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This paper bears on three different topics: observational predicates and phenomenal properties;
vagueness; and strict finitism as a philosophy of mathematics. Of these three, only the last requires
any preliminary comment. Dummett (1975), p. 302

Why are mathematicians so convinced that exponentiation is total? Because they believe in the
existence of abstract objects called numbers. What is a number? Originally, sequences of tally
marks were used to count things. Then positional notation – the most powerful achievement of
mathematics – was invented. Nelson (1986), p. 173

Abstract. This article bears on four topics: observational predicates and phenomenal properties,
vagueness, strict finitism as a philosophy of mathematics, and the analysis of feasible computability.
It is argued that reactions to strict finitism point towards a semantics for vague predicates in the form
of nonstandard models of weak arithmetical theories of the sort originally introduced to characterize
the notion of feasibility as understood in computational complexity theory. The approach described
eschews the use of nonclassical logic and related devices like degrees of truth or supervaluation. Like
epistemic approaches to vagueness, it may thus be smoothly integrated with the use of classical model
theory as widely employed in natural language semantics. But unlike epistemicism, the described
approach fails to imply either the existence of sharp boundaries or the failure of tolerance for soritical
predicates. Applications of measurement theory (in the sense of Krantz, Luce, Suppes, & Tversky
(1971)) to vagueness in the nonstandard setting are also explored.

Dummett’s (1975) “Wang’s Paradox” is commonly cited as the origin of contempo-
rary philosophical interest in vagueness. It is thus notable that in this article Dummett’s
point of departure was not a proposal in philosophy of language, but rather one about the
foundations of mathematics—i.e., Yessenin-Volpin’s (1961; 1970) exposition of the view
Dummett calls strict finitism. Proponents of this standpoint seek to ground mathematics in
operations which are performable “in practice” as opposed to merely “in principle”. The
formulation of strict finitism thus requires that we take seriously notions such as feasibly
constructible number or surveyable proof which Dummett famously argued are susceptible
to versions of the sorites paradox.

The aim of this article will not be to rehabilitate strict finitism itself. However, I will
argue below that Dummett’s repudiation of such a view is based on assumptions which
Yessenin-Volpin and other strict finitists would almost certainly have rejected. Among
these are several suppositions about how we use number systems to count or measure
magnitudes and how we use numerals to denote numbers—e.g., that mathematical induc-
tion holds for arbitrary predicates of natural numbers, that for every decimal numeral there
is a co-denoting unary numeral, or that the fields of numbers which may legitimately be
used to measure empirical or psychological magnitudes must always be Archimedean.
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296 WALTER DEAN

One might, of course, be reluctant to abandon such assumptions as part of one’s chosen
foundation for mathematics or theory of scientific measurement. But the examples which
have traditionally been used to motivate strict finitism have typically concerned predicates
F(x) like feasibly constructible number (or small number) whose mathematical or sci-
entific status may initially be unclear. Such predicates are typically assumed to hold of
0—i.e., F(0)—to be closed under successor—i.e., ∀x(F(x) → F(x + 1))—but fail to
hold of certain infeasible (or large) numbers—e.g., ¬F(1000000) or ¬F(250). Part of the
proposal I will develop below involves the fact that it is possible to provide a consistent
interpretation of these premises by treating the syntactic expressions which are typically
employed to denote such values as referring to “infinite integers” in nonstandard models of
arithmetical theories which are so weak that they fail to prove the totality of functions (such
as exponentiation) which are required to prove the existence of co-denoting unary numerals.

The origin of such theories within mathematical logic can be traced to attempts to come
to terms with strict finitism as a foundational standpoint. But I will also suggest below that
they are applicable as part of a theory of vague predicates within natural language. In this
setting, the use of formal arithmetic and nonstandard methods more generally is almost
completely foreign.1 I thus face the uphill battle of convincing readers whose primary
interests lie in philosophy of language or linguistics that there is something to be gained
from reconsidering the sorites in light of such technicalities.2

The exposition which follows is intended to speak directly to this concern. In §1, I will
begin by isolating a class of sorites arguments which are formulated in terms of what I
refer to as ordinal predicates. Such predicates are distinguished by the fact that they are
associated with a sortal unit—e.g., a grain of wheat, sand, etc. in the case of heap or
a single hair in the case of bald. As such units can be counted in the same manner as
natural numbers, I will argue that the formulation of the corresponding soritical arguments
relies on mathematical premises related to how we are able to refer to the members of the
corresponding sorites sequences.

Spelling out these details will provide a useful context in which to consider the his-
torical connections between the sorites and strict finitism in §2. In §3 I will consider a
related proposal of Parikh (1971) for responding to Dummett’s critique of strict finitism
using so-called almost consistent theories. While inconsistent in the traditional sense, an
appropriately formulated almost consistent theory has the property that any proof of a
contradiction from its axioms must be “infeasibly long”. This observation serves as the
basis for what I will refer to as the feasibilist theory of vagueness—i.e., the view that
although the premises of the sorites are inconsistent in principle, this does not pose a threat

1 The only exception to this of which I am aware is work on vagueness in the tradition of Vopěnka’s
(1979) Alternative Set Theory [AST]—e.g., (Hájek, 1973), (Novák, 1992), and (Tzouvaras,
1998). Many of the observations framed below could also be formulated in this setting. I have
opted for a presentation based on classical first-order arithmetic and analysis both in virtue of
their greater familiarity and also because the current proposal does not depend on the critique of
Cantorian set theory which Vopěnka used to motivate AST.

2 Of paramount concern to such readers is likely to be the question of whether nonstandard
interpretations can plausibly be regarded as providing faithful models of how speakers understand
the meanings of vague predicates in everyday use. Although this issue will often be in the
background below, I have postponed direct consideration until §7. For as I will suggest there, the
question of whether a nonstandard interpretation may plausibly be regarded as “psychologically
real” is intertwined with a number methodological issues in semantic theory which are often
overlooked. Among these are the status of the idealization which comes along with the use of
formal languages in model theoretic semantics (as understood within linguistics) as well as the
interaction of this subject with results in model theory (as understood within logic).
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to the consistency of everyday reasoning as we are unable to derive a contradiction from
its salient instances in practice.3

Although such a view is in keeping with the general spirit of my proposal, I will argue that
its plausibility is substantially diminished by results which demonstrate that certain forms
of soritical reasoning may be “sped up” using a proof-theoretic technique first described by
Solovay (1976) and later rediscovered by Boolos (1991). I will also suggest that feasibilism
runs afoul of the goal of providing a semantics for vague predicates compatible with clas-
sical model theory. Such observations motivate the adoption of what I will refer to as the
neo-feasibilist theory of vagueness. The application of this view to instances of the sorites
based on ordinal predicates will be developed in §4 using nonstandard models of arithmetic
of the sort described above. In §5 I will also propose that nonstandard models of analysis
can be employed to provide a related interpretation of cases of the so-called phenomenal
sorites which was originally described by Dummett (1975) using the predicate looks red.

As instances of the phenomenal sorites often do not appear to depend on the use of terms
denoting large numbers, the relevant application of nonstandard techniques does not in this
case draw on the same metaphors involving the notion of feasibility just described. But it
remains to be seen what can be said for or against neo-feasibilism relative to the desiderata
which are used to evaluate mainstream approaches to vagueness. I will address these
issues in §6. Therein I will consider how neo-feasibilism relates to super-valuationism and
epistemicism and also describe how it interacts with phenomena such as borderline cases
and higher-order vagueness. Finally in §7, I will discuss some remaining methodological
issues about the role of mathematical representation and the notion of finitude in the
semantics of vague predicates.

§1. On the logical formulation of the sorties. Before it is acknowledged that the
sorites is indeed a paradox it is reasonable to demand that it be formulated in the manner
exemplified by the semantic or set theoretic paradoxes—i.e., as a fixed formal derivation
leading from apparently true premises to a contradiction. It is thus notable that the sorites
is often treated as possessing several distinct forms. A useful guide is provided by Hyde
(2011) who distinguishes between the conditional, inductive, line drawing, and phenome-
nal variants of the sorites argument. I will focus on the first two forms in §1 through §4
before returning to the latter, respectively, in §5 and §6.1.

Suppose that P(x) is a soritical predicate and that a0,a1, . . . are constant symbols
denoting the items purported to comprise a sorites sequence. Hyde’s formulations of the
conditional and inductive forms of the sorites are as follows:

1.1. The conditional sorites.
P(a0)
P(a0)→ P(a1)
P(a1)→ P(a2)
...

P(an−1)→ P(an)
∴ P(an) (where n can be arbitrary large)

3 Such a view was originally put forth by Parikh (1983) and has been developed more recently
by Sazonov (1995), Carbone (1996), and Magidor (2011). As I will explore further in notes 25
and 37, feasibilism also has affinities with more traditional contextualist approaches to vagueness
such as those of Kamp (1981) and Gaifman (2010).
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Table 1. Examples of numbers used as extremal values in the formulation of the sorites.
P(x) Type Unit n P Reference
Walking distance Ratio Foot 6000 Gaifman (2010)
Non-heap Ordinal Grain 10000 Barnes (1982), Sainsbury (1995)
Few Ordinal Grain 10000 Barnes (1982), Williamson (1994)
Noonish Ratio Second 10000 Sorensen (2001)
Height of a tall person Ratio 0.01 inch 91200 Graff (2001)
Small town Ordinal Inhabitant 50000 Gómez-Torrente (2010)
Bald Ordinal Hair 1000000 Fine (1975), Tye (1994)
Age of a child Ratio Second 109 Shapiro (2011)
Heartbeat in childhood Ordinal Heartbeat 2.5× 109 Dummett (1975)
Poor Ratio e 0.01 1010 Kölbel (2010)
Age of an old person Ratio Nanosecond 3× 1018 Field (2008)

1.2. The inductive sorites.
P(a0)
∀i(P(ai )→ P(ai+1))

∴ ∀i P(ai )

My goal in this section will be to argue that our willingness to regard instances of these
argument schema as paradoxical is mediated by mathematical assumptions which are not
typically stated among their premises. This is immediate in the case of the inductive sorites,
as the conclusion is understood to be obtained by applying modus ponens to the displayed
premises together with an unstated instance of the mathematical induction scheme for the
predicate P(x)—a point to which I will return below. But there are several other ways
in which derivations 1.1 and 1.2 fall short of comprising formally correct derivations of a
contradiction from the displayed premises. Note, for instance, that bringing the conclusions
P(an) or ∀i P(ai ) into logical conflict with the premises of 1.1 and 1.2 requires that we
also include a premise of the form ¬P(an).4 This in turn requires a paradox monger to
explicitly designate a term of the form anP for which the predicate P(x) does not hold.

Two observations come into view at this point: 1) the presentations just supplied are
typical not only in their use of constant symbols to denote the elements of a sorties series
for P(x) but in their use of natural numbers to subscript them; 2) the value which is
supplied for n P —which I will refer to as the extremal value for P(x)—will typically be a
large number. Some published examples are provided in Table 1.

In order to distinguish the cases to which the feasibilist and neo-feasibilist theories
to vagueness are most directly applicable, it will be useful to begin by introducing a
distinction between what I will refer to as ordinal and ratio predicates. An ordinal predicate
P(x) is characterized by the existence of an associated sortal predicate SP (x) such that the
determination of whether a given object or aggregate o falls under P(x) depends on the
number of items satisfying SP (x) which comprise o. For instance, of the predicates listed
in Table 1, non-heap, bald, and small town are ordinal predicates and have the associated
sortal units grain (of sand, wheat, etc.), hair, and inhabitant. There will typically be a

4 Expressions like ∀i P(ai ) and ∀i(P(ai ) → P(ai+1)) (i.e., the so-called tolerance principle
for P(x)) are often used to formulate the inductive sorites. Strictly speaking, however, such
formulas are disallowed by the syntax of first-order logic as quantifiers cannot bind the indices
of constants as they are not variables in the object language. This provides further motivation for
either adopting an arithmetical language to formalize the sorites or to treat tolerance as a primitive
relation as discussed in §5.
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close semantic relationship between P(x) and SP (x)—e.g., while the predicate bald may
not have a sharp boundary, it is still plausible to assume that whether a man is bald is
determined by the number of hairs on his head. Thus although an extremal value for a
given ordinal predicate will typically be determined empirically, such a value does not
depend on a further choice of unit in terms of which the items falling under P(x) must be
counted or measured.5

The situation is more complex in the case of ratio predicates. This class is exemplified
by predicates like walking distance, noonish, or lightweight which apply to empirical
magnitudes such as lengths, times, or masses. To linguistically formulate a sorites argument
for such predicates, a unit of measure—e.g., feet, second, or pounds—is commonly chosen
in order to systematically assign denotations to the constants ai appearing in derivation
1.1. But since the choice of such a unit is generally arbitrary, the relationship between ratio
predicates and plausible choices of extremal values will typically not be as direct as in the
case of ordinal predicates.6 Similar remarks apply to phenomenal predicates such as looks
red, tastes sour, and sounds louder whose degrees we also often measure indirectly using
empirical units of measure (e.g., nanometers, pH units, or decibels).

As I will discuss further in §5, the terms “ordinal” and “ratio” are chosen to reflect
the sorts of numerical scales which would be most naturally employed to represent the
extensions of the predicates in question relative to the conventions of measurement theory
in the tradition of (Krantz et al., 1971). The potential applicability of measurement theory
to vagueness has been widely explored in linguistics in the study of gradable adjectives—
e.g., (Sassoon, 2010), (van Rooij, 2011), (Lassiter, 2011). I will return to discuss such
predicates in §5 and §7. But as their treatment introduces a number of complications into
the logical formulation of the sorites, I will concentrate initially on simpler cases involving
ordinal predicates which may be formulated without explicitly introducing measurement-
theoretic apparatus.

Letting P(x) be an ordinal predicate, next note that the expressions a0, . . . ,an appear-
ing in derivation 1.1 are traditionally understood as constant symbols denoting objects
which are in its field of application. Let us call the set of these objects OP = {o0, . . . , onP }.
Traditional presentations of the sorites also assume that such a set comes equipped with a
discrete linear order ≺P which relates the oi such that the constant symbol ai denotes the
i + 1st object with respect to the order ≺P . It is then conventional to classify a predicate
P(x) as soritical just in case it satisfies the following properties: a) it appears that P(x)
is true of the object o0 denoted by a0; b) it appears that P(x) is false of the last object
onP denoted by anP ; and c) each pair of adjacent objects oi and oi+1 (i < n P ) appear
sufficiently similar so as to be indiscriminable with respect to P(x).

5 Although I will adopt the former claim as a simplifying assumption below, it is clear that the latter
remains true even if we acknowledge that factors other than the number of items following under
SP (x) determine whether a given object satisfies P(x)—e.g., the arrangement or density of hairs
and the size of a given man’s scalp in the case of bald. More generally, it should be clear how the
neo-feasibilist proposal can be integrated with various contextual and multidimensional views
of vagueness by adding appropriate parameters to the sorts of interpretations described below.
According to the neo-feasibilist, however, such additions are not required for the resolutions of
the relevant instances of the sorites themselves.

6 For instance, although Gaifman (2010) uses the number 6000 to identify a non-walking distance
measured in feet, he might also have used the numbers 1828800, 182880, 1828.8, or 1.8288 had
he elected to describe the same magnitude in millimeters, centimeters, meters, or kilometers.
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Note, however, that at least in the case of ordinal predicates such as bald or non-heap, the
world rarely presents us directly with a structure P = 〈OP ,≺P 〉 satisfying the properties
just described. In order to describe an instance of the conditional sorites we must thus
construct (either in reality or via a thought experiment) a sequence of collections of grains,
men, etc. such that the first member is comprised of a single item falling under SP (x), the
second member is comprised of two such items, etc. Thus in order to formulate a soritical
argument of the form 1.1. or 1.2, we must additionally be in possession of terms which
allow us to refer to the members of OP in the relevant order.

It is at this point where the significance of the magnitudes of the values of n P reported in
Table 1 begins to come into sharper focus. For note that at least in the case of instances of
the inductive or conditional sorites involving ordinal predicates, most published examples
involve cases where n P is taken to be 10000 or greater.7 On the other hand, natural
languages do not typically contain sufficiently many syntactically primitive expressions
by which we might systematically make reference to the items in a sorites sequence whose
length is measured by the sorts of values in Table 1.8 This is not, of course, to deny

7 Once such a claim has been made using a specific value, one is, of course, drawn to search
for compelling counterexamples. One source of examples which do not appear to involve large
numbers is the phenomenal sorites which will be discussed in §5. But another likely objection is
that it is possible to construct instances of the conditional sorites involving what might be termed
“medium numbers” which are “significantly smaller” than those depicted in Table 1. Suppose, for
instance, that a teacher states that a “fairly large” number of students were absent from an exam. If
the class consisted of 25 students, then although a collection of 0 or 1 or 2 . . . students presumably
do not fall under the intended sense of “fairly large”, a collection of 15 presumably does. Of
course simply pointing to such cases does not itself suggest a principled means by which they can
be distinguished from those involving the numbers given in Table 1. Nonetheless, four additional
points may be noted in this regard. First, it seems that the sort of cases in question are indeed
most naturally formulated using modifiers such as “a fairly large number of” or “many” to obtain
what is purported to be a soritical predicate of the form Q(x) = a fairly large number of /many
P(x). But in such case it may be possible to provide an independent contextual account of how
such modifiers contribute to the meaning of Q(x) which allows for another means of resolving
the “short” sorites arguments in question (see, e.g., Fernando & Kamp (1996)). Second, even if
this step is not taken, nothing about the view developed in this article imposes a lower bound
on the extremal value which a paradox monger might attempt to use to formulate an instance
of the inductive or conditional sorites (inclusive of n P = 15). Third, as we will see in §3, it is
possible to derive a contradiction from the premises of the conditional sorites with n P = 10000
in a “medium” number of steps (≤90) which is not only “significantly smaller” than 10000 but
is also in the range which a human subject could reliably carry out. (Although this fact was
observed by Boolos (1991), it appears to have had little subsequent influence on the literature on
vagueness in philosophy or linguistics. Nonetheless, I will suggest below that the phenomenon
in question provides a fundamental motivation for moving from a feasibilist to a neo-feasibilist
view of vagueness.) Fourth, observe that in the case described at the beginning of this note we are
asked to divide a sharply defined set X (the students in the class) into a subclass Y with a vague
boundary (a “fairly large” subset of absent students)—i.e., a proper semiset in the terminology of
Vopěnka (1979). In such cases the division arises in virtue of the relative cardinality of X to Y .
This suggests that the possibility of making real (or at least rational) valued measurements enters
into how we conceive of such cases—a point which becomes more apparent when we consider
similar instances involving “fairly tall” members of a team or “fairly warm” days in a month.
This in turn suggests that aspects of the measurement theoretic approach to the sorites described
in §5 are often applicable to cases involving “medium” numbers as well. For more on the specific
numbers involved, see notes 31 and 53 below.

8 This point can be made more vivid by considering what would happen if we attempted to draft
ordinary given names to denote the members of OP . We might, of course, elect to employ the
lexicographic features of such expressions to keep track of the order≺P—e.g., by taking Adam to
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that we possess syntactically complex terms which allow us to refer to the items in a
sorites sequence 〈OP ,≺P〉. A strategy which is closer to how we appear to understand
the reasoning of derivation 1.1 in practice takes inspiration from the fact that the use of
numerals as the subscripts to the constants ai serves both to distinguish these expressions
orthographically and also as an external notational device which allows us to keep track
of the order in which we wish to denote the elements of OP .9 One way of exploiting
this observation is to define an operation which for each ordinal predicate P(x) returns a
predicate P∗(x) of natural numbers defined by

P∗(n) iff a collection of n items of type SP (x) comprises an object satisfying P(x).

