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In an earlier paper, Oruba et al. (J. Fluid Mech., vol. 818, 2017, pp. 205–240) considered
the primary quasi-steady geostrophic (QG) motion of a constant density fluid of viscosity
ν that occurs during linear spin-down in a cylindrical container of radius L and height H,
rotating rapidly (angular velocity Ω) about its axis of symmetry subject to mixed rigid and
stress-free boundary conditions for the case L = H. Direct numerical simulation (DNS)
of the linear system at large L = 10H and Ekman number E � ν/H2Ω = 10−3 by Oruba
et al. (J. Fluid Mech., vol. 888, 2020, p. 44) reveals significant inertial wave activity on the
spin-down time scale. That analytic study, for E � 1, builds on the results of Greenspan
& Howard (J. Fluid Mech., vol. 17, 1963, pp. 385–404) for an infinite plane layer L→∞.
At large but finite distance from the symmetry axis, the meridional (QG-)flow, that
causes the QG-spin-down, is blocked by the lateral boundary, which provides the primary
QG-trigger for inertial wave generation. For the laterally unbounded layer, Greenspan
and Howard identified, in addition to the QG-flow, inertial waves of maximum frequency
(MF) 2Ω , which are a manifestation of the transient Ekman layer. The blocking of these
additional MF-waves by the lateral boundary provides an extra trigger that complements
the QG-triggered inertial waves. Here we obtain analytic results for the full wave activity
caused by the combined trigger (QG+MF) that faithfully capture their true character.
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1. Introduction

Our study is motivated by the understanding of large scale nearly axisymmetric vortices
in the atmosphere, such as tropical cyclones, also referred to as hurricanes or typhoons.
Oscillations have been observed near the eye of actual tropical cyclones (e.g. Harlow &
Stein 1974; Chen et al. 2015). These are reminiscent of inertial waves and exhibit similar
periods (Atkinson, Davidson & Perry 2019). A clean cut mathematical model is needed in
order to investigate these waves. We therefore investigate inertial wave activity in a penny
shaped cylinder in solid body rotation for which the angular velocity of the container is
abruptly changed.

In Oruba, Soward & Dormy (2020), we investigated the inertial wave response during
spin-down in a shallow cylinder height H, of large radius L (� H), equivalently

� ≡ L/H � 1, (1.1)

by consideration of a ‘reduced model’. Here, we consider the complete problem. On the
one hand, we refrain from repeating some of the references cited in Oruba et al. (2020),
which apply equally here. On the other, as we need to refer extensively to equations (say
(x.y)), sections (say §x) and figures (say figure x) from Oruba et al. (2020) (say O), we use
the notation ‘(O: x.y)’, ‘§O:x’ and ‘figure O:x’ respectively to identify them.

Our cylindrical container is filled with constant density fluid of viscosity ν and rotates
rigidly with angular velocity Ω about its axis of symmetry, the frame, relative to which
our analysis is undertaken; the Ekman number is small

E = ν/(H2Ω)� 1. (1.2)

Initially, at time t† = 0, the fluid itself rotates rigidly at the slightly larger angular velocity
Ro Ω , in which the Rossby number Ro is sufficiently small (Ro� E1/4) for linear theory
to apply. Relative to cylindrical polar coordinates, (r†, θ†, z†), the top boundary (r† <

L, z† = H) and the sidewall (r† = L, 0 < z† < H) are impermeable and stress free. The
bottom boundary (r† < L, z† = 0) is rigid. For that reason alone the initial state of relative
rigid rotation Ro Ω of the fluid cannot persist and the fluid spins down to the final state of
no rotation relative to the container, as t† →∞. We describe the transient relative motion,
velocity v†, by its cylindrical components oriented by the rotation axis, which we partition
into its horizontal v

†
⊥ = [u†, v†] and vertical w† components.

Whereas an actual tropical cyclone is in essence living in an unbounded flow (at
the surface of a sphere), models of axisymmetric geophysical vortices in general (e.g.
Williams 1968; Rotunno 1979; Read 1986a,b; Rotunno 2014) and of tropical cyclones
in particular (e.g. Rotunno & Emanuel 1987; Montgomery, Snell & Yang 2001) are in
essence bounded. The same would be true of any experimental set-up. In the particular
set-up investigated here, inertial wave activity is triggered by the outer bounding wall. In
a true cyclone, they will be triggered by other disturbances (such as non-axisymmetric
heterogeneities) but will be equally important. In practice, they may also interact
nonlinearly (e.g. Yarom & Sharon 2014). Here, we restrict our attention to the exact linear
(Ro� 1) solution for a bounded flow, relevant to either a numerical model or laboratory
experiment, both bounded. We describe mathematically how the waves triggered at
the outer boundary propagate toward the axis and reasonably expect that some of the
qualitative wave behaviour predicted will not simply depend on our chosen forcing but
apply equally to real tropical cyclones. Indeed, we believe that our waves can shed light
on understanding the inertial wave activity observed near the axis of cyclones (e.g. Chen
et al. 2015).
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Inertial waves induced by spin-down

Inertial waves in confined flows, driven by the relative motion of boundaries, is of
continued topical interest, from both experimental and theoretical points of view (see Klein
et al. (2014), Kurgansky et al. (2020) and references therein). The special case of linear
spin-down, manifest primarily by a quasi-geostrophic (QG) flow (largely time-dependent
rigid rotation) caused by axial vortex line shortening due to blowing from the Ekman
layers, is well understood (see e.g. Benton & Clark 1974; Duck & Foster 2001). However,
the secondary generation of inertial waves during spin-down has received less attention.
Though, in the case of a cylinder, their wave spectrum and viscous decay rates are well
understood (see e.g. Kerswell & Barenghi (1995), Zhang & Liao (2008) and references
therein) we are only aware of one study (Cederlöf 1988) that addresses the issue of wave
amplitude analytically.

Our development builds on a laterally unbounded model (L→∞) studied in
considerable detail by Greenspan & Howard (1963), for which a useful summary and
clarifying description are given in §§ 2.3 and 2.4 of Greenspan (1968). We emphasise,
at the outset, that mathematically our use of a stress-free boundary at z† = H is equivalent
to theirs on doubling our gap height and applying no-slip boundary conditions at z† = 2H
instead. The equivalence follows from symmetries, z† �→ 2H − z†, about the mid-plane
z† = H. Greenspan & Howard (1963) also considered the role of the outer rigid boundary
at r† = L and particularly the boundary layer structure there.

The spin-down process operates on three time scales identified by

Ωt† =

⎧⎪⎨⎪⎩
O(1), rotation or inertial wave time,

O(E−1/2), spin-down time,

O(E−1), transverse diffusion time.

(1.3)

We will refer to these regimes repeatedly.
Oruba, Soward & Dormy (2017) pointed out that a QG-layer, close to the outer r† = L

boundary, spreads inwards towards the r† = 0 axis broadening indefinitely. Curiously,
when that outer boundary is stress free, the returning meridional flow is not impeded by
boundary friction. So, to a small extent, rather than promoting spin-down by compressing
axial vortex lines, the opposite tends to happen. The consequence of this weak tendency is
to slightly slow spin-down on the long transverse diffusion time scale Ωt† = O(E−1).
Here, and in our previous work (Oruba et al. 2020), we are not concerned with that
QG-development, but rather focus attention on the evolution of inertial waves triggered
simply by the impermeable boundary condition u† = 0 at r† = L on the shorter time
scales Ωt† � E−1. For that, whether the lateral boundary r† = L is no slip or stress free
is irrelevant and has no influence on the inertial wave activity ‘triggered’ by the blocking
of the radial flow found in the unbounded domain L→∞. Fortunately, to compare our
inertial wave predictions with the results of direct numerical simulation (DNS) based on
the entire governing equations, we are able to filter out the mainstream QG-contribution
(as well as the inertial wave contribution, with frequency close to 2, in the trigger flow
identified by Greenspan 1968) to expose only the triggered inertial waves. The filtered
waves are the same whether the outer boundary r† = L is no slip or stress free.

In short, our approach builds on the idea that the radial outflow for the unbounded case is
simply blocked, u† = 0 at r† = L with, at leading order, the stress boundary condition only
affecting the QG-flow contribution studied by Oruba et al. (2017). Our asymptotic analysis
only applies when Ωt† � E−1. Oruba et al. (2020) ignored the early time Ωt† = O(1)

behaviour. Although this is adequate to capture the main features of the triggered wave
solution, it is not asymptotically correct. For surprisingly the Ωt† = O(1) behaviour of the
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unbounded flow has a persistent influence on the solution. Its most evident consequences
are a phase lag and smaller amplitude of the Oruba et al. (2020) triggered waves relative
to the asymptotically correct wave solution derived here.

In order to make our notation relatively compact at an early stage, we use H and Ω−1 as
our unit of length and time respectively, and introduce

r† = Hr, z† = Hz, Ωt† = t, v† = Ro LΩv, (1.4a–d)

in which, for our unit of relative velocity v†, we have adopted the velocity increment
Ro LΩ of the initial flow at the outer boundary r† = L. The cylindrical component
axisymmetric velocity decomposition becomes

v(r, z, t) = [v⊥, w] with v⊥ = [u, v] (1.5a,b)

and, on introduction of the meridional flow streamfunction rχ , we have

u = −∂χ

∂z
, w = 1

r
∂(rχ)

∂r
. (1.5c,d)

In this Introduction, we summarise and expand on the results of Greenspan & Howard
(1963), as needed to properly understand the nature of the unbounded, � = L/H→∞,
spin-down flow which provides the inertial wave trigger in the bounded case at r = �. Like
Greenspan & Howard (1963), our development relies heavily on the Laplace transform
(LT), an operation L leading to values denoted by the ˆ accent, e.g.

v̂(r, z, p) = L{v} ≡
∫ ∞

0
v(r, z, t) exp(−pt) dt (1.6a)

with inverse-LT

v(r, z, t) = L−1{v̂} ≡ 1
2πi

∫ i∞

−i∞
v̂(r, z, p) exp( pt) dp. (1.6b)

The complete LT-solution of the �→∞ problem is given by (3.4), (3.5) of Greenspan
& Howard (1963). Crucially, the LTs involve cut points at p = ±2i, exemplified by the
factors ( p∓ 2i)1/2 which appear in their equations (3.6). The cut points are illusory
and not part of the solution, which only possesses poles. In the small Ekman number
limit E � 1, a pole near p = 0 identifies the QG-spin-down mode, while an infinite
sequence of densely packed poles to the left of the ‘illusory’ cuts at p = ±2i identifies
modes with distinct viscous decay rates with frequencies close to 2 (see Greenspan &
Howard 1963, (3.7), (3.8)). The latter pole family is needed to properly resolve late time
behaviour, t = O(E−1). At shorter times t < O(E−1) a different tactic for the LT-inversion
(see Greenspan & Howard 1963, p. 389, 390) which essentially reinstates the ‘illusory’
cuts, is more useful. That strategy can only be undertaken with considerable caution, as
the asymptotic approach has limitations that must be clearly understood. To that end, we
build the picture slowly through the survey §§ 1.1, 1.2 (essentially a considerable expansion
of Greenspan (1968), §§ 2.3 and 2.4, respectively, with an alternative perspective) of a
hierarchy of problems that highlight the main ideas. Then, in § 1.3, we identify (1.30) as
an approximation to the inertial wave trigger, sufficiently accurate for our purposes over
the entire time 0 < t � E−1. We outline the organisation of our paper in § 1.4.
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Inertial waves induced by spin-down

1.1. The transient Ekman layer
The transient Ekman layer, in the half-space z > 0 above a rigid boundary z = 0, is well
known (see e.g. Greenspan 1968, § 2.3). Still, we provide here a summary in order to
develop our notation and highlight features upon which we will build. Significantly, as
the LT-solution ((1.12) below) involves both a pole at p = 0 and cuts at p = ±2i, we may
immediately identify the seeds of spin-down and inertial wave generation between parallel
planes. For that, the cuts are strictly removed by the inclusion of an upper boundary, as
previously mentioned.

We consider the axisymmetric flow in the self-similar form

v⊥ = (r/�)[𝔲(z, t), 𝔳(z, t)], w = (1/�)𝔴(z, t), (1.7a,b)

that solves
∂t𝔲− 2(𝔳− 1) = E∂2

z 𝔲, ∂t𝔳+ 2𝔲 = E∂2
z 𝔳 (1.8a,b)

subject to [𝔲, 𝔳] = [0, 1] at t = 0, while subsequently [𝔲, 𝔳] = [0, 0] at z = 0 and
[𝔲, 𝔳]→ [0, 1] as z ↑ ∞ for t > 0. Of interest to us is the horizontal boundary layer
volume flux deficit

− E1/2 r
�

[
𝔘(t),𝔙(t)

] = r
�

∫ ∞
0

[𝔲, 𝔳− 1] dz. (1.9)

By mass continuity, the outflow velocity E1/2𝔚/� from it is determined from

𝔚(t) ≡ E−1/2𝔴z↑∞ = 2𝔘(t). (1.10)

The minus sign in (1.9) is motivated by our application to spin-down between two
unbounded parallel plates, 0 < z < 1, in the next § 1.2.

