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Abstract

The work described in this paper is part of the development of a framework to support the joint execution of cooperative
missions by a group of vehicles, in a simulated, augmented, or real environment. Such a framework brings forward the need
for formal languages in which to specify the vehicles that compose a team, the scenario in which they will operate, and the
mission to be performed. This paper introduces the Scenario Description Language (SDL) and the Team Description
Language (TDL), two Extensible Markup Language based dialects that compose the static components necessary for
representing scenario and mission knowledge. SDL provides a specification of physical scenario and global operational
constraints, while TDL defines the team of vehicles, as well as team-specific operational restrictions. The dialects were
defined using Extensible Markup Language schemas, with all required information being integrated in the definitions.
An interface was developed and incorporated into the framework, allowing for the creation and edition of SDL and
TDL files. Once the information is specified, it can be used in the framework, thus facilitating environment and team spec-
ification and deployment. A survey answered by practitioners and researchers shows that the satisfaction with SDLþTDL is
elevated (the overall evaluation of SDLþTDL achieved a score of 4 out of 5, with 81%/78.6% of the answers �4); in
addition, the usability of the interface was evaluated, achieving a score of 86.7 in the System Usability Scale survey. These
results imply that SDLþTDL is flexible enough to represent scenarios and teams, through a user-friendly interface.

Keywords: Extensible Markup Language Dialect; Knowledge Representation; Multivehicle Mission; Scenario
Definition; Team Definition

1. INTRODUCTION

In the development of a new software system, one of the fun-
damental initial decisions pertains to information storage and
representation. System architects are faced with a decision
that can have a perceivable impact in the manner in which
the whole system will function.

Information can be stored in different formats and sup-
ports, from simple text files to complex database systems.
Text files can contain data in a closed, proprietary format or
in an open format. A markup language allows for structure
(hierarchical mainly) to be easily represented, and being a
self-documenting format, it provides not only data but also
metadata. Current technological advances (mostly regarding

processing and memory capabilities) make the two major dis-
advantages of using such formats (larger resulting files and
processing costs) only minor disadvantages, which can,
most of the times, even be overlooked. One of the most pop-
ular markup languages is Extensible Markup Language
(XML; for more information see http://www.w3.org/XML/);
since its inception, it has been adapted to a wide range of ap-
plications in a large number of areas, including medical
(Schweiger et al., 2005; Kumar et al., 2009), multimedia
(Deursen et al., 2007), corporate (ANSI/AIIM, 2009), military
(Hobbs, 2003; Wittman, 2009), and other well-known appli-
cations (Groppe et al., 2009; Georgieva & Georgiev, 2010).

This problem presented itself in the context of the develop-
ment of a framework to support the simulation of multive-
hicle missions, and brought forward the need to specify lan-
guages that would allow for the configuration of several
aspects of the simulation. The details of this framework, which
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includes a realistic visual simulator, agents representing traf-
fic controller entities and vehicles, as well as several utilities,
such as Logging and Monitoring tools, are presented in
Section 3.

In addition to the development of the simulation frame-
work itself, the authors intend to create the basis for standard
languages that can be used for scenario, team, disturbance,
and mission definition for similar platforms, or for applica-
tions that use teams of heterogeneous vehicles (the authors
also envision its use in helping schedule operations in trans-
portation or logistics contexts, for instance), in order to in-
crease interoperability and facilitate the comparison of fea-
tures from distinct systems.

These languages should be easily readable by machines
and humans (simultaneously providing a fast learning period
for humans) and independent of the system being used. They
should be easily extended to include new concepts, optional
parts, or alternative portions; validation should be performed
easily to assure the integrity of the data; and several concepts
must be included, representing multiple entities such as vehi-
cles, sensors, controllers, areas, or operational bases (includ-
ing airport, ground base, or port facilities).