I will refer to P∗(x) as the arithmetization of the predicate P(x).
If we are to reason deductively about such predicates, it would seem that we must also

acknowledge that the language in which appropriately corrected versions of derivations 1.1
and 1.2 are formulated overlaps at least partially with the language La = {0,′ ,+,×,<}
of first-order arithmetic over which formal theories such as Robinson or Peano arithmetic
(i.e., Q and PA) are formulated. For if we wish to reformulate these derivations using
P∗(x) instead of P(x) we will need to employ singular terms which allow us refer to an
initial segment of the natural numbers and also to speak of the successor of an arbitrary
number. A familiar way of doing this is to employ the constant 0 to denote 0 and the
symbol ′ to denote the successor function. This allows us to formulate terms 0′,0′′, . . .
denoting the numbers 1, 2, . . . . I will refer to such expressions as unary numerals and
employ the standard abbreviation n = 0′···′ (n times) to denote the corresponding terms
of La .

At this point one might begin to worry that there is nothing about our “naive” under-
standing of the soritical premises which uniquely determines which form of arithmetical
notation must be used to formulate them linguistically. Note, however, that we have yet
to confront the fact that derivation 1.1 makes use of an ellipsis to abbreviate the steps
intervening between the conditionals P(a0) → P(a1) and P(anP−1) → P(anP ). The
use of such a device in the formulation of the conditional sorites is, of course, elim-
inable in favor of an explicit listing of the conditionals P(ai ) → P(ai+1) for 0 <
i < n P . But at least for the sorts of values considered in Table 1, it will generally be
beyond our practical abilities to either write down or survey the resulting derivation in
its entirety.

This familiar observation also does not depend on whether we use numerals or some
other sorts of terms in order to denote the members of a sorites sequence. But it does
highlight another respect in which our apprehension of the conditional sorites appears
to implicitly depend on arithmetical assumptions. We have just observed that an explicit
formulation of such a derivation may be exceedingly long in its “vertical” dimension—i.e.,

denote o0, Benjamin to denote o1, Charles to denote o2, . . . . But if we are unable to rely on
a formally defined ordering of strings in this manner, it seems likely that we would quickly lose
track of the order in which they are intended to denote the oi . And in this case it seems that we
would accordingly lose faith in the acceptability of statements which would replace the premises
formulated above using subscripted constants—e.g., P(Matthew) → P(Mark), P(Luke), or
¬P(John).

9 Another option would be to make use of the fact that since we have assumed that ≺P is a discrete
linear order with a left endpoint, we may refer to the first element of ≺P , the second element of
≺P , . . .. But although we could then make use of a Russellian ι-operator (or a similar device) to
formalize the reasoning in question, it is evident that in order to do so we would need to make use
of an indexed family of variables x0, x1, x2, . . . similar to the indexed constants a0,a1,a2, . . .
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as measured in the number of steps it contains. But we also expect that we should be able to
survey not only expressions like a10000 which appear in the final line of such a derivation,
but also that we could construct any of the elided steps—e.g., P(a4913) → P(a4914)—if
called upon to do so. This feature of the derivation appears to require that these steps are
formulated so that they are also reasonably short in their “horizontal” dimension—e.g., as
measured in terms of the number of symbols they contain.

These observations suggests that whatever system of notation we adopt for formalizing
the conditional sorites must satisfy two criteria. First, it must employ some form of com-
positional device which allows us to inductively construct a notation denoting the object
oi+1 in the sorites sequence given a notation denoting the object oi . And second, it must
also provide sufficiently compact notations to allow us to write down terms of surveyable
length which denote the sorts of numbers exemplified by those in Table 1.

It will also come as no surprise that while unary numerals possess the first property, they
fail to possess the second. For given a unary numeral υ with value n (notation: [[υ]]u = n),
we can obtain a unary numeral denoting n + 1 by simply concatenating another token of
the symbol ′. But on the other hand, the length n of a unary numeral (notation: |υ| = n) is
directly proportional to its value (i.e., [[υ]]u = |υ|−1). A consequence of this is that we will
be incapable in practice of either writing down unary numerals denoting numbers on the
order of (say) 10000 or of dependably distinguishing a unary numeral of this magnitude
from that denoting its successor. But it is presumably just such an ability which stands
behind the faith which we express in conditionals such as P∗(4913)→ P∗(4914).10

It will also not come as a surprise that the familiar system of decimal numerals satis-
fies both properties simultaneously. For although the length of such a numeral does not
directly reflect the position of the number it denotes in the natural number sequence,
we are well aware of a procedure for constructing a numeral denoting i + 1 given a
numeral denoting i—i.e., by incrementing the value of its last digit by one and carry-
ing as needed. It is a similarly familiar observation that decimal numerals are a form of
positional notation. This is to say that such a numeral has the form of a finite sequence
π = d0, . . . ,dk−1 of digits drawn from a finite set of symbols {s0, . . . , sb−1} (where
b ≥ 2 is the base) such that [[s]]b = i . Although the length of such an expression is
still given by the number of symbols it contains—i.e., |π | = k—its value is now given
indirectly as [[π]]b = ∑|π |−1

i=0 [[di ]]b · bi .11 As a consequence, the length of the decimal
numeral denoting n will be given by �log10(n) + 1. It is this feature of decimal numerals
which allows us to concretely write down expressions which denote not only the sorts of
values depicted in Table 1, but also “astronomically” larger ones as well—e.g., a decimal
numeral of 20 digits denotes a number greater than the estimated age of the universe in
seconds.12

10 Both points would, of course, still apply if we continued to use constant symbols ai or definite
descriptions using subscripted variables xi in the formulation in the case that the subscripts were
themselves unary numerals.

11 For instance |4913| = 4 and [[4913]]b = 4 · 103 + 9 · 102 + 1 · 101 + 3 · 100.
12 Needless to say, much the same would be true if we employed (e.g.) binary rather than decimal

notation. In general, since the length of the base-b numeral representing x ∈ N is given by
�logb(x)� it follows that for arbitrary bases b1, b2 ≥ 2, the length of the representation of x in
base b1 will be bounded by a scalar multiple α = logb1

(b2) of the length of its representation in
base b2 (e.g., for b1 = 2 and b2 = 10, α ≈ 3.3219). As scalar differences of this magnitude will
generally not affect the considerations discussed below, the reader is free to think of positional
numerals as being given for an arbitrary base b ≥ 2.
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Suppose we now assume that LP contains a constant symbol n corresponding to each
decimal numeral n ∈ N.13 An improved version of the conditional sorites can now be
formulated in Fitch-style natural deduction as follows:

1.3. The numerical conditional sorites.

Derivation 1.3 differs from 1.2 in that each of its steps will now contain a number of
symbols bounded by a scalar multiple of log10(n P) rather than by n P itself. But the
question remains as to whether we ought to regard such a presentation as a genuine demon-
stration of a contradiction or merely as a template for deriving a contradiction which may
still depend on some additional premises. For qua formal proof, 1.3 is still deficient in the
sense of containing an ellipsis—a feature which will not be true of familiar formulations
of the set theoretic or semantic paradoxes, even when they are written out in full detail. Of
course we understand that this gap may be filled in by using decimal numerals to write out
the suppressed premises explicitly and then repeatedly applying modus ponens as above.
But nothing about 1.3 depicts this explicitly.

Several options seems to be available to address this concern. For instance, we can
acknowledge that although 1.3 is a sufficient indication of the structure of a derivation
which yields a contradiction from the displayed premises, whatever faith we have that the
elided steps can be filled in to achieve this result is grounded in our acceptance of an aux-
iliary theory which both described how we are able to construct the appropriate decimals

13 As the syntactic form of various sorts of numerical expressions will often be at issue below,
the following notational conventions should be underscored: i) υ will be used as a metavariable
ranging over unary numerals which are comprised of the symbol 0 followed by a finite number
of stroke symbols ′; ii) the unary numeral for n ∈ N is of the form 0′···′ (n times) which
should be understood as corresponding to a (possibly complex) term of the language La and
will be abbreviated by n; iii) π will be used as a metavariable over positional numerals which—
when viewed externally—are finite sequences of symbols over an alphabet containing at least
two symbols; iv) given a choice of base b ≥ 2, the positional numeral for n ∈ N will be
abbreviated by n. In §1–§6 the latter sort of expression should be understood as a primitive
constant symbol which is being adjoined to a one-sorted language extending La such that object-
language variables x, y, z, . . . can be substituted with either terms of the form n or n (see also
note 40). In the Appendix (§8) these simplifying assumptions will be altered so that n can be
viewed as terms over a two-sorted language extending La with variables X,Y, Z , . . . intended to
range over the denotations of positional numerals.
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numerals and perform the requisite propositional reasoning. I will have more to say about
the specific form which such a theory might take in §4 and the Appendix (§8). But while
the length of the terms appearing in 1.3 are bounded in the manner described above, the
fact remains that the number of steps which must be constructed is still proportional to the
value (and hence the length) of the unary numeral n P .

This in turn suggests that if our hope is to find an adequate logical formulation of the
conditional sorites, then we must take the relevant theory to be sufficiently powerful to
formalize and derive the following principle about the relationship between unary and
positional numerals:

(D) For every base b ≥ 2 positional numeral π , there exists a unary numeral υ such
that [[π]]b = [[υ]]u .

Such a principle might at first seem like a necessary truth of either mathematics or a
related theory of formal syntax. Observe, however, that we can readily write down or
survey concrete inscriptions of decimal numerals for which we have no hope of con-
cretely constructing or surveying a unary numeral denoting the same value. This in turn
highlights a sense in which our apprehension of positional numerals is often not fully
transparent—i.e., there are many instances in which we can fully survey a positional
numeral π qua formal term without at the same time being able to grasp its reference under
the “canonical” presentation provided by a unary numeral whose length coincides with the
value �π�b ∈ N.14

Such observations may in turn sow seeds of doubt as to whether we are in fact obliged to
accept (D) in virtue of accepting the minimal amount of number theory which I have just
argued is required to apprehend the premises of a derivation like 1.1. It will be the burden
of §4 to illustrate that it is indeed mathematically coherent to acknowledge these principles
while remaining agnostic about or even rejecting (D).

On the other hand, if our underlying aim is to uphold the paradoxicality of familiar
instances of the sorites, another option would be to acknowledge—appearances potentially
to the contrary—that the inductive form 1.2 is in fact a more basic representation of how
we apprehend the argument. Note, however, that mathematical induction is presumably
a principle which applies to natural numbers as opposed to men, collections of wheat
grains, etc. Such an approach thus already seems to be premised on the assumption that the
sorites is most appropriately formulated in an arithmetized language such as LP∗ = La ∪
{P∗(x)}. Given such an understanding, it is then straightforward to present derivation 1.2 as
follows:

14 Of course one might also take the view that for many practical purposes, positional numerals
provide not only our most practical way of referring to and calculating with natural numbers,
but are also the most basic medium by which we are able to entertain what we might otherwise
be inclined to describe as de re beliefs about individual numbers. (Such a view is described in
the unpublished Whitehead Lectures of Saul Kripke wherein decimal numerals are described as
referntial “buck stoppers”. See (Steiner, 2011) for a partial reconstruction of this proposal.) This
point notwithstanding, the conditional sorites still seems like a context in which we are forced
to simultaneously consider the mechanisms by which positional and unary numerals refer. I will
develop this point further in §4.2.
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1.4. The numerical inductive sorites.

Unlike 1.3, 1.4 is a logically correct and fully explicit derivation of a contradiction from
the displayed premises. These include an instance of the induction schema for LP∗—i.e.,

Ind(LP∗) For all LP∗ -formulas ϕ(x), ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(x ′))→ ∀xϕ(x).

Another means of arguing that the elided steps in derivation 1.3 can be filled in is to argue
for the applicability of mathematical induction to the predicate P∗(x). In particular, the
instance of induction used in 1.4 can be understood as recording precisely the assumption
that we are justified in concluding P∗(t) for an arbitrary LP∗ -term t whenever we are
disposed to also accept P∗(0) and that for an arbitrary x we can conclude P∗(x ′) from
the assumption P∗(x). But this is exactly the pattern of reasoning we presumably invoke
when we conclude that we could in principle derive a statement such as P∗(1000000) by
carrying out the “forced march” reasoning of the elided steps in 1.3 despite the fact that we
have not actually done so in practice.

§2. On strict finitism and feasibility. Prior to the upsurge in philosophical interest
in vagueness ushered in by Dummett’s “Wang’s Paradox”, the significance of large finite
numbers and our various means of denoting them was discussed intermittently by mathe-
maticians and philosophers during the late 19th and early 20th centuries. The observation
that such numbers pose a challenge to certain views about the foundations of arithmetic is
at least as old as Frege’s use of numbers such as 135664 and 100010001000

to critique Kant’s
view that natural numbers must have intuitable representations.15 Bernays (1935) made a
related point about the unintuitabilty of 67257729

in the context of arguing that no sharp
boundary demarcates the sort of “intuitive evidence” which is admissible in intuitionistic
mathematics. Similar points have been voiced by Mannoury (1931), Borel (1952), van
Dantzig (1955), and Wang (1958).

Such observations provide the immediate context for the view which Kreisel (1958)
and Dummett (1959) labeled strict finitism. More specifically, Dummett used this term to
describe a heterodox proposal about the foundations of mathematics which was promoted
by the Russian mathematician and dissident Alexander Yessenin-Volpin starting in the late

15 See (Frege, 1884, §5, §89). See also (Frege, 1884, §7) and (Frege, 1903, §123) for Frege’s use
of large numbers in the formulation of his critiques of empiricist and formalist views of number.
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1950s.16 One tenet of the traditional form of finitism associated with the Hilbert program is
that natural numbers are to be regarded as symbol types akin to unary numerals in a manner
which does not presuppose that we understand them as comprising a completed infinite
totality. Yessenin-Volpin went one step further in questioning our grounds for accepting
the existence of natural numbers whose representations as unary numerals are too large to
be constructed in practice.

Yessenin-Volpin’s own presentation of strict finitism was informed not only by such
observations about large numbers but also by various assumptions which he understood to
have become unjustifiably entrenched in mathematical logic. For instance, he begins (1961,
p. 202) by identifying four problematic aspects of what he dubs “traditional mathematics”:

(T1) The categoricity of the natural number series 0′, 0′, 0′′, . . . (i.e., the assertion that
this series is defined uniquely up to isomorphism).

(T2) The existence of the values of primitive recursive functions such as x · y or x y for
all arguments.

(T3) The principle of mathematical induction.

(T4) The following form of modus ponens: from � ϕ and � ϕ → ψ derive � ψ .

In (Yessenin-Volpin, 1961) he then attempted to make use of the denial of these theses in
the course of achieving his overall mathematical goal—i.e., that of providing a consistency
proof for Zermelo–Fraenkel set theory. The details of his purported proof remain murky.17

But what matters for present purposes is that Yessenin-Volpin’s discussion of the notion of
feasibility appears to have been motivated by the hope that such numbers could be used to
define novel mathematical structures which he in turn hoped to employ in his consistency
proof. He introduces such structures by first characterizing an infeasible number as one
“up to which it is not possible to count” (1970, p. 5). He then introduces what he calls
a Zenonian situation as a structure “in which the events of an infinite process are to be
identified with the parts of a finite object” (1970, p. 8).

To illustrate how infeasible numbers might be understood to give rise to such structures,
consider the predicate F(x) = x is a feasible number. Suppose further that we regard
natural numbers in the manner of traditional finitists—i.e., as symbol types corresponding
to the unary numerals OF = {0,0′,0′′, . . .}. Such expressions are naturally ordered by
the relation ≺F induced by the process of “counting” in the sense of starting with 0 and
iterating the operation σ �→ σ ′. It then follows immediately that

16 Yessenin-Volpin’s (1961) own name for his program was ultra-intuitionism. Although Yessenin-
Volpin is the rhetorical target of (Dummett, 1975), Dummett suggests that he was originally
made aware of the paradox which he takes to refute strict finitism by an unnamed article of Hao
Wang. (See (Wang (1990), p. xvii.) for one of Wang’s own formulations.) On the other hand,
most of what Dummett says to motivate strict finitism appears to have been informed by his prior
work on Wittgenstein’s philosophy of mathematics (cf., e.g., Dummett (1959), pp. 181–183).
Another of Dummett’s apparent motives was to counter the impression that the instability he took
to plague Yessenin-Volpin’s notion of constructibility in practice might also infect the notion of
constructibility in principle which figures in most presentations of intuitionism, inclusive of his
own (e.g., Dummett (1959), pp. 183–185, Dummett (1975), p. 302).

17 For reconstructions and critiques see (Kreisel, 1967b), Kreisel & Ehrenfeucht (1967), letters 44,
45, 47, and 48 in the Gödel–Bernays correspondence (Feferman et al., 2003), (Geiser, 1974), and
(Gandy, 1982). Although several of these sources suggest Yessenin-Volpin’s proposal might be
developed using the techniques of nonstandard analysis, he appears not to have discussed this in
any of his published articles accessible in English.
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(F1) F(0).

But if we have counted up to n by constructing a unary numeral n we could presumably
also count up to n+ 1 by simply adjoining another token of ′. This suggests that F(x) also
satisfies

(F2) ∀x(F(x)→ F(x ′)).

OF is an example of what Dummett (1975) calls a weakly infinite totality meaning that
the ordering≺F on this set does not possess a last member. But it seems reasonable to say
that OF is also weakly finite in the sense that relative to this same ordering there exists a
natural number which is not in OF . Yessenin-Volpin proposed 1012 as an example of such
a number.18 Assuming that we are working over a system which includes terms for decimal
numerals, then we can express the infeasibility of 1012 as

(F3) ¬F(1000000000000).

It would then appear to follow that although the sequence F = 〈OF ,≺F 〉 can be embed-
ded into the finite initial segment 〈{0, . . . , 1012},<〉 of the natural numbers in virtue of
satisfying (F1) and (F2), it does not contain 1012 in virtue of (F3).

The crux of Dummett’s critique of strict finitism is the claim that the existence of
totalities like F which are simultaneously weakly finite and weakly infinite is logically
incoherent. There can be no question whether Yessenin-Volpin embraced the existence of
such structures.19 But Dummett’s subsequent argument amounts to little more than the
observation that since F forms a sorites sequence, the premises (F1)–(F3) may be shown
to be inconsistent in virtue of either the conditional or inductive sorites.

A systematic appraisal of how Yessenin-Volpin might have replied to this challenge is
beyond the scope of the current article. But even on the basis of the foregoing sketch, it
should be evident that he recognized the relationship of his view to the sorites.20 And it is
equally clear that he would have been in a position to offer a principled reply to Dummett.
He might, for instance, have resisted the reasoning of the inductive sorites in virtue of his
rejection of (T3) and of the conditional form in virtue of his rejection of (T4). But he might
also have attempted to argue directly for the cogency of Zenonian situations directly on
the basis of his rejection of (T1). In particular, such structures might be understood to arise
naturally as nonstandard models of theories in which, per Yessenin-Volpin’s doubts about
(T2), expressions such as x y abbreviating the conventional definition of exponentiation fail
to denote total functions.

In §3 I will further discuss the exigencies of attempting to develop a semantics for
vague predicates based on the rejection of (T4)—i.e., the validity of modus ponens or
related deductive principles. This approach appears most faithful to Yessenin-Volpin’s
own attempts in (1970; 1981) to develop a form of proof theory which directly takes into

18 For as he observed, if we started counting from 0 in the manner envisioned above, it would take
us over 20000 years to construct a unary numeral denoting this value were we able to adjoin one
token of ′ per second.