In terms of the complex combinations

𝔷±(z, t) = 𝔲± i (𝔳− 1) , 𝔚±(t) = 𝔘± i𝔙, (1.11a,b)

the LT-solutions are

�̂�±(z, p) = ∓ip−1 exp
[
−E−1/2( p± 2i)1/2z

]
, (1.12a)

�̂�
±
( p) = ±ip−1( p± 2i)−1/2. (1.12b)

The inverse-LT of the former is discussed in Appendix A, while the latter is

𝔚±(t) = 1
2(1± i) erf

[
(1± i)t1/2

]
, (1.13a)

which, by (http://dlmf.nist.gov/7.5.E8) of Abramowitz & Stegun (2010) has the alternative
representation

= S(T)± iC(T), T(t) =
√

4t/π, (1.13b)

in terms of the Fresnel integrals C and S (http://dlmf.nist.gov/7.2.E7,8). Hence (1.10) and
(1.11b) determine

𝔚(t) = 2𝔘(t) =𝔚+(t)+𝔚−(t), (1.13c)[𝔘(t)
𝔙(t)

]
=
[

S(T)

C(T)

]
=
∫ t

0

[
sin(2τ)

cos(2τ)

]
dτ√
πτ

. (1.13d)

As 𝔚−(t) is the complex conjugate of 𝔚+(t), the±-notation is unnecessary at this stage.
In the spirit of our notation development, however, we introduce it here anticipating the
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later generalisation in § 2.2 to 𝔚 d±
mn (t) with LT (2.19d), which is needed to describe the

wave response in our closed cylinder to excitation at a frequency ωmn.
For t = O(1), the inverse-LT of (1.12a) describes a complicated boundary layer structure

of width
Δ(t) =

√
Et, (1.14)

just as for all evolving viscous layers.
For t � 1, the boundary layer splits into two parts:

(i) Steady. The final steady Ekman layer, width ΔE = Δ(1) = √E, generated by the
pole p = 0 of (1.12) has

𝔷±E (z) = lim
t→∞ 𝔷±(z, t) = ∓i exp[−(1± i)z/E1/2], (1.15a)

𝔚±E = lim
t→∞𝔚±(t) = 1

2
(1± i), (1.15b)

leading to the corresponding 𝔲, 𝔳, 𝔘, 𝔙, 𝔚 values

[𝔲E(z), 𝔳E(z)− 1] = − exp(−z/E1/2)
[
sin(z/E1/2), cos(z/E1/2)

]
, (1.16a)

𝔘E = 𝔙E = 1
2 , 𝔚E = 2𝔘E = 1. (1.16b)

(ii a) Transient, ∀t. The remaining transient layer may be described by the forms

𝔷±MF(z, t) = 𝔷±(z, t)− 𝔷±E (z) = 𝔥±MF(z, t) exp
[
− z2

4Et
∓ 2it

]
, (1.17a)

𝔚±MF(t) =𝔚±(t)−𝔚±E (t) = −1
2(1± i) erfc

[
(1± i)t1/2

]
(1.17b)

= −[ f (T)± ig(T)] exp(∓2it), (1.17c)

the details of which we now explain. The relationship between (1.17b,c) follows
from (http://dlmf.nist.gov/7.5.E10), where the auxiliary functions f , g are defined
in §http://dlmf.nist.gov/7.2.iv. Equations (1.13) and (1.17b,c) determine[𝔘MF(t)
𝔙MF(t)

]
= −

∫ ∞
t

[
sin(2τ)

cos(2τ)

]
dτ√
πτ
= −

[
f (T) cos(2t)+ g(T) sin(2t)
−f (T) sin(2t)+ g(T) cos(2t)

]
,

(1.18a)

𝔚MF(t) = 2𝔘MF(t). (1.18b)

The function 𝔥±MF in (1.17a) is defined by (A3) in Appendix A, also in terms of f
and g.

(ii b) Transient, t � 1. We emphasise that, for t � O(1), the E/MF-partition, as defined by
(1.15)–(1.18), is unhelpful and, although correct, the features suggested by (1.17a,c)
are misleading at that early time. However, when t � 1, their defining functions f,
g have algebraic asymptotic expansions (http://dlmf.nist.gov/7.12.E2, E3). Then, the
exponent exp(−z2/4Et) in (1.17a) clearly identifies the boundary layer width Δ(t), as
it does in the asymptotic form (A7) for the boundary layer flow [𝔲MF(z, t), 𝔳MF(z, t)]
derived in Appendix A. Likewise, the exponent exp(∓2it) in (1.17a,c) identifies
inertial waves of maximum frequency 2. In reality, they are modulated and so we
refer to such quasi-waves as MF-waves; whence our use of the subscript ‘MF’.
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Inertial waves induced by spin-down

1.2. Spin-down between two unbounded parallel plates
In our small E-limit, the spin-down between two unbounded parallel plates z = 0, 1
may be decomposed into its mainstream v̄ and boundary layer vΔ parts. The horizontal
contribution v̄⊥ is z-independent, while vΔ

⊥ is of the E/MF-layer type described in § 1.1.
However, whereas the vertically unbounded mainstream flow v̄ described there was simply
[0, r, E1/2𝔚(t)]/�, when the upper boundary z = 1 is included, the uniform axial outflow
(E1/2/�)𝔚(t) from the boundary layer is blocked and obliged to escape radially instead,
causing QG spin-down. As in § 1.1 (i,ii), we find it convenient to partition the flows
into their (i) E- (or rather QG-) and (ii) MF-constituents vQG and vMF respectively. To
understand the nature of the motion, in the following § 1.2.1, we consider v̄MF⊥ on the
transient Ekman layer time scale t = O(1), during which v̄QG⊥ ≈ [0, r/�] as in § 1.1.
Then in § 1.2.2, we explain the modifications appropriate on the longer spin-down time
t = O(E−1/2) over which the QG-flow v̄QG⊥ evolves. That analysis is restricted to t � E−1

by the requirement that the MF boundary layer width Δ(t) = √Et be small compared to
the plate separation unity.

Throughout this section we continue to employ the similarity representation (1.7a) with
Fraktur variables, v̄⊥ = (r/�)[�̄�(t), �̄�(t)], and use the aforesaid notations •̄ and •Δ to
identify respectively mainstream and boundary layer parts.

1.2.1. The transient Ekman layer time t = O(1)

For t � E−1/2, short compared to the spin-down time, we regard any modification to the
initial value [�̄�, �̄�] = [0, 1] as a perturbation. On that basis we may employ but suitably
modify the results of § 1.1.

To begin, the ejected volume flux, E1/2𝔚/� = 2E1/2𝔘/� (see (1.10)) from the Ekman
layer, drives the mainstream radial flow ū = (r/�)�̄�, which by continuity of total radial
mass flux is determined by

�̄�(t) = −
∫ ∞

0
𝔲Δ dz = E1/2𝔘 = E1/2

(
1
2 +𝔘MF

)
. (1.19a)

From (1.5c,d) the corresponding streamfunction rχ̄ and vertical velocity w̄ for the resulting
meridional mainstream flow are

χ̄ = (r/�)(1− z)�̄�(t), w̄ = (2/�)(1− z)�̄�(t). (1.19b,c)

On introduction of z-average,

〈•〉 =
∫ 1

0
• dz, (1.20)

an alternative interpretation of (1.19a) is that of vanishing total radial MF mass flux

(�/r)〈uMF〉 ≈ �̄�MF − E1/2𝔘MF = 0. (1.21)

On omitting the viscous term in the azimuthal equation of motion (1.8b) to obtain
∂ �̄�/∂t = −2�̄�, integration subject to �̄�(0) = 1 determines

�̄�(t)− 1 = −2
∫ t

0
�̄�(τ ) dτ ≈ −2E1/2

∫ t

0
𝔘(τ ) dτ (1.22a)

= −E1/2t − 2E1/2
∫ t

0
𝔘MF(τ ) dτ, (1.22b)
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on use of (1.19a). The natural partition �̄� = �̄�QG + �̄�MF is

�̄�QG(t) ≈ κ − E1/2t, �̄�MF(t) ≈ 2E1/2
∫ ∞

t
𝔘MF(τ ) dτ, (1.23a,b)

where κ is a constant of integration and the upper integration limit is chosen such that
�̄�MF → 0 as t→∞. Evaluation of the integral is relegated to Appendix B, in which (B1)
determines �̄�MF(0) = 1

2 E1/2𝔙MF(0) = −1
4 E1/2, in turn, fixing

κ = 1− �̄�MF(0) = 1+ 1
4 E1/2 + O(E). (1.23c)

The z-average of the pole-residue formula (Greenspan & Howard 1963, second line of
(3.10)) suggests that a result (�/r)〈vMF〉(≈ �̄�MF − E1/2𝔙MF) ≈ 0, similar to (1.21), holds
for the azimuthal flow. Although true asymptotically for t � 1 (see (1.25) below), (B2a)
shows that

(�/r)〈vMF〉 ≈ �̄�MF − E1/2𝔙MF = E1/2ℜMF �= 0. (1.24)

Asymptotic evaluation of the ‘remainder’ ℜMF (see (B1b) and (B2b)) provides the
estimates

〈vMF〉 =
{

O(v̄MF) for t = O(1),

O(t−1v̄MF) for t � 1.
(1.25)

For us, this has the important implication that, whenever t � 1, the z-average 〈vMF〉
is indeed small. This property, together with 〈uMF〉 = 0 (1.21), is needed to justify the
DNS filter described in § 5.1 and employed in § 5.2, i.e., the filter is only valid for
t � 1.

1.2.2. The spin-down time t = O(E−1/2)

The QG-approximations of the above § 1.2.1 are based on the initial assumption that
[�̄�QG, �̄�QG] remains close to [0, 1]. The secular behaviour E1/2t of �̄�QG in (1.23a)
explicitly shows that the assumption fails when E1/2t = O(1). As previously mentioned
below (1.6), the complete LT-solution is given by (3.4), (3.5) of Greenspan & Howard
(1963). That provides the conventional normal mode response (identified by the LT-poles)
in a confined geometry, albeit here only by the two boundaries z = 0 and 1. The normal
modes lead to infinite sums (approximated by Greenspan & Howard 1963, (3.9), (3.10)).
When those sums are dominated by large harmonics, it is often possible (as shown by
Oruba et al. (2020), in the MF boundary layer context) to approximate such sums (O: 1.13)
by integrals (O: 1.15). This example illustrates the fact that the asymptotic continuum
approximation

∑ �→ ∫
possesses an inherent error, here O(E1/2). For t � O(1) (following

Greenspan & Howard 1963), we adopt that continuum strategy, bearing in mind that we
can never improve on the error estimate O(E1/2).

To identify modifications to the § 1.2.1 results needed on the spin-down time scale t =
O(E−1/2), we investigate the complete LT of the mainstream radial flow ū = (r/�)�̄� in the
appropriate integral approximation style

ˆ̄𝔲( p) = iE1/2 [( p− 2i)1/2 − ( p+ 2i)1/2]
2p( p− 2i)1/2( p+ 2i)1/2 − E1/2

[
( p− 2i)3/2 + ( p+ 2i)3/2

] (1.26)

(see Oruba et al. (2017) equation (A3a) with (A2c–e), and cf. Greenspan & Howard
(1963, (3.14)) albeit in the context of ˆ̄𝔳). As well as the O(E1/2) errors already stressed,
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Inertial waves induced by spin-down

there are other related limitations on the approach imposed by dependence on time t. The
approximation is good at early time t = O(1), consistent with our integral style in § 1.2.1
(directed to by the assumption that the z = 1 boundary is ‘far away’), but becomes weaker
as time increases. By implication, the formulation (1.26) is valid, provided that the MF
boundary layer width Δ(t) = √Et is small, which limits applicability to

t � E−1. (1.27)

To determine the spin-down QG-part �̄�QG proportional to

𝔈(t) = exp(−E1/2σ t), (1.28a)

we need the real pole-location, i.e. the zero of the denominator of (1.26),

p = −E1/2σ = −2 tan(2βQG), (1.28b)

close to p = 0. Here, βQG = O(E1/2) solves

sin(2βQG) = 1
2 E1/2[cos(3βQG)+ sin(3βQG)][cos(2βQG)]1/2 (1.28c)

with the approximate solution

βQG = 1
4 E1/2

(
1+ 3

4 E1/2
)
+ O(E) =⇒ σ = 1+ 3

4 E1/2 + O(E). (1.28d,e)

Bearing in mind that ∂v̄QG/∂t = −2ūQG implies ūQG = 1
2 E1/2σ v̄QG (use (1.28a)) and

noting the initial value v̄QG(0) = κ (see (1.23a)), we see that

�̄�𝔈(t) = 1
2σκE1/2 𝔈(t) (𝔈-trigger) (1.29)

correctly describes the early time behaviour of �̄�QG(t), found in § 1.2.1, in agreement with
(O: 1.20a). Our identification of the factor κ (1.23c), as the initial value �̄�QG(0) (1.23a)
following the removal of the MF-part �̄�MF(0) from �̄�(0) is significant. Previously, Oruba
et al. (2017) derived κ formally as the residue (their (A5b)) at the (QG-)pole (1.28b) of the
LT (1.26), without any physical interpretation.

Curiously, there are two further poles of (1.26) that occur with p± 2i = O(E), very
close to the cut points p = ∓2i, and so outside the domain |p± 2i| � E of validity of
(1.26). This condition stems from the requirement that LT boundary layer width of order
E1/2|p± 2i|−1/2, as determined by (1.12a), is less than the gap width unity. The poles
are spurious and not a feature of the complete LT-solution. So, with only |p± 2i| � E
relevant, a plausible approximation of (1.26), for t � E−1 (1.27) of interest, is obtained
upon setting E = 0 in the denominator of its right-hand side

�̄�𝔚(t) = 1
2 E1/2 𝔚(t) = E1/2 𝔘(t) (𝔚-trigger). (1.30a)

Since 𝔘(t) = 𝔘E +𝔘MF(t) (see (1.15)–(1.18)), we may partition the 𝔚-trigger flow into

�̄�E = 1
2 E1/2 𝔚E = E1/2 𝔘E = 1

2 E1/2 (E-trigger), (1.30b)

�̄�MF(t) = 1
2 E1/2 𝔚MF(t) = E1/2 𝔘MF(t) (MF-trigger). (1.30c)

Undoubtedly, the 𝔚-trigger flow �̄�𝔚(t) is far better than the 𝔈-trigger flow �̄�𝔈(t), as
by construction, it contains the MF-trigger flow �̄�MF(t) appearing in (1.19a). However, the
remaining E-trigger constituent, namely, �̄�E = �̄�𝔚(t)− �̄�MF(t), fails to faithfully capture
the spin-down of �̄�QG suggested by the term −E1/2t in (1.23a), but made explicit by the
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exponential decay of �̄�𝔈(t). To remedy the absence only of the spin-down decay 𝔈(t) in
(1.30a), Greenspan & Howard (1963) proposed the approximation

ˆ̄𝔲GH( p) ≈ p�̂� ˆ̄𝔲𝔚( p) = 1
2 iE1/2( p+ E1/2σ)−1

[
( p+ 2i)−1/2 − ( p− 2i)−1/2

]
(1.31a)

(cf. their (3.17)), which may be expressed in terms of �̂�
±

(1.12b). Whence the inverse-LT
is

�̄�GH(t) = 1
2 E1/2

[
(1/ℵ+)1/2𝔚+

(ℵ+t
)+ (1/ℵ−)1/2𝔚−

(ℵ−t
)]

𝔈(t) (1.31b)

(cf. their (3.19)), in which the argument ℵ±t of 𝔚± (1.13a) depends on

ℵ± = 1± 1
2 iE1/2σ. (1.31c)

Our description of (1.31a), as an ‘approximation’, is a generous interpretation. Rather it
is a ‘composite’ that captures the behaviour of the LT (1.26) close to the pole (1.28b)
and in the neighbourhood of (but not too close to) the cut points p = ±2i. It is not
uniformly good elsewhere. Indeed, even the O(E1/2) corrections stemming from the factor
σκ in the 𝔈-trigger are not captured. Such errors do not bother us. However, we do
take seriously the O(E1/2) contributions to the decay rates, such as E1/2σ , and later
similar frequency corrections, because both describe secular features that accumulate over
long time scales. So, where appropriate, we are at pains to keep track of them. In this
connection, we stress that, whereas the QG-contribution to �̄�GH (1.31b) is Ekman damped,
the MF-contribution is not, because 𝔚±MF(ℵ±t)𝔈(t) = −[ f (ℵ±T)± ig(ℵ±T)] exp(∓2it)
(see (1.17c)). Although Greenspan & Howard (1963) are clear in their text on this matter,
their asymptotic formula (3.20) (repeated in (2.4.1), (2.4.2) of Greenspan 1968) suggests
otherwise.