The description of teams and missions was divided into
two categories: static and dynamic. This paper focuses on
the static category, the description of the world (scenario),
and the description of the team(s). The static category in-
cludes the Scenario Description Language (SDL) and the
Team Description Language (TDL). The dynamic category
encompasses the Disturbance Description Language (DDL)
and the Mission Description Language (MDL). DDL de-
scribes disturbances to the environment (such as a fire, a fo-
cus of pollution, a vehicle involved in illegal activities, a per-
son in need of rescue, or others), their location, and behavior
(Silva et al., 2015), and MDL presents a high-level descrip-
tion of a mission (such as searching for a fire or maintaining
surveillance on the actions of a vehicle; Silva et al., 2014).
While the languages in the static category can be applied
to a larger number of platforms with diverse goals, the lan-
guages in the dynamic category are more targeted at platforms
such as the one described in Section 3; therefore, SDL and
TDL are presented separately from DDL and MDL. Table 1
shows the classification of the developed dialects in terms
of being static or dynamic, as well as in terms of orientation
to scenario or team.

In order to specify the scenario in which the teams of vehi-
cles are to operate, SDL was envisioned, including a descrip-
tion of facilities that can be used (providing robotic agents
with the necessary knowledge to safely navigate through
the known part of the environment), global environment re-
strictions, and some global control structures. Regarding the
teams, TDL was created to include a description of each
team, specific team restrictions, and a description of all vehi-
cles that compose a team, their characteristics, and the sensors
and/or cargo they transport.

A simple example of the type of missions that can be simu-
lated is prevention and combat of wildfire (Casbeer et al.,

2006). The SDL file would contain all static environment ele-
ments, such as the description of the base of operations (in-
cluding airport) that can be used by the team; possible air traf-
fic controllers (with jurisdiction over the base of operations or
the mission area); possible areas the aircraft cannot fly
through; and the existing types of aircraft. The team can be
defined (using TDL) as a set of aircraft, some capable of car-
rying large amounts of water or fire retardant and others
equipped with sensors that allow them to detect a fire (such
as video cameras, infrared, carbon dioxide concentration, or
temperature sensors). The DDL file would specify the charac-
teristics of the fire, such as location, size, growth, and motion
patterns. The MDL file would specify a mission composed of
two stages: in the first stage, the team should detect any exist-
ing fire (using the aircraft that possess the necessary sensors)
in a given area; in the second stage, which should be triggered
when a fire is detected, the aircraft carrying water or fire retar-
dant should fly over the fire and drop their load, in order to put
out the fire.

Only aerial vehicles and airports are considered for sim-
plicity throughout the rest of the paper. The description of
ports and ground bases and the details for ground and water
vehicles are considered in the complete specification of
both SDL and TDL (Santos, 2010).

The rest of this paper is organized as follows. Section 2
covers related work and languages, while Section 3 intro-
duces the developed multivehicle mission simulation frame-
work. Sections 4 and 5 cover the details of SDL and TDL, re-
spectively. Section 6 presents the implementation details of
both SDL and TDL, and Section 7 details the conducted sur-
vey and presents the obtained results. Finally, Section 8 pres-
ents some conclusions about the developed work and some
lines for future developments.

2. RELATED WORK

A standardized textual description of the layout of a given
physical area in a format that can be easily read by a person
is not always easy to find. However, several applications exist
that show that same information in a graphical and intuitive
manner.

One of the most notable languages used to describe geo-
graphicaldata isGeographyMarkupLanguage (GML),a standard
developedbytheOpenGeospatialConsortium(OGC;more infor-
mation is available online at http://www.opengeospatial.org/)
to express diverse geographical features (OGC, 2007a). After
several years of developments and changes, it was approved as

Table 1. Classification of the
languages

Scenario Team

Static SDL TDL
Dynamic DDL MDL
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an international standard in 2007 and is being used by several
applications (Huang et al., 2009; more information is available
at http://www.ogcnetwork.net/gml).

CityGML is one of the most well-known applications of
GML (OGC, 2008; more information about CityGML is
available at http://www.citygml.org/). It is a markup language
used to describe three-dimensional urban objects and scenes.
It was adopted as an OGC standard in August 2008 and is
used in several applications (Fan et al., 2009).

The Aeronautical Information Exchange Model (see http://
www.aixm.aero/) is an international data standard and a
model that supports aeronautical information collection, dis-
semination, and transformation throughout the data chain in a
digital format (Brunk & Porosnicu, 2004). It started as an in-
itiative from Eurocontrol (the European Organization for the
Safety of Air Navigation) over 12 years ago and later had the
active participation of other entities, such as the US Federal
Aviation Administration, International Civil Aviation Organi-
zation (ICAO), and North Atlantic Treaty Organization. It is
currently in its fifth version, adopting GML as a basis, which
provides numerous features for several entities involved in the
aeronautical industry (Brunner et al., 2007).