19 E.g., “Let us consider the series F of feasible numbers, i.e., of those up to which it is possible to
count. The number 0 is feasible and if n is feasible then n < 1012 and then so n′ also is feasible.
And each feasible number can be obtained from 0 by adding ′; so F forms a natural number
series. But 1012 does not belong to F .” (Yessenin-Volpin, 1970, p. 5)

20 For instance in a 1958 letter to Brouwer, Yessenin-Volpin (2011) explicitly acknowledged that
unless (T1)–(T4) are modified, (F1)–(F3) will lead to the “paradox of the heap”.
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account the role of time, modality, and grammatical mood in mathematical practice.21 As
I will suggest, however, attempting to provide a faithful representation of such exigencies
at either the level of the object language or the metatheory of a deductive system imposes
severe limitations on the use of what we normally understand as formal methods.22 On
the other hand, the proposed semantics for vague predicates developed in §4–§5 should
be understood as inspired by the recognition that even if we are willing to accept the
idealization embodied by (T4), it is still possible to account for Yessenin-Volpin’s other
doubts about (T1), (T2), and (T3) using classical model theory.

§3. The feasibilist theory of vagueness. The focus of this section will be a philosoph-
ical view about vagueness which I will refer to as feasibilism. Such a view is motivated
by the observation that the number of steps required to derive a contradiction from the
premises of the conditional sorites in the manner of 1.3 is proportional to the magnitude of
the number n P . Feasiblists continue by pointing out that for the sorts of values of n P cited
in Table 1 the task of constructing a derivation like 1.3 will indeed be infeasible for the
same reasons which appear to have led Yessenin-Volpin to identify 1012 as an infeasible
number—i.e., human (or possibly even mechanical) agents cannot carry them out subject
to practical limitations on resources such as time, memory, and attention.

The original formulation of such a view was motivated by early developments in com-
putational complexity theory, some of which are linked historically to strict finitism.23

Complexity theory seeks to provide a characterization not of feasible numbers but rather
of feasibly computable functions—i.e., those whose values can be explicitly computed
“in practice” as opposed to only in the “in principle” sense of classical computability
theory in the sense of (e.g.) (Rogers, 1987). One motivation for such a study is to compare
the difficulty of computing the values of different effectively computable (i.e., recursive)
functions. For instance addition, multiplication, and exponentiation are all equally effective
in the sense of computability theory. But although we would face little practical difficulty in
constructing the decimal numerals representing the value of the sum 314159265358979+
271828182845904 or of the product 314159265358979× 271828182845904, explicitly
constructing a numeral representing the value of the power 314159265358979271828182845904

is beyond the computing abilities of humans and current (or even foreseeable) electronic
computers. Complexity theory seeks to provide a mathematical framework for making such
contrasts precise.24

21 See, e.g., (Isles, 1981) for a partial reconstruction.
22 These include not only the application of deductive rules such as modus ponens, but also the

treatment of substitution, unification, and deciding the identity of terms which must be carried
out algorithmically in a computational implementation of a proof system for first-order logic.

23 See in particular the sequence (Kreisel, 1958), (Wang, 1958), (Yessenin-Volpin, 1961), (Parikh,
1971), (Cook, 1975), and (Buss, 1986, §6).

24 To briefly clarify the case just described in relation to this development, note that the number of
digits in the base-b representation of nm is �m logb(n). From this follows it that it would take
more than 12000 years simply to even write down the values of the displayed power at 1000 digits
per second. On the other hand, the intractability of many problems studied in complexity theory
derives not from the infeasibility of simply reading the input or inscribing the output but rather due
to the difficulty of the intermediate calculations which must be undertaken to yield a solution. This
is evidenced, e.g., by the fact that there are 0-1-valued functions on the natural numbers which
cannot be computed by a conventional Turing machine in time less than an exponential function
of the size of their input. The existence of such functions can be demonstrated by the so-called
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Feasibilists draw on these observations by suggesting that the task of deriving a contra-
diction in the manner of derivation 1.3 may be likened to a computation whose intermediate
steps correspond to the derivation of the statements P∗(i) for 1 ≤ i ≤ n P . As the length
of such a derivation is proportional to the extremal value n P , one might reasonably suspect
that the difficulty of deriving a contradiction from the soritical premises is proportional to
that of constructing a unary numeral of length n P . On the basis of this analogy, feasibilists
go on to propose that we develop a theory of feasible reasoning—i.e., one which takes into
account resource bounds which are faced by human reasoners the same way in which com-
putational complexity theory takes into account the bounds faced by mechanical computing
devices. They then suggest that the sorites does not represent a threat to the consistency
of everyday reasoning since everyday reasoners will rarely if ever be capable of deriving a
contradiction in practice in cases where the value of n P is on the order of numbers which
philosophers typically use to illustrate the paradox.25

An explicitly feasibilist theory of vagueness appears to have been first put forth by Parikh
on the basis of the following observation:

It is rare in ordinary life for people to make arguments which take a
thousand or more steps. Perhaps this is the explanation of why we use
vague predicates in daily life without any serious problems and still
avoid difficulties which a logician might run into . . . ¶ . . . It is clear then
that vague predicates will not have a logic which satisfies the following
requirement: “If a rule of inference is permitted at all, then an arbitrarily
large number of applications of such a rule is also allowed”.

(Parikh, 1983, p. 259)

Theories of vagueness based on similar considerations have been proposed more recently
by Sazonov (1995), Gaifman (2010), and Magidor (2011). But Parikh’s original formula-
tion is of particular interest because the prior passage was informed by an earlier article
(Parikh, 1971) in which he not only anticipated Dummett’s critique of strict finitism, but
also defines the notion of an almost consistent theory which can be understood to contain
the germ of a reply.

Such a theory Sτ is formulated over a language LF = La ∪ {F(x)} extending that of
first-order arithmetic with a new primitive predicate F(x). I will assume that Sτ includes
an arithmetical base theory Z extending the theory PA−.26 Almost consistent theories may

Time Hierarchy Theorem in conjunction either with diagonalization of with the exponential-time
completeness of various combinatorial decision problems—see, e.g., (Arora & Barak, 2009) or
(Dean, 2015).

25 Although feasibilism is not typically included amongst the major contemporary approaches
to vagueness, it is grounded in concerns similar to those which have traditionally informed
contextualist proposals. For instance Kamp (1981) proposes that the sentences comprising the
intermediate steps in derivations like 1.3 should be evaluated not in isolation but relative to a
context which takes into account the statements which have been evaluated earlier in the argument
or have otherwise been made salient. A contextual parameter of this sort can be understood as a
counter which dynamically moves along the derivation envisioned by 1.3 and whose position can
be understood to measure a computational resource similar to that invoked by feasibilists. Such
an interpretation is, for instance, made explicit by the use of dynamic semantics by Barker (2002).

26 In addition to the axioms of Q (Robinson arithmetic), PA− contains axioms stating that + and
× are associative and commutative, that + distributes over ×, and that < is a linear order.
These additional assumptions constrain the possible order-types of models in manner which
simplifies the formulation of several results below (see Kaye (1991), §2.1).
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also be formulated over stronger arithmetical theories containing induction for a class of
formulas 
—e.g., Parikh originally took 
 to be the class of La-formulas (and hence Z =
PA). But we assume that 
 does not include any formulas containing the predicate F(x).

Sτ is additionally assumed to contain principles involving F(x) which include at least

(F0) F(0) (Fs ) ∀x(F(x)→ F(x ′)).
(F<) ∀x∀y(F(y) ∧ x < y → F(x)) (Fτ ) ¬F(τ ) where τ is a closed term of LZ.

Parikh’s original intention was that F(x) expresses the property of being a feasible number
in Yessenin-Volpin’s sense. (F0), (Fs ), and (F<) then, respectively, express that the class of
such numbers includes 0, is closed under successor, and is closed downwards.27 As ¬F(τ )
expresses that this predicate also fails to hold of the number denoted by τ , it is clear that
any theory satisfying the foregoing description will be inconsistent.

Note, however, that Z is formulated so that F(x) cannot occur in its induction schema
(presuming that it includes one at all). This can be understood as conforming to the tradi-
tional view that mathematical induction applies only to “definite” predicates of natural
numbers. The meaning of this (and related) terms have been historically characterized
it different ways. But it is presumably common to all parties in the debate that vague
predicates—inclusive of both mathematical examples like feasible number and non-
mathematical ones like number of hairs on a bald man’s head—lack the relevant property
of definiteness. For present purposes, I will take this precedent to serve as an adequate
response to the inductive sorites in the form 1.4.28

If this limitation is accepted, it might then appear that a “short” derivation of a contra-
diction in the manner of 1.4 is blocked. The question thus arises as to whether the task of
deriving a contradiction must inevitably require a derivation of “infeasible length” similar
to that envisioned by 1.3. But before this question can be addressed, we must be more
specific about the form of the term τ . In §1 I suggested that if we are to have any hope
of apprehending the derivation of the conditional sorites for the sorts of values depicted
in Table 1, τ ought to be taken to be a positional numeral. Although I will return to the
significance of this requirement in §4, it will be useful to begin by considering the case
where τ is a unary numeral m. If we let Sm denote the almost consistent theory with
τ = m, then one way in which a contradiction may be derived in Sm is by successively
instantiating (Fs) with the numerals 0, 1, 2, . . . and then applying modus ponens in the
manner of derivation 1.3. As he length of such a derivation will still be on the order of m
steps, a reasonable supposition would be that this is a necessary property of any derivation
of a contradiction in Sm . It turns out, however, that additional insight into the structure

27 Parikh (1971) originally also included closure conditions for addition and multiplication. These
can be added without affecting any of the results below.

28 The view that mathematical induction holds only for definite predicates has a long pedigree
in mathematical logic which is independent of strict finitism. For instance, Frege (1879, §27)
originally proposed that induction only be applied to “determinate” properties precisely to explain
why its application to number of grains in a non-heap does not lead to a contradiction in the
manner of the inductive sorites. (See, e.g., Kamp (1981) and Williamson (1994) for similar
assessments within the philosophical literature on vagueness.) Related arguments to the effect that
set-theoretic comprehension should only be applied to “definite” or “unambiguous” predicates
can be traced to the concerns raised by Poincaré (1906), Russell (1908), and Zermelo (1929) about
the relationship between impredicative definitions and the semantic paradoxes. See (Mostowski,
1950) for an illustration of how this concern bears on the range of predicates which can be
substituted into the induction schema in a predicative development of set theory.
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of first-order reasoning allows for the derivation of a contradiction to be significantly
“sped up”.

The degree of speed-up which can be achieved depends to some extent on the arith-
metical theory Z on which Sm is based. On one extreme, Boolos (1991) observed that
if we consider the theory (F0) + (Fs) + (F<) + ¬F(m) with no additional arithmetical
axioms, it is already possible to achieve exponential speed up—i.e., it is possible to derive
a contradiction in a number of steps proportional to log2(m). For instance in the Fitch
system it is possible to obtain a contradiction in 90 steps if m = 10000 and in 126
steps if m = 1000000.29 But if we assume that Z contains even a modest amount of
arithmetic in the vicinity of PA−, then it is possible to obtain superexponential speed-up of
such a derivation in Sm by employing the so-called cut shortening method introduced by
Solovay (1976).30

Recall that the superexponential function is defined by 2x
0 = x and 2x

y+1 = 22x
y and

that values of this function for small arguments are already astronomically large—e.g.,
20

6 = 265536. The Solovay method proceeds by defining a sequence of predicates Fi (x)
which describe subsets of F(x) closed under functions whose rates of growth approach
2x

y . Reasoning in Z from these definitions it is possible to derive statements of the form

F(2 j
k ) in S

2 j
k

in a number of steps proportional to c0 + c1 j + c2k for constants c0, c1, and

c2 which depend on the details of the proof system but which are independent of j and

k themselves. In the Fitch system, for instance, it is possible to derive F(2 j
k )—and hence

also a contradiction—in under 300 steps where the value of 2 j
k exceeds all of the values in

Table 1.31

Such observations attest to the fact that once the premises of the conditional sorites have
been arithmetized, it is nowhere near as arduous to derive a contradiction from them as it
might at first appear. Nonetheless, the following result demonstrates that there are limits to
how much speed up can be achieved by the Solovay technique:

29 The key observation is that by reasoning from the premises (F0) and (Fs ) alone we are able to
uniformly derive ∀x(F(x) → F(x + 2n)) (where the latter term abbreviates x ′···′ 2n-times) in
a number of steps which is linearly proportional to n. This allows us to derive F(0) → F(2m )
in 6 · m steps. It thus follows that by using (F<) we can obtain a contradiction in Sm in at most
6 · �log2(m)� + 6 steps in the Fitch system.

30 The standard textbook presentation is (Hájek & Pudlák, 1998, III.3, V.5c) while an accessible
exposition is also provided by Sheard (1998). The derivation described by Boolos (1991, pp.
702–704) makes use of a special case of this technique.

31 Approximately 100 of these (corresponding to the value of c0) are required to derive lemmas
about the relationships between the defined predicates Fi (x) which could then be reused in
subsequent proofs. It may additionally be observed that although the speed-up techniques
currently under consideration reduces the plausibility of the original feasibilist approach to the
sorites, the “sped up” proofs which they produce for the values of n P appearing in Table 1 still
require a “medium” number of steps in the sense discussed in note 7. Although it may be feasible
for a human subject to explicitly construct a proof of (say) 90 steps, we still presumably do not
possess sufficiently many non-mathematical primitive terms to refer to the items even in one
of the “sped up” sorites derivations. Many of the points framed in §1 about the necessity of
using positional numerals to formulate the sorites thus still apply. This highlights how the central
characteristic of neo-feasibilism position which will be developed below is not its reliance on
metaphors about feasibility, but rather the proposal that we acknowledge the non-transparency
of positional numerals in the manner discussed in §1 and elaborated further in §4 and the
Appendix (§8).
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THEOREM 3.1 (Parikh, 1971). Let m ∈ N and Sm = Z+ (F0) + (Fs)+ (F<) + ¬F(m)
where Z ⊇ PA−. Then there is a primitive recursive function f (x) defined uniformly on
the size |D| of derivations D in Sm such that for any formula not containing the predicate
F(x) and any Sm-derivation D, if Sm � ϕ via D and f (|D|) < m, then Z � ϕ.

Dragalin (1985) obtained a version of this result based on the sequent calculus where
the value of f (x) depends only on the number of sequents |D| in D. If we define 4x

y

analogously to 2x
y—i.e., 4x

0 = x and 4x
y+1 = 44x

y —then Dragalin’s bound is of the form

f (|D|) = 439|D|
39|D|. Since Sm inconsistent, Sm � ⊥. But supposing we have taken ⊥ to

abbreviate some standard Z-refutable formula (e.g., 0 = 0′), it follows that unless Z is
itself inconsistent, any proof D of a contradiction in Sm must be sufficiently long so that
f (|D|) ≥ m.

Theorem 3.1 has thus sometimes been described as a means of demonstrating that there
exist almost consistent theories which are “concretely consistent” in the sense that they are
conservative over Z for “short” or “feasible” proofs.32 For whatever number k we take to
serve as a lower bound on the size of such a derivation, the result can be invoked to show
that there exist specific natural numbers m such that the result of adjoining ¬F(m) to the
soritical premises (F0), (Fs ), (F<) does not lead to a contradiction over Z via a proof of
size less than k. Note, however, that in order to ensure that no contradiction can be derived
in this way in fewer than 1000 steps (per Parikh’s original suggestion) requires that we
choose m ≥ 43900

3900. But not only is this number astronomically larger than those appearing
in Table 1, it is also close to an optimal lower bound virtue of Theorem 3.1.

This observation in turn casts doubt on whether the form of feasibilism described at the
beginning of this section provides a tenable response to many everyday instances of the
conditional sorites. For at least for the sorts of values of n P depicted in Table 1, the speed
up techniques allow us to derive a contradiction in Sn P of length which we presumably can
construct in practice—e.g., 90 steps if n P = 10000. The more recent feasibilist proposals
of Sazonov (1995) and Magidor (2011) have been formulated to take into account the
results just surveyed. Both authors contend that feasibilists ought to react to the speed-up
results by rejecting the claim that modus ponens—a rule of inference which can be seen to
figure centrally in the derivations produced by the Boolos and Solovay techniques—is an
allowable rule in the course of soritical reasoning.33 Such proposals may indeed be useful
suggestions if our goal were to develop strict finitism in accordance with Yessenin-Volpin’s
proposed denial of thesis (T4). But outside the context of his critique of “traditional math-
ematics” such proposals appear to lack motivation. For as Dummett (1975) (and many
others) have observed, not only is modus ponens a mainstay of mathematical and everyday

32 See, e.g., (Gandy, 1982) and (Carbone, 1996).
33 It is easy to see that the exponential and superexponential speed-up techniques both make heavy

use of the rules of conditional introduction (i.e., → I ) followed by conditional elimination
(i.e.,→ E or modus ponens). They are thus highly non-normal if viewed as natural deduction
derivations or far from being cut-free if viewed as sequent derivations. It is a consequence of
the Normalization Theorem for natural deduction systems or the Cut Elimination Theorem for
sequent systems that such “detours” in reasoning can be eliminated. But it also follows from well
known results that the resulting “direct” proofs will be of size superexponential in the original
derivations. Hence although it will still be possible to derive a contradiction via a normal or
cut-free proof in Sm , it can be shown that such a proof will, like derivation 1.3, have length
proportional to m. See (Carbone, 1996) for a detailed analysis of the combinatorial structure of
the “sped up” proofs illustrating these points.
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reasoning, the fact that we take it to be a legitimate rule of inference seems central to why
we regard the reasoning of the sorites as compelling in the first place.34

It is also useful to observe that even if feasibilists opt for an almost consistent theory
based on a formulation of first-order logic without modus ponens or the cut rule, they
must still presumably employ the predicate G(x) = x numbers the steps in a feasibly
constructible derivation as part of their account of feasible reasoning. But it would appear
that G(x) inherits whatever vagueness we take to be inherent in Yessenin-Volpin’s notion
of a feasible number. It thus follows that to the extent that feasibilism can be understood
as providing a resolution to the sorites in the case of predicates such as bald or non-
heap, it does so only at the expense of employing another vague predicate—which is itself
apparently susceptible to a soritical argument—in its metalanguage.35

This is, of course, a feature common to many traditional theories of vagueness. For in-
stance, supervaluationists speak of “admissible precisifications” of vague predicates with-
out also giving a precise account of what makes a particular extension for a predicate like
bald admissible, degree-theoretists speak of assigning real numbers as the degrees of truth
to statements of the form P(ai ) without giving a precise account of what value should be
assigned to the statement expressing that a particular man is bald, etc.36 Theorists such
as Sainsbury (1990) and Tye (1994) go even further in arguing that to the extent which
such approaches rely on classical logic in their metatheory, they either misrepresent our
understanding of vague predicates or require us to adopt a vague interpretation of the
metatheoretic apparatus itself.

The approach developed in the following sections is explicitly intended to counter such
claims. But it is also important to realize that feasibilism is unlike most traditional ap-
proaches to vagueness in that it seeks to provide a proof-theoretic rather than a model-
theoretic account of the meaning of vague predicates. For since theories like Sm are in-
consistent in the “in principle” sense of (“classical”) proof theory, they also do not possess
interpretations in the sense of (“classical”) model theory. Another drawback to such a view
is thus that it rules out the possibility of providing an account of how predicates like bald or
non-heap could be assigned denotations in anything like the conventional sense of model
theoretic semantics.37

34 Of course this claim is not entirely uncontentious in the philosophical literature on vagueness
wherein the adoption of various forms of nonclassical logics have been repeatedly suggested as
the appropriate response to the conditional sorites (see, e.g., Cobreros, Egré, Ripley, & van Rooij
(2012) for a recent example). But to reiterate: one of the goals of the neo-feasibilist proposal is
to demonstrate that a felicitous model of reasoning about vague predicates can be obtained which
does not require undertaking the substantial modifications to the paradigm of model theoretic
semantics which would be required to accommodate a nonclassical definition of deductive or
logical consequence.

35 Although Dummett (1975) failed to anticipate speed up results of the sort surveyed above, he did
suggest that the necessity of choosing a particular number k as an upper bound on the numbers
falling under G(x) (which he refers to as apodictic numbers) renders feasibilism vulnerable to a
revenge-style objection in the form of a sortical argument involving G(x). See (Magidor, 2011)
for a reconstruction and critique of Dummett’s argument from the standpoint of strict finitism.