1.3. Spin-down between two parallel plates bounded at r† = L for t � E−1

In this paper we consider the triggered response to blocking of the mainstream radial
outflow ū by an outer boundary at r = �. In Oruba et al. (2020), we ignored the
MF-contribution−�̄�MF(t) to the trigger and simply considered the 𝔈-trigger ū = −�̄�𝔈(t)
caused by blocking the QG flow (r/�)�̄�𝔈(t) (see (1.29)) at r = �. Here, instead, our
objective is to identify the response to the complete trigger −�̄�(t) caused by blocking
the entire unbounded (0 � r <∞) flow (r/�)�̄�(t).

Since the complete trigger −�̄�(t) is extremely complicated possessing the LT (1.26),
which is not even valid for all p (see § 1.2.2), it makes more sense to employ the
approximate form −�̄�GH(t). Although its slow exponential decay identified by 𝔈(t) in
(1.31b) is a fundamental feature of the QG-spin-down, it only influences the triggered
waves of frequency ω by an amplitude factor [1+ O(E1/2)], i.e. the O(E1/2) errors that
occur on replacing the factors (iω + E1/2σ)−1, associated with the residues at the poles
p = iω in (1.31a), by (iω)−1. For our trigger purpose alone, it is therefore consistent to
make the approximation ℵ± = 1 in (1.31b,c) and so obtain

�̄�(t) = [1+ O(E1/2)] �̄�𝔚(t) for 0 < t � E−1. (1.32)

On neglecting the O(E1/2) error we are left with the so-called 𝔚-trigger−�̄�𝔚(t) (1.30a),
used throughout this paper.

The irrelevance of the continual QG exponential decay for the triggered waves has a
further implication. It suggests that the early time t = O(1), rather than the spin-down
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Inertial waves induced by spin-down

time t = O(E−1/2), behaviour of �̄�GH(t) (1.31b) has the greatest influence. The upshot is
that, on the one hand, �̄�GH(t) (1.31b) provides a good composite approximation of the
unbounded flow �̄�(t), with LT (1.26), needed in the construction of the complete solution.
On the other, �̄�𝔚(t) (1.30a) is adequate to describe the 𝔚-trigger with the O(E1/2) error
identified in (1.32).

Our appraisal of the subtle issues, which guide us to the choice of (1.30a) for our
𝔚-trigger, substantiate our careful description of the transient Ekman layer (unbounded)
in § 1.1 and its early time implications for the later spin-down between parallel boundaries
in § 1.2.1. Although our concern is with events that occur for t � 1, when the 𝔈-trigger
applies, our discussions make clear that wave generation depends on the early time,
t = O(1) behaviour. That is only captured correctly on use of the 𝔚-trigger.

A final consideration pertains to our trigger −�̄�𝔚(t) = −�̄�E − �̄�MF(t) (1.30) at r = �,
which is assumed to apply over the entire range 0 < z � 1 with an equal and opposite
point sink at z = 0. Errors ensue because, in reality, the z = 0 point sink at t = 0 expands,
in concert, with the boundary layer width Δ(t) = √Et. Thus the ensuing errors from �̄�E
and �̄�MF(t) are O(E1/2�̄�E) and O(Δ(t)�̄�MF(t)), respectively. Since �̄�MF(t) = O(t−1/2�̄�E)

in which the factor t−1/2 follows from (A5), the error from both QG and MF parts is the
same O(E1/2�̄�(t)). Fortunately, the size of the error coincides with that accepted in (1.32)
to justify our use of the 𝔚-trigger.

1.4. Outline
The paper is organised as follows:

In § 2, we formulate the mathematical problem for the inertial waves, including
their internal viscous dissipation when E �= 0, generated by the 𝔚-trigger. We separate
the variables by introducing a z-Fourier series (terms labelled m) in § 2.1 and an
r-Fourier–Bessel series (terms labelled n) in § 2.2, where we provide the LT-solution,
namely a double sum generated by individual mn-modes (2.19d).

Since the 𝔚-trigger (1.30a) scales as E1/2, so does the wave solution E1/2v∼ in (2.1a)
via the trigger boundary condition (2.2) at r = �. Without viscosity (E = 0), there is no
spin-down and no inertial wave generation. Nevertheless, in the limit E ↓ 0, following the
removal of the amplitude factor E1/2, the scaled velocity v∼, derived from the LT-inversion
in § 3, continues to solve the governing equations (2.3). In § 3.1, we identify persistent
waves linked to the poles of the LT. Moreover in § 3.2, extra MF-waves, linked to the cuts of
�̂� at p = ±2i, are revealed. Though the pole/cut combination identifies the characteristics
of individual v∼mn-modes, the accumulated consequence of their double summation is not
revealed. So, to shed further light on the matter, we consider, in Appendix C, the large
aspect ratio case � = L/H � 1, for which a Cartesian approximation of the geometry
applies when �− r = O(1). We employ the �� 1 asymptotic methods of §O:4.2, which
approximates the discrete Fourier–Bessel spectrum jn/� (see (2.16a)) by a continuous
wavenumber k. In this way the r-Fourier–Bessel sum over n is approximated by a more
amenable Fourier integral over k.

In Appendix C.1 (adaption of §O:5) the z-Fourier series is recast as the sum of image
systems, generated by z-shifts of a primary solution defined on an unbounded domain
−∞ < z <∞. This solution is particularly revealing for moderate �− r and t, when
the images constitute perturbations of the primary solution. In Appendix C.2 (adaption
of §O:6), we apply the method of steepest descent (stationary phase) to determine the
t � 1 behaviour of individual z-Fourier m-harmonics, which is useful once the m = 1
mode in (2.6) dominates the solution. As the derivations are lengthy and parallel much of
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t = 4.72

t = 11.00 (for a,b,c,d)

t = 17.28 (for a,b,c,d)

z

0 2 4 6 8 10
r

(a)

(b)

(c)

(d )

Figure 1. The case E = 10−4, blocks of E−1/2χ-contours at three distinct instants t = Nπ/2 (N = 3, 7, 11),
namely 4.72, 11.00, 17.28, when χ̄MF is maximised (v̄MF ≈ 0). In order, the four panels (a–d) within each
block (only the first block is labelled) show (a) the filtered-DNS χFNS; (b) the analytic solution χ∼𝔚 from the
new 𝔚-trigger; (c) again χ∼𝔚 but, for comparison, at E = 0; (d) the analytic solution χ∼𝔈 from the previous
𝔈-trigger (the z-range is 0 � z � 1; colour scale from −0.1 (blue) to 0.1 (red)).

Oruba et al. (2020), their details have been relegated to Appendix C. Nevertheless, the
results are important because they explain features of the analytic solution generated
by the numerical evaluation of the § 3 mn-sums portrayed in panels (c) of figures 1–4.
Appendix C.1 accounts for the fan-like structures on the right near r = �, while
Appendix C.2 identifies the front location on the left, where the waves are attenuated.
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t = 5.50

t = 11.79 (for a,b,c,d)

t = 18.07 (for a,b,c,d)

z

0 2 4 6 8 10
r

(a)

(b)

(c)

(d )

Figure 2. As in figure 1 but now at t = (N + 1
2 )π/2 (N = 3, 7, 11), namely 5.50, 11.79, 18.07, when (v̄MF is

maximised) χ̄MF ≈ 0.

The results of § 3 and Appendix C must, of course, be interpreted within the framework
of the limit E ↓ 0 and as such only describe waves in the mainstream, exterior to all
boundary layers. Once the MF boundary layer (A7) has expanded to fill the entire region
on the time scale t = O(E−1), the solution is no longer applicable, so placing an absolute
limit on the usefulness of the solution to the range 0 < t � E−1. Viscous effects are,
however, manifest on the spin-down time t = O(E−1/2) and even earlier for waves with
sufficiently short length scales (internal friction). So, in § 4, we address the small but
finite-E corrections to the mainstream individual wave amplitudes v∼mn found previously
in § 3 by solving the governing equations with E = 0. Our remit is restricted to finding
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t = 4.72

t = 11.00 (for a,b,c,d)

t = 17.28 (for a,b,c,d)

z

0 2 4 6 8 10r

(a)

(b)

(c)

(d )

Figure 3. As in figure 1, but now E−1/2v-contours for the same instants, when (χ̄MF is maximised) v̄MF ≈ 0.
Each block shows (a) the filtered-DNS vFNS; (b) the analytic solution v∼𝔚 from the new 𝔚-trigger; (c) again
v∼𝔚 but, for comparison, at E = 0; (d) the analytic solution v∼𝔈 from the previous 𝔈-trigger (the z-range is
0 � z � 1; colour scale from −0.5 (blue) to 0.5 (red)).

O(E1/2) decay rates and frequency perturbations due to internal friction in § 4.1 and
accounting for similar corrections due to Ekman layer damping in § 4.3. The transitory
nature of the Ekman layers for modes with frequencies close to 2 introduces complications
that we accommodate by a composite solution in § 4.2, which we argue gives the required
low order accuracy for all t � E−1.

We performed DNS of the spin-down governing equations subject to the complete
boundary conditions for various small values of E, which we discuss in § 5. Oruba et al.

915 A53-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
83

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1183


Inertial waves induced by spin-down

t = 5.50

t = 11.79 (for a,b,c,d)

t = 18.07 (for a,b,c,d)

z

0 2 4 6 8 10r

(a)

(b)

(c)

(d )

Figure 4. As in figure 3 but now at t = (N + 1
2 )π/2 (N = 3, 7, 11), namely 5.50, 11.79, 18.07, as in figure 2,

when v̄MF is maximised (χ̄MF ≈ 0).

(2020) proposed a filtered DNS (referred to as FNS), for which the QG-part v̄QG of the
complete vDNS was removed. In § 5.1 we define a new FNS, whereby the mainstream
z-independent MF-part v̄MF is also removed (see (5.4)). This has the advantage, over the
previous Oruba et al. (2020) definition, that the resulting FNS in the mainstream, exterior
to all boundary layers, may be compared directly, in § 5.2, with the inertial wave solutions
of the triggered wave problem formulated in § 2. Comparisons, at E = 10−4, � = 10, are
presented in figures 1–4. Within the various panels of those figures, we compare the FNS
(a) to the analytic results from our new 𝔚-trigger (1.30a) for finite E (b) and in the
E ↓ 0 limit (c), and our previous 𝔈-trigger (1.29), employed with 𝔈 = 1, (d). In making
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comparisons with the results of Oruba et al. (2020), it is important to note that, up to the
same order of accuracy achievable by the 𝔚-trigger, the 𝔈-trigger is adequately described
by the E-trigger (1.30b). Our new 𝔚-trigger solutions are almost identical to the FNS,
whereas our previous 𝔈-trigger (essentially the E-trigger) exhibits small amplitude and
phase defects. The origin of these defects is explained by various analytic comparisons
made in § 3.1 and Appendix C. A more quantitative assessment of the relative accuracy of
the analytic and FNS results for our 𝔚-trigger is described in § 5.3.

We conclude with an overview in § 6.

2. The mathematical problem

Our strategy parallels Oruba et al. (2020). So here we draw on their results by referencing
the relevant equations but only sketch the methodology; for a more careful appraisal, the
reader is referred to that work and references therein (for a general reference to inertial
waves in a container, see Zhang & Liao 2017).

The essential idea is that the flow vGH (say) between unbounded parallel planes (�→
∞), whose LT-solution is given by (3.4)–(3.6) of Greenspan & Howard (1963), provides
the lowest-order solution to the bounded (� large but finite) problem. The main point,
emphasised in § 1.3, is that outside boundary layers the horizontal components v̄QG⊥ and
v̄MF⊥ of both the QG and MF-flow contributions (for �→∞), that together comprise
vGH⊥ (see (2.1b)), are z-independent; the small axial components w̄QG, w̄MF and their sum
w̄GH are, of course, all linear in z. However, the failure of the radial velocities ūQG =
(r/�)�̄�QG and ūMF = (r/�)�̄�MF, both of O(E1/2), to meet the requirement ū(�, t) = 0
triggers a further inertial wave response E1/2v∼ (previously written E1/2vwave by Oruba
et al. 2020). As we are only interested in v∼ outside the Ekman layer (both steady and
transient) and sidewall boundary layers, we ignore those boundary layers and write

v ≈ v̄GH + E1/2v∼, v̄GH = v̄QG + v̄MF. (2.1a,b)

Our objective is to determine v∼ obtained subject to the 𝔚-trigger boundary condition

u∼ = −𝔘(t) = −1
2𝔚(t) at r = � (0 < z � 1) (2.2)

(see (1.30a)), with a sink of opposite strength at z = 0 to ensure that
∫ 1

0 u∼ dz = 0. It
is important to note that the radial flow ūGH differs from the trigger flow (r/�)�̄�𝔚, for
reasons explained in § 1.3.

Throughout this section we drop the superscript ‘∼’ and write v = [u, v, w] (← � v∼).
With w = r−1∂(rχ)/∂r (1.5d), the inertial wave problem is: solve

∂v

∂t
+ 2u = E

(
∇2 − r−2

)
v, u = −∂χ

∂z
, (2.3a,b)

∂γ

∂t
− 2

∂v

∂z
= E

(
∇2 − r−2

)
γ, γ = −

(
∇2 − r−2

)
χ (2.3c,d)

((2.3a,c) are the azimuthal equations of momentum, vorticity respectively) subject to the
initial (t = 0) conditions

v = 0, γ = 0, (2.4a,b)
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Inertial waves induced by spin-down

and for t � 0 the reduced boundary conditions

rχ = 0 at r = 0 (0 < z � 1), (2.5a)

rχ = 1
2�(z− 1)𝔚(t) at r = � (0 < z � 1), (2.5b)

χ = 0 at z = 0, 1 (0 < r < �), (2.5c)

in which the stress boundary conditions, appearing in (5.2) below, have been ignored.