One of the foremost applications that uses a description
similar to part of the one described in this paper is flight simu-
lators. Airport descriptions in flight simulators can be very
detailed, allowing for a very realistic visual simulation. How-
ever, and for that reason, airport description tends to be
mostly centered on visual aspects, such as signs, lights, lines,
and many other aspects. Even though these aspects are very
important for a visual simulation, they do not contribute
much for the goals of this project and the objectives of the
languages being developed.

One of the flight simulators analyzed in more detail was
Microsoft’s Flight Simulator X (FSX). Airport information
is contained in precompiled files and features numerous vis-
ual aspects along with airport structure. Extensive documen-
tation on the format and information contained within the
files is provided, and an application to compile these files is
included in the software development kit (along with a
Schema for the XML definition of the format; Microsoft Cor-
poration, 2008). Some tools have been developed by the com-
munity and software vendors to help interact with this simu-
lator. One such example is Airport Facilitator X, a product
that provides a visual interface to design and edit airports
and their elements, such as runways, taxiways, towers, and
parking spaces (Flight One Software, Inc., 2009). Another ex-
ample is the Airport Design Editor, which provides similar
functionalities (Masterson et al., 2009).

Other largely known simulators have different representa-
tions of such information. For instance, FlightGear uses a for-
mat that allows for a compact representation of airport run-
ways and taxiways, by using a series of letter-based codes
to represent enumerations of surface types, signaling, and
lighting (Peel, 2001). However, some information could be
better represented (e.g., taxiways are not described as a
whole, but by individual segments). Another flight simulator,

X-Plane, uses a very similar representation, for airport struc-
tures (Peel, 2009). The file specification is based on a series
of codes (mostly numeric) and is more complete than the
one from FlightGear. However, both representations are far
from being easily read by a human without the aid of an inter-
preting application.

Most works found in the literature that deals with the def-
inition of a team of vehicles focus on hierarchical or behav-
ioral aspects, which are not represented here at the team level,
but at the mission level, and thus fall outside the scope of this
paper. Furthermore, most of these works do not express the
vehicles that compose the team or their capabilities in an ex-
plicit form, but rather include that information in an ad hoc
manner, in custom-developed formats, or even embedded
within the application itself, thus reinforcing the need for
the development of standard languages that can be used by
these applications. There are still a few other approaches
that use low-level concepts, but as such are not suitable to
be used in a real-life context by nonexperts.

3. SIMULATION FRAMEWORK

As mentioned before, the specification of these languages
stems from the development of a simulation framework
for multivehicle mission simulation. Figure 1 represents the
global architecture of this framework.

The central module of the system is the visual simulation
platform. Given the added difficulty of simulating motion
through a fluid environment such as the atmosphere, the cho-
sen simulator was an aeronautical simulator, in this case Mi-
crosoft’s FSX (Gimenes et al., 2008). The simulation can be
performed by one or more instances of the simulator when the
simulation load is too high for just one simulator or when the
vehicles are spread over a large geographical area (Rodrigues
et al., 2015).

The Control Panel has a central role in the system because it
is responsible for environment and disturbance configuration,
team and mission definition and loading, and providing sys-
tem-wide status monitoring during mission execution. Envi-
ronment and disturbance configurations are sent to the simu-
lation platform, so that they can be correctly simulated and
sensed by the several agents. It is the Control Panel that pro-
vides an interface between the framework and the user, pro-
viding a user-friendly manner for the user to specify all de-
tails (this tool is shown in more detail in Section 6). The
Control Panel is responsible for creating a number of air traf-
fic control (ATC) Agents (in according to their specification,
using SDL, see Section 4.3), and Vehicle Agents (also ac-
cording to their specification, using both SDL and TDL,
see Sections 4.4 and 5.1).

The ATC Agent is responsible for ground, air, or sea traffic
operations in and around the base of operations to which it is
linked. Within the context of an airport, this agent represents
the typical air traffic controller, being responsible for a central
control of all ground traffic in the airport, as well as air traffic
around the airport, routing all ground traffic from or to the
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defined landing or departure runway, and avoiding air traffic
conflicts (Sousa et al., 2010). This agent can be configured
for a more passive role, thus allowing for a decentralized traf-
fic control approach, facilitating studies on the comparison
between centralized and decentralized approaches to ATC
(Camara et al., 2014).