36 See Williamson (1994, §4.12) for an extended critique of such views on this basis.
37 Or alternatively, one might take the foregoing observations as a challenge to develop a semantics

which is compatible with at least some of the aspects of the feasibilist approach to vagueness.
This is the approach adopted by Gaifman who describes feasibilism (or as he labels it, the “brute
force” approach to the sorites) as “indicting the right direction . . . ¶ . . . [but] unsatisfactory since
it imposes a restriction on proofs, without making explicit the underlying contextual element
of local usage” (Gaifman, 2010, pp. 16–17). He then develops a formal semantics for vague
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§4. The neo-feasibilist theory of vagueness.

4.1. A semantic reinterpretation. The goal of this subsection is to lay the formal
groundwork for the neo-feasibilist account of ordinal predicates and the conditional sorites
which I will present in §4.2. A useful point of departure is the following observation which
highlights just how close almost consistent theories come to being genuinely consistent:

PROPOSITION 4.1. Let Z be a consistentLa-theory extending PA− and c a new constant
symbol. Then the following LF -theories are consistent and conservative over Z:

T∃ = Z+ (F0)+ (Fs)+ (F<)+ ∃x¬F(x); Tc = Z+ (F0)+ (Fs)+ (F<)+¬F(c).

T∃ and Tc are similar to an almost consistent theory of the form Sm . But rather than
stating that a particular unary numeral fails to fall under F(x), they, respectively, state
that some number fails to fall under F(x) and that the denotation of a new constant
symbol c fails to fall under F(x). The consistency and conservativity of T∃ and Tc follow
immediately from the Compactness Theorem of first-order logic which can also be used to
construct nonstandard models of arithmetical theories like Z.38

Recall that such a model is a structure M = 〈M,<M , sM ,+M ,×M , 0〉 which satisfies
PA− but which is not isomorphic to the standard model N = 〈N,<, s,+,×, 0〉. It will
also be useful to briefly recall some properties of such structures:

1) A nonstandard model of M |� Z contains so-called nonstandard integers—i.e.,
a ∈ M such that M |� n < a for all n ∈ N.

2) Although all nonstandard M |� Z contain an initial segment 0
M
<M 1

M
<M

. . . isomorphic to 〈N,<〉, <M itself is not a well-ordering. In particular, below
each nonstandard element a0 ∈ M , there exists an infinite descending chain of
nonstandard elements . . . <M a2 <

M a1 <
M a0.

3) All nonstandard M |� Z also contain so-called proper cuts—i.e., initial segments
I ⊆ M containing 0 (i.e., 0M ∈ I ) which are closed under successor (i.e., ∀x ∈
M(x ∈ I → x ′ ∈ I )), and closed downward (i.e., ∀x(x ∈ I ∧ y <M x → y ∈ I )
but for which I �= M . It is easy to see that if I is a proper cut in M and a ∈ M − I ,
then a must be nonstandard.

predicates which incorporates a notion he refers to as a feasible context—i.e., a classification
on a given occasion of a subset of the objects in a potential sorites sequence for P(x) which is
sufficiently small (or sparse) such that it does not include a subsequence which spans the boundary
between the extension of P(x) and its anti-extension. Presuming that the soritical premises are
always evaluated with respect to such contexts (which Gaifman takes to be induced by the use of
terms similar to the constants ai which appear in derivations like 1.1) the tolerance principle is
thereby validated with respect to his semantics. Like the proof-theoretic approaches just surveyed,
however, the notion of feasibility is itself used to formulate the semantics of the system he
proposes, thus leaving the proposal susceptible to the revenge-style objection just discussed.
But perhaps more seriously, Gaifman’s proposal also fails to take into account that the speed
up arguments allow us to derive a contradiction in a theory like Sm in a manner which does not
require us to evaluate the truth of P(x) for a number primitive terms which might otherwise be
judged infeasible relative to the size of m.

38 The observation that a theory formed by adjoining axioms stating the existence of a nonstandard
element to a standard system of arithmetic such as PA (or even True Arithmetic) results in a
conservative extension appears to owe to Kreisel (1967a, pp. 166–168). Such results illustrate
that the postulation of such elements has no effect on the properties of the ordinary arithmetical
operations which can be proven to hold in such a theory. I will not make use of this fact until §7
below.
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4) Although there are uncountably many pairwise nonisomorphic nonstandard models
of PA− for all cardinalities κ ≥ ℵ0, the order-type of <M of such a model will
always be of the form ω + (−ω + ω) · η where η is the order-type of a dense linear
ordering without endpoints. In the case where M is countable (i.e., |M| = ℵ0),
<M will thus consist of an initial segment isomorphic to N, followed by countably
many copies of the integers Z which are themselves ordered in the manner of the
rationals Q.

Let us now see how these properties may be used to prove Proposition 4.1:

Proof. To see that T∃ and Tc are consistent, let M |� Z be nonstandard and let I � M
be a proper cut. Now define an expansion MF of M to LF by letting F M = I . Note
that I contains 0M , is closed downward, and closed under successor. Thus MF satisfies
(F0), (Fs), and (F<). Also note that since I is proper, there must exist a ∈ M − I . Since
a �∈ F M , we hence also have that MF |� ∃x¬F(x). And if we additionally interpret
cMF = a, we have MF |� ¬F(c) as well.

To see that these theories are also conservative over Z, suppose that ϕ were an LZ-
sentence such that T∃ � ϕ or Tc � ϕ but Z �� ϕ. By the Compactness Theorem there
exists a nonstandard model M |� Z + ¬ϕ + {n < c | n ∈ N}. We can extend M to a
model MF of T∃ or Tc by again letting F M be a proper cut I in M and interpreting c as
cMF ∈ M − I . As ϕ is an LZ-sentence, we must also have MF |� ¬ϕ, contradicting the
assumption that ϕ is provable in T∃ or Tc. �

4.2. The neo-feasibilist account of the conditional sorites. Proposition 4.1 suggests
another way in which the linguistic formulations of sorites arguments are sensitive to how
we designate an extremal value for an ordinal predicate P(x). For the proof just given
shows that inconsistency is not achieved by simply asserting that there exists a value of
which P∗(x) fails to hold. Nor is it even achieved by stating that P∗(x) fails to hold of a
number denoted by a fixed term c unless c = t can be proven in our background theory
for some La-term t .

This again highlights the role which the values of n P given in Table 1 play in our
apprehension of the conditional sorites. Although the magnitude of plausible extremal
values may depend on the predicate P(x) under consideration, it is evident that the specific
numbers which are chosen typically do not represent the outcome of anything like a process
of careful deliberation or experimentation. For on the one hand, it is evident that the
soritical reasoning does not depend on the number theoretic properties particular to n P

(e.g., whether it is even or odd, prime or composite, etc.). And on the other, such values
rarely seem to be chosen with any regard to finding a least upper bound on the number
satisfying P∗(x) (presuming that one exists).39 Rather they appear to be selected to serve
as upper bounds which are “safe” in the sense that they are unlikley to be contested—a
fact which is attested to by the preponderance of “round numbers” in decimal notation in
Table 1.

The observation that we tend to invest little in the specific extremal values which we use
to formulate the sorites may appear innocuous on its own. But once it is acknowledged,

39 Dummett (1975) attempted to find such a value in the course of formulating his original instance
of the phenomenal sorites. But as I will argue in §5, the specification of an extremal value in such
cases is generally much less straightforward than in the simple cases of the conditional sorites
considered in §1.
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Proposition 4.1 may then be viewed as exhibiting a sense in which the premises of the
conditional sorites describe not a contradictory situation but rather a consistent one in
which the term denoting the extremal value n P is assigned an infinite denotation in a
nonstandard model and the arithmetization of the soritical predicate is itself interpreted
as a proper cut. My aim for the rest of this article will be to argue that the structural
properties of models of this sort provide nontrivial insights into many issues which are
often discussed in regard to natural language vagueness.

I argued in §1 that our ability to derive a contradiction from the premises of the condi-
tional sorites in the case of extremal values most often employed to illustrate the paradox
depends on certain aspects of how we understand and reason about numbers whose mag-
nitudes are exemplified by those in Table 1. In such cases, the juxtaposition of unary and
positional notations seems to be an ineliminable aspect of the formulation of the premises.
For note that if we wish to eliminate the ellipsis from the formulation of derivation of
1.3, we must employ a universally quantified statement of the form (Fs) which employs
a symbol for the successor function (i.e., ′). This in turn allows us to generate the unary
numerals 0,0′,0′′, . . . by which we naturally envision counting up to the unary numeral
n P . But on the other hand, in order to describe the relevant values of n P linguistically, we
must often employ a positional numeral of the form n P .

Such a juxtaposition might reasonably lead one to suspect that in order to derive a
contradiction from the soritical premises we will need to construct a unary numeral m
such that we can prove [[m]]b = [[m]]u .40 But recall that the value of a positional numeral
of the form d0 . . .dk−1 is given by

∑k−1
i=0 [[di ]]b · bi . Thus if m is (e.g.) a decimal numeral

of k digits, a co-denoting unary numeral of the form 0′···′ will contain 10k−1 symbols. I
labeled the supposition that there will always exist such a sequence as principle (D) in §1.

In order to comprehend the formula giving the value of a positional numeral we must
presumably understand the basic properties of addition, multiplication, and exponentiation,
as well as the recursion required to handle the summation in the definition just given.
This suggests that (D) already expresses a more sophisticated proposition than it might
at first appear. But even if we understand the relevant concepts, it seems like an extra
premise is still required to ensure that there will always exist an expression of the form
0′···′ whose length corresponds to the value of m. For as I observed in §1, it is easy to

40 If we were able to derive a statement of the form m = m in our background theory Z, then having
also arrived at the conclusion F(m) (say in the manner of derivation 1.3), we would then be able to
conclude F(m) and hence also a contradiction. This possibility is blocked in the current setting by
treating m as a constant symbol about which no additional mathematical principles are assumed—
i.e., as analogous to the symbol c in Proposition 4.1. (See Nelson (1986), §32 for a related
proposal.) A more realistic formalization is described in the Appendix (§8) wherein m is taken
to denote a member of the domain on binary numerals which provides a better characterization
of how we reason conjointly with unary and positional notations. A different approach is adopted
by Boolos (1991) who presents a theory in which both binary and unary numerals are treated as
terms of the same type. In this theory it is possible to restore a contradiction either by directly
proving m = m or indirectly by developing a formulation of the sorites for binary numerals using
a version of the Solovay technique. It should be kept in mind, however, that Boolos’s theory is
grounded in the assumption that the appropriate means of expressing that a positional numeral π
and unary numeral υ denote the same number is via a conventional identity statement of the form
π = υ. Relative to the approach developed in the Appendix (§8), such an equality should instead
be expressed by a statement of the form [[π]]b = [[υ]]u where [[·]]b and [[·]]u are the denotation
functions, respectively, for binary and unary numerals of the sort discussed in §1. I will argue
below that the other mathematical principles required for formulating the sorites do not commit
us to the fact ∀π∃υ([[π]]b = [[υ]]u).
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explicitly construct positional numerals for which we have no hope of constructing a co-
denoting unary numeral in practice. This in turn might lead one to suspect that the existence
of such an expression is not guaranteed by the basic arithmetical principles which I have
argued are implicit in our understanding of the other soritical premises. And if it turns out
that we are not obliged to accept (D), then one might additionally imagine that a consistent
interpretation of the soritical premises can be obtained by taking the constant c in the
formulation of Tc to correspond to a positional numeral m for which we are willing to
allow that there might not exist a co-denoting unary numeral.41

Whether it is in fact coherent to imagine such a situation depends not only on which
principles we take to govern our reasoning about positional numerals but also on how
we elect to formalize them. For before we can even formulate (D) as a mathematical
proposition, we must find some means of formally expressing statements about numerals
and their denotations. Unsurprisingly, the relevant notions can be formalized in relatively
strong theories like PA wherein we can interpret binary numerals as finite 0-1 sequences
via a standard coding function which maps such sequences into single natural numbers.
We can then prove that the formula for [[·]]b given above defines a total function such that
[[m]]b gives the length (and hence also the value) of a co-denoting unary numeral m which
itself can be coded in a similar manner as a finite sequence of 1s.42

It is evident, however, that such a treatment collapses the distinction between how we
operate with unary and positional numerals in practice which I argued in §1 is crucial to
our apprehension of many instances of the sorites. Additionally, nothing which has been
said thus far suggests that either our understanding of the soritical premises or our everyday
reasoning about numbers is grounded in a theory which is as strong as PA.

At present there is little philosophical consensus as to what kind of theory best reflects
the practices of counting, calculation, and measurement which underlie our everyday ap-
plication of number theory, inclusive of the sort of situations envisioned by instances of the
sorites. Similarly, logicians and computer scientists have proposed several sorts of theories
for formalizing conjoint reasoning about unary and positional numerals of the sort which
commonly arises in our application of numerical algorithms.43 The task of selecting an
arithmetical theory Z on which to base a theory for formalizing the conditional sorites
which is felicitous to our everyday reasoning is thus not only delicate but almost certainly
underdetermined. It may thus come as a surprise that natural formalizations of (D) are
formally independent of a wide range of plausible candidates.

One such theory is the fragment of PA known as I�0 consisting of PA− together with the
induction scheme for bounded formulas—i.e., those containing only bounded quantifiers
of the form ∃x < tϕ(x) and ∀x < tϕ(x) where t is an La-term not containing x . Parikh
(1971) originally introduced I�0 as a candidate for formalizing the “anthropomorphic”

41 In fact such a possibility has repeatedly been contemplated by strict finitists—e.g., (Yessenin-
Volpin, 1961, p. 204), (Parikh, 1971, p. 494), and (Nelson, 1986, p. 173).

42 For instance, suppose (·) denotes a function coding finite 0–1 sequences b1 . . .bn as natural
numbers—e.g., (b1 . . .bn) = 2b1 3b2 . . . pbn

n where pn is the nth prime. Then it is easy to see
that the function defined by f ((0)) = 0, f ((1)) = 1, f ((π ·0)) = 2× f ((π)), and f ((π ·1)) =
2 × (π) + 1 which gives the value of a coded binary numeral (and, e.g., outputs 0 if its input is
not the code of a binary sequence) is primitive recursive and hence provably total in PA.

43 Systems which have been considered in these regards range from primitive recursive arithmetic
(e.g., Tait (1981)), to predicative fragments of Frege arithmetic (e.g., Heck, 2014), to systems
similar to I�0 and V1 discussed in the Appendix (§8) (e.g., Ganea, 2010).

https://doi.org/10.1017/S1755020318000163 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000163


318 WALTER DEAN

standpoint about the foundations of mathematics described by Wang (1958).44 A funda-
mental fact about this theory is the following:

THEOREM 4.2 (Parikh, 1971). Suppose that I�0 � ∀x∃yϕ(x, y) where ϕ(x, y) is a
bounded formula. Then there exists a La-term t (x) such that I�0 � ∀x∃y < t (x)ϕ(x, y).

I�0 is sufficiently strong to prove simple facts about the properties of positional notation
such as the fact that the value of the binary numeral 10 · · ·0 (n 0s) is 2n . It may also be
shown that the graph of the exponentiation function is definable by a bounded formula.45

A consequence of Theorem 4.2 is thus that I�0 does not prove the totality of functions
such as 2x whose order of growth is not bounded by a polynomial. It thus also follows that
no reasonable formalization of (D) is provable in I�0.

Similar results hold for a wide range of theories extending PA− with bounded axioms.
In the Appendix (§8) I will describe a theory V1 wherein unary and positional numerals
are treated as distinct logical sorts. This theory provides a natural medium for formalizing
our practices for computing with such expressions conjointly.46 But although (D) may be
expressed naturally in the language of V1, it is underivable from its axioms. Nonetheless,
the general neo-feasibilist approach to vagueness does not depend on the details of this
theory itself. I will thus continue here under the assumption that the arithmetical theory
Z relative to which the soritical premises are formulated is a bounded theory to which an
appropriate analog of Theorem 4.2 applies.

Suppose we now let δ be the formalization of (D) in the language of Z (an explicit exam-
ple is again provided in the Appendix (§8)). The foregoing observations entail
that it is consistent to simultaneously accept Z while remaining agnostic about or even
rejecting δ. Such a denial is equivalent to asserting the existence of positional numerals
for which there exists no co-denoting unary numeral. In the case of ordinal predicates such
as bald or non-heap, the neo-feasibilist theory of vagueness thus holds that the
conditional sorites may be resolved by regarding the terms employed to denote extremal
values for the relevant predicates as nonstandard integers in the sense illustrated by Propo-
sition 4.1.

Such a view provides a means of treating our willingness to endorse the soritical premises
as an indication that we apprehend them in a manner which does not commit us to a formal
contradiction. Neo-feasibilists go on to propose that such an apprehension is grounded
in the recognition that no inconsistency would arise in our everyday reasoning were we
to treat the terms employed to denote extremal values for many ordinal predicates as if
they denoted infinitely large values. Proposals in this vicinity have again been repeatedly

44 Wang used this term to refer to a foundational standapoint similar to that described by Yessenin-
Volpin wherein feasibility is treated as a fundamental notion. He suggested that such a view is
motivated by the observations that the reduction of “decimal notation to stroke notation entails . . .
a considerable decrease of the range of numbers which we can actually handle” as well as the role
of mathematical induction in proving “that there exists a unique decimal or stroke notation for
each positive integer” (Wang, 1958, p. 474).

45 See (Cook & Nguyen, 2010, III.3.3.).
46 V1 is a natural theory in which to formalize such reasoning as its provably total functions

correspond to those which can be computed in polynomial time. Since polynomial time
computability is often taken to coincide with the pretheoretical notion of feasible computability
(see, e.g., Dean (2015)), this further suggests that V1 is also a reasonable candidate for
characterizing Wang’s “anthropomorphic standpoint”.
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explored by strict finitists and proponents of related views.47 But neo-feasibilists take an
additional step in suggesting that we interpret vague predicates in natural language relative
to nonstandard models of appropriately weak systems of formal arithmetic.

There are, of course, a number of reasons why a proposal of this sort may still continue
to appear ill-motivated. Perhaps most seriously, the approach just described still treats as
paradigmatic instances of the conditional sorites with extremal values which are “large”
in the sense discussed in §1–§3. Although such values are typical of those employed to
motivate strict finitism as a philosophy of mathematics, much of the contemporary philo-
sophical and linguistic literature on vagueness has focused on a form of the sorites which
does not appear to involve large numbers at all (at least prima facie). Before considering
several further consequences and applications of the neo-feasibilist approach to vagueness
in §6, it will thus be useful to first consider some of the cases in question in the form of the
phenomenal sorites.

§5. The phenomenal sorites and measurement theory. An important form of the
sorites which we have not yet considered is what Hyde (2011) labels the phenomenal
variant of the argument. The origins of this form can be traced to Dummett’s original
discussion of phenomenal (or observational ) predicates such as looks red, tastes sour,
or sounds loud. Such predicates P(x) are assumed to be associated with phenomenal
properties which vary along a continuum CP—e.g., of hue, sourness, or volume—which
give rise to so-called P-indiscriminable elements—i.e., pairs of distinct objects whose
gradation with respect to CP is so small that they cannot be distinguished perceptually.
Such pairs are thus often characterized by the fact that they either both satisfy P(x) or
both fail to satisfy P(x). If we let ∼P denote the relation of P-indiscriminability, then the
relevant property can be expressed by

(TolP) ∀x∀y[(P(x) ∧ x ∼P y)→ P(y)].

This is the so-called tolerance principle for P(x) and is often presented as being partially
constitutive of the meaning of observational predicates—cf., e.g., Dummett (1975), (Graff,
2001).