2.1. The z-Fourier series
We seek z-Fourier series solutions of the form[

χ

v

]
= −

∞∑
m=1

(−1)m

mπ

[
χ̃m(r, t) sin (mπ(z− 1))
ṽm(r, t) cos (mπ(z− 1))

]
(2.6)

for which (2.5b), noting

1
2
(z− 1) = −

∞∑
m=1

(−1)m

mπ
sin(mπ(z− 1)) (0 < z � 1), (2.7)

leads to the boundary condition

rχ̃m = �𝔚(t) at r = �. (2.8)

The LT-solution obtained from (O: 2.16a), following the change �̂�( p) �→ �̂�( p), is[ ˆ̃χmˆ̃vm

]
=
[

1
2mπ/𝔭

]
�̂�( p)

J1 (mπqr)
J1 (mπq�)

. (2.9a)

Here, J1 is the Bessel function, while the functions 𝔭 = 𝔭( p) and q = q(𝔭) =
q(𝔭( p)) are determined by the dispersion relation (O: 2.17a–d), which gives them as
the solutions of

𝔭2 = −4
/(

q2 + 1
)
,

𝔭 = p+ (q2 + 1)dm

}
⇐⇒

{
q2 + 1 = −4/𝔭2,

p = 𝔭+ 4dm/𝔭2,
(2.9b,c)

where
dm = E(mπ)2. (2.9d)

In terms of the Bessel function of imaginary argument I1, the initial behaviour

χ̃m ≈
8t3/2

3
√

π

I1 (mπr)
I1 (mπ�)

(t � 1) (2.10)

is recovered on expanding the integrand of the inverse-LT L−1{ ˆ̃χm} of ˆ̃χm defined by
(2.9a) under the limit p→∞, for which q→ i (see (2.9c)) and noting that 𝔚(t) ≈
8t3/2/(3

√
π) for t � 1 (see (1.13a,c)). The initial response (2.10), ∝ t3/2, is ‘softer’ than

the impulsive response (O: 2.9c) to the 𝔈-trigger.
For t > 0 the LT-inversion of (2.9a) involves consideration of the contributions from

various poles, which include the zeros of J1(mπq�), as well as the cuts at p = ±2i
exhibited by �̂�( p). Since we have omitted the stress boundary conditions at r = �,
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L. Oruba, A.M. Soward and E. Dormy

following Oruba et al. (2020), we disregard the shear layer responses, both QG and
ageostrophic, abutting the outer boundary r = � linked to the poles p = 0 (in �̂�( p)) and
𝔭 = 0 (in the factor 𝔭−1 of the expression for ˆ̃vm). Their proper treatment using the full
boundary conditions (5.2) was undertaken by Oruba et al. (2017).

To understand the nature of the triggered waves, we begin by focusing attention on the
remaining set � of poles p = pmn, p∗mn (the superscript ‘∗’ denotes the complex conjugate)
identified by

q = qmn = jn/(mπ�) (> 0), (2.11)

determined by the real zeros jn of J1(mπq�) (i.e. J1( jn) = 0). In turn, they define

𝔭mn = iωmn, ωmn = 2/

√
q2

mn + 1, (2.12a,b)

pmn = iωmn − dmn, dmn = 4dm/ω2
mn, (2.12c,d)

and, following the differentiation of p = 𝔭+ 4dm/𝔭2 (2.9c), they determine the value[
𝔭
p

dp
d𝔭

]
𝔭=𝔭mn

= iωmn + 2dmn

iωmn − dmn
at p = pmn, (2.12e)

needed to evaluate pole residues in § 4.1 below. From (2.12b), we may generate

ϕmn =
√

1− (ωmn/2)2 = cos(2αmn), (2.13a)

1
2ωmn =

√
1− ϕ2

mn = sin(2αmn), (2.13b)

qmn = 2ϕmn/ωmn = cot(2αmn), (2.13c)

cf. ϕmn with ϕ± in (C8b) in Appendix C.1 below. The role of the aforementioned cuts
re-emerges in (2.19) below.

Our disregard of the QG-response linked to the poles p = 0 and 𝔭 = 0 has consequences
on the boundary values (2.8) of individual triggered waves, which actually satisfy

rχ̃m = �𝔚MF(t) at r = �, (2.14)

i.e. the oscillatory waves cannot exhibit the steady features of the E-trigger �𝔚E
constituent (1.30b) (a curiosity noted and explained in the last paragraph of § 2.3 of Oruba
et al. (2020), in connection with the 𝔈-trigger).

2.2. The r-Fourier–Bessel series
As in Oruba et al. (2020), we take advantage of the Fourier–Bessel series expansion

J1(mπqr)
J1(mπql)

= −1
2

∞∑
n=1

q2
mn

ω−2
mn + 𝔭−2

J1( jnr/�)
jnJ0( jn)

on 0 � r < �, (2.15)

which follows from (O: A3) on noting that (2.9c), (2.12b) together imply q2
mn − q2 =

4(ω−2
mn + 𝔭−2). So we write[

χ̃m

ṽm

]
=
∞∑

n=1

[ ◦
χ

d
mn
◦
v

d
mn

]
J1( jnr/�)
jnJ0( jn)

on 0 � r < �. (2.16a)

Here, the superscript ‘d’ distinguishes our general dm(= E(mπ)2) �= 0 (2.9d) usage from
the dm ↓ 0 limit considered in the following § 3, where the superscript ‘d’ will be omitted.
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Inertial waves induced by spin-down

It follows that the LT of (2.16a) is determined via⎡⎣ ◦̂χd
mn
◦̂
v

d
mn

⎤⎦ = −2ϕ2
mn

[ 𝔭
2mπ

]
𝔭 �̂�( p)

𝔭2 + ω2
mn

(2.16b)

on substitution of qmn = 2ϕmn/ωmn (2.13c) into (2.15). An unfortunate feature of the
Fourier–Bessel series expansion (2.15) is that it necessarily fails at r = �, where each
eigenfunction J1( jnr/�) vanishes. So it is not possible for (2.16a) to satisfy the reduced
boundary condition χ̃m(�, t) =𝔚MF(t) (2.14) except in the limiting sense r ↑ �. That such
a limit is achievable is exemplified by the early time inverse-LT (2.10) of (2.9a).

We express the inverse-LT of (2.16b) as[ ◦
χ

d
mn
◦
v

d
mn

]
= −L−1

{
ϕ2

mn

[ 𝔭
2mπ

]
�̂�( p)

𝔭− iωmn

}
+ c.c., (2.17)

where ‘c.c.’ denotes complex conjugate. A further reduction of the LT ◦̂
v

d
mn, exhibited by

the right-hand side of (2.17), is possible upon using the partial fraction decomposition

1
𝔭− iωmn

= 1
iωmn

[
𝔭

𝔭− iωmn
− 1

]
. (2.18)

The contribution to the inverse-LT L−1{ ◦̂vd
mn} from the second term −1/(iωmn) is pure

imaginary and so when added to its complex conjugate vanishes leaving[ ◦
χ

d
mn
◦
v

d
mn

]
= ϕ2

mn

[ −1
2imπ/ωmn

]
𝔚d

mn(t)+ c.c., (2.19a)

where 𝔚d
mn(t) has LT

�̂�
d
mn( p) = 𝔭�̂�( p)

𝔭− iωmn
. (2.19b)

The 𝔚d
mn-notation is motivated by the property 𝔚d

mn(t) =𝔚(t), when ωmn = 0. So
employing 𝔚(t) =∑±{𝔚±(t)} ≡𝔚+(t)+𝔚−(t) (1.13c), we write

𝔚d
mn(t) =

∑
±

{
𝔚d±

mn (t)
}
, (2.19c)

where 𝔚d±(t) has LT

�̂�
d±
mn ( p) = 𝔭�̂�

±
( p)

𝔭− iωmn
= ±i𝔭

p( p± 2i)1/2(𝔭− iωmn)
(2.19d)

on use of (1.12b).
We must stress that our use of the ◦

χmn, ◦vmn notation, although similar in spirit to Oruba
et al. (2020), differs in detail. For, whereas the factor 𝔉mn = q2

mnω
2
mn/2 = 2ϕ2

mn appears
multiplying [ ◦χmn,

◦
vmn] in (O: 2.23a), we have removed it from (2.16a), including it instead

in (2.16b) (cf. (O: 2.23b)).
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L. Oruba, A.M. Soward and E. Dormy

3. The inviscid limit, E ↓ 0, dmn = 0

We investigate the response (2.19a) in the E ↓ 0 limit, for which 𝔭 = p and �̂�
d±
mn ( p),

defined by (2.19d), reduces to

�̂�
±
mn( p) = ±i

( p± 2i)1/2( p− iωmn)
=
(

2
�±mn

)3/2

�̂�
±
(

2
�±mn

( p− iωmn)

)
, (3.1a)

with inverse

𝔚±mn(t) =
√

2/�±mn 𝔚
± (�±mnt/2

)
exp (iωmnt) (3.1b)

= 𝔓±mn
[
S(T±mn)± iC(T±mn)

]
exp (iωmnt) , (3.1c)

in which we have used (1.12b), (1.13) and introduced

�±mn = 2± ωmn, 𝔓±mn =
√

2/�±mn, T±mn =
√

2�±mnt/π = T/𝔓±mn. (3.1d–f )

We note that the above is a simple adaption of the § 1.2.2 result (1.31), following the change
of variables iE1/2σ �→ ωm,n and 2ℵ± �→ �±mn.

For [ ◦χd
mn,

◦
v

d
mn], substitution of (3.1c) into (2.19a,c) yields the value[ ◦

χmn
◦
vmn

]
= −2ϕ2

mn

[
(Cmn(t) cos(ωmnt)+ Smn(t) sin(ωmnt))

(2mπ/ωmn) (Cmn(t) sin(ωmnt)− Smn(t) cos(ωmnt))

]
, (3.2a)

where

[Cmn(t),Smn(t)] =
∑
±

{
𝔓±mn

[
S(T±mn),∓C(T±mn)

]}
. (3.2b)

Hence, the complete E ↓ 0 version of the solution (2.6) is determined by (2.16a) with
[ ◦χd

mn,
◦
v

d
mn] given by (3.2a).

This analytic 𝔚-trigger solution has been estimated numerically (by truncating the
sums involved). The result is shown on the twelve panels (c) of figures 1–4, at instants
when the solution is well developed. It differs significantly from the approximate (or
reduced) 𝔈(≈E)-trigger solution of Oruba et al. (2020) illustrated in (d). For, as a
comparison of panels (c,d) shows, the addition of the MF-trigger to form the complete
𝔚(= E+MF)-trigger corrects the phase issue apparent when only the 𝔈-trigger is
used. To understand how the correction is achieved, we need to consider the large time
asymptotic behaviour of the solution, at which stage the wave mechanisms are identifiable.
To that end, the E ↓ 0 value 𝔚mn(t) =

∑
±{𝔚±mn(t)} of 𝔚d

mn(t), given by (3.1b,c), is
usefully partitioned into the pole- and cut-contributions of (3.1a).

3.1. The pole part, �

On consideration of the explicit form for �̂�
±
mn( p), given (3.1a) the residue at the pole

p = iωmn is determined from (3.1b), noting that 𝔚±E = (±i/2)1/2 (1.15b), as

𝔚�
mn(t) =

[
(i/�+mn)

1/2 + (−i/�−mn)
1/2
]

exp (iωmnt) (3.3a)

= ϕ−1
mn exp (iωmnt − αmn) , (3.3b)
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Inertial waves induced by spin-down

in which we have introduced αmn via the relation

2ϕmn =
√

�+mn�
−
mn = 2 cos(2αmn) (3.3c)

(recall (2.13a) and (3.1d)). The result (3.3b) may be checked by squaring both right-hand
sides of (3.3a,b) and noting (2.13b), (3.3c). Substitution of (3.3b) into (2.19a) determines[ ◦

χ
�

mn
◦
v

�

mn

]
= −2ϕmn

[
cos(ωmnt − αmn)

(2mπ/ωmn) sin(ωmnt − αmn)

]
,

{
1 > ϕmn > 0,

0 < αmn < π/4.
(3.4a,b)

Cederlöf (1988) solved this normal mode problem but from a different perspective. At first
sight his method appears different to ours, because driving stems directly from the transient
Ekman pumping 𝔚(t) (1.10) (see his (5.21) in which the LT-form F̃(s) is essentially our
�̂�( p)) and not from the boundary condition at r = �. Nevertheless, after appropriate
variable changes, his solution (5.25) follows directly from (3.3a) via (2.19a), (2.16a). He
does not, however, introduce the instructive phase angles αmn.

It is interesting to compare the above pole response ◦
χ

�

mn = −2ϕmn cos(ωmnt − αmn)
to our 𝔚-trigger (1.30a), with the corresponding 𝔈-trigger (1.29) response, which from

(O: 4.2a) is ◦
χ

�𝔈
mn = −1

2 q2
mnω

2
mn cos(ωmnt) = −2ϕ2

mn cos(ωmnt). The responses differ by a
factor ϕmn but coincide when ϕmn = 1 (αmn = 0). That is the QG-limit ωmn ↓ 0, which
occurs as qmn = jn/(mπ�)→∞, namely the short radial-r length scale limit ( jn � 1).
As the frequency ωmn increases, ϕmn decreases (αmn increases) in concert. Accordingly,

relative to the 𝔈-trigger response ◦
χ

�𝔈
mn , the phase shifted (αmn �= 0) 𝔚-trigger response

◦
χ

�

mn increases in amplitude by a factor 1/ϕmn. The increasing trend of the phase shift
and mode amplitude terminates as ϕmn ↓ 0 (αmn ↑ π/4). That is the MF-limit ωmn ↑
2, which occurs as qmn ↓ 0, namely, the short axial-z length scale limit, which is of
ever decreasing magnitude[ ◦

χ
�

mn
◦
v

�

mn

]
≈ −2

√
�−mn

[
cos(2t − π/4)

mπ sin(2t − π/4)

]
, as �−mn ↓ 0, (3.5)

with ◦
χ

�

mn yet large compared to ◦
χ

�𝔈
mn by the factor ϕ−1

mn ≈ 1/
√

�−mn. Both the phase shift
and increased amplitude of the m = 1 mode are evident in the well-developed solution
sufficiently far from the outer boundary r = � in 𝔚-panels (c) of figures 1–4, when
compared to the 𝔈-panels (d), albeit at E = 10−4.