The modules identified as Vehicle Agent 1 through Vehicle
Agent v represent the several (simulated) vehicles that are to
exist within the system. Each one of these agents represents
a vehicle and is responsible for handling actions such as nav-
igation control, collision avoidance, and others. In addition,
they are collectively responsible for mission planning and ex-
ecution. Given that the application is intended to be used with
both simulated and real vehicles, there is the possibility to use
external modules, which communicate with the robotic
agents represented by the virtual vehicles. These modules act
as wrappers between application actions or commands and
specific vehicle functionalities. They also allow the collec-
tion of real-world vehicle data that will both replace the simu-
lated data, if discrepancies are detected, and serve as input to a
calibration process that improves simulation realism.

The Monitoring Tool is responsible for providing both a
real-time visualization of the status of the simulation and
the agents, and providing updated values for several simula-
tion and agent-related variables. The Logging Tool, together
with vehicle and ATC Agents, is responsible for creating per-
manent log files for each simulation session, including gen-
eral simulation parameters, the initial simulation status, com-
munications among the several agents, and a detailed status
description for each vehicle. These log files can then be

used by the Performance Analysis Tool to provide the user
with aggregated information regarding the simulation, and
some analysis on the performance of a team in completing
a given mission.

In a metaphorical comparison, the Control Panel can be
seen as an airline operations center, the Vehicle Agents as
representing aircraft pilots, the ATC Agent as the air traffic
controller, the Logging Tool as the aircraft’s flight data re-
corder (more commonly known as the black box), and the
Monitoring Tool as a real-time flight tracker.

This framework allows for the execution of diverse coop-
erative multivehicle missions, including surveillance (forest
surveillance that provides an early fire detection system;
coastal and border patrol, in order to detect and track illegal
activities, such as smuggling; urban observation that would
detect dense traffic patterns, preventing larger traffic jams;
and many other applications), reconnaissance and target
tracking (especially useful in military operations and law en-
forcement activities, to provide real-time valuable informa-
tion about enemy movements, or to follow a fugitive until ap-
prehended by competent entities), aiding in search and rescue
operations, and many other applications.

4. SDL

This section provides a full overview of the SDL, and each
part of the scenario definition is analyzed in more detail.
As previously stated, this dialect was developed in order to
fully describe an operating scenario for a team (or several
teams) of mobile robotic vehicles. The scenario contains

Fig. 1. Global system architecture.
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elements describing the unchangeable part of the environ-
ment. It is defined as a tuple comprising set of bases of opera-
tions B ¼ {b1, b2, : : : , bnB}, which may contain an airport,
port, and/or a ground base that can be used by one or more
of the teams; a set of no-fly areas N ¼ {n1, n2, : : : , nnN},
which define the areas that no team can navigate through; a
set of controllers C ¼ {c1, c2, : : : , cnC}, which control traffic
on a well-defined area of space; and a set of agent types
T ¼ {t1, t2, : : : , tnT}, which define the type of vehicles avail-
able. Equation (1) formalizes the representation of a scenario
as a tuple constituted by the four sets: bases of operations,
no-fly areas, controllers, and agent types.

Scenario ¼ kB, N, C, Tl,
B ¼ {Base OfOperations},

N ¼ {Area},

C ¼ {Controller},

T ¼ {AgentType}: (1)

4.1. Bases of operations

This section of the SDL file contains a list of available bases
of operations. Each base of operations has a unique identifier,
which will later be referenced by TDL (see Section 5). For
each base of operations, a number of information details are
provided:

† name: The name by which the base of operations is
known. If the base contains only an airport (or only a
port, or only a ground base), the name of the base is
usually coincident with its name.

† mobility: This element includes four Boolean attributes
(air, land, water, and underwater), which indicate the
type of vehicles the base provides support for. In addi-
tion, these attributes define the existence of the optional
elements airport, port, and groundBase (see below).

† description: A brief textual description of the base of
operations, which may include a listing of available ser-
vices and facilities.