In order to formulate an instance of the phenomenal sorites we must identify a set of
objects OP = {o0, . . . , onP } with the following properties: i) OP is linearly ordered by
the relation ≺P corresponding to the position of the objects in the continuum CP (e.g., of
looking more red, tasting more sour, or sounding louder); ii) o0 clearly falls under P(x);
iii) onP clearly fails to fall under P(x); and iv) for all 0 ≤ i ≤ n P , objects oi and oi+1
are indiscriminable with respect to P(x) i.e., — oi ∼P oi+1. The underlying idea is, of
course, that we can identify such a sequence of objects by subdividing CP into a sequence
of P-indiscriminable points or regions ordered by≺P so that the point or region on one end
of the ordering definitely satisfies P(x) and the point or region on the other end definitely
fails to satisfy P(x).

One way of describing such a situation linguistically is to again introduce a sequence of
subscripted constant symbols a0, . . . ,anP to denote the objects oi and also treat ∼P as a
symbol in the object language. Upon taking these steps, Hyde’s (2011) formulation of the
phenomenal sorites takes the following form:

47 See, e.g., (van Dantzig, 1955, p. 275), (Robinson, 1966, §2.10–11, §10.1–5), and (Nelson, 1977).
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5.1. The phenomenal sorites.
P(a0)
a0 ∼P a1
a1 ∼P a2
...
anP−1 ∼P anP

∴ P(anP )

Although this argument schema is again not itself a formally correct derivation of a
contradiction, it may be transformed into one by adjoining the premise (TolP) and the sup-
position ¬P(anP ) stating that the ≺P -greatest member of the sequence OP does not fall
under P(x). As in the case of the conditional sorites, the formulation of such a derivation
again requires the introduction of constant symbols ai denoting the objects oi in the order
≺P . And again, the length of such a derivation will again be proportional to the value n P .
One might thus think that an adequate neo-feasibilist response to the phenomenal sorites
could be developed in parallel to the strategy described in §4—i.e., by maintaining that
we can consistently interpret anP (or a corresponding numeral) as a nonstandard element
of the sequence o0, o1, . . . which cannot be reached as the result of a feasible number of
indiscriminable transitions from oi to oi+i .

Such an approach might be effective if the sorts of values of n P for which the phenom-
enal sorites was typically formulated were similar to those used for the ordinal predicates
given in Table 1. But when philosophers describe instances of this argument, they often
employ much smaller numbers for the extremal value n P . For instance Graff (2001),
Raffman (1994), and Keefe (2000), respectively, use 30, 50, and 100 for looks red, and
in his original example Dummett (1975) used the value 4 (see note 49 below). Such
numbers clearly encroach into the class of those up to which we can explicitly construct and
survey unary numerals, count, or dependably perform the relevant number of applications
of modus ponens. Likening such numerals to terms denoting nonstandard integers would
thus strain the analogies on which the original feasibilist proposal seeks to build past the
point of collapse.

Such observations notwithstanding, it is evident that mathematical principles still play
a substantial role in how we apprehend common instances of the phenomenal sorites. In
order to appreciate why this is so, first note that predicates like looks red are unlike ordinal
predicates such as bald in that they lack sortal units which may be used to identify a sorites
sequence by a simple process of counting.48 But in order to formulate the above argument,
we must still identify a sufficiently long sequence of regions or objects which differ imper-
ceptibly in hue in order to describe a sorites sequence for this predicate. By assumption, this
is not a task which can be performed by unaided visual inspection alone. For if we cannot
uniformly distinguish the objects OP will have no means of dependably ordering them in
accordance with ≺P . Nonetheless, we are all familiar with the sorts of auxiliary processes
which might be employed to construct such a sequence—e.g., we can superimpose a grid
of uniformly sized squares onto a color spectrum or use a spectrophotometer to sort paint
chips by hue.

Not only do these particular processes involve empirical measurement, but this seems
to be a central feature of the examples of the phenomenal sorites which are most often
discussed. For instance, a ruler is required to construct the sort of grid just described or even

48 On this point see, e.g., Frege (1884, §54).

https://doi.org/10.1017/S1755020318000163 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000163


STRICT FINITISM, FEASIBILITY, AND THE SORITES 321

to uniformly point to equidistant (but otherwise phenomenally indistinguishable) patches
along a projected spectrum in the appropriate order. And similar points would seem to
apply (mutatis muntandis) to other cases of gustatory, olfactory, and auditory perception—
e.g., in order to prepare an appropriate sequence of sample items for tastes sour we need
to measure their pH, for sounds loud we need to measure the amplitude of an appropriate
class of sound waves, etc.49

As noted in §1, the importance of measurement to the semantics of vague predicates is
now widely recognized in the linguistic literature on vagueness wherein the techniques
of measurement theory (in the sense of Krantz et al., 1971) are standardly employed.
This framework provides an account of the circumstances under which we are justified
in using a given mathematical structure A∗ = 〈A∗, R∗1 , . . . , R∗n 〉 (where Ri is an ri -
ary relation on A) to represent an empirical structure A = 〈A, R1, . . . , Rn〉 in terms of
the properties of mappings f : A → A∗ which preserve the structure of the empirical
relations Ri (�x). Adapting standard terminology slightly, I will say that such a mapping is a
measurement function forA with respect to the scale A∗ just in case for all a1, . . . , an ∈ A,
if Ri (a1, . . . , ari ) then R∗i ( f (a1), . . . , f (ari )).

Consider, for instance, the familiar case where we start out by taking the empirical
domain A to be an appropriately prepared set of paint chips varying in hue between orange
and red. In this case, we can measure the chips in terms of the wavelength of the light
which they reflect measured by a fixed unit such as nanometers (where 1 nm = 10−9m). An
instrument such as a spectrophotometer for measuring reflected wavelength may thus be
mathematically represented as a measurement function f : A → R+ which for each chip
returns a positive real number which can be interpreted as the wavelength in nanometers
of the light which it reflects.50

49 An additional case in point is provided by the example Dummett (1975) originally used to
illustrate the phenomenal sorites. In this instance, P(x) is intended to hold of time intervals
(measured in seconds) such that the minute hand of a clock appears at an angle perceptually
indistinguishable from vertical. Dummett imagines that the movement of the minute hand is not
constant but rather that it suddenly “jumps” 0.25◦ at the end of every second within an interval
of 10−5 seconds. As he also supposes that the value of the just noticeable difference for angular
position is 1◦, he thereby describes a version of the phenomenal sorites with n P = 4. (Dummett
offers no empirical justification for his choice of these values. But the set up of the phenomenal
sorites allows even for cases with n P = 3—i.e., the smallest number of objects required to
demonstrate a failure of transitivity for ≺P .) Note, however, that in order to use such a case to
formulate an instance of derivation 5.1 still requires that we are able to linguistically describe
the magnitudes which are in the field of P(x). But it seems that we would be at a loss as to
how to do this in the case Dummett describes were we not able to draw on our prior practices
of chronographic and angular measurement (possibly in conjunction with a physical description
of the operation of the clock in question) to describe magnitudes which are smaller than our
perceptual tolerances allow us to discriminate.

50 It would appear that the empirical magnitudes like wavelength associated with phenomenal
predicates typically (and perhaps always) lead to what are known as ratio or interval scales.
In the former case we require that the empirical domain contain objects e, u ∈ A, respectively,
corresponding to a zero magnitude for which f (e) = 0 and a choice of unit for which f (u) = 1
and that it also is possible to define a concatenation-like binary operation ◦ definable on A which
(together with ≺) satisfies the operations of an ordered abelian group which is preserved under
f (x) in the sense that f (x ◦y) = f (x)+ f (y). This is known as a case of extensive measurement.
It is also characteristic of ratio scales that if f (x) is an admissible scale for a structure A, then so
is β · f (x) for any β ∈ R+. From this it follows that both differences | f (x) − f (y)| and ratios
f (x)/ f (y) between the measurements of objects x, y ∈ A are empirically meaningful—e.g., it is
meaningful to say both that the difference between a wavelength of 200 nm and 100 nm is greater
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A straightforward means of constructing a sorites sequence for the predicate looks or-
ange would thus be to use the instrument to select a sequence of chips o1, . . . , onP from
A such that f (o0) < f (o1) < · · · < f (onP−1) < f (onP ), f (o0) = 600 nm (for orange),
f (onP ) = 680 nm (for red), and for all 0 ≤ i < n P | f (oi)− f (oi+1)| < αP where αP is
the so-called just noticeable difference for color perception—i.e., the smallest difference in
wavelength which is visually discriminable. Widely cited empirical estimates of αP are in
the vicinity of 5 nm for the red-orange portion of the spectrum (e.g., Wright & Pitt (1934)).
This means that it is indeed possible to prepare a sorites sequence for looks orange with
n P = 20 by selecting the objects in OP such that | f (oi )− f (oi+1)| = 4 nm.51

The precise values of such psychologically determined constants are often not men-
tioned alongside presentations of the phenomenal sorites. Nonetheless, it seems that any-
one familiar with the basic setup of the argument will appreciate that a measurement
process similar to the one just described must be undertaken in order to select or pre-
pare the objects denoted by the constants a1, . . . ,an and to ensure that they are ordered
correctly with respect to ≺P . But once such details are made explicit, it is also reasonable
to re-examine some of the presuppositions of the argument, inclusive of the fact that P-
indiscriminability should be understood as a primitive rather than a defined relation.

It may be noted in this regard that the predicates which are employed to linguistically
formulate the phenomenal sorites are prototypically gradable adjectives—i.e., terms such
as hot or expensive which can be modified by adverbs such as fairly, very, or extremely. In
the case of phenomenal predicates like tastes sour or sounds loud, our use of such modifiers
presumably tracks how we locate objects relative to perceptual phenomenal CP using the
relation ≺P—e.g., if we regard x, y, and z, respectively, as fairly, very, and extremely
sour, then we will presumably order them as x ≺P y ≺P z. Moreover the gradability of
such terms also seems to underlie our willingness to speak of phenomenal predicates as
“admitting to degrees”—e.g., of one object looking red or tasting sour to a greater or lesser
degree than another.

If we start out from this perspective, then it is also natural to treat our acknowledge-
ment of the existence of pairs x, y of P-indiscriminable objects not as a brute fact but
rather one which arises because we intuitively understand that the “distance” between x
and y relative to CP may be “smaller than” an appropriate perceptual threshold u. Our
intuitive understanding of CP as a continuum—i.e., a structure which shares at least some
of the order or topological properties of the real numbers—presumably also disposes us
to acknowledge the possibility of regarding u as a point or interval within CP itself. For

than the difference between wavelengths of 50 nm and 10 nm and also that the ratio between the
latter pair is larger than that between the former. Only the latter is true of interval scales such as
temperature which lack an empirically determined zero point. But in both cases the numerical
value f (x) itself is determined only up to the choice of unit in the sense illustrated in note 6
above. For complete definitions of these notions and further discussion see (Krantz et al., 1971).

51 When described in such simplistic terms, it may appear that it is being claimed here that
our ability to set up instances of the relevant argument scheme requires that we identify
phenomenal color properties with reflectance properties of physical objects (and similarly for
other phenomenal properties). Indeed, it seems as though talk of “imperceptible differences” on
which the phenomenal sorites trades presuppose a broadly nondispositional view of phenomenal
properties. But further reflection on the cases in question suggests that all that is required is that
we are able to isolate some continuous magnitude m such that reported phenomenal changes in
P(x) are correlated with changes in m under appropriate “standard conditions”. In particular,
preparation of the envisioned scenarios does not seem to require that we subscribe to a view on
which it is possible to “reduce” color properties to physical ones.
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although we may have no means of ostending such an item, its existence is presumably
entailed by (and perhaps even constitutive of) our recognition of the finite sensitivity of
our perceptual faculties relative to CP .

It is, of course, precisely intuitions of this sort which the application of measurement
theory to the semantics of phenomenal predicates is intended to capture. Suppose, for
instance, that we start out by assuming that there exists a measurement function fP :
A→ R+ which maps the field A of P(x) into the positive real numbers in a manner which
is compatible not only with our use of the associated relation ≺P but also with respect to
the rest of our other informal talk of “degrees of P-ness”. In this case, we may posit the
existence of a just noticeable difference for the P(x) as a value αP ∈ R+.

Upon so doing, it then becomes possible to regard the phenomena of indiscriminability
as arising in the manner described above—i.e., in virtue of the existence of pairs of distinct
objects x, y such that the absolute difference of f (x) and f (y) is less than αP . But in this
case, we may then define the relation of P-indiscriminability as follows:52

(ID) x ∼∗P y if and only if | fP(x)− fP (y)| < αP .

In addition to allowing for the formalization of degree-theoretic talk about phenomenal
predicates, another benefit of introducing terms denoting measurement functions into the
language in which we formalize the phenomenal sorites is that it allows us to avoid the need
to introduce constant symbols to refer to the members of a potential sorites sequence.53 For
suppose we take a to refer to an object which clearly falls under P(x) (e.g., an object which
definitely looks orange), b to refer to an object which clearly does not fall under P(x)
(e.g., an object which definitely looks red) and αP to refer to a real number which serves
as a just noticeable difference for P(x) with respect to the measurement function f (x).
Then if A∗ = 〈A∗,≺∗P〉 is a scale for 〈A,≺P〉 with respect to f (x), we may refer to the
members of a sorites sequence for the predicate P∗(x) defined by ∀x(P(x)↔ P∗( f (x)))
by choosing a real number 0 < ε < α such that the terms f (a), f (a)+ ε, f (a)+ 2ε, . . .
(where nε abbreviates ε + · · · + ε n-times) denote an increasing sequence of real numbers
representing the degrees of a sequence of objects which are linearly ordered by ≺P and
such that adjacent pairs are P-indiscriminable.

If we additionally assume that our object language contains a predicate A(x) to denote
the domain of A and a function symbol f (x) to denote the measurement function itself,
we can now also reformulate (TolP ) in terms of our definition of ∼∗P via (ID) as follows:

52 Independent motivation for adopting such an account of indiscriminability derives from the fact
that the relations defined in this manner correspond to those generated by defining x ∼R y =df¬(R(x, y) ∨ R(y, x)) where R(x, y) satisfies the axioms of a finite semi-order (cf. Scott &
Suppes (1958)). Such indiscriminability relations—which are reflexive and symmetric but not
transitive—were originally introduced by Luce (1956) in order to study failures of preference
transitivity generated by cases similar to the phenomenal sorites. The applications of semi-orders
to the linguistic study of vagueness has recently been pursued by van Rooij (2011).

53 For note that even though the length of sorites sequences for a phenomenal predicate like looks red
need not be of “infeasible length”, we still presumably do not possess (say) 20 proper names for
shades of red or orange which allow us to uniformly and intersubjectively refer to the members of
the sort of “medium length” (cf. note 7) sequence described above in the appropriate order. Thus
if we were not able to employ a measurement function to refer to the members of the sequence
in the manner described above, we would be forced to result to referring to them by descriptions
such as “the i th chip from the left” or similar demonstrative expressions (whose applications
would presumably need to be subscripted). So even in this case it would seem that at least some
of the mathematical principles which I described in §1 must still be counted as presuppositions
of the phenomenal sorites.
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(TolαP
P ) ∀x ∈ A∀y ∈ A[(P∗( f (x)) ∧ x ∼∗P y)→ P∗( f (y))].

We can now also formalize the assumptions enumerated above as P∗( f (a)),¬P∗( f (b)),
f (a) < f (b),0 < ε < α. In parallel to principle (F<) for ordinal predicates, it is also
reasonable to assume that P∗(x) is closed downwards— i.e.,

(P∗<) ∀x ∈ A∀y ∈ A[( f (x) < f (y) ∧ P∗( f (y)))→ P∗( f (x))].

At this point, one might think that we have assumed enough to mimic the reasoning of
derivation 5.1 in the mathematical domain. For by successively instantiating (TolαP ) with
adjacent pairs of values in the sequence f (a), f (a)+ε,a, f (a)+2ε, . . .we may conclude
P∗( f (a)), P∗( f (a) + ε), P∗( f (a) + 2ε), . . . , P∗( f (a) + nε) for any n ∈ N. It might
then be thought that in order to derive a contradiction, it is sufficient to choose n sufficiently
large such that f (b) < f (a) + nε. For we could then conclude P∗( f (b)) by (P∗<) and
hence also a contradiction relative to our premise ¬P∗( f (b)).

But not only does the reasoning just described contain an important lacuna, it is also
possible to consistently adjoin the axioms just described to the theory of first-order analysis
A consisting of the axioms of an ordered field, together with the schema of Dedekind
Completeness for LA = {0,1,+,×,<} formulas.54 Before presenting a formal statement
and proof of this fact it will be useful to observe where the gap in the foregoing argument
occurs. Note in particular that in order to conclude that there is a natural number n such
that the value denoted by f (b) < f (a)+nε exceeds that denoted by f (b) tacitly assumes
that the field of numbers A∗ into which the measurement function f (x)maps the constants
a and b is Archimedean—i.e., that for every x, y ∈ A∗, such that x <∗ y, there exists an
n ∈ N such that y <∗ x +∗ · · · +∗ x (n-times).

It is well known that A possesses nonstandard models in which this property fails.
This suggests that it should be possible to find a consistent interpretation of the premises
just described by interpreting the just noticeable difference αP as a number α∗P which is
infinitesimally small with respect to the distance between f (a) and f (b).

PROPOSITION 5.1. Let L = LA∪{A(x), P(x), P∗(x),≺P , f (x),a,b, α} and consider
the L-theory Uαb, consisting of the axioms of A, axioms asserting that ≺P is a linear order,
(TolαP

P ), (P
∗
<), and the following additional principles involving the interpretation of the

measurement function f (x): ∀x ∈ A∀y ∈ A(x ≺P y ↔ f (x) < f (y)),∀x ∈ A(P(x)↔
P∗( f (x)), P∗( f (a)), ¬P∗( f (b)), f (a) < f (b), 0 < α. Then Uα is consistent and
conservative over A.

Proof. Let R∗ = 〈R∗,0∗,1∗,+∗×∗,<∗〉 be a nonstandard model of
A.55 In order to show that Uαb is consistent, it suffices to show how we can extend this

54 The latter states that each first-order formula ϕ(x) (with parameters) which defines a bounded set
possesses a least-upper bound. Note that in the theory Uα considered below, the completeness
schema is assume to not extended to formulas including the predicate P∗(x). This conforms with
the policy of excluding vague terms from mathematical schema whose history and motivation
were discussed in note 28.

55 Such a model can be obtained by either applying the Upwards Löwenheim–Skolem theorem to the
standard model R of A with domain R or a familiar ultraproduct construction (see, e.g., Kanovei
& Reeken (2004)). Note that any such model contains both nonstandard integers a >∗ n for all
n ∈ N and also so-called infinitesimals b <∗ 1/n for all n ∈ N—e.g., the latter can be regarded
as the reciprocals of the former. Another feature of these construction of R∗ is that they validate
the so-called Transfer Principle—i.e., every first-order statement about real numbers which can
be formulated in LA which holds in the standard model R also holds in R∗. This includes all
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model to a structure R† in which the symbols P(x), P∗(x), A(x), f (x), a,b, and αP

are interpreted to satisfy its non-mathematical axioms and in which the mathematical
symbols of L retain their interpretation from R∗. Let A† be the non-negative part of R∗,
f †(x) be the identity function on A†, and ≺†

P be the restriction of <∗ to A†. Next let
a† and b† be standard real numbers in R+—i.e., a†,b† <∗ n∗ for some n ∈ N—for
which we also assume that a† <∗ b† and |a† −∗ b†| >∗ 1∗. Let P† and P∗†

both
be the interval {x ∈ R† : a† ≤ x <∗ (b† −∗ 1/n∗) for some n ∈ N}. Finally, let
α†

P >∗ 0∗ be an infinitesimal—i.e., α†
P <∗ 1/n∗ for all n ∈ N. It is evident that the

model R† defined in this manner satisfies all of the additional axioms of Uαb with the
potential exception of (TolαP

P ). To see that this principle is also satisfied, suppose that
u, v ∈ R∗ are such that R† |� P∗( f (u)) ∧ u ∼∗P v. The truth of the second conjunct

implies that |u − v|∗ <∗ α†
P and since ∼∗ is symmetric we may assume without loss of

generality that u <∗ v. In this case, the truth of the first conjunct implies that there is
an n ∈ N such that u <∗ (b† −∗ 1/n∗). But since v − u <∗ α†

P , it hence follows that

v <∗ u + α†
P <∗ (b − 1/n∗) + α†

P . But then v <∗ b − 1/2n
∗

since αP <∗ 1/n. But
then R† |� P∗( f (v)) as desired. The proof of the conservativity of Uαb over A proceeds
similarly to Proposition 4.1. �

Much like Proposition 4.1, Proposition 5.1 attests to the fact that the premises of the
phenomenal sorites form a consistent set when they are formulated in a manner which
does not insist that the constant symbol αP which we have introduced to denote a just
noticeable difference for P(x) is interpreted as a specific real number. For as the preceding
proof attests, even if we insist that the images of the objects denoted by a and b themselves
denote fixed real numbers, we may still interpret αP as a number which is infinitesimally
small with respect to the difference between these values.