3.2. The cut part, �
The remaining cut contribution 𝔚mn(t)−𝔚�

mn(t) is

𝔚�
mn(t) =

∑
±

{
𝔚�±

mn (t)
}

, (3.6a)

where the results (3.1b) give

𝔚�±
mn (t) =

√
2/�±mn 𝔚

±
MF
(
�±mnt/2

)
exp (iωmnt) (3.6b)

= −𝔓±mn[ f (T±mn)± ig(T±mn)] exp(∓2it) (3.6c)
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on application of (1.17b,c), noting T±mn = (�±mnT/2)1/2 (3.1f ) (but cf. (3.1c)). The large
T±mn asymptotic behaviour f (T±mn) ≈ (πT±mn)

−1/2, g(T±mn) ≈ 0 (see (A4a)) determines

𝔚�
mn(t) ≈ −ϕ−2

mn (πt)−1/2
[
cos(2t)− 1

2 iωmn sin(2t)
]

for T±mn � 1. (3.7)

Substitution into (2.19a) yields[ ◦
χ

�
mn
◦
v

�
mn

]
≈ 2√

πt

[
cos(2t)

mπ sin(2t)

]
, (3.8)

similar to (3.5) except for the phase shift π/4 but notably smaller by a factor
(π�−mnt)−1/2 ≈ √2/(πT−mn) whenever T−mn � 1.

The simplicity of (3.8) suggests the possibility of constructing from it the large t
asymptotic form of the cut solution. On use of the identity

r
2�
= −

∞∑
n=1

J1( jnr/�)
jnJ0( jn)

, (3.9a)

determined from the q→ 0 limit of (O: A3), substitution of (3.8) into the r-Fourier–Bessel
series (2.16a) yields [

χ̃�
m

ṽ�
m

]
≈ − r

�

1√
πt

[
cos(2t)

mπ sin(2t)

]
as t→∞. (3.9b)

Substitution into the z-Fourier series (2.6), noting (1.19b), determines[
χ�

v�

]
≈ − 1√

4πt

r
�

[
(z− 1) cos(2t)

sin(2t)

]
≈ −E−1/2

[
χ̄MF

v̄MF

]
(z > 0) (3.10)

(see § 1.2.1 and (A5)).
The result (3.10) raises disturbing issues. It suggests that the dominant cut contribution

determines a flow contribution of the same size (but opposite in sign) as the original
Greenspan and Howard MF-flow responsible for the MF-trigger. However, because of the
discontinuous nature of the Fourier series for (z− 1) and 1 at z = 0 and the Fourier–Bessel
series for r at r = �, the series have to reach extremely large values of m and n to
achieve convergence. This is an issue because of the large T−mn requirement t � 1/�−mn =
1/(2− ωmn) (see (3.1d) and (3.7)). So at any finite t (however large), it is unclear how
good the approximation is. Certainly at the values of t, for which results are reported here,
some evidence of an MF-contribution from the cut was evident in tests (not illustrated).
However, surprisingly a similar MF-contribution from the poles was also found (again not
illustrated), which when combined with the cut-contribution led to their cancellation, i.e.
there is no evidence of an MF-contribution in panels (c) of figures 1–4, or for that matter
in panels (a), (b) of those figures at small but finite E. The large time MF-issues raised
provide a focal point for our discussion of the �� 1 limit in Appendix C, which explains
the curious cancellation evident in the aforementioned numerical results (not illustrated).

Remarkably, the ‘method of images’ approach of Appendix C.1, identifies immediately
the main cut contribution (3.10) that prompted our concerns, via the MF-part −𝔘MF(t) of
the very first term −𝔘(t) on the right-hand side of (C1a). The role of the poles is subtler,
because the estimate | ◦χ�

mn| ∼ Tmn| ◦χ�
mn| below (3.8) suggests that the pole contribution
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Inertial waves induced by spin-down

will be even bigger. However, the second term on the right-hand side of final result (C6b)
demonstrates that wave interference must occur reducing the accumulated pole effect to
exactly that from the cuts. The fact, that −𝔘MF(t) = O(t−1/2) is indeed the dominant cut
contribution, is established by (C6c), which shows the remainder to be even smaller O(t−1)
for t � 1.

An alternative perspective is gleaned from the steepest descent results of Appendix C.2,
which for t � 1 identify two wave families χ̃± (C7). The triggered MF-wave χ̃−,
characterised by (C10c,d,f ), is only pertinent close to the outer boundary r = �. There,
it remains small compared to the low frequency mode χ̃+, characterised by (C10a,b,e). Of
even greater importance is the identification, in the last paragraph of Appendix C.2, of a
wave front at which the χ̃±-waves merge and beyond which the waves are evanescent, a
feature clearly visible in figures 1–4.

4. Small but finite 0 < E � 1

The amplitude of the E ↓ 0 wave-solution, derived in the previous § 3, takes no account of
its viscous damping. Such consideration is needed to achieve comparison with the direct
numerical simulations, which are necessarily undertaken at finite E. In this section, we
rectify that omission.

The complete inversion of the LT (2.19d) to obtain 𝔚d±
mn (t) in the small E limit is

formidable. So in this section we simply outline an approximate method that suffices for
our purpose. To that end we note that the solution may be partitioned as

𝔚d±
mn (t) =𝔚d±�

mn (t)+𝔚d±�
mn (t), (4.1)

where 𝔚d±�
mn and 𝔚d±�

mn are the pole and cut contributions to the inverse-LT of (2.19d).

4.1. Pole solution
The pole contribution is determined from (2.19d) by the residue

𝔚d�±
mn (t) =

[ ±i
( p± 2i)1/2

𝔭
p

dp
d𝔭

exp( pt)
]
𝔭=iωmn

(4.2)

of the inverse-LT at p = pmn = iωmn − dmn (2.12c,d), corresponding to 𝔭 = iωmn (2.12a).
On use of the expression (2.12e) for [(𝔭/p)(dp/d𝔭)]𝔭=iωmn and noting from (3.1d) that
pmn ± 2i = ±i�±mn − dmn, the residue (4.2) becomes

𝔚d�±
mn (t) = 1

2 (1± i)𝔓d±
mn exp (iωmnt − dmnt), (4.3a)

where

𝔓d±
mn =

(
2

�±mn ± idmn

)1/2
ωmn − 2idmn

ωmn + idmn
, (4.3b)

in which Re{(�±mn ± idmn)
1/2} > 0 as required by analytic continuation on increasing dmn

from zero. The decay rate dmn = 4E(mπ)2/ω2
mn (see (2.9d), (2.12d)) is a consequence of

internal friction (identified by the first term in (4.5) of Zhang & Liao 2008).
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4.2. Composite solution
To obtain an approximate solution of the full problem, we make the ansatz

𝔚d±
mn (t) = 𝔓d±

mn 𝔚±
(
�±mnt

/
2
)

exp (iωmnt − dmnt), (4.4a)

which has the properties

𝔚d±
mn (t)→

{
𝔚±mn(t) as dmn → 0,

𝔚d�±
mn (t) as T±mn →∞.

(4.4b,c)

The former limit (4.4b) is a simple consequence of the fact that 𝔓d±
mn →

√
2/�±mn, as

dmn ↓ 0, so recovering the E ↓ 0 result (3.1b). The latter limit (4.4c) applies because
𝔚±(�±mnt

/
2)→𝔚±E = 1

2 (1± i) (1.15b), as T±mn →∞, leaving the pole contribution
(4.3), i.e. the remaining cut contribution 𝔚d±�

mn (t) is assumed negligible in this limit.
Our construction of the composite (4.4a) is in much the same spirit as Greenspan and

Howards’ unbounded flow composite �̄�GH(t) (1.31b), i.e. neither is a true asymptotic
formula, but instead both capture the dominant flow characteristics.

4.3. Ekman layer damping
Consistent with our construction of the composite (4.4a), we implement Ekman damping
by replacing the exponential exp(iωmnt − dmnt) with

exp
[
i
(
ωmn + ωE

mn

)
t −

(
dmn + dE

mn

)
t
]
, (4.5a)

where the frequency and damping increments ωE
mn and dE

mn adopted are those for pure
inertial waves, given by (O: 2.25) (also Kerswell & Barenghi 1995; Zhang & Liao 2008).
The increments have the form[

dE
mn

ωE
mn

]
=
√

E
2

ϕmn

[
(2− ϕmn)

√
1+ ϕmn

(2+ ϕmn)
√

1− ϕmn

]
, (4.5b)

where ϕmn = 1
2

√
�+mn�

−
mn =

√
1− (ωmn/2)2 (see (3.3c)), as can be verified by squaring

both sets of expressions for dE
mn and ωE

mn, given by (4.5b) and (O: 2.25b).
The oscillatory Ekman layer adjacent to z = 0, frequency ωmn, has a double layer

structure of respective widths

Δ±mn = 𝔓±mn

√
E, (4.6)

where 𝔓±mn =
√

2/�±mn (3.1e) (cf., e.g. Kerswell & Barenghi 1995, (2.8)). The two widths
are readily identifiable on setting p = 2iωmn in the exponential exp[−E−1/2( p± 2i)1/2z]
of the LT-solution (1.12a) for 𝔷±(z, t). In the geostrophic limit ωmn = 0 (𝔓±mn = 1), the
steady Ekman layer width ΔE =

√
E is recovered. The width

Δ−mn =
√

Etmn with tmn = (𝔓−mn)
2 = 2/�−mn > 0, (4.7a,b)

of the broader layer increases indefinitely as �−mn ↓ 0 (𝔓−mn →∞), i.e. ωmn ↑ 2. So the
boundary layers of inertial modes, possessing frequencies close to 2, fill the entire gap
0 � z � 1 of the layer.

In addition to the MF matters associated particularly with the final steady state just
discussed, there are also delicate issues concerning how those states are reached. The key
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Inertial waves induced by spin-down

feature of the transient evolution of inertial modes is their expanding viscous boundary
layer width Δ(t) = √Et (1.14). It eventually splits into two parts, each of which ceases
to grow at time t = t±mn that solves Δ(t) = Δ±mn. Since Δ−mn > Δ+mn with t−mn > t+mn, the
splitting occurs at t = t+mn, at which the thinner reaches its final width Δ+mn. For t > t+mn,
the thicker broadens until terminating with width Δ−mn at t = t−mn. Furthermore, whenever
t−mn � 1, this time may be longer than the times reached in our numerical investigations.
In any event, when either Δ−mn = O(1) or 1� t � O(t−mn), formula (4.5b) for dE

mn and ωE
mn

ceases to apply. Nevertheless, since (4.5b) predicts dE
mn → 0 and ωE

mn → 0 as |ωmn| ↑ 2
(ϕmn ↓ 0), their use in that limit, although inappropriate, ought to be harmless.

The defects, just described are of exactly the same nature as the failure of the
Greenspan & Howard (1963) LT-solution (1.26) near the cut points p = ±2i, elucidated
in the antepenultimate paragraph of § 1.2.2 which ends with the definition (1.30) of the
𝔚-trigger. In short, the failure of both the trigger and the waves pertain to boundary layers
that expand to fill the entire domain, and as such are two sides of the same coin.

Our appraisal of the situation indicates that it is impossible to produce asymptotic (0 <

E � 1) results that are justifiable in all space or for all time. As explained, our proposed
solution (4.4a) modified by (4.5a), namely

𝔚Ed±
mn (t) = 𝔓d±

mn 𝔚±
(
�±mnt

/
2
)

exp
[
i
(
ωmn + ωE

mn

)
t −

(
dmn + dE

mn

)
t
]
, (4.8)

is weakest for disturbances with ωmn ≈ 2. Furthermore, in view of the approximate nature
of the 𝔚-trigger (1.30), nothing is gained by using the primitive form 𝔚d±

mn (t) of the
damped (internal friction only) wave solution defined by its LT (2.19). We, therefore,
simply adopt (4.8). Indeed, despite many approximations, our guiding consideration is to
maintain accuracy compatible with our 𝔚-trigger assumption. The very tight comparisons
with DNS reported in the following § 5 fully endorse this strategy.

5. The filtered DNS (FNS) velocity

In §O:3 we presented results from the spin-down obtained by performing DNS of the full,
yet linearised, governing equations (2.3) subject to the initial conditions

v/r = 1, rχ = 0 everywhere at t = 0, (5.1)

and boundary conditions

rχ = ∂(v/r)
∂r

= ∂w
∂r
= 0 at r = 0 and � (0 < z < 1), (5.2a)

rχ = ∂(rχ)

∂z
= v/r = 0 at z = 0 (0 < r < �), (5.2b)

rχ = ∂2(rχ)

∂z2 = ∂(v/r)
∂z

= 0 at z = 1 (0 < r < �), (5.2c)

i.e. the bottom plate is rigid (5.2b), whereas the top and side boundaries are stress free
(5.2a,c). From those results, Oruba et al. (2020) described how asymptotics valid for E �
1, could be used to remove the QG-part v̄QG of the flow external to all boundary layers,
leaving what they referred to as the filtered DNS (FNS, §O:3.1). From an analytic point of
view, that remaining FNS is the sum of the underlying MF-flow v̄MF, described in §§ 1.2.1,
1.2.2, together with the wave part E1/2v∼ triggered at the outer boundary. To simplify
matters, only the 𝔈-triggered wave E1/2v∼𝔈(= E1/2vwave in (O: 2.1)) was considered by
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Oruba et al. (2020). Here, we improve on that simplification by considering the flow more
faithfully described by E1/2v∼𝔚 (i.e. E1/2v∼ in (2.1a)).

5.1. Our new FNS
We consider the decompositions

v = vQG + vMF + E1/2v∼, (5.3a)

v⊥ = v̄QG⊥ + vΔ
QG⊥ + v̄MF⊥ + vΔ

MF⊥ + E1/2v∼⊥ (5.3b)

of the entire velocity v and the horizontal velocity v⊥. Note that there are also ageostrophic
sidewall boundary layer contributions adjacent to r = �, ignored in (5.3a,b). The z-average
of (5.3b) yields

〈v⊥〉 = 〈vQG⊥〉 + 〈vMF⊥〉 + O(E), (5.3c)

where the wave Ekman layer contribution 〈v∼⊥〉 = O(E1/2) is included in the O(E) error.
As the filter only pertains to the flow outside all boundary layers, we are only interested in
the contribution v̄QG⊥ + v̄MF⊥ + E1/2v∼⊥ to (5.3b). Oruba et al. (2020) filtered the DNS
by simply removing the z-independent QG-contribution v̄QG⊥. However, a more useful
filter is obtained by removing, in addition, the MF-contribution v̄MF⊥, which like v̄QG⊥ is
z-independent. By this devise we are left with our new filtered horizontal velocity

vFNS⊥ = E−1/2 (vDNS⊥ − v̄QG⊥ − v̄MF⊥
)
. (5.4)

To evaluate our new filter (5.4), we assume that the needed features of the MF-part of
the DNS are

E−1/2v̄MF⊥ ≈ (r/�)[𝔘MF,𝔙MF +ℜMF], (5.5a)

E−1/2〈vMF⊥〉 ≈ (r/�)[0,ℜMF], (5.5b)

as given by the analytic results (1.21) and (1.24). Thus, with vMF assumed known, we
remove it from both sides of (5.3a) and so obtain vDNS⊥ − vMF⊥ = vQG⊥ + E1/2v∼⊥
instead of (5.3b). Then, as in Oruba et al. (2020), we use the recipe implicit in (O: 3.4)
and (O: 3.7a) to relate v̄QG and ūQG to 〈vQG〉

E−1/2v̄QG⊥ ≈ μ−1
[

1
2σ, E−1/2

]
〈vQG〉, (5.6a)

where σ ≈ 1+ 3
4 E1/2 (1.28e), μ ≈ 1− 1

2 E1/2. Next, (5.3c) determines

〈vQG〉 ≈ 〈vDNS〉 − 〈vMF〉 ≈ 〈vDNS〉 − E1/2(r/�)ℜMF, (5.6b)

on use of (5.5b). Substitution of E−1/2v̄MF⊥ (5.5a) and E−1/2v̄QG⊥ (5.6a,b) into (5.4) then
provides an explicit representation of vFNS⊥ in terms of vDNS⊥ and known analytic results.
Finally we note that

χFNS = E−1/2χDNS − E−1/2(ūQG + ūMF)(1− z), (5.7)

in which E−1/2ūQG ≈ 1
2(σ/μ)〈vQG〉 (see (5.6a)) and E−1/2ūMF ≈ (r/�)𝔘MF (see (5.5a)).

