed
in LES. This idea has been conceived by Cimarelli & De Angelis (2012) and brought
to a novel assessment of the SGS stress model in turbulent channel flow (Cimarelli &
De Angelis 2014). Future works will continue this line of research and consider the
possibility to employ the filtered Kolmogorov and Yaglom equations to evaluate the
performances of the state-of-the-art models employed for thermally driven turbulence.

5. Conclusions
Turbulence is commonly described as being characterized by two different classes of

processes: phenomena that occur in physical space, such as transport of momentum
and energy, and phenomena that take place in the space of scales, such as the
turbulent cascade. The dual nature of these two processes and of the related theories
is a spurious result of the observables used to study turbulence. In the present
work, we develop and assess an alternative formalism to overcome this scale/position
duality. The theoretical framework is based on the equations for the velocity and
temperature structure functions, the so-called generalized Kolmogorov and Yaglom
equations (Togni et al. 2015). Such a framework is here extended for the assessment
of convective turbulence when a low-pass filtering operation is used. The use of DNS
data of turbulent Rayleigh–Bénard convection at Ra= 1.0× 107 and Pr = 0.7 finally
allows us to prove the reliability of the developed theoretical framework for the study
of the resolved and subgrid dynamics in thermally driven turbulence by varying the
filter length.

We first use the Kolmogorov and Yaglom equations to define two physically relevant
characteristic scales for the velocity and temperature fields. These scales, `u

c and `θc ,
respectively, decompose convective turbulence into a range of large scales, where
anisotropic production and inhomogeneous spatial transports prevail, and a range of
small scales, where, on the contrary, turbulent cascade and dissipation mechanisms
dominate.

These cross-over scales are then used for a rational assessment of the resolved and
subgrid dynamics of convective turbulence as a function of the filter length employed.
In this context, the most severe constraint is given by the characteristic scale imposed
by the temperature field, rather than by the velocity field, as the kinematic cross-over
scale, `u

c , exceeds the thermal cross-over scale, `θc , at every wall distance and, arguably,
for every Prandtl larger than 0.7, as the smallest temperature scale decreases when Pr
increases. The analysis of the generalized Kolmogorov and Yaglom equations extended
to filtered convective turbulence single out that, for filter lengths smaller than the
cross-over scales (i.e. `F <`

θ
c,min, as `θc <`

u
c everywhere), the resolved processes almost

correspond to the exact ones except for a depletion of the resolved dissipations. In
this case, the only role of the subgrid scales is to drain the amounts of energy and
temperature variance that are not dissipated by resolved motion and temperature, that
is to say, Eu

sgs≈Eu
e − Ēu

e and Eθsgs≈Eθe − Ēθe . On the other hand, when `F is sufficiently
larger than `θc,min, a substantial fraction of the inhomogeneous range belongs to the
subgrid scales; therefore, the physics of the flow is poorly resolved and the role of
the subgrid scales is not only dissipative. With reference to the second issue, the
exchanges of energy and temperature variance between resolved and subgrid scales,
Eu

sgs and Eθsgs, are set by the unresolved dissipations plus the inhomogeneous processes
occurring at subgrid level; hence, the recovery of the unfiltered dissipation, namely
Eu

e ≈ Ēu
e + Eu

sgs and Eθe ≈ Ēθe + Eθsgs, does not occur in general.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

11
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.119


Resolved and subgrid dynamics of Rayleigh–Bénard convection 929

Interestingly, the constraint given by the thermal cross-over scale non-dimensiona-
lized with respect to twice the thermal boundary layer thickness, `θ∗c,min= `

θ
c,minNu/H=

0.8, is found to be substantially independent of the Rayleigh number, at least for the
range of Ra considered in the present work. If confirmed, the developed criterion for
the filter length would apply also for different Rayleigh numbers and fixed Prandtl
number as long as an estimation of the Nusselt number is available.

As a final remark, let us point out that in the LES framework, the classic eddy-
viscosity/diffusivity models should be capable of reproducing the subgrid dynamics for
`F ≈ `

θ
c,min, as the only physics that needs to be copied is the dissipation of turbulent

fluctuations occurring at subgrid level. On the other hand, the classic SGS models
arguably suffer some deficiencies close to the walls and for `F sufficiently larger than
`θc,min, since they do not consider the mechanisms induced by spatial inhomogeneity,
namely the subgrid production and transport in physical space. A future work will
address both the a priori and a posteriori tests of classic SGS models in order to
better assess the role of the filter length with respect to the cross-over scales of RBC
and, eventually, to formulate a physics-based SGS model that is capable of accounting
also for the inhomogeneous processes occurring at subgrid scales when large filter
lengths are employed.

Appendix A. On the behaviour of the resolved energetics

Besides providing an exact theoretical framework for the study of the unfiltered,
filtered and subgrid temperature and velocity fields both at the single-point and at the
two-point level, the main body of the work makes use of the cross-over scales `u

c and
`θc to assess the behaviour of the large-scale resolved fields as a function of the filter
length `F employed. In particular, it is shown that for `F <`

θ
c,min, both the large-scale

velocity and temperature fields essentially reproduce the unfiltered behaviours with the
exception of a fraction of viscous dissipation, which might be easily reproduced by
classical subgrid scale closures. It is then shown that for large filter lengths compared
to the cross-over scale, of the order of `F ≈ 3`θc,min, the resolved physics is poor and
subgrid-scale effects are more complex than a simple drain of kinetic energy and
temperature variance, and thus challenging for turbulence closures. Hence, in the range
`θc,min<`F < 3`θc,min the resolved field experiences a transition from a well-resolved to a
poorly resolved physics. In this appendix, we provide additional details by addressing
how this degradation of the resolved temperature and velocity fields occurs. To this
purpose, we consider the behaviour of the production and spatial transport of turbulent
kinetic energy and temperature variance as a function of the filter length employed,
`∗F = {0.7, 1, 1.4, 2.1, 3.1, 5.1}.