In the case of the conditional sorties, I defended the use of a similar kind of nonstandard
interpretation for the extremal value n P in virtue of the fact that paradox mongers typically
attach little significance to their precise values. On the other hand, the constant αP has been
introduced without any prior discussion as to how we might go about identifying and de-
noting a real number corresponding to a just noticeable difference for a given phenomenal
predicate.

But this assumption seems appropriate in the case of phenomenal predicates. On the
one hand, our willingness to speak of degrees of orangeness, sourness, loudness, etc. is
at least suggestive that some aspects of the measurement framework are implicit in our
everyday reasoning about phenomenal predicates. But on the other hand, our use of such
terminology does not on its own equip us with knowledge of the specific numerical values
which can measure the left and right endpoints of a potential sorites sequence for such a
predicate or that of the relevant just noticeable difference—e.g., of the values 600, 680, and
5 in the case of looks orange. For not only will these values depend on an arbitrary choice

instances of Dedekind Completeness where the set in question is defined by a formula of LA.
But this property does not hold in R∗ for so-called “external sets” of the sort exemplified by
the interpretation of the predicate P∗(x) below which is bounded but does not possess a least
upper bound in R∗. The possibility of using non-Dedekindian extensions of the reals to interpret
indiscriminable differences in this manner suggests that there is also a straightforward extension
of the approach described in this section to treat cases of what Weber & Colyvan (2010) refer to as
the continuous and the topological sorites (both of which depend on the existence of appropriate
least upper bounds).
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of unit—e.g., nanometers, pH units, or decibels—they will also depend on empirical and
psychophysical facts about our perceptual faculties of which we will typically be unaware.

The proof of Proposition 5.1 makes clear that the mere supposition that there is a means
of interpreting our comparative and degree theoretic discourse about such predicates in this
manner does not commit us to the fact that the standard real numbers are the only mathe-
matical structure which can serve this purpose. In particular, the structure R∗ employed in
the foregoing proof is a non-Archimedean field—i.e., it is not the case for all x, y ∈ R∗,
such that x <∗ y, there exists an n ∈ N such that y <∗ x +∗ · · · +∗ x (n-times). It is thus
not isomorphic to the standard model of analysis R = 〈R,<,+,×, 0, 1〉.

As noted above, this observation explains the gap in the failed derivation of a contradic-
tion in the theory Ub

α . But Proposition 5.1 also illustrates how the factors which initially
seem to motivate us to accept the tolerance principle (TolP ) do not require us to accept that
there is any particular real number which measures a just noticeable difference for P(x).
For in parallel to the formulation of the theory TE in Proposition 4.1, it is also evident that
the proof of Proposition 5.1 demonstrates that the variant of (TolP ) which merely asserts
the existence of such a value—i.e.,

(Tol∃P ) ∃z > 0∀x ∈ A∀y ∈ A[(P∗( f (x)) ∧ | f (x)− f (y)| < z)→ P∗( f (y))]

—may be consistently adjoined to the other axioms of Ub
α even in the case where we have

assumed that the values f (a) and f (b) are fixed.
This observation does not contradict the fact that it is possible to describe concrete

cases of the perceptual phenomenon underlying the phenomenal sorites using a “small”
value for n P —e.g., a sequence of 20 paint chips as described above. But it does suggest
another means of replying to the paradox monger’s insistence that such situations give
rise to linguistically mediated contradictions which our acceptance of the soritical premies
obliges us to confront. For as we have seen, the adoption of the measurement theoretic
understanding of phenomenal predicates already provides a principled reason to reject the
use of a primitive indiscriminability relation to describe our reasoning about such terms.
But this framework also enables us to acknowledge that we understand such predicates to
be tolerant in the sense of (Tol∃P ) while also failing to affirm (TolαP

P ) for any specific value
of αP . This remains so even if a noninfinitesimal value for αP has been determined by
a prior psychophysical experiment. For if we are unaware of this value ourselves, we will
have no reason to accept (TolαP

P ) and thus be under no compulsion to endorse the reasoning
standing behind the corresponding version of derivation 5.1 in which ∼P is understood as
defined by (ID).56

Viewed in this light, the premises of the phenomenal sorites may again be understood
as an implicit description of a nonstandard model in which we understand just noticeable
differences to correspond to infinitesimal magnitudes. The availability of such an interpre-
tation also demonstrates that it is consistent with the other premises of the phenomenal
sorites to assume that the indiscriminability relation ∼∗P defined by (ID) may be a tran-
sitive relation when αP is infinitesimal.57 As a consequence, the model described may

56 The question remains what human subjects would do if they were confronted with the fact that
a particular noninfinitesimal value of αP describes their own perceptual tolerances. But although
this is clearly an empirical matter, there seems to be no abiding reason to assume that they would
continue to accept (TolαP

P ) rather than using the reasoning of derivation 5.1 to conclude via modus
tollens that this principle is indeed not constitutive of how they understand P(x).

57 This can be seen, for instance, by observing that if ∼∗P is defined by (ID), then the interpretation
of this symbol in the model constructed in the proof of Proposition 5.1 is indeed transitive.
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fail to validate another principle which one might argue is implicit in our apprehension of
phenomenal predicates—i.e., that the “distance” between any pair of distinct items along a
given phenomenal continuum may always be bridged by finitely many transitions between
indiscriminable items of the appropriate sort.

Since that the sort of interpretation under consideration fails to allow a finite number
of indiscriminable changes in hue, sourness, loudness, etc. to “add up” to a discriminable
change, it might still be claimed the extension of the neo-feasibilist approach to the phe-
nomenal sorites fails to provide a felicitous account of our apprehension of the situations
in question. Note, however, that the formulation of this complaint itself requires the use of
the notion finite. But as finitude is presumably a mathematical notion, this in turn suggests
that the assumptions underlying the potential objection may not be of the same “naive”
character as the other soritical premises. After first surveying several additional features
and applications of neo-feasibilism in §6, I will return to address this issue in §7.

§6. Applications and comparisons.

6.1. The line drawing sorites. The line drawing sorites is another argument scheme
which is often presented as an alternative form of the conditional sorites. Hyde’s (2011)
presentation is as follows:

5.1 The line drawing sorites
P(a0)
¬∀i P(ai )

∴ ∃i(P(ai ) ∧ ¬P(ai+1))

Rather than constituting a contradiction, the line drawing sorites is supposed to eventuate
in the counterintuitive consequence that there is a sharp boundary between the extension
of a soritical predicate P(x) and its anti-extension. Such a boundary corresponds to the
existence of an object oi in the envisioned sorites sequence oo, . . . , onP such that P(x)
holds of oi and ¬P(x) holds of oi+1 for some 0 ≤ i ≤ n P . But presented in the form
just given the argument again relies on a suppressed mathematical premise—i.e., the least
number principle for LP∗

LNP(LP∗) For all LP∗ -formulas ϕ(x), ∃xϕ(x)→ ∃y(ϕ(y) ∧ ∀z < y¬ϕ(z)).
If this principle is adopted, a replacement for 5.1 can now be constructed which us to

shows that ∃x(P∗(x) ∧ ¬P∗(x ′)) is derivable in the theory PA− + LNP(LP∗)+ P∗(0)+
¬∀x P∗(x). But unlike the repair of derivation 1.2 using the induction principle Ind(LP ),
the envisioned derivation relies on several other arithmetical axioms of PA−—e.g., the fact
that 0 doesn’t have a predecessor. It is also easy to see that over such a base theory the least
number principle forLP∗ is equivalent to Ind(LP )—i.e., the theories PA−+LNP(LP∗) and
PA− + Ind(LP∗) have the same theorems. Thus if we continue to hold that mathematical
induction may not be applied to vague predicates, then we should also presumably hold that
the least number principle is also not applicable to them as well. This blocks the derivation
of ∃x(P∗(x) ∧ ¬P∗(x ′)) from P∗(0)+ ¬∀x P∗(x) over PA− in much the same way that
rejection of Ind(LP∗) blocks derivation 1.4.

The question thus arises whether the theory U∃ = Z+P∗(0)+¬∀x P∗(x)+¬∃x(P∗(x)∧
¬P∗(x ′)) is consistent. One might conjecture that since P∗(x) is stipulated to hold of
0 but to fail to hold of some other number, then it must be possible to find the point
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of transition from the extension to the anti-extension of P∗(x) by searching through the
numbers 0, 1, 2, . . . so as to find a witness demonstrating ∃x(P∗(x) ∧ ¬P∗(x ′)). But it is
easy to see that this idea cannot be turned into a formal proof. For observe that it is possible
to construct a model of U∃ in the manner of Proposition 4.1—i.e., by letting M |� Z be
nonstandard, and then interpreting P(x) in M as a proper cut I � M .58

Such a model satisfies P∗(0) because all cuts contain 0 and it satisfies ¬∀x P∗(x)
because M− I is nonempty. What is more interesting is whyM fails to satisfy ∃x(P∗(x) ∧
¬P∗(x ′)). Suppose we define the sets P+ =df {a ∈ M : M |� P∗(a)} = I—i.e., the
extension of P(x) in M and P− =df {a ∈ M : M |� ¬P∗(a)} = M − I—i.e., the anti-
extension of P(x) in M. Since I is closed under successor, it follows that P+ contains no
<M -greatest element. Similarly, P− will be closed under predecessor and thus contain no
<M -least element. And from this it follows that there does not exist an element a ∈ M
such that a ∈ P+ and a +M 1 ∈ P−, or equivalently M �|� ∃x(P∗(x) ∧ ¬P∗(x ′)).

Such a model thus provides a consistent interpretation of the premises of derivation 5.1
in which there is not a sharp boundary between P+ and P− in the sense defined above.
On the other hand, P+ and P− are clearly defined so that they partition the domain of M
disjointly—i.e., P+ ∪ P− = M and P+ ∩ P− = ∅. It hence follows that M satisfies
∀x(P(x) ∨ ¬P(x)) in accordance with classical logic while also satisfying the tolerance
principle ∀x(P(x)→ P(x ′)) and thus¬∃x(P(x)∧¬P(x)). On the other hand, any proper
initial segment of the standard model N must have the form {0, 1, 2, . . . , k} for some
k ∈ N. It thus follows that if we used such a set to interpret P(x), k+1 must fall in the cor-
responding anti-extension for P(x) from which it follows that N |� ∃x(P(x) ∧ ¬P(x ′)).

It may also be noted that in M the transition from P+ to P− will occur after infinitely
many discrete steps along the ordering <M . This is possible because the order-type of a
nonstandard M |� PA− is ω+ (−ω+ω) · η. If P+ is interpreted as a proper cut, then the
structure 〈P+,<M 〉 will thus be isomorphic to either ω or to ω+ (−ω+ω) · ζ where ζ is
the order-type of a proper initial segment of a dense linear order without endpoints. But in
neither case will there be a<M -greatest element of P+ or an<M -least upper bound of P+
in M . This illustrates in a more precise way how the order-structure of a nonstandard model
can serve to explicate the sense in which it is commonly maintained that vague predicates
lack sharp boundaries.59

58 A related structural feature of such interpretations may also be taken to bear on the view about
vagueness traditionally referred to as nihilism. Nihilists such as Unger (1979) argue that since
we are often inclined to accept the soritical premises P∗(0) and ∀x(P∗(x) → P∗(x ′)), we are
hence obliged to accept the conclusion that P∗(n) for arbitrary n ∈ N as well. On this basis they
argue that since all objects in a potential sorties sequence for P(x) are such that the corresponding
number falls under P∗(x), no objects can fall under ¬P(x). Nihilists thus treat the paradox as a
reductio of the premise that (e.g.) there are heaps or nonbald men. Note, however, in the model
M of U∃ just described the extension of ¬P∗(x) must be nonempty, from which it follows that
M |� ∃x¬P∗(x). For this reason neo-feasibilists should not be characterized as “embracing” the
sorites along with nihilists.

59 The sense in which P+ and P− fail to have a sharp boundary in M may be partially likened to
the reason why the intersection of the sets A0 = {x ∈ Q : x ≤ √2} and A1 = {x ∈ Q :

√
2 ≤ x}

is empty—i.e., in neither case is there an object in the domain of the structures which falls on
the border. In the case of A0 and A1, however, this gap is naturally “filled in” by moving to
the Dedekind completion of Q—i.e., R. In the nonstandard case, the analogous step would be to
attempt to regard the cut P+ itself as a new object [P+] corresponding to the least upper bound
of its members in an expanded model. But in this case, we cannot have [P+] ∈ P+ as otherwise
[P+] + 1 ∈ P+ in contradiction to ∀x(x ∈ P+ → x ≤ [P+]). This suggests that the use of
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6.2. Borderline cases. Another phenomena which is widely discussed in relation to
vagueness is that of borderline cases—i.e., objects to which a given predicate P(x) neither
definitely applies nor definitely fails to apply. Theorists such as Fine (1975) take the
existence of such objects to be criterial of what it means for P(x) to be vague. But even
for ordinal predicates of the sort we have been considering, it is difficult to find published
values analogous to those given in Table 1 which are taken to be characteristic examples—
e.g., of the number of hairs on the head of a borderline bald man or the number of grains
which comprise a borderline heap.

The paucity of numerical data notwithstanding, it still appears that arithmetical princi-
ples play an important role in our understanding of borderline cases. Suppose, for instance,
that m serves as an accepted extremal value for P(x)—e.g., n P = 10000 in the case of
non-heap. Since in such a case we will presumably accept P∗(0) and reject P∗(n P ), one
obvious place to look for borderline cases is the range of numbers which are simultaneously
as far from 0 and n P as possible—i.e., in the middle of the sequence 0, . . . , n P . One way
in which we might refer to such values is via the use of fractions such as n P/2 or n P/2± j
which denote the values in the vicinity of half of n P . For note that it would seem that there
is an intrinsic instability in using values of the forms k or n P − k when k is “small” in
comparison to n P—say k = 50 in the case m = 10000.

In order to see why this is so, suppose that we adopt the standard assumption that we
can express what it means for a number to be a borderline case of P∗(x) by using a
propositional operatorDϕ with the intended interpretation ϕ is definitely true. We may now
introduce another operator BP∗(x) =d f ¬DP∗(x) ∧ ¬D¬P∗(x)which expresses that for
x to be a borderline case of P∗(x) is for neither P∗(x) nor¬P∗(x) to be definitely true. It is
traditionally taken to be counterintuitive that the transition from being a definite non-heap
to being a borderline non-heap could occur with addition of a single grain. Thus when P(x)
is vague, it is also conventional to assume that the property expressed by DP∗(x) is itself
tolerant—i.e., ∀x(DP∗(x) → DP∗(x ′)). But now suppose that we are willing to assert
that 50 grains form a borderline heap—i.e., BP∗(50). From this it follows that¬DP∗(50).
It will then follow that we can formulate another instance of the conditional sorites for
DP∗(x) based on the premises DP∗(0) and ∀x(DP∗(x)→ DP∗(x ′)) with nDP = 50.

But note that it is also often assumed in such cases that D¬P∗(x) will itself be tolerant.
Parallel observations thus apply to values expressed in the form n p − k in virtue of our
ability to formulate a “short” sorites sequence for this predicate downwards from n P . Other
factors equal, it would thus appear that we reach the conclusion that it will be most stable
to locate borderline cases for P(x) at a point which is simultaneously as far away from 0
and n P as possible—i.e., approximately halfway between 0 and n P .60

These observations again do not entail that there is a unique form of numerical expres-
sion which we must use for designating borderline cases. But what they do suggest is that

nonstandard interpretation to model the nonexistence of sharp boundaries should be regarded as a
sui generis proposal which is not readily accounted for using structures with standard order-types
as analogies.

60 Given the tendency of paradox mongers to choose “safe” extremal values (such as n P = 1000000
for bald), one might be dubious as to whether genuine borderline cases only start to arise only
in the vicinity of n P/2. As we will soon see, however, what is crucial to the following account
is not that such cases occur approximately halfway along sorites sequences, but rather that once
a realistic value of n P has been fixed, we will tend to locate its borderline cases by dividing the
range 0, . . . , n P into two or more parts rather than by counting upwards or downwards from one
of its endpoints.

https://doi.org/10.1017/S1755020318000163 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000163


330 WALTER DEAN

once we have fixed an extremal value n P for a particular soritical predicate P(x), it is
natural to locate such cases by speaking of various fractional values of the number n P .
The specific language La over which we have been working does not contain a functional
symbol for division which allow us to talk about such values directly. However, for each
k > 0 we can readily express in LP that F(x) holds of the result of rounding x/k down to
the next smallest integer by a formula of the form F(�x/k) =df ∃q < x∃r < k(k×q+r =
x ∧ F(k × q)).

We can now record the following.

PROPOSITION 6.1. Let Tm = Z+ (F0)+ (Fs)+ (F<)+¬F(m) where Z ⊇ I�0, m is
treated as constant symbol, and k > 1. Then presuming Z is consistent, Tm �� F(�m/k)
and Tm �� ¬F(�m/k)—i.e., the statement F(�m/k) is formally independent of Tm.61

Proof. It suffices to construct models M0 |� Tm + ¬F(�m/k) and M1 |� Tm +
F(�m/k). To see that this is possible, observe that Tm + ¬F(�m/k) is satisfied in any
model M0 in which FM0 = N—i.e., the standard cut—and a = mM0 ∈ M0 − N—
i.e., any nonstandard integer. Since in this case �a/kM0 is nonstandard as well, M0 |�
¬F(�m/k).62 To construct M1 |� Tm+ F(�m/k) take any nonstandard model of M |�
Z and extend it to models of Tm in which F is interpreted as a proper cut I �= N. Now

consider an element b ∈ I − N. Since b is nonstandard, c = k
M ×M b is as well and

also b +M i �= c for any i ∈ N. It thus suffices to let FM1 be the cut {d ∈ M : d <
b +M i for some i ∈ N} since mM1 = c �∈ FM1 . �

As we have seen, the standard means of explaining what it means for t to denote a
borderline case of P(x) is that this predicate neither determinately holds nor determinately
fails to hold of t . But one way of understanding such indeterminacy is to maintain that in
accepting the sortical premises embodied by Tm we do not thereby commit ourselves to
whether objects which we take to correspond to borderline cases fall under P(x). But if we
let F(x) be the arithmetization of P(x), then this is exactly what Proposition 6.1 appears
to demonstrate subject to the proviso that in practice we will tend to employ expressions
such as �n P/k denoting fractional values of n P to describe borderline cases of P∗(x).63

61 Using either variants of the following construction or the related technique of realizing types,
this result can be generalized to show that it is possible to construct models of Tm in which
the denotation of m in M is (e.g.) even or odd, prime or composite, etc. This further illustrates
the extent to which neo-feasibilism is compatible with various other constraints which might be
imposed on the interpretation of vague predicates or extremal values provided they are consistent
with the axioms of Tm .