Following the neglect of 〈v∼〉 = O(E1/2) and other similar approximations such as the
reliability of the trigger itself (see e.g. (1.32)), we expect the filter values χFNS (5.7) and
vFNS (the azimuthal component of (5.4)) to agree with the analytic predictions for χ∼𝔚 and

v∼𝔚, with O(E1/2) error.
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5.2. FNS results
For E = 10−4, FNS solutions (using the new filter described above in § 5.1) are compared
to those obtained using the analytic results of §§ 3, 4 in figures 1–4. All figures are
arranged in three blocks (each consisting of four panels (a–d)) corresponding to different
time instants. We adopt the times employed in figures O:1–O:4, close to which either
χMF or vMF take their stationary values (i.e. the zeros of the time derivative of 𝔘MF or
𝔙MF given by (1.18a)). As t→∞, they coincide with the vanishing of the corresponding
asymptotic forms (A5). Although, having filtered out the MF-contribution, those instants
are no longer special, we limit our attention to them in order to facilitate comparison of our
current 𝔚-trigger results with the earlier 𝔈-trigger results displayed in figures O:1–O:4,
albeit for the larger E = 10−3. On the one hand, the effects of dissipation are less evident
in our E = 10−4 figures 1–4. On the other hand and related, our new displays pertain to a
very early stage of the spin-down process, i.e. short compared to the QG spin-down time
O(E−1/2) = O(100) for E = 10−4. As our filter removes the QG flow, the time stage is
largely irrelevant to the filter output.

The FNS values for the 𝔚-trigger are portrayed in panel (a) of every block. The dark
region at the bottom of those panels reflects the Ekman layer (thin and very dark) and
the expanding MF shear layer, when present in figures 1, 4 (thicker with some contours
visible), that the filter does not remove. There is also an ageostrophic E1/3-sidewall
Stewartson layer adjacent to the outer r = � boundary that the filter does not remove
either. Further, it is important to realise that, when the MF-contributions are negligible
as in figures 2, 3, the new filter (5.4) is essentially the same as the previous filter.
Our 𝔚-triggered wave solution portrayed in panel (b) of every block is based on the
Ekman layer damped composite solution (4.8). Outside the aforesaid boundary layers,
the agreement with panels (a) is remarkable. For comparison, we show 𝔈-triggered wave
solution, based on the results of Oruba et al. (2020) (previously portrayed for E = 10−3,
but see the following paragraph) in panel (d). Although the 𝔈-results identify all the major
wave processes involved, the 𝔈-results are clearly found wanting, and, unlike the robust
𝔚-results, do not capture the FNS solution in detail.

The comparisons just described are all for E = 10−4. We can see the effect of changing
E from 10−3 to 10−4 by comparing the FNS, IW (MF+‘wave’) panels (b), (c) (etc.) of
figures O:2, O:3 with our FNS, waves(∼) panels (a), (b) (all blocks) of figures 2, 3, because
at the instants (with no MF-contribution) chosen the two filters coincide, as do the IW and
waves.

In panels (c) of figures 1–4, we portray E = 0 results obtained by use of (3.1b)
(equivalently (3.1c)), namely the E = 0 version of (4.8). Their comparison with panels
(b) shows how the small dissipation damps the waves. The large scale features are weakly
damped, whereas the small scale structures near r = � are strongly damped. Their further
comparison of panels (b) with (a) shows how well our damping ansatz (4.5) works
outside the ageostrophic E1/3-sidewall layer, and particularly close to it, where the E = 0
panels (c) show considerable fan structure, the smoothing of which by dissipation is
captured accurately. We mention also that figures O:6, O:7 show the E = 0 𝔈-response that
correspond to the 𝔚-results portrayed in panels (c) of figures 2, 3. Direct correspondence
is not easy. Still, as the E = 10−4 results are very similar to the E = 0 results except near
r = �, the major differences are simply illustrated in figures 1–4 by comparing the 𝔚-wave
results panels (b) with the 𝔈-wave results panels (d).

Other than the effects of damping, all other features are explained by the E = 0 analysis
of § 3. There we identify the main modification of the 𝔈-wave results of Oruba et al. (2020)
that lead to our present 𝔚-wave results and so do not repeat them here.
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Figure 5. Horizontal cross-sections of v-field measures over the range 5 � r � 9 at z = 0.8, at t = 18.07.
(a) Shows the linearly interpolated values v

lerp
FNS(E1, E2) (5.10) that estimate vFNS(0); (E1, E2) = (10−3, 10−4)

(red), (10−4, 10−5) (green), (10−5, 10−6) (blue). (b) Shows the discrepancy [[v]](E) (5.11) between the FNS
and 𝔚-trigger solution; E = 10−3 (red), 10−4 (green), 10−5 (blue), 10−6 (light blue).

5.3. Quantitative tests
In this subsection, our objective is to assess quantitatively how well the FNS is
approximated by the analytic 𝔚-triggered wave results on decreasing E. To achieve that
goal, we analyse the results for vFNS(E) and v∼𝔚(E) portrayed in the final t = 18.07 block
of panels (a)–(c) in figure 4, extending the values of E considered to include E = 10−n,
n = 3, 4, 5, 6. In figures 5 and 6, various quantitative tests are made over the range
5 � r � 9 of significant wave activity, yet outside the E1/3-sidewall layer abutting the
outer boundary r = 10. The height z = 0.8 chosen for the horizontal cross-sections is

(i) sufficiently far above the lower boundary z = 0 to avoid possible corruption of the
results by the tail of the lower

√
Et-MF boundary layer; and

(ii) well inside the upper cells, illustrated in figure 4, in order to capture substantial
azimuthal v-wave motion.

The reason for avoiding both the E1/3-sidewall and
√

Et-MF boundary layers is that our
filter cannot resolve them.

Of particular interest is the E ↓ 0 value of the horizontal FNS-velocity vFNS⊥(E), which
being a measure of E1/2vFNS⊥(E), is only defined for E > 0. All our estimates suggest
that its value is determined analytically by the E = 0 value of v∼𝔚⊥(E) determined by the
results (3.2a,b) of § 3. So our expectation is that

vFNS⊥(0) ≡ lim
E↓0

vFNS⊥ = v∼𝔚⊥(0). (5.8)
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Figure 6. Horizontal cross-sections at t = 18.07, as in figure 5, showing the E−1/2-scaled (a) increment of
v∼𝔚(E), namely δv∼𝔚(E)/E1/2 (5.12a); (b) increment of vFNS(E), namely δvFNS(E)/E1/2 (5.12b); (c) difference

[[v]](E), namely [δvFNS(E)− δv∼𝔚(E)]/E1/2 (5.12c) (illustrated previously in figure 5(b), albeit without the

E−1/2-scaling).

For 0 < E � 1, various analytic estimates suggest that exterior to all boundary layers
vFNS⊥(E) and v∼𝔚⊥(E) have, at fixed t, expansions of the form

vFNS⊥(E) = vFNS⊥(0)+ E1/2v′FNS⊥ + O(E), (5.9a)

v∼𝔚⊥(E) = v∼𝔚⊥(0)+ E1/2v∼′𝔚⊥ + O(E), (5.9b)

where the notation •′ is intended to suggest d • /dE1/2|E↓0. As our filter has O(E1/2)
errors, there is no asymptotic reason for v′FNS⊥ and v∼′𝔚⊥ to agree. The main purpose of
our tests in figures 5 and 6 is to assess the worth of our ansatz (5.9).

As we cannot determine vDNS(0) (and hence vFNS(0)) other than via the limit E ↓ 0, we
consider instead its linearly interpolated value

v
lerp
FNS(E1, E2) ≡

E1/2
2 vFNS(E1)− E1/2

1 vFNS(E2)

E1/2
2 − E1/2

1

, (5.10)
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which we plot in figure 5(a) for various pairs (E1, E2). In (5.9), we have been cautious to
offer only a two term Maclaurin series. In the unlikely event of the series remaining valid
up to the next term O(E), it would follow that v

lerp
FNS(E1, E2) = vFNS(0)+ O((E1E2)

1/2),
and then only for sufficiently small E1 and E2. Be that as it may, the v

lerp
FNS(E1, E2)

cross-section in figure 5(a) converges well. The limiting curve v∼𝔚⊥(0) is not plotted
being indistinguishable to graph plotting accuracy, consistent with our expectation (5.8).

To obtain a measure of the relative sizes of v′FNS and v∼′𝔚, we plot in figure 5(b) the
difference

[[v]](E) ≡ vFNS(E)− v∼𝔚(E) = E1/2[v′FNS − v∼′𝔚]+ O(E) (5.11)

with O(E) error, as estimated by (5.9). Reassuringly, [[v]](E) decreases with decreasing
E consistent with the implications of convergence in figure 5(a), but not very fast.
So in figure 6(c), we plot the scaled value [[v]]/E1/2, which by (5.11) ought to
tend to an O(1) limit. Instead it shows sign of increasing with decreasing E. It
should be emphasised, however, that we are attempting to identify very small effects.
For with vFNS = O(E1/2vDNS), v′FNS = O(E1/2vDNS), v∼′𝔚 = O(E1/2vDNS), the relation
(5.11) implies that [[v]] = O(EvDNS), an accuracy which is perhaps hard to achieve from
the numerics.

As a further test of the ansatz (5.9) we plot respectively

δv∼𝔚(E) ≡ v∼𝔚(E)− v∼𝔚(0) = E1/2v′𝔚 + O(E), (5.12a)

δvFNS(E) ≡ vFNS(E)− v∼𝔚(0) = E1/2v′FNS + O(E), (5.12b)

scaled by E−1/2 in figure 6(a,b). There is some evidence that both δv∼𝔚(E)/E1/2 and

δvFNS(E)/E1/2 are approaching the proposed respective limiting values v′𝔚 and v′FNS. To

assess this tendency from a slightly different perspective, we plot [[v]](E)/E1/2 (5.11) in
figure 6(c). Being related to (5.12a,b) via

[[v]](E) = δvFNS(E)− δv∼𝔚(E), (5.12c)

its small size relative to both δv∼𝔚(E) and δvFNS(E) is very reassuring, despite
lacking evidence of convergence. The lack of convergence may be attributable to the
aforementioned numerical error. More seriously, however, the implied presumption that
the O(E1/2) value of [[v]](E) = O(E1/2) defined by (5.11) is meaningful at that order is
flawed, because our 𝔚-trigger (1.30), used to obtain v∼𝔚(E), itself possesses O(E1/2)

errors, as explained in § 1.3. Essentially, the accuracy of our 𝔚-trigger is strictly limited
and what figure 6(c) attempts to illustrate is beyond the accuracy claimed by our
asymptotics. Despite the caveat about figure 6(c), the quantitative measures in figures 5
and 6, strongly support the convergence of the FNS results as E ↓ 0 to the E = 0 analytic
results.

6. Concluding remarks

Our present work, when combined with the QG-study of Oruba et al. (2017), provides a full
analytical solution to the problem of the linear time-dependent motion of a rotating fluid in
a plane layer including lateral boundaries, pioneered in the seminal article of Greenspan &
Howard (1963). A central feature of our study is the elongated aspect ratio of the domain.
In a container with O(1) aspect ratio, inertial wave activity shows little structure and decays
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Inertial waves induced by spin-down

rapidly, because waves are quickly reflected at the axis with no time available to create the
coherent travelling structures.

The strong inertial wave activity in an elongated domain is likely to have important
consequences for the dynamics of large vortices in the atmosphere, such as tropical
cyclones. It is indeed quite possible that these waves are associated with the eye-wall
replacement (Houze et al. 2007; Fischer, Rogers & Reasor 2020), a feature that is often
observed prior to rapid intensifications. In actual tropical cyclones one can estimate the
Ekman number in the range 10−4 < E < 0.2 (Oruba, Davidson & Dormy 2018), which
is small enough to motivate the asymptotic study presented here. It should be stressed,
however, that in actual tropical cyclones, nonlinear effects cannot be a priori neglected
and will thus modify the wave dynamics.

To investigate these waves, the simplified 𝔈-trigger (1.29), essentially equivalent to the
E-trigger (1.30b), was adopted by Oruba et al. (2020). The triggered waves v∼𝔈 obtained
within that framework were adequate to explain the main features of the DNS results.
Here, we extend that preliminary study to include the MF-trigger (1.30c), so constructing
the 𝔚-trigger (1.30a). For E = 10−4, we find that the comparisons in figures 1–4 of our
v∼𝔚 predictions based on the faithful 𝔚-trigger (b) with the FNS waves v∼FNS (a) are
almost perfect in the mainstream above the Ekman layer adjacent to the lower boundary
z = 0 and away from the ageostrophic E1/3-layer abutting outer boundary r = �. We stress
that the comparable 𝔈-trigger results figures O:1–O:4 pertain to the larger value E = 10−3

at which diffusive effects are more evident. Only for E = 10−4 and smaller is viscosity
unambiguously suppressed.