† history: This element can contain a detailed description
of the base of operations, as well as the modifications it
went through over time.

† contactPerson: This element contains detailed informa-
tion about the person to contact regarding the base of op-
erations. It includes name and title of the person to con-
tact; the institution he works for and his position within
that institution; address for physical correspondence
(address, zip code, city, state, and country) and other
contacts (e-mail, telephone, cell phone, and fax); and
the possibility to add any additional information items,
such as preferred contact hours or alternative contacts.

† location: Provides information regarding the location of
the base of operations. It comprises a physical address
(which may coincide with the address of the person to
contact or not) and the coordinates for the location of
the base (usually either the coordinates for the center

of the base or those of the office where the contact per-
son can be reached).

† availability: This element describes the temporal avail-
ability of the base for operations (e.g., one base of opera-
tions b1 may only be available during daytime, but not for
nocturnal operations, while another base b2 may only be
available during weekdays, but not during the weekend).
If the base is not always available for operations, at least
one availability slot must be indicated; each availability
slot contains the start and end date and time of the period
during which the base is available; in addition, if the spe-
cified availability slot occurs periodically, the rate of re-
currence can be specified, as well as the initial and final
dates during which the recurrence is valid.

† airport: This optional element contains a detailed de-
scription of the airport within the base of operations, its
structure, and the services it provides (it is described in
more detail below). The presence of this item is deter-
mined by the value of the air attribute of the mobility ele-
ment.

† port: This optional element contains a detailed descrip-
tion of the port within the base of operations, its struc-
ture, and the services it provides to boats and/or subma-
rines. The presence of this item is determined by the
value of the water and underwater attributes of the mo-
bility element.

† groundBase: This optional element contains a detailed
description of the ground base within the base of opera-
tions, its structure, and the services it provides. The pres-
ence of this item is determined by the value of the land
attribute of the mobility element.

4.1.1. Airport

As previously mentioned, this paper focuses only on air
traffic, and as such, only airport information is presented.
Considering the different formats and information included
in the analyzed simulators, the authors decided to include a
stripped down version of the airport description found in
FSX, focusing on the important aspects, such as positioning,
dimensions, and intersections of possible paths, leaving out
the information regarding visual details, such as lights or
signs. Equation (2) shows the contents of the airport element,
which are explained in more detail in Table 2.

Airport ¼ kname, description, contactPerson, location;

IATA, ICAO, magVar, H, R, T , P, G, Ul,
H ¼ {Helipad},

R ¼ {Runway},

T ¼ {Taxiway},

P ¼ {Parking},

G ¼ {Hangar},

U ¼ {Utility}: (2)

The information contained in these elements (viz., the in-
formation retrieved from the runways and taxiways elements)
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is structured in a manner that facilitates its use to construct a
graph containing the possible paths to be used by airplanes
while on the ground (e.g., taxiways includes for each point
in its path, corresponding to a node of the graph, information

regarding the taxiways/runways it connects to, thus allowing
for the graph to be constructed; Sousa, 2010). This informa-
tion is of major importance so that the agents can plan their
paths with maximum efficiency.

Table 2. Airport element definition

Element Description

Name The name by which the airport is known

Description Textual description of the airport and the services it provides

ContactPerson Information regarding the person of contact for the airport; its definition is the same
as for the base of operations.

Location Information regarding the location of the airport; its definition is the same as presented above for the base of operations.

IATA The International Air Transport Association code of the airport; this code comprises three letters and is widely used for major
airports, namely, in baggage tags.

ICAO The International Civil Aviation Organization code of the airport; this code comprises four alphanumeric characters and provides a
unique code for each airport worldwide.

MagVar The magnetic variation (difference, given in degrees, between true North and magnetic North) at the airport location

Helipad Helipads are relatively small, round or square regions of the airport used by helicopters for vertical takeoff and landing
Designation: the name by which the helipad is known
Coordinates: coordinates for the center of the helipad
Radius: radius of the helipad
Surface: material the surface of the helipad is made of

Runway Runways are the straight, flat, and long strips of terrain used by aircraft for takeoff and landing
Coordinates: coordinates for the center of the runway
Length: length of the runway
Width: width of the runway
Surface: material the surface of the runway is made of
BaseEnd: Contains information regarding one of the two orientations of the runway; it includes the designation of the runway (a

number, from 01 to 36, corresponding to one-tenth of the magnetic heading of the runway), coordinates for the start and end
points of the runway and its orientation (heading)