62 Note that taking FM0 = N suffices because M0 only needs to satisfy Overspill for La-formulas.
63 It is also possible to build on this account to show how a nonstandard model M |� Tm can be used

to provide an interpretation of the definiteness operator D which allows for arbitrary degrees of
higher-order vagueness. Suppose for instance that we begin by identifying �n P/2 as a borderline
case of P∗(x). At the first stage we can begin by interpreting DP∗(x) in M as a proper cut I1 �= N

not containing �n P/2M and D¬P∗(x) as {nMP − i : i ∈ N} ∪ {a ∈ M : nMp ≤M a}. It is
generally acknowledged that the property of being a borderline case is itself tolerant in both the
positive and negative directions—i.e., if x is a borderline case, then so are x+1 and x−1, etc. This
suggests taking the extension of BP∗(x) to be the set {�n P/2M−i : i ∈ N}∪{�n P/2M+i :
i ∈ N}. If we continue to follow the classical description of higher-order vagueness provided by
Sainsbury (1991), we should then also acknowledge that there exist borderline cases of BP∗(x).
This in turn suggest that we would naturally tend to locate such objects in regions surrounding the
denotation of the terms �n P/4 and �3n P/4. And this suggests taking the extension of BBP∗(x)
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6.3. Supervaluationism and epistemicism. The foregoing observations may initially
appear to suggest that neo-feasibilism is most naturally viewed as compatible with the
view that vagueness should be regarded as a form of semantic underdetermination. For it
seems plausible to suppose that there will be situations in which the axioms of a theory like
Tm will constitute the only principles we will be willing to assert about a given soritical
predicate P(x). But although Proposition 6.1 demonstrates that Tm does not decide the
truth values of borderline cases denoted by expressions of the form �m/k, this theory still
possesses classical models in which P∗(x) receives a definite extension in virtue of the
consistency of Tm .

We have seen that in such a model the interpretation assigned to P∗(x) partitions the do-
main sharply into an extension and an anti-extension. According to the view just described,
however, vague predicates are neither true nor false of borderline cases. Supervaluationists
such as Fine (1975) suggest that such gaps reveal a semantic deficiency in the meaning
of vague predicates which may be removed by “precisifying” their interpretations. But
since any such precisification would be arbitrary in how it handles borderline cases, such
theorists accordingly hold that a semantics for vague predicates should take all admissible
precisifications of P(x) into account. In particular, they hold that a sentence should be
regarded as true just in case it is true on all admissible precisifications (i.e., super-truth),
false just in case false on all admissible precisifications (i.e., super-falsity), and neither true
nor false otherwise.

Some familiar consequences of replacing truth simpliciter with super-truth in a seman-
tics for vague predicates are as follows: i) all classically valid schema are still validated;
ii) the super-truth of P∗(t) ∨ ¬P∗(t) notwithstanding, neither P∗(t) nor P∗(t) will itself
be super-true when t denotes a borderline case; iii) ∃x(P∗(x) ∧ ¬P∗(x ′)) is super-true
since P∗(x)will possess a sharp boundary for each precisification. Since supervaluationists
will consequently count ∀x(P∗(x) → P∗(x ′)) as super-false, such theorists are hence
committed to regarding both the conditional and inductive sorites as unsound. Such a view
thus preserves classical logic at the schematic level and provides a rationale for rejecting
the reasoning of derivations like 1.3 and 1.4. But it does so at the expense of abandoning
classical logic at the substitutional level64 and also appearing to assert the existence of
sharp boundaries for soritical predicates (from which the failure of tolerance also follows).

A counterpoint to supervaluationism is provided by the epistemic views of vagueness
associated with Williamson (1994) and Sorensen (1988). Rather than regarding vagueness
as a form of semantic underdetermination, epistemicists take it to be a form of ignorance.
Such theorists assume all predicates—inclusive of those traditionally regarded as vague—
have sharp boundaries which are determined by a combination of the world and our linguis-

to be {�n P/4M − i : i ∈ N} ∪ {�n P/4M + i : i ∈ N} ∪ {�3n P/4M − i : i ∈ N} ∪
{�3n P/4M+i : i ∈ N}. Since the order-type of M is ω+(−ω+ω)·η where η is a dense linear-
ordering without endpoints, it follows that this process can be continued indefinitely to assign
nonoverlapping extensions to the iterates BBP∗(x),BBBP∗(x) . . . of the borderline operator.
Similarly, since we have interpreted DP∗(x) as a proper cut I � N, we can additionally interpret
iterations of this operator DDP∗(x),DDDP∗(x), . . . as a non-well-founded sequence of proper
cuts I1 � I2 � I3 ⊆ · · · � N. Detailed consideration of whether this construction provides
a felicitous model of reclassifications which may be induced by the iteration of the borderline
and definiteness operators or whether it avoids the other difficulties customarily associated with
higher-order vagueness (cf., e.g., Wright (2010)) will have to await another occasion.

64 E.g., in the sense that ∃xϕ(x) may be super-true without it being the case that ϕ(x) is
“supersatisfied” by the same object in all admissible precisifications.
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tic practices, possibly in a complex manner.65 As such they are able to preserve classical
logic in the sense of both i) and ii). But while epistemistists agree with supervaluationists
about the existence of sharp boundaries in the sense of iii), they offer a different account
of their status. For on the one hand, supervaluationists explain the sense in which they take
∃x(P∗(x) ∧ ¬P∗(x ′)) to be true by pointing out that it may be made true by different
witnesses in different precisifications. On the other hand, epistemicists matter-of-factly
accept the existence of an n such that (e.g.) a man with n hairs is bald and a man with n+1
hairs is not, while offering auxiliary accounts of why we cannot come to know the value
of n.66

Neo-feasibilists are in a position to chart a different route through these concerns which
may plausibly be taken to combine several of the insights traditionally associated with
supervaluationism and epistemicism while also avoiding some of their evident weaknesses.
As we have seen, for instance, theories like Tm possess classical models in which the pred-
icate P∗(x) receives a definite interpretation. But since such models satisfy ∀x(P∗(x)→
P∗(x ′))—and thus fail to satisfy ∃x(P∗(x) ∧ ¬P∗(x ′))—neo-feasibilists are not commit-
ted to the failure of tolerance or the existence of sharp boundaries for soritical predicates.
Such theorists also appear to be better positioned than epistemicists in accounting for how
vague predicates can possess such definite extensions. For whereas the sorts of auxiliary
explanations just alluded to are often regarded with suspicion, the existence of models
M |� Tm in which P∗(x) is assigned an extension is a simple consequence of the Com-
pactness Theorem for first-order logic given the consistency of Tm .

On the other hand, it is a consequence of Proposition 6.1 that the Compactness Theorem
does not itself tell us whether terms of the form �n P/k by which we might plausibly
denote various borderline cases fall within the extension of P∗(x). More generally, the
following results suggest that although we are able to prove that models of Tm exist, the
only characteristics we can know about the extensions which they assign to P∗(x) are
essentially negative:

PROPOSITION 6.2. Let Tm be as defined above where Z ⊇ I�0 and M |� Tm.

i) M is not a recursive model—i.e., were M to be mapped isomorphically on to a
model N with domain N (which is always possible if M is countable), then the
induced extensions of the functional symbols+ and× on N would not be recursive.

ii) If M |� Ind(�n) (i.e., induction for �n-formulas), then the extension of P∗(x) in
M is not definable by a �n-formula of La in M.

Since any model M of Tm must be nonstandard, the first of these observations is sim-
ply a recapitulation of Tennenbaum’s Theorem.67 This result can be taken to suggest
that metatheoretic results such as the Compactness Theorem should not be viewed as

65 See, e.g., (1994, §7.5) for Williamson’s defense of the view that epistemicism is compatible
with the view that meaning supervenes on language use, albeit in a manner which may be
“unsurveyably chaotic”.

66 For instance, Williamson (1994, chap. 8) proposes that knowledge of statements of the form P(t)
must be the product of belief-forming mechanisms which allow for margins of error which would
not be satisfied in the case where t denoted a borderline case of P(x). On the other hand, Sorensen
(1988) offers a complex set of analogies between our apparent inability to classify borderline
cases and other epistemic “blindspots”.

67 See (Kaye, 1991, §11.3).
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mechanisms for explicitly constructing nonstandard models M |� Tm , but merely as
a means of inferring their existence on the basis of other mathematical or set theoretic
assumptions.68 In virtue of this, little can be said about the extension of P∗(x) absent an
explicit specification of M which, per i), cannot be given constructively. For per ii), such an
extension cannot coincide with that of any La-formula for which M satisfies induction.69

We have already seen that one advantage neo-feasibilism has over both supervaluational-
ism and epistemicism is that it provides a means of resolving the conditional and inductive
sorites in a manner which allows us to retain the intuition that vague predicates do not
possess sharp boundaries. With respect to preserving classical logic, the neo-feasibilist has
two options. On the one hand, he can adopt a supervalutational view of truth according to
which an LP∗ -sentence is true just in case it is true in all models of Tm , false if it is false in
all such models, and neither true nor false otherwise. On the other hand, he can hold that
the extension of P∗(x) is fixed with respect to some particular model M |� Tm obtained
in the manner described above. But in so doing, he can also appeal to Proposition 6.2 to
explain why we are not thereby provided with an explicit characterization of this extension.

I will adopt the latter strategy here not only in virtue of its simplicity, but also because
it allows for the formulation of several potentially salutary refinements to epistemicism.
Note first if we assume that the extension of P∗(x) is fixed relative to a particular model
M |� Tm , classical logic is preserved in the sense of both i) and ii) above. On the other
hand, by taking this step we incur an obligation similar to that of the traditional epistemicist
to explain how it is that vague predicates can have fixed extensions which is compatible
with otherwise plausible assumptions such as the fact that our usage of them is insufficient
to determine their precise extensions.

One possible means of responding to this challenge is to attempt to draw an anal-
ogy between the formal undecidability of statements of the form P∗(�m/k) and other
mathematical independence results. Note, however, that it is possible to distinguish be-
tween several different types of undecidable mathematical statements. For instance there
are statements such as the Continuum Hypothesis (CH) which are independent of strong
mathematical theories like ZFC and which are occasionally suggested to be “absolutely
undecidable”. Another relevant class of principles is typified by the statement ∀x∀y(x ·y =
y · x) which expresses in the language of group theory that the operation denoted by · is
commutative. Although this statement is independent of the group theoretic axioms G, it
is a commonplace that neither our understanding of what it is to be a group nor any other
mathematical facts make this statement determinately true or false.

Epistemists have occasionally sought to explain the nature of our ignorance about how to
classify borderline cases in terms of an analogy with undecidable mathematical statements

68 It is now standard to account for the sort of non-constructiveness at issue using the framework of
Reverse Mathematics—see, e.g., (Simpson, 2009, §IV.3, §VIII.2) or (Dean & Walsh, 2017, §4).

69 This follows because if ϕ(x) is such a formula and M |� ∀x(P∗(x) ↔ ϕ(x)) and also M |�
ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(x ′))→ ∀xϕ(x), then M |� ∀x P∗(x) in contradiction to M |� ¬P∗(m).
If we assume per §4 that Tm extends I�0, this means that the extension of P∗(x) cannot coincide
with that of a �0-formula in M. A sharper computational characterization can be given if we
take Tm to extend the theory V1 described in the Appendix (§8)—i.e., in this case the extension
of P∗(x) cannot coincide with a set decidable in polynomial time with computations relativized
to M. Thus not only does Tm fail to decide potential borderline cases of P∗(x), such cases would
still be hard to decide computationally even if we could perform arithmetical calculations within
one of its models.
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of the first kind.70 However a common view (e.g., Koellner (2009)) is that it is difficult
to rule out now that future work will cause us to refine our concepts in such a way that
statements like CH will come to be regarded as decided on mathematical grounds alone.
On the other hand, it seems difficult accept that either further reflection on or application
of concepts like bald, heap, or looks orange will leads us to refine our understanding in a
manner which would nonstipulatively decide the relevant borderline cases.

On the other hand, it seems that analogy with the second form on incompleteness is more
promising. For note that in citing the Completeness Theorem (which is a simple corollary
of Compactness) to infer the existence of a model M of the consistent theory Tm we fix
the extension of P∗(x) in much the same manner that we would fix the extension of · if we
were to employ Completeness to infer the existence of a group G from the proof theoretic
consistency of the axioms G. But in this case, the independence of ∀x∀y(x · y = y · x)
illustrates how we can come to know that such a structure exists without thereby coming
to know whether its operation is commutative.

When we assert that a theory like Tm formalizes the principles which we accept for a
vague predicate P(x), we presumably adopt a similar attitude about the factors which can
legitimately contribute to its semantic interpretation.71 Neo-feasibilists are well positioned
to explain this. For even if we assume that P∗(x) receives a fixed interpretation in some
model M |� Tm , Propositions 6.1 and 6.2 intervene to show how little we come to know
about its precise extension. Neo-feasibilists can thus point to the non-constructiveness
of the metatheoretic principles such as the Completeness and Compactness Theorems
underlying these results as providing an epistemological account of the sense in which
extensions of vague predicates are underdetermined—i.e., one which allows us to consis-
tently assume that such predicates have fixed extensions while simultaneously accounting
for our ignorance of their boundaries.

§7. Vagueness, representation, and finitude. Neo-feasibilism differs from most
mainstream theories of vagueness in that it seeks to provide an interpretation of vague
predicates relative to which the premises of the sorites are classically consistent. I have
argued that such an approach derives independent motivation from the strict finitist critique
of classical mathematics in §2–§4 and from the use of measurement theory to represent
perceptual continua and indiscriminable differences in §5. In §6 I have also attempted to
illustrate how this view provides insight into a variety of phenomena and debates which
are often discussed by philosophers in relation to vagueness.

Nonetheless, the suggested interpretations still take the form of nonstandard models of
formal theories of arithmetic and analysis originating in mathematical logic. The sugges-
tion that such structures have some bearing on the semantics of natural language may
continue to strike some readers as incongruous simply in virtue of their remoteness from
our everyday experiences. Perhaps most worryingly, neo-feasibilists seek to block the
reasoning of the conditional sorties by interpreting the sorts of expressions we might use
to refer to the number of hairs on a bald man’s head as denoting numbers with infinitely

70 See, e.g., (Williamson, 1994, pp. 203–204).
71 This is not, of course, to rule out the possibility that such a theory will include additional

principles involving P(x) beyond the soritical premises alone—e.g., in the form of what Fine
(1975) calls “penumbral connections” to other predicates. For the adoption of such principles
will presumably not result in a theory to which Propositions 6.1 or 6.2 cease to apply—e.g., by
deciding borderline cases or admitting only standard models.
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many predecessors and to block the reasoning of the phenomenal sorites by interpreting
the phenomenal color spectrum as containing hues which are infinitesimally close to one
another. As such representations may seem out of keeping with a everyday understanding
of finitude, it will be useful to examine such apparent infelicities in greater detail.

The nature of the alleged misrepresentation may be even more vividly illustrated by
the way in which neo-feasibilists will be inclined to interpret several of the predicates
included in Table 1—e.g., walking distance, tall, or noonish—we have yet to discuss. Like
the phenomenal predicates discussed in §5, these are all examples of ratio predicates in
the sense that their applicability to specific items relies on a conventional but arbitrary
choice of empirical unit. On the other hand these predicates apply not to points or regions
of perceptual continua, but rather to empirical magnitudes such as lengths or durations of
which we typically have a more robust understanding. For instance, we are well acquainted
with the fact that once we have chosen a unit u for length measurement—e.g., a standard
foot or meter bar—we may then make systematic use of the real numbers to measure and
compare lengths. Moreover, the process of physically concatenating multiple instances of
u gives rise to an additive structure on the domain of lengths which we conventionally
assume to be isomorphic to that of the non-negative real numbers.

Suppose we now follow Gaifman (2010) in focusing on the predicate W (x) = x is
walking distance measured in feet. We can then think of the domain of lengths which
forms the field of this predicate as comprising a structure A = 〈A,≺, ◦, e, u〉 where A
is some sufficiently rich collection of magnitudes which we assume to include the null
magnitude e, the unit magnitude u (i.e., a standard foot), ≺ is the empirical longer than
relation, and ◦ is the operation of concrete length concatenation. A is representable by a
structure of the form A∗ = 〈A∗,+,<,+, 0, 1〉 via a measurement function f : A → A∗
which (for simplicity) I will assume to be injective and to satisfy f (e) = 0, f (u) = 1, for
all a, b ∈ A, a ≺ b iff f (a) < f (b), and f (a ◦ b) = f (a)+ f (b).

In most familiar cases, we would also take A∗ = R+. But once we have fixed such a
language for describing our normal practices of length measurement, we can also provide
a mathematical interpretation of W (x) by defining W∗(x) iff f −1(x) is a walking distance.
We may then formulate the relevant sortical premises for W (x) as W∗(0),∀x(W∗(x) →
W∗(x ′)), and—employing Gaifman’s choice of extremal value for W (x)—¬W∗(6000). If
we treat 6000 as a constant symbol, it should now be evident that the theory U6000 = A+
W∗(0)+∀x(W∗(x)→ W∗(x ′))+¬W∗(6000) can be shown to be consistent in the manner
similar to Propositions 5.1—e.g., we can interpret 6000 as denoting an infinitely large
integer in a non-Archimedean model R† of A. Such a model will, of course, felicitously
represent the fact that 6000 feet does not comprise a walking distance in the sense that
R† |� ¬W∗(6000). But on the other hand if we were to attempt to transfer this fact back
into the empirical domain A, we would reach the conclusion that f −1(6000)R†

must itself
be an infinite magnitude—i.e., one which cannot be surpassed by any finite concatenation
e ◦ · · · ◦ e of empirical foot-long units.72

A likely reaction is that a such model misrepresents certain of our commonly held beliefs
about walking distances and related notions. For although we may accept the soritical

72 It is also evident that the consistency of U6000 can be demonstrated by interpreting f (u) (i.e.,
the term denoting the image of our standard foot under the measurement function f (x)) as an
infinitesimal and then interpreting 6000 as denoting the standard integer 6000 in R†. But since
such a model is related to the one just described by an affine transformation, this can be viewed
as another description of the same model up to a “rescaling of units”.
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premises for W∗(x), we certainly do not think that 6000 feet (≈ 1.136 miles) is an infinite
distance. And thus despite the fact that R† will satisfy some portion of our practices of
length measurement, one might reasonably object that it also distorts other aspects of how
we understand the situation envisioned by the sortical premises.73

There are several avenues by which a neo-feasibilist might elect to respond to this
objection. For instance, he might dwell further on how little stock paradox mongers tend
to place in their choice of extremal values in formulating the sorites74—e.g., by offering
a contextual account of how different circumstances allow us to treat different numbers
as “infinite for all intents and purposes”. Although such a proposal has an evident affinity
with the original feasibilist proposal considered in §3, I will now briefly describe two other
possible responses to the envisioned objection. These options—which I will refer to as
radical and moderate measurement theoretic antirealism—parallel the traditional debate as
to whether vagueness resides in the world or in our linguistic and cognitive representations.

According to the radical antirealist, the envisioned critic does not possess justification
for the incredulity with which he regards the neo-feasibilist’s claim that R† provides a
felicitous representation of how we reason about the predicate walking distance. Such a
view takes inspiration from a tradition within measurement theory which questions whether
it is always appropriate to assume that the mathematical structures employed as scales
for length measurement must be Archimedean.75 For note that if A contains infinitely
many magnitudes, then the fact that A satisfies the Archimedean axiom—i.e., that for all
a, b ∈ A, if a ≺ b, then there exists n ∈ N such that b ≺ a ◦ · · · ◦ a (n times)—will
generally not be confirmable empirically.