Essentially, relative to Oruba et al. (2020), our 𝔚-trigger not only incorporates the
E-trigger but the additional MF-trigger as well. Respectively, they take account of the
blocking of �̄�E = 1

2 E1/2 (1.30b) and �̄�MF(t) = 1
2 E1/2𝔘MF(t) (1.30c). The latter MF-waves

are identifiable as such when t � 1 (Greenspan & Howard 1963). However, for t � O(1),
both �̄�E and �̄�MF(t) are the same size. More strikingly at that early time, the transient
Ekman boundary layer flow 𝔲(z, t) (see (1.7a)) exhibits a thin but expanding boundary
layer width Δ(t) = (Et)1/2. As the steady Ekman layer part 𝔲E(z) (1.16) has width ΔE =
E1/2, the width of the remaining MF boundary layer part 𝔲MF(z, t) is necessarily the same,
in order that the boundary layer width of the sum (𝔲 = 𝔲E + 𝔲MF) is Δ(t). That is why
we remarked in item (iib) (below (1.18)) that ‘for t � O(1), the E(or QG)/MF-partition
(1.15)–(1.18) is unhelpful’. Only for t � 1 is the representation (A7) of 𝔲MF(z, t) truly
illuminating.

The above considerations imply that �̄�𝔈(t) and �̄�𝔚(t), which define the 𝔈- and
𝔚-triggers, (1.29b) and (1.30a) respectively, are distinctly different for t � O(1), at which
stage it is to be expected that the responses to each will also differ. What is surprising is
that the difference is not apparent simply at small times but persists, as a comparison of the
E ↓ 0 analytic v∼𝔚 and v∼𝔈 triggered waves, in (c,d) respectively of figures 1–4, shows. On
the one hand, that comparison shows that the 𝔈-trigger results (d) give a good qualitative
description of the wave structure visible in vFNS ((a) for 1� E > 0). On the other hand,
v∼𝔈 (d) suffers a systematic phase shift and decreased amplitude relative to the true v∼𝔚
(c), i.e. the essential differences between the 𝔈- and 𝔚-triggered responses, for t � 1,
are manifest by each wave of given frequency ωmn being ‘rung’ with different strength
and phase by the respective triggers. In the limiting case E ↓ 0, these wave characteristics
are identified by the residues of �̂�( p) and �̂�( p) at the poles p = iωmn, as explained in
§ 3.1 with the ideas reinforced by the large � analysis of Appendix C (but see particularly
(C7)–(C9) of Appendix C.2). For those reasons alone, our proper consideration of the
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𝔚-trigger has yielded a significant improvement over the simpler analysis of the 𝔈-trigger
presented in Oruba et al. (2020).

Significantly, although �̂�( p) only possesses poles, �̂�( p) has cut points as well at p =
±2i. In § 3.2, we showed that the latter are responsible for wave activity primarily of the
MF-type, which appears to cancel Greenspan and Howards’ MF-trigger flow. This is an
issue, because despite the algebraic decay with time, the MF-trigger flow exists at the times
t (�1) illustrated in figures 1 and 4. They are not visible because our new filter has hidden
them. However, if we examine the FNS (old filter) and IW panels of the corresponding
figures O:1 and O:4, they dominate the wave pattern beyond the triggered wave extent
apparent on our new figures 1–4 right up to the axis r = 0. In Appendix C, we resolved
this matter by adopting a Cartesian approximation of the geometry based on �� 1, which
applies for r � 1 up to the outer boundary r = �. The t � 1 analysis of Appendix C.1
gives the surprising result that the poles provide an accumulated MF-contribution that
exactly offsets that due to the cuts. The afore mentioned wave extent is explained and
quantified using the method of coalescing saddles (see e.g. Kelvin’s ship-wave pattern
https://dlmf.nist.gov/36.13 application of the method) in Appendix C.2.

The above remarks about figures 1–4 allude to another matter, namely that they pertain
to times t less than the time taxis = O(�) taken for the triggered waves to reach the r =
0 axis. After that time, wave reflection occurs leading to a confused wave pattern. The
ratio of taxis to the spin-down time is thus E1/2�. As we have taken E = 10−4, � = 10 in
figures 1–4, for which E1/2� = 10−1, all those plots correspond to the early spin-down time
range 1� t � E−1/2. Upon restricting our times for plots to less than E1/2�, we need to
increase the size of E to obtain a t = O(E−1/2) plot time. Indeed the E = 10−3 value taken
in figures O:1–O:4 is just adequate for that purpose but seriously reduces the accuracy of
the asymptotics. As our objective here has been to identify the waves generated with high
precision accuracy, we have refrained from following that tack.

Nevertheless, the comparison in figures 1–4 of triggered wave v∼𝔚 amplitudes (b) with
the FNS vFNS amplitudes (a), at the same value of E, show subtle improvements over the
comparison of v∼𝔚 as E ↓ 0 (c) with vFNS. That improvement is particularly striking for

the χ -contours of figures 1 and 2 just outside the ageostrophic E1/3 Stewartson shear layer
where the fan structure (see Appendix C.1), very evident on (c), is smoothed out (perhaps
for r � 0.95) on (b) to provide excellent agreement with (a). In § 5.3 we performed tighter
numerical tests on the dependence on E in the range 0.5 � r � 0.9 beyond r ∼ 0.95,
where variation with E is less dramatic. The results portrayed in figures 5 and 6 provide
evidence indicating that our analytic treatment of dissipation effects encapsulated by (4.8),
which captures the secular viscous wave decay predicted by (4.5), works extremely well
for t � 1.

Of course, a comparison with experimental data would be very rewarding. However,
that needs a spin-down experiment (as yet not performed), with a weak forcing to provide
a near linear flow, and an elongated aspect ratio, essential to prevent early reflections. It
should be stressed again that our work only addresses the linear limit of vanishing Rossby
number. Finite Rossby number effects, although interesting, cannot be quantified in this
framework, and deserve further study.

Finally, it is worth reflecting on how our asymptotic approach would compare to an
analytic solution v(r, z, t) of the governing equations (2.3) subject to the initial (5.1)
and boundary (5.2) conditions, as used by the DNS described in § 5. Consider such an
LT-solution v̂(r, z, p). Presumably its LT-inversion simply involves the residues at poles
just like those for the unbounded �→∞ case given by (3.4), (3.5) of Greenspan &
Howard (1963). The poles near p = 0 would define the slow spin-down, while the others
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would define damped waves, each with distinct spatial structure and decay rate. However,
as our objective is to determine the overall structure, that emerges, when t � E−1, on
superposing all modes, such an approach is unenlightening for the same reasons that it
was abandoned by Greenspan & Howard (1963). The price paid by their asymptotics is
the introduction of cuts that do not exist in the original problem. Our approach inherits the
consequences of those cuts which are reflected by the character of our 𝔚-trigger. However,
for t � 1, the cut influence decays algebraically with time and a modal structure emerges.
What remains are the pole modes with frequencies ωmn (3.4) in § 3.1, which are modified
to ωmn + ωE

mn and damped by the rates dmn + dE
mn given by (4.5) in § 4.3. All the disturbing

cut issues evaporate as time proceeds. In short, our asymptotics has correctly identified the
persistent (i.e. dominant) inertial waves generated, together with their amplitudes over the
spin-down time t = O(E−1/2).
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Appendix A. The transient Ekman MF-layer of § 1.1

The transient Ekman layer problem is outlined in § 2.3 of Greenspan (1968). There
he provides the solution, (2.3.4), (2.3.5), of the governing equations (2.3.1)–(2.3.3).
His function F(z, t) (2.3.6) is simply our MF-function i𝔷−MF(z, t) (see (1.17a)), more
specifically

𝔷±MF =
∓i
2

[
exp[(1± i)E−1/2z] erfc

(
z√
4Et
+ (1± i)t1/2

)
− exp[−(1± i)E−1/2z] erfc

(
− z√

4Et
+ (1± i)t1/2

)]
. (A1)

Put another way, in the LT-inversion of �̂�± to obtain 𝔷± = 𝔷±E + 𝔷±MF, the steady E-part 𝔷±E
(1.15a) stems from the pole at p = 0, whereas the MF-contributions 𝔷±MF (1.17a) originate
from the cut contributions about p = ∓2i.

The formula (A1) is at first sight unenlightening. However, in the t � 1 limit for which
the E/MF-partition is useful, the result may be interpreted on use of the formula

erfc (ζ ) = ∓i(1± i)
[

f
(

2ζ

(1± i)
√

π

)
± ig

(
2ζ

(1± i)
√

π

)]
exp

(
−ζ 2

)
(A2)

obtained by reorganising (http://dlmf.nist.gov/7.5.E10). Here, the auxiliary functions f , g
were introduced in (1.17c) and defined below it. Application of (A2) to (A1), with ζ taking
its respective values in the first and second lines, leads to the representation (1.17a) with

𝔥±MF = −1
2 (1± i)

[[
f (T + Z±)− f (T − Z±)

]± i
[
g(T + Z±)− g(T − Z±)

]]
, (A3a)

where T(t) = √4t/π (1.13b) and

Z± = z

(1± i)
√

πEt
. (A3b)
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Henceforth in this appendix, we restrict attention to the large-t limit, equivalently

T � 1, (A4a)

for which (7.12.2/3) of §http://dlmf.nist.gov/7.12.ii give the asymptotic expansions[
f (T)

g(T)

]
= 1

πT

[
1

(πT2)−1

]
[1+ O(T−4)] ≈ 1√

4πt

[
1

(4t)−1

]
. (A4b)

Their use in (1.18a) determines[𝔘MF(t)
𝔙MF(t)

]
≈ 1√

4πt

[− cos(2t)
sin(2t)

]
(A5)

in which we have made the approximations f (T) ≈ (πT)−1 and g(T) ≈ 0.
To identify the MF boundary layer structure defined by 𝔷±MF(z, t), we assume that Z± =

O(1) with the implication that
|Z±| � T. (A6a)

Accordingly, a Taylor series expansion of (A3a) determines

𝔥±MF ≈ −(1± i)Z±f ′(T) ≈ z

4t
√

πEt
, (A6b)

where the prime denotes derivative and Z± is given by (A3b). Substitution of (A6b) into
(1.17a) and use of (1.11a) determines[𝔲MF

𝔳MF

]
= 1

2

[
𝔷+MF + 𝔷−MF

(𝔷+MF − 𝔷−MF)/i

]
≈ z

4t
√

πEt

[
cos(2t)
− sin(2t)

]
exp

[
− z2

4Et

]
. (A7)

Appendix B. The mean azimuthal MF-flow �̄�MF(t) for t = O(1)

After various integrations of (1.23b) by parts, using the integral representation of 𝔘MF in
the first equality of (1.18a), we may write

E−1/2�̄�MF ≈ 2
∫ ∞

t
𝔘MF dt = 𝔙MF +ℜMF, (B1a)

where

ℜMF = −t
(

d𝔙MF

dt
+ 2𝔘MF

)
− 1

2
𝔙MF, (B1b)

in which d𝔙MF/dt = (πt)−1/2 cos(2t). Together, they may be employed to establish that
the z-average 〈vMF〉 = 〈v̄MF〉 + 〈𝔳Δ

MF〉 of the azimuthal MF-flow is given by

(�/r)〈vMF〉 ≈ �̄�MF +
∫ ∞

0
𝔳Δ

MF dz = �̄�MF − E1/2𝔙MF = E1/2ℜMF. (B2a)

It decays rapidly

ℜMF ≈ − cos(2t)
8
√

π t3/2 = O (𝔙MF/t) , for t � 1, (B2b)

showing that E−1/2�̄�MF/𝔙MF → 1 as t→∞, which establishes the estimates (1.25).
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Appendix C. The Cartesian limit, � = L/H � 1, � − r = O(1), for E ↓ 0

In this appendix, to obtain a better understanding of the § 3 results, we implement the
�� 1 asymptotics of §O:4 that approximates the outer cylindrical geometry as Cartesian
and approximates the discrete values jn/� (see (2.11)) by a continuous wavenumber k.
Thus, Fourier–Bessel sums become Fourier integrals, i.e.

∑
n �→

∫
dn.

C.1. The ‘method of images’
As in §O:5, we focus attention on the radial velocity u expressed in the form

u ≈ −𝔘(t)+
∞∑
−∞

ŭl, ŭl(x, z, t) = ŭ(x, z− 2l, t), x = �− r (��), (C1a–c)

similar to (O: 5.1a,b), and, as in (O: 5.2a,b), introduce the unit vector

[x, z]/� = [x, z] = [sin(2α), cos(2α)], � =
√

x2 + z2. (C2a,b)

We multiply the right-hand side of the expression for the LT ˆ̆u in (O: 5.2e) by p�̂�( p) to
obtain, following algebra that utilises the curious but simple identity

x±
p− 2ix

− x∓
p+ 2ix

= ±2x
p± 2i

p2 + 4x2 , x± = 1± x, (C3a,b)

the LT

(π�) ˆ̆u = 1
2

∑
±

{
∓x−1/2
± �̂�

±
(( p− 2ix)/x±)

}
+ c.c.( p real). (C3c)

Its LT-inverse, namely the primary l = 0 mode (see (C1b)) to our 𝔚-trigger, is

(π�)ŭ = 1
2

∑
±

{
∓x1/2
± 𝔚±(x±t)

}
exp(2ixt)+ c.c., (C3d)

where (C3c,d) bear a striking structural similarity to (3.1a,b) after linking ωmn to 2x. On
partitioning 𝔚± into its pole �: 𝔚±E = 1

2(1± i) (1.15b) and cut �: 𝔚±MF (1.17b,c) parts,
we may extract the associated ŭ� and ŭ� of ŭ from (C3d), namely

(π�)ŭ� = 1
2

∑
±

{
x1/2
±
}

sin(2xt)− 1
2

∑
±

{
±x1/2
±
}

cos(2xt) = sin(2xt − α), (C4a)

(π�)ŭ� = O(t−3/2) for t � 1, (C4b)

following the surprising cancellation of the O(t−1/2) terms. For t = O(1), the contribution
ŭ� is complicated but, as (C4b) shows, decays rapidly for t � 1.

The previous 𝔈-triggered radial velocity ŭ�𝔈, namely the so-called mainstream part
denoted by ŭms in (O: 5.6a), is determined using (O: 5.6b) as

(π�)ŭ�𝔈 = |z| sin(2xt) = |ϕ| sin(2xt), ϕ ≡ z = cos(2α). (C5a,b)

Hence, our new 𝔚-triggered ŭ� given by (C4a), exhibits the same fan structure near the

outer corner (r, z) = (�, 0), visible in our figures 1–4, as previously identified for ŭ�𝔈

(C5) by Oruba et al. (2020). Moreover, relative to ŭ�𝔈, our new ŭ� is characterised by
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both the amplitude increase ϕ−1 and phase shift α, similar to that described above (3.5)
for individual mn-modes.