ReciprocalEnd: Contains information regarding the other orientation of the runway; the designation should differ from the
designation of the baseEnd by 18 and the orientation by 1808; the start and end points may match the end and start points of the
baseEnd, respectively, but in some cases that may not be true

Taxiway Taxiways are used for ground operations (either by aircraft or by other vehicles operating in the airport), connecting runways with
other areas of the airport, such as parking spaces, fuel facilities, hangars, or helipads
Designation: the name by which the taxiway is known
Surface: material the surface of the taxiway is made of
Width: width of the taxiway
Path: Contains information about the shape of the taxiway; it includes both initial and final points of the taxiway, as well as a variable

number of middle points where the taxiway changes direction or where it intersects with another taxiway or runway; all points contain
the coordinates of their location; in case of interception, the taxiway(s) and/or runway(s) it intercepts with is(are) also specified.

Parking Parking spaces are specific locations within the airport, used to park aircraft, usually for a relatively short period of time.
Designation: the designation of the parking space
Description: description of the parking space: purposes (used mainly by commercial aircraft, cargo companies, privately owned

jets, or others) and other information
Coordinates: coordinates of the parking space
Radius: radius of the parking space
Airlines: lists which airlines have priority of use over the specific parking space
Connection: specifies the coordinates where the parking space connects to the taxiway network

Hangar Hangars are closed structures, usually used for long-termed housing of aircraft, maintenance, or repair operations.
Designation: the designation of the hangar
Description: brief description of the hangar, especially in terms of its purposes and possible owner
Shape: specifies the shape of the hangar (expressed as a polygon), its height, area and the location and size of the doors

Utility There are four types of utilities (tower, fuel facility, battery facility and water facility) with three common elements
Designation: the designation of the utility
Coordinates: coordinates for the center of the utility
Radius: radius of the utility
In addition to these, the tower also has a height, and fuel and water facilities have the available quantity of fuel or water
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4.2. No-fly areas

This section of the scenario description file has a straightfor-
ward purpose: clearly defining all areas that cannot be navi-
gated through, at a global level, by any vehicle of any team.
Even though the name suggests that the areas defined in this
section only apply to airspace and air traffic, the areas can be
defined for air, land, water, and/or underwater vehicles.

Every area element has a unique identifier, and is defined
by a name; the medium it applies to (this element has the
same definition as the one presented for the base of opera-
tions, with four Boolean attributes: land, air, water, and un-
derwater), which determines the vehicles that cannot navigate
through the area; the temporal availability of the area (e.g.,
aircrafts may not fly over a given area n1 at night, but they
may do so during daytime; the definition of availability is
also the same as the one shown above for the base of opera-
tions); and the shape of the area, which can be expressed as
either a polygon (composed of three or more vertexes, each
identified by latitude and longitude) or a circle (composed
of the center latitude and longitude and a radius), extruded
vertically from minimum to maximum altitudes. Equation
(3) shows the definition of the area element.

AreaID ¼ kName, Medium, Availability, Polygon _ Circlel,

Polygon ¼ kminAlt, maxAlt, {vertex}3þl,

Circle ¼ kminAlt, maxAlt, center, radiusl: (3)

4.3. Controllers

This section of the scenario description file contains a list of
traffic controllers (for air, water, or land traffic) and their re-
spective details: a unique identifier of the controller; the base
of operations b [ B it is associated with; the level of auton-
omy a vehicle has when moving through the controller area,
indicated by the requiredAction attribute; an indication of
the type (role) of controller it represents; the area it has juris-
diction over (area definition is the same as shown above); and
the contact frequencies (e.g., approach and departure control
can be handled in a different frequency than ground control).
Figure 2 shows the information contained within this element
in a graphical notation. The figure shows the selected control-
ler XML element in blue on the left, with the associated attri-
butes inside the attributes box on the top right of the controller
element; other XML elements within the controller element are
presented as a sequence (indicated by the three-dotted symbol
right of the controller element) of one area element and one
frequencies element (which has a sequence of one or more fre-
quency elements). The constraints are related to the correct and
valid reference to an identifier of a base of operations.