If we lack justification for the assumption that physical space is Archimedean, then
in order to rule out the possibility that (e.g.) 6000 feet corresponds to a length that is
infinite with respect to our chosen unit u, we would need to conduct an experiment which
shows that the result of concatenating sufficiently many copies of u yields a magnitude
of greater than 6000 feet. But it is unlikely that we will be able to practically carry out
either this experiment or a similar one which would be called for had the paradox monger
selected a larger value of nW initially. On this basis the radical antirealist concludes that the
challenge of misrepresentation is grounded in the unjustified assumption that R† distorts
any essential aspect of our practices of length measurement.

The response offered by the moderate antirealist is more nuanced. Such a theorist sug-
gests that while structures like R† may not accurately represent physical space, it does not
follow from this that the most felicitous model of our reasoning about walking distances

73 It should also be evident that similar points apply (mutatis muntandis) to our ability to read back
the properties attributed to various numbers in models described above for ordinal predicates
like bald and non-heap. For instance, although we are likely to assent to the fact that a man
with 1000000 hairs on his head is not bald, we are presumably unwilling to assent to the fact
that such an individual has infinitely many hairs. The analogous observation with respect to the
phenomenal predicate is the fact that the model R† constructed in Proposition 5.3 will treat a just
noticeable difference for the predicate P(x) as infinitesimally small, from which it follows that a
finite number of such differences can no longer be chained together to yield a perceptible one in
the manner noted at the end of §5.

74 As exemplified by Gaifman’s (2004) own choice on another occasion of nW = 50000 or Dietz’s
(2011) choice of nW = 5280000.

75 Such doubts can already be found in Hilbert—e.g. (Hallet & Majer 2004, p. 17). Similar concerns
about the empirical status of the Archimedean axiom have repeatedly surfaced in the subsequent
literature on measurement theory—e.g., (Krantz et al., 1971, §1.5), (Skala, 1975), (Narens, 1985),
and Luce, Krantz, Suppes, & Tversky (1990), §21.7.
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needs to assume that the domain of items to which we apply this notion is comprised of
bona fide empirical magnitudes. We might, for instance, adopt the approach suggested in
§4 and §5 and instead attempt to develop a system of representation which is compatible
with both general principles we accept about length measurement and also our judgements
about whether specific magnitudes constitute walking distances. As we have seen, this
leads naturally to a non-Archimedean scale such as R†. The moderate antirealist encour-
ages us to understand the domain of this structure as being comprised of mathematical
proxies representing not empirical lengths but rather a generalized notion of spatial mag-
nitude which we have introduced to represent what we colloquially refer to as “walking
distances”.76

It is still a consequence of this strategy that if we were to reason about such magnitude-
like items directly using the model R† and then attempt to reapply our conclusions to the
empirical world, we would be led to the apparently false conclusion that 6000 feet is an
infinite distance. This might in turn prompt someone who is using R† as a representation to
facilitate reasoning about walking distances to acknowledge that such a structure is indeed
not an accurate representation of physical space. It would seem, however, that we rarely
engage in the pattern of inference just described—i.e., one in which we categorically state
a conclusion in nonvague language on the basis of reasoning we have knowingly conducted
using vague premises.

Perhaps one reason for this is because we implicitly realize that the empirical world
must ultimately be described in a nonvague manner—e.g., in terms of the fundamental
non-vague physical magnitudes length, mass, and duration. But in addition to this, the
conservativity results recorded in Propositions 4.1 and 5.1 show that whenever we are able
to derive a statement formulated in the nonvague portion of the language of a theory such as
Tm or Uαb, then we will also be able to derive it in the corresponding nonvague mathemati-
cal theory—i.e., in Z or A. It thus follows that were it to be possible to derive a proposition
expressing that 6000 denotes an infinite distance—say formalized as a statement of the
form ¬Fin(6000)—in Tm or Uαb, then it would already be possible to derive it in Z or
A.77 But this is impossible since if ¬Fin(6000) were derivable in one of these theories, it
would also be true in their standard models based on the structures N and R.

This in turn exposes another weakness in the argument of the imagined critic of neo-
feasibilism. For the argument just rehearsed shows that in pressing the point that 6000 fails
to denote a finite magnitude in R†, such a theorist must be relying on an auxiliary premise
beyond mathematical theories such as Z or A. To the extent that such a premise is available
to the critic at all, he must thus have obtained it by some other means—e.g., by “inspecting”
the nonstandard model R† directly. But absent an account of what might be involved in
such a process, it would seem that the critic’s use of this premise remains unjustified. This
in turn illustrates another respect in which debates about vagueness encroach on an issue
at the boundary of philosophy of language and philosophy of mathematics—i.e., in what
semantic and epistemic relationship do we stand to the mathematical models we introduce
in the course of our everyday and scientific reasoning about the empirical world?78

76 A related approach is often adopted in the construction of appropriate measurement spaces
for perceptual magnitudes—e.g., in the use of multidimensional scales for color and pitch
measurement (e.g., Suppes, Krantz, Luce, & Tversky (1989), §15).

77 This supposes that since finitude is a mathematical notion, an adequate definition of Fin(x)
would have to be given in a mathematical language such as LZ or LA.

78 One obvious point of contact is the debate surrounding the so-called model theoretic argument
of Putnam (1980). Note, however, that nothing which has been said above need be interpreted
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§8. Appendix: On formulating the sorites in two-sorted bounded arithmetic. The
goals of this Appendix are fourfold: i) to describe a theory of bounded arithmetic V1 of the
sort mentioned in §4 in which it is possible to naturally formalize basic conjoint reasoning
about unary and positional numerals;79 ii) to describe how it is possible to formalize
principle (D) in the language of such a theory; iii) to sketch the proof that the resulting
sentence is formally independent of V1; iv) to describe how the premises of the conditional
sorites may be interpreted using a nonstandard model of this theory.

Recall that in the relevant case (D) states the following: for every base b ≥ 2 positional
numeral π , there exists a unary numeral υ such that [[π]]b = [[υ]]u . The fact that this
statement contains separate quantifiers over unary and positional numerals provides some
initial justification for attempting to formulate a two-sorted system with distinct types of
variables intended to range over the denotations of such expressions.80 The languages
L2

a of the theories Vi which I will now describe thus has first-sort variables x, y, z, . . .
and second-sort variables X,Y, Z , . . . First-sort variables are intended to range over N,
while second-sort variables are intended to range over the class 2<N of finite subsets
of N. Note that a set X ∈ 2<N may simultaneously be understood as a finite binary
sequence b0, . . . ,bk−1 defined by bi = 1 if i ∈ X and bi = 0 otherwise and also as
the natural number that this sequence denotes when viewed as a binary numeral.81 Via
such a correspondence, second-sort variables can also be understood as ranging over the
sort of object for which we have previously used υ as a metavariable.

The nonlogical symbols of the language L2
a include the first-sort constant 0, as well

as the first sort functions ′,+ and ×. Additionally, we include the less than and equality
relation symbols < and = for numbers, and the symbol | · | intended to denote a function
from second-sort to first-sort objects which returns the successor of the largest element of
the set X to which it is applied, or 0 if X is empty. Note that |X | thus corresponds to the
length of the binary numeral represented by X . Similarly, the predication relation X (i)
can be understood as expressing that the i th digit (or bit) in X is 1. A model for L2

a is thus
of the form M = 〈U1,U2,<,

′ ,+,×, | · |, 0〉 where U1 and U2 are first- and second-sort
domains, <,′ ,+ and × are interpreted on U1 as in traditional one-sorted La-theories and
| · |M : U2 → U1. The standard L2

a-model N is such that U1 = N, U2 = 2<N, ≤,′ ,+ and

as suggesting that the mathematical concept of finitude is genuinely indeterminate in order to
allow that nonstandard methods may provide felicitous representations of certain aspects of our
reasoning about vague predicates. On the other hand, it at least seems reasonable to challenge the
imagined critic of neo-feasibilism about the legitimacy of using “more theory” to rule out such
interpretations given that the conservativity results show that the formulation of such machinery
will have to rely on concepts outside the cluster of everyday notions needed to formulate the
sorites itself.

79 V1 is one of a family of systems of two-sorted bounded arithmetic originally introduced by
Zambella (1996) which have recently been presented in slightly different form by Cook & Nguyen
(2010). The terminology and notation of this later presentation are adopted in this section.

80 Additional motivation originating in computer science stems from the desire to formalize how we
use numerical algorithms such as carry addition and multiplication to compute sum and products
using positional notation. For note that although the inputs and outputs of such procedures
are positional numerals, their specification also makes reference to other “loop” or “counter”
variables whose values are bounded by the length of their inputs and which are only operated
upon in the manner of unary numerals by incrementing or decrementing their values by 1.

81 For instance finite the set X = {1, 3, 5} corresponds to the binary numeral 101010 which in turn
denotes the number 42 = 25 + 23 + 21.
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× are given their standard arithmetical interpretations, and |X |N = the largest element of
X + 1.

In order to state the axioms of the theories Vi we must define the classes of second-
sort bounded formulas �B

1 and �B
1 . As a first step, we define the first-sort terms of L2

a
in the standard manner to include the constants 0, variables x, y, z, . . . , and functional
expressions formed from the terms |X | using +, ′, and ×. The only second-sort terms of
L2

a are the variables X,Y, Z , . . . The atomic formulas of L2
a are thus t = u, X = Y, t ≤

u, X (t). Formulas are constructed from first- and second-sort quantifiers ∃x,∃X,∀x,∀X
and a first-sort quantifier is called bounded if it is of the form ∀x < tϕ(x) =df ∀x(x <
t → ϕ(x)) or ∃x < tϕ(x) =df ∃x(x < t ∧ ϕ(x)) where x does not occur free in t . We
also introduce the abbreviations ∀X ≤ tϕ(X) for ∀X (|X | ≤ t → ϕ(X)) and ∃X ≤ tϕ(X)
for ∃X (|X | ≤ t ∧ ϕ(X)) (where in both cases X does not occur in the term t).

We now define the class �B
0 = �B

0 to be the set of formulas over L2
a all of whose first-

sort quantifiers are bounded and which contain no second-sort quantifiers (although they
may contain free second-sort variables). For i > 0, �B

i is defined recursively to be the
set of all formulas beginning with a block of zero or more bounded existential second-sort
quantifiers followed by a �B

i−1 formula. �B
1 is thus the set of formulas that begin with

zero or more existential second-sort quantifiers (bounded or unbounded), followed by a
�B

0 -formula.
All of the theories V0 ⊆ V1 ⊆ · · · extend Q and contain the following second-sort

axioms:

(i) ∀y∀X (X (y)→ y < |X |).
(ii) ∀y∀X (y ′ = |X | → X (y)).

(iii) ∀X∀Y (X = Y ↔ ∀x < |X |(X (x)↔ Y (x)).

i) and ii) formalize the interpretation of |X | indicated above while iii) expresses that
second-sort objects are individuated extensionally. Finally, the theory Vi (for i ≥ 0)
contains the following comprehension scheme for �B

i formulas:

(�B
i -CA) ∃X ≤ y∀z ≤ y(X (z)↔ ϕ(z)) where ϕ(x) ∈ �B

i does not contain X free.

Although none of the theories Vi contain induction axioms or schema, it is not hard to see
that all instances of Ind(�B

0 ) are derivable in V0. In fact, a simple model theoretic argument
shows that V0 is a conservative extension of I�0 (Cook & Nguyen, 2010, pp. 98–99).

Next note that if we view a finite set X as a binary sequence with characteristic function
cX (i), then the value of the corresponding binary numeral is given by

[[X]]2 = �|X |−1
i cX (i) · 2i .

Such an interpretation makes explicit the intention of regarding second-sort objects as
the denotations of binary numerals. Note, however, that L2

a does not contain a primitive
term for the function [[·]]2, nor even for addition or multiplication on second-sort objects.
Nonetheless, it is possible to construct formulas Add(X,Y, Z) and Mult(X,Y, Z) defin-
ing the graphs of second-sort addition and multiplication such that these functions are
provably total in V1.82

82 For instance, the formula for addition must satisfy Add(X,Y, Z) if and only if [[X]]2 + [[Y ]]2 =
[[Z]]2 and be such that V1 � ∀X∀Y∃ZAdd(X,Y, Z). A formula with this property can be
constructed by first observing that the formula Carry(i, X,Y )↔ ∃k < i[X (k) ∧ Y (k) ∧ ∀ j <

https://doi.org/10.1017/S1755020318000163 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000163


340 WALTER DEAN

In order to formalize principle (D) in L2
a we must also construct a similar formula

Bin(X, y) such that Bin(X, n) holds in the standard model just in case [[X]]2 = n. This
can be accomplished by employing the fact that there is a �0-formula ε(x, y) defining
the graph of the exponential function 2x in La (Cook & Nguyen, 2010, III.3.3.1). It is then
straightforward to formalize the definition of [[X]]2 using facts about the representability of
finite sequences similar to those required to define addition and multiplication for second-
sort objects in L2

a . We can then express (D) in L2
a via the formula ∀X∃yBin(X, y) which

states that for every second-sort object X (i.e., object denoted by a binary numeral), there
exists a co-denoting first-sort object y (i.e., object denoted by a unary numeral).

But relative to this formalization (D) is underivable in any of the theories Vi —i.e.,

PROPOSITION 8.1. For all i , then Vi �� ∀X∃yBin(X, y) (presuming, Vi is consistent).

(Proof sketch). It is easy to see that the relation Pow2(x,Y ) which holds just in
case [[Y ]]2 = 2x is �B

0 definable in a manner which determines a function provably
total in V0.83 If we let Pow2(x) : U1 → U2 abbreviate this function, then it follows
that Vi � ∀x∀y[Bin(pow2(x), y) ↔ ε(x, y)]. Now assume for a contradiction that
Vi � ∀X∃yBin(X, y) where Bin(X, y) is defined using ε(x, y) as described above.
In this case we would also have Vi � ∀x∃yε(x, y). Note, however, that since all of the
theories Vi are polynomially bounded (i.e., they are axiomatized by a set of formulas
all of whose first- and second-sort quantifiers are bounded by La terms), they satisfy the
two-sorted analog of Parikh’s Theorem (Cook & Nguyen, 2010, V.3.4). In the relevant
case, this entails that if Vi � ∀x∃yϕ(x, y) where ϕ(x, y) is a bounded formula, then
Vi � ∀x∃y ≤ t (x)ϕ(x, y) for some La term t (x). But since all such terms are polynomials,
it hence cannot be that Vi �� ∀x∃yε(x, y). �

The relative directness of the formalizations which stand behind the prior results testifies
to the fact that theories in the hierarchy Vi provide a natural framework for representing
many aspects of our everyday reasoning involving positional numerals. In fact, V1 might
be taken to be a particularly appropriate choice for such a theory as the class of functions
which can be proven to be total relative to�1

1-definitions in V1 corresponds to those which
can be computed in polynomial time. This in turn makes it another plausible candidate
for an “anthropomorphic” theory in the sense of Wang (1958), Parikh (1971), and Cook
(1975).

Turning now to how Proposition 8.1 relates to the formulation of the sorites, first observe
that since V1 �� ∀X∃yBin(X, y), there exists a model M |� V1 + ¬∀X∃yBin(X, y).
There will hence exist a set C in the second-sort domain U2 of M for which there is no
element y in its first-sort domain U1 such that [[C]]2 = y. Given that M satisfies V1,
we will be able to reason with C exactly as if it represented a binary numeral—e.g., by
appending or deleting digits, computing its sum or product with other numerals via the
carry algorithms, etc. Moreover, since | · | is always interpreted as a total function, the
length of C will be measured by a number |C| = d ∈ U1. But since [[Y ]]2 < 2|Y |, it must

i(k ≤ j → (X ( j) ∨ Y ( j)))] is true just in case a 1 would be carried in the i th column
were we to perform a carry addition on X and Y . We may now define Add(X,Y, Z) as
(|Z | < |X | + |Y | ∧ ∀i < |X | + |Y |[Z(i) ↔ (X (i) ⊕ Y (i) ⊕ Carry(i, X,Y ))] where ⊕
denotes exclusive or.

83 In fact since the binary representation of 2x contains a 1 in exactly its i th position, Pow2(x, Y )↔
∀z < x ′(z ∈ Y ↔ z = x).
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be the case that U1 does not contain the number which we would conventionally denote
by 2d . And from this it follows that the reduct of M to La is a nonstandard model whose
domain is not closed under exponentiation.

Generalizing from the construction of §4, it might now appear that a model of Tm can
also be constructed by letting C ∈ U2 be the denotation of the constant m which lies
outside the interpretation of the sortical predicate F(x). Note, however, that since Tm is
a one-sorted theory, we then must regard F(x) as a predicate of first-sort objects. Taking
mM = C and then asserting ¬F(m) would thus be tantamount to a typing error.84

Another approach to applying the two-sort framework to obtain a model of a theory
similar to Tm is to note that if we adjoin the premises (F0) and (Fs) to V1, we may define
a second-sort version of the soritical predicate F(x) via the definition

F2(X) = ∃y(Bin(X, y) ∧ F(y)).

Note that we may view the objects comprising the second-sort domain of a model V1 as
binary numerals which come equipped with a definable order <2 satisfying X <2 Y iff
[[X]]2 < [[Y ]]2.85 Relative to this ordering, we can now define a second-sort constant 02
and a second-sort function symbol s2(X) which, respectively, define the first element and
the successor function on this order. It is now possible to use these definitions to show that
the second-sort analogues of (F0) and (Fs)

(F2
0 ) F2(02)

(F2
s ) ∀X (F2(X)→ F2(s2(X))

are provable from the original principles (F0) and (Fs) over V1.86

It follows from Proposition 8.1 that if we replace m with a new second-sort constant
C , then the theory RC = V1 + (F0) + (Fs) + ¬F(C) can be shown to possess a model
M = 〈U1,U2,≤,′ ,+,×, | · |, 0〉. The reduct M1 of M to its first-order domain will look
like the model of V1 +¬∀X∃yBin(X, y) constructed above. But we may similarly define
an induced La-structure M2 = 〈U2,<,

′ ,+,×, 0〉 by taking the interpretations of the
formulas defining s2(x),<2 Add(x, y, z),Mult(x, y, z) and 02 on U2 as the respective
interpretations of the symbols of La .

The provability of (F2
0 ) and (F2

s ) in RC will mean that F2(X) will define a proper cut
I2 � U2 in M2 containing the binary representations of the numbers which are in the cut
defined by F(x) in U1. Note, however, that C will now denote a member of M2 − I2—
i.e., an object which is the denotation of a binary numeral in the sense of M2 but which
is nonstandard with respect to <2 when viewed externally. It may additionally be shown
that a model constructed in this way from a model M |� V1 is also a model of Buss’s
(1986) first-order theory S1

2 whose provably recursive functions also correspond to those

84 This observation can also be understood as providing the neo-feabilist with a principled reply to
the concern raised in note 40 that in the model M |� Tm constructed in Proposition 4.1 we will
have M |� m �= m. It is tempting to view such a statement as expressing that the unary and
positional numerals denoting m are unequal. But from the perspective of the two-sorted theories
now under consideration, such cross-sort identity statements are regarded as reflecting a mistaken
understanding of the mechanism by which unary and positional numerals denote numbers.

85 Such an ordering is definable by a �B
0 -formula as X < Y ↔ (|X | ≤ |Y | ∨ ∃i[Y (i) ∧ ¬X (i) ∧

∀ j ≤ i(X ( j)→ Y ( j)] formalizing “X is less than Y just in case X is shorter than Y or the first
bit i on which X and Y differ is such that Y (i) and ¬X (i)”.

86 This formulation should be compared to that given by Boolos (1991, p. 702) in his one-sorted
system.
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computable in polynomial time.87 M2 thus has the same structural features as the model
obtained in the proof of Proposition 4.1. However, unlike this single-sorted model, M2 is
embedded in M in a manner which better accords with the distinct role played by unary
and positional numerals in our reasoning about natural numbers.
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