For t � 1, the small size of the remaining cut contribution ŭ� = O(t−3/2) (C4b) is
significant, because it is smaller than the MF-contribution −𝔘(t) = O(t−1/2) to the entire
radial velocity u (C1a) by a factor O(t−1). However, ŭ� contributes to every term ŭl in∑∞
−∞ ŭl, and so its accumulated effect in the infinite sum might be far larger than that

of ŭ�
0 = ŭ� alone. To assess this possibility, we take the z-average of u across the layer,

noting the zero volume flux condition 0 = 〈u〉 = −𝔘(t)+∑∞−∞〈ŭl〉. Then aided by the
translational symmetry (C1b) the integral of the sum may be expressed as a single integral
and the result reorganised as

−
∞∑
−∞
〈ŭ�

l 〉 = −𝔘(t)+
∞∑
−∞
〈ŭ�

l 〉 = −𝔘(t)+ 1
2

∫ ∞
−∞

ŭ� dz. (C6a)

Here, the infinite integral of ŭ� may be recast using x−1 dz = −x−2|z|−1 dx in the form of
the principal value integral

1
2

∫ ∞
−∞

ŭ� dz = 1
4π
−
∫ 1

−1

[∑
±

{
x−1/2
±

}
sin(2xt)+

∑
±

{
±x−1/2
±

}
cos(2xt)

]
dx

x

= 1
2π
−
∫ 1

−1

[
1
x
+ 1√

x−
− 1

1+√x−

]
[sin(2xt)− cos(2xt)] dx

= 1
π

∫ 2t

0

sin φ

φ
dφ

− cos(2t)
2πt

∫ 2t

0

[
1√
τ/t
− 1(

1+√τ/t
)] [sin(2τ)+ cos(2τ)] dτ

+ sin(2t)
2πt

∫ 2t

0

[
1√
τ/t
− 1(

1+√τ/t
)] [cos(2τ)− sin(2τ)] dτ

= 1
2
− cos(2t)√

4πt
+ 1

4πt
sin(2t − π/4)+ · · · · · · for t � 1. (C6b)

Recalling that 𝔘(t) = 1
2 − (4πt)−1/2 cos(2t)+ O(t−3/2) (see (1.16b) and (A5)), the

asymptotic result,

−
∞∑
−∞
〈ŭ�

l 〉 = (4πt)−1 sin(2t − π/4)+ O(t−3/2) for t � 1, (C6c)

follows. Except for an amplitude change and phase shift, this has the same power
law t−1 dependence on time as the leading-order 𝔈-trigger result 〈ums〉 = −〈ubl〉 =
−(2πt)−1 cos(2t) given by the formulae (O: 5.10), (O: 5.11), where 〈ubl〉 corresponds
to our cut contribution

∑∞
−∞〈ŭ�

l 〉 (C6c). The small size, O(t−1), of (C6c) is
important because it shows that at O(t−1/2) the dominant cut contribution −𝔘MF(t) ≈
(4πt)−1/2 cos(2t) is compensated by the accumulation of the inertial waves 1

2

∫∞
−∞ ŭ� dz

(C6b). This largely explains the cancellation discussed in the penultimate paragraph of
§ 3.2, where the result (C6c) is alluded to.
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Inertial waves induced by spin-down

C.2. Individual z-Fourier m-modes
Here, we adapt the ‘individual z-Fourier m-modes’ analysis of §O:6 to our problem.
Quite simply, for t � 1 the dominant contributions χ̃m (see (2.6)) for given m, extracted
from their LT by the method of steepest descent (equivalently, stationary phase) are two
modulated waves

χ̃±(x, t;α±) ∝ sin(Φ±(x, t)± π/4− α±), (C7a)

(cf. (O: 6.16)) with phase

Φ± = k±x+ ω±t, where k± = 2mπϕ±/ω±. (C7b,c)

The two waves χ̃± stem from the saddle point crossings of the inverse-LT contour of
integration at

p = iω±, 0 < ω+ < ω− < 2, (C8a)

where

ω± = 2
√

1− ϕ2±, 1 > ϕ+ > ϕ− > 0 (C8b)

(see (O: 6.6e,f )). Here, the frequency ω± and wavenumber k± (C7c) are generated by ϕ±,
which are the two real positive roots of

ϕ3 − ϕ + ϑ2 = 0 with ϑ =
√

mπx/(2t) (C8c,d)

(O: 6.6d), (O: 6.3a), which only exist when ϑ < ϑc = 21/2 · 3−3/4 (C11b).
To connect to the corresponding 𝔈-responses, we begin by expressing them (O: 6.16)

in the style of (C7a) with the additional phase shift −α±. Thus, in terms of the extended
function χ̃𝔈± (x, t;α±), the actual value of (O: 6.16) is χ̃𝔈± (x, t; 0). By this device, our new
𝔚-responses, which generate χ̃m = χ̃+ + χ̃−, may be written simply as

χ̃±(x, t;α±) = ϕ−1
± χ̃𝔈± (x, t;α±), (C9a)

i.e. with an amplitude increase by ϕ−1
± and phase shifts α± related, as in (2.13a), by

α± = 1
2 cos−1 ϕ±, 0 < α+ < α− < π/4. (C9b)

For ϑ � 1, the two relevant positive roots of (C8c) are approximately ϕ+ ≈ 1− 1
2ϑ2

and ϕ− ≈ ϑ2, which with (C7) and (C8) determine the phases

Φ+ ≈ ϑ−1mπx+ 2ϑ t = 4ϑ t, α+ ≈ 1
2ϑ, (C10a,b)

Φ− ≈ ϑ2mπx+ (2− ϑ4)t = (2+ ϑ4)t, α− ≈ π/4− ϑ2/2 (C10c,d)

(use mπx = 2ϑ2t (C8d)). For our purpose, it is sufficient to note the lowest-order
consequence

χ̃+ ≈
sin(4ϑ t + π/4)√

2πϑ t
, χ̃− ≈ −

cos(2t)√
πt

. (C10e, f )

The first low frequency (ω+ ≈ 2ϑ) term χ̃+ is identical to the 𝔈-triggered mode χ̃𝔈+
in (O: 6.19), in which X = 2ϑ t. However, relative to χ̃𝔈− , the second MF-mode χ̃− is
phase shifted by π/4 but more significantly magnified by the large factor ϕ−1

− ≈ ϑ−2.
This increased size is interesting because χ̃− (C10f ) is simply the cut contribution χ̃�

m
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(see (3.9b) with r/� ≈ 1). Nevertheless, despite its increased size, χ̃− remains smaller
than χ̃+, albeit by a less significant factor O(ϑ1/2), and is therefore formally negligible. As
ϑ increases, the influence of the cuts on the ‘stationary phase’ solution χ̃− decreases too.
We conclude that the cut contribution (3.9b) that has caused concern is always negligible
for t � 1.

On the one hand, the m-summation of χ̃+, like χ̃𝔈+ before, is justifiable in certain
parameter ranges, and recovers the fan like behaviour mentioned in Appendix C.1. On
the other hand, the summation applied to χ̃−, like χ̃𝔈− before, is invalid and meaningless,
because as m increases the assumption that ϑ � 1 is eventually violated. Thus there is no
conflict with the conclusion of Appendix C.1 that there are two MF-contributions to the
entire triggered waves, one from the cuts and one from the poles, which when combined
cancel. Rather our present restriction to a single m sheds no light on that matter.

On increasing ϑ , the ω±-saddle points approach each other. The corresponding roots
ϕ± coalesce at ϕ = ϕc, where

ϕc = 3−1/2, ϑc = 21/2 · 3−3/4 (C11a,b)

(O: 6.20a,b) to produce a wave ∝ sin(kcx+ ωct − αc), for which (O: 6.21) gives

(mπ)−1kc = 2−1/2, ωc = 23/2 · 3−1/2, αc = 1
2 cos−1 ϕc. (C11c–e)

Of course, this wave is modulated such that for x > xc = (mπ)−12ϑ2
c t (see (O: 6.21c),

(O: 6.22)) it is evanescent: x = xc is a fuzzy wave front. The spatial phase shift

αc/kc ≈ m−1 × 0.215, (C12)

determined from (C11c,e), is consistent with the node shifts visible towards the left of
(b, d) of figures 1, 2, albeit for E = 10−4. Again, near x = xc, (C11a) predicts a mode
amplification of χ∼𝔚 (b) by a factor ϕ−1

c =
√

3 relative to χ∼𝔈 (d), also evident. As noted
by Oruba et al. (2020), such comparisons near the front lie well outside the domain of
validity for our large � asymptotics, which requires �− r = xc � �. So any comparison
with the figures is illustrative rather than quantitative.

REFERENCES

ABRAMOWITZ, M. & STEGUN, I.A. 2010 NIST Handbook of Mathematical Functions (ed. F.W.J. Olver,
D.W. Lozier, R.F. Boisvert & C.W. Clark). Cambridge University Press.

ATKINSON, J.W., DAVIDSON, P.A. & PERRY, J.E.G. 2019 Dynamics of a trapped vortex in rotating
convection. Phys. Rev. Fluids 4, 074701.

BENTON, E.R. & CLARK, A. 1974 Spin-up. Annu. Rev. Fluid Mech. 6, 257–280.
CEDERLÖF, U. 1988 Free-surface effects on spin-up. J. Fluid Mech. 187, 395–407.
CHEN, S., LU, Y., LI, W. & WEN, Z. 2015 Identification and analysis of high-frequency oscillations in the

eyewall of tropical cyclones. Adv. Atmos. Sci. 32, 624–634.
DUCK, P.W. & FOSTER, M.R. 2001 Spin-up of homogeneous and stratified fluids. Annu. Rev. Fluid Mech.

33, 231–263.
FISCHER, M.S., ROGERS, R.F. & REASOR, P.D. 2020 The rapid intensification and eyewall replacement

cycles of hurricane Irma (2017). Mon. Weath. Rev. 148, 981–1004.
GREENSPAN, H.P. 1968 The Theory of Rotating Fluids. Cambridge University Press.
GREENSPAN, H.P. & HOWARD, L.N. 1963 On a time-dependent motion of a rotating fluid. J. Fluid Mech. 17,

385–404.
HARLOW, F.H. & STEIN, L.R. 1974 Structural analysis of tornado-like vortices. J. Atmos. Sci. 31, 2081–2098.
HOUZE, R.A. JR., CHEN, S.S., SMULL, B.F., LEE, W.-C. & BELL, M.M. 2007 Hurricane intensity and

eyewall replacement. Science 315 (5816), 1235–1239.

915 A53-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
83

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1183


Inertial waves induced by spin-down

KERSWELL, R.R. & BARENGHI, C.F. 1995 On the viscous decay rates of inertial waves in a rotating circular
cylinder. J. Fluid Mech. 285, 203–214.

KLEIN, M., SEELIG, T., KURGANSKY, M.V., GHASEMI V., A., BORCIA, I.D., WILL, A., SCHALLER, E.,
EGBERS, C. & HARLANDER, U. 2014 Inertial wave excitation and focusing in a liquid bounded by a
frustum and a cylinder. J. Fluid Mech. 751, 255–297.

KURGANSKY, M.V., SEELIG, T., KLEIN, M., WILL, A. & HARLANDER, U. 2020 Mean flow generation
due to longitudinal librations of sidewalls of a rotating annulus. Geophys. Astrophys. Fluid Dyn. 114 (6),
742–762.

MONTGOMERY, M.T., SNELL, H.D. & YANG, Z. 2001 Axisymmetric spindown dynamics of hurricane-like
vortices. J. Atmos. Sci. 58, 421–435.

ORUBA, L., DAVIDSON, P.A. & DORMY, E. 2018 Formation of eyes in large-scale cyclonic vortices. Phys.
Rev. Fluids 3, 013502.

ORUBA, L., SOWARD, A.M. & DORMY, E. 2017 Spin-down in a rapidly rotating cylinder container with
mixed rigid and stress-free boundary conditions. J. Fluid Mech. 818, 205–240.

ORUBA, L., SOWARD, A.M. & DORMY, E. 2020 On the inertial wave activity during spin-down in a rapidly
rotating penny shaped cylinder: a reduced model. J. Fluid Mech. 888 (A9) 1–44.

READ, P.L. 1986a Super-rotation and diffusion of axial angular momentum. I. ‘Speed limits’ for axisymmetric
flow in a rotating cylindrical fluid annulus. Q. J. R. Meteorol. Soc. 112, 231–251.

READ, P.L. 1986b Super-rotation and diffusion of axial angular momentum. II. A review of quasiaxisymmetric
models of planetary atmospheres. Q. J. R. Meteorol. Soc. 112, 253–272.

ROTUNNO, R. 1979 A study in tornado-like vortex dynamics. J. Atmos. Sci. 36, 140–155.
ROTUNNO, R. 2014 Secondary circulations in rotating-flow boundary layers. Aust. Meteorol. Ocean. 64,

27–35.
ROTUNNO, R. & EMANUEL, K.A. 1987 An air-sea interaction theory for tropical cyclones. Part II:

evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci. 44, 542–561.
WILLIAMS, G.P. 1968 Thermal convection in a rotating fluid annulus: part 3. Suppression of the frictional

constraint on lateral boundaries. J. Atmos. Sci. 25, 1034–1045.
YAROM, E. & SHARON, E. 2014 Experimental observation of steady inertial wave turbulence in deep rotating

flows. Nat. Phys. 10, 510–514.
ZHANG, K. & LIAO, X. 2008 On the initial-value problem in a rotating circular cylinder. J. Fluid Mech. 610,

425–443.
ZHANG, K. & LIAO, X. 2017 Theory and Modeling of Rotating Fluids: Convection, Inertial Waves and

Precession. Cambridge University Press.

915 A53-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
83

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1183

	1 Introduction
	1.1 The transient Ekman layer
	1.2 Spin-down between two unbounded parallel plates
	1.2.1 The transient Ekman layer time t=O(1)
	1.2.2 The spin-down time t=O(E-1/2)

	1.3 Spin-down between two parallel plates bounded at r†=L for t<< E-1
	1.4 Outline

	2 The mathematical problem
	2.1 The z-Fourier series
	2.2 The r -Fourier--Bessel series

	3 The inviscid limit, E0, dmn=0
	3.1 The pole part, 
	3.2 The cut part, 

	4 Small but finite 0<E1
	4.1 Pole solution
	4.2 Composite solution
	4.3 Ekman layer damping

	5 The filtered DNS (FNS) velocity
	5.1 Our new FNS
	5.2 FNS results
	5.3 Quantitative tests

	6 Concluding remarks
	A Appendix A. The transient Ekman MF-layer of §1.1
	B Appendix B. The mean azimuthal MF-flow 
	C Appendix C. The Cartesian limit, l = L/H>>1, l-r = O(1), for E0
	C.1 The `method of images'
	C.2 Individual z-Fourier m-modes

	References