This information is used by ATC Agents as well as by the
vehicle agents to determine their behavior when navigating
within the areas defined in these elements. For instance,
one controller c1 may have full control over the area surround-
ing the airport (as air traffic controllers for major airports
usually do), and all agents representing vehicles moving

through that area would have to clear every decision with
the controller; another controller c2 may have more of a pas-
sive behavior (as do some controllers of smaller airfields),
simply being informed of the vehicle decisions, but having
no direct control over them. There are three levels of control
defined in the requiredAction attribute: in the lowest level, the
controller is only informed of the vehicle decisions and has no
control over them; in the intermediary level, the vehicle has
the autonomy to make decisions, but not to implement
them without the consent of the controller; in the highest
level, vehicles have no autonomy regarding motion and
have to obey to all decisions made by the controller.

4.4. Agent types

This section of the scenario description file contains a list of
available vehicle types. Each vehicle type has a unique iden-
tifier, which will later be referenced by the TDL file (see Sec-
tion 5.1) to indicate the type of each vehicle that composes the
teams. The information regarding the vehicle type is divided
into five categories:

† simulated agent: This category contains only one ele-
ment: title. The title is a string that uniquely identifies
a vehicle type within the simulation platform, and sev-
eral details regarding the vehicle type can be retrieved
from the simulator, given this string (even though this
option may seem to be closely related to the simulator
being used, it is usually enough to identify an object
type in most simulators; however, if this is not the
case, the language can easily be extended to include
the necessary information).

† real agent: Information describing the real vehicle in-
cludes the category (aircraft, car, boat, or submarine),
type, manufacturer, model, and variation of the vehicle,
as well as any additional information one might want to
include.

† physical: This element includes characteristics regard-
ing aircraft dimensions: length, height (measured at
the highest point, usually the tail), and wingspan (width
of the aircraft measured from one wingtip to the other);
wing area; empty weight; maximum payload (cargo)
and fuel it can carry; and engine information (number
and type of engines).

† performance: This category includes maximum allowed
weight at takeoff; the minimum required runway length
for takeoff and landing; reference speeds: cruise, maxi-
mum (the maximum speed at which the aircraft can fly
without the risk of structural damages), and stall (the
minimum speed at which the aircraft is capable of gen-
erating lift; with a lower speed the aircraft starts falling);
rate of climb (the maximum vertical velocity of the air-
craft); range (the distance the aircraft can travel without
refueling) and service ceiling (the maximum altitude at
which the aircraft can operate); fuel flow (the average
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fuel consumption at cruise speed, considering a straight
level flight); and drag coefficient.

† payload layout: Payload layout includes information
regarding each payload station, namely, its location (in
relation to the aircraft’s center), dimensions, and maxi-
mum cargo it can transport. This information will then
be used by TDL as restrictions to the cargo or sensors
each payload may contain (see Section 5.1.1).

Information regarding vehicles other than aircraft differs
from the information shown above in the physical and perfor-
mance categories, while the remaining three categories have
identical structure for all vehicle types (aircraft-specific char-
acteristics are replaced by characteristics specific to other ve-
hicle types). Figure 3 shows the definition of the agentType
element in a graphical notation.

5. TDL

This section provides an overview of TDL. The TDL file al-
lows for the description of any number of teams. Each team

has a unique identifier and contains several elements, such
as the bases of operations U ¼ {u1, u2, : : : , unU} # B it can
use, additional no-fly areas A ¼ {a1, a2, : : : , anA}, and the
description of all agents V ¼ {v1, v2, : : : , vnV} composing
the team [see Eq. (4)].

TeamID ¼ kName, Description, History, Purposes,

Mobility, ContactPerson, A, U, Vl,
A ¼ Areaf g,
U ¼ UsableBaseOfOperationsf g,
V ¼ Agentf g: (4)

It is important to note that TDL is intended to solely specify
team composition and operational constraints; all other infor-
mation, namely, related to team organization, hierarchy, be-
havior, and others, are specified at the mission level, using
MDL. Table 3 describes the contents of the team element in
more detail.

Fig. 2. Controller element definition.

Fig. 3. Agent type element definition.
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5.1. Agents

This section of the team description file contains the key ele-
ment of the team: the list of vehicles that compose the team,
each containing the following information, in addition to a
unique identifier:

† agentTypeID: This attribute agentTypeID [ T references
the vehicle type identifier, as described in Section 4.4.