In figure 12(a), the behaviour of the production term of temperature variance
is shown as a function of the filter length and for different wall distances, π̄ θ =
π̄ θ(z∗, `∗F). The most evident depletion of resolved production occurs in the near-wall
region, where most of the temperature variance is produced, while in the bulk
region the isocontours are almost aligned in the vertical direction, thus denoting a
weaker deterioration of production by increasing the filter length. This behaviour
is reproduced by the cross-over scale `θc(z

∗). In particular, its minimum in the
transitional layer, `θ∗c,min = 0.8, is found to nicely capture the largest filter length that
can be adopted before the appearance of a deterioration of the resolved production.
The same observations can be drawn by analysing the behaviour of the overall spatial
transport t̄θc (z

∗, `∗F) shown in figure 12(b). Indeed, the peak of sink of temperature
variance in the transitional layer which feeds the spatial transport towards the wall
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FIGURE 12. Intensities of the resolved temperature field processes as a function of
the filter length and for different wall distances. (a) Production of temperature variance
π̄ θ (z∗, `∗F). For 0< π̄ θ (z∗, `∗F) < 0.0025, unequally spaced isocontours are used to address
the behaviour of production also in the bulk of the flow. (b) Overall inhomogeneous
transport t̄θc (z

∗, `∗F). For −0.0025 < t̄θc (z
∗, `∗F) < 0.0025, unequally spaced isocontours are

used to address the behaviour of transport also in the bulk of the flow. The solid line
reports the behaviour of the cross-over scale `θ∗c (z

∗) while the dot-dashed line is the value
of `θ∗c,min = 0.8.

and bulk regions is found to be significantly affected by the filter length. Again,
this behaviour is nicely reproduced by the cross-over scale `θc , which is found to
capture with its minimum, `θ∗c,min= 0.8, the maximum value of the filter length before
the appearance of a deterioration of the negative peak of the spatial transport in the
transitional layer. In contrast to the production term, the spatial transport shows a
non-negligible filter length dependence also in the bulk of the flow. As highlighted
by the isocontours, this dependence is such that the depletion of the spatial transport
occurs at increasingly large filter lengths by increasing the distance from the wall.
Also in this case, the cross-over scale `θc is found to nicely reproduce such behaviour.

Let us now consider the behaviour of the resolved turbulent kinetic energy. In
figure 13(a), the behaviour of the resolved production of turbulent kinetic energy
is shown again as a function of the wall distance and for different filter lengths,
π̄ u
= π̄ u(z∗, `∗F). In contrast to the temperature field, the production of turbulent

kinetic energy is active in the bulk of the flow. This is the region where the effect
of filtering is large while in the transitional and viscous layers it is very weak as
highlighted by the progressive vertical alignment of the isocontours on decreasing the
wall distance. In the bulk of the flow, the effect of filtering shows a dependence on
the wall distance. In particular, the depletion of production occurs at increasingly large
filter lengths on increasing the wall distance. Such behaviour is nicely captured by
the cross-over scale `u∗

c (z
∗). In contrast to the bulk region, the transitional and viscous

layers are dominated by the spatial transport t̄θc (z
∗, `∗F) as shown in figure 13(b). In

particular, the maximum of the transport occurs in the viscous layer and the effect
of filtering is not particularly significant, as shown by the almost vertical alignment
of the iso-levels. The behaviour of the cross-over scale `u∗

c (z
∗) is found to correctly

reproduce such a small dependence. Interestingly, the cross-over scale shows also a
transition from the transport-dominated regions in the viscous and transitional layers
to a production-dominated region in the bulk of the flow. This transition takes the
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FIGURE 13. Intensities of the resolved velocity field processes as a function of the
filter length and for different wall distances. (a) Production of turbulent kinetic energy
π̄ u(z∗, `∗F). (b) Overall inhomogeneous transport t̄u

c(z
∗, `∗F). For −0.007 < t̄θc (z

∗, `∗F) <
−0.002, unequally spaced isocontours are used to address the behaviour of transport also
in the bulk of the flow. The dashed line reports the behaviour of the cross-over scale
`u∗

c (z
∗) while the solid line denotes `θ∗c (z

∗) as a reference. Also the value of `θ∗c,min = 0.8
is reported with the dot-dashed line.

form of a local maximum, thus denoting that the net compound role of production
and transport in such a region involves larger scales.

In an LES context, the present results can be rationalized by using the behaviour
of the cross-over scales. In particular, the temperature cross-over scale `θc , which is
always smaller than that for the velocity field, `θc < `

u
c , is recognized to nicely mark

the transition from well-resolved to poorly resolved temperature and velocity fields, as
shown in figures 12 and 13. Furthermore, by considering the fact that the Rayleigh–
Bénard problem is commonly solved by means of structured grids that are Cartesian
in the wall-parallel planes (i.e. having constant spacing), the constraint given by `θ∗c,min,
i.e. `∗F 6 `θ∗c,min = 0.8, is recognized to identify a rule for the largest filter length that
allows one to recover the unfiltered production and transport processes in the entire
flow domain; see the horizontal dot-dashed line in figures 12 and 13. Let us finally
remark that such a constraint is non-dimensionalized with respect to twice the thermal
boundary layer thickness, `θ∗c,min = `

θ
c,minNu/H = 0.8, and, as shown in § 3, is found

to be substantially independent of the Rayleigh number, at least for the range of Ra
considered in the present work.
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