† name: The name by which the vehicle is known within
the team.

† description: A textual description of the vehicle, and its
foremost capabilities.

† initialLocation: The initial location of an aircraft is
given by the identifier b [ U of a base of operations,
the identifier of a parking space, hangar, helipad, or util-
ity location within the airport of the base of operations b,

and the direction the aircraft is facing (for other vehicle
types, the location may refer to the port or ground base
instead of airport).

† state: Vehicle status includes information regarding the
amount of fuel it has; the position of the landing gear
and several control surfaces (flaps, aileron, rudder, eleva-
tor); an indication of which lights (if any) are turned on;
and an indication as to whether or not the doors are open.

† realAgent: Real vehicle information includes registra-
tion code (also known as tail number, the aircraft’s
equivalent to the license plate); name of the aircraft;
and communication frequencies (when an actual vehicle
is being used, these values are also used to configure the
external module wrapper).

† simulatedAgent: Simulated vehicle information in-
cludes the vehicle’s tail number (necessary to instantiate
the vehicle in the simulation platform), which should be

Table 3. Team element definition

Element Description

Name The name of the team

Description Textual description of the team and its capabilities

History Description of the team’s history; it may include information regarding past missions, team
composition through time, or any other information.

Purposes Describes the purposes of the team, such as the type of missions it was designed to, or is capable of
performing

Mobility Indicates the aggregated mobility of the team (the definition of this element is the same as presented
above)

ContactPerson Information regarding the person of contact for the team; the definition of this element is the same as
for the base of operations.

AdditionalNoFlyAreas This element contains a list of area elements, with the same definition as shown above (see Section
4.2), that indicates additional areas the specified team cannot navigate through (even though other
teams might be able to). As such, the specific team cannot navigate through both the areas specified
in SDL and in TDL, N < A

UsableBaseOfOperations This element contains a list of references to the identifier of the base of operations, as defined in the
SDL file (see Section 4.1), and indicates which bases can be used by the team.

Agent Contains a description of each vehicle that composes the team; this element is detailed below.

Fig. 4. Agent element definition.
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the same as the one specified for the real vehicle, and
may not be repeated.

† payload: Specifies the contents of each payload station
(detailed below).

Figure 4 shows the agent element in a graphical notation.

5.1.1. Payloads

For each payload station identified in the vehicle type agent-
TypeID [ T definition (see Section 4.4), the details about the

sensors it carries and/or cargo it transports are provided. Sensor
definition includes type (temperature, CO2 detector, infrared,
camera, and so on), dimensions, weight, operational require-
ments (such as temperature or humidity ranges, voltage and
current specifications, or power consumption), and other spe-
cifications (such as accuracy, response time, range of values
detected, output definition, and any other specifications). Al-
ternatively, the payload station can contain cargo, in which
case the type and quantity are indicated (e.g., 350 L of fire re-
tardant). Figure 5 shows the definition of a payload.

Fig. 5. Payload element definition.

Fig. 6. Scenario configuration tool.
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6. IMPLEMENTATION

The two dialects have been specified using XML Schema (thus
ensuring extensibility and readability), and C# classes were
created to reflect the contents of said schemas (more specifi-
cally, the XML Schema Definition Tool was used, which
can generate a set of classes, based on a given XML Schema
(Microsoft Corporation, 2010)). The dialects were then inte-
grated into the framework under development, by including
in the Control Panel (as described briefly in Section 1) the abil-
ity to create and edit both SDL and TDL files. Identifiers are
generated automatically by the application, to abstract the
user from low-level implementation details, and some graphi-
cal aids are provided to facilitate the task of specifying all ele-
ments; for instance, areas (both no-fly areas and the areas con-
trollers have jurisdiction over) are defined using an interactive
Google Maps plugin, with the defined area overlaying satellite
imagery of the location; the several points that define a polygo-
nal area, for instance, can be interactively added and moved in
the map simply by clicking and dragging.

Figure 6 shows the main screen for the scenario editing
tool. The file containing the scenario description can be easily
loaded into a scenario object, which is then used by the inter-
face to manipulate the data it contains. The Launch button, on
the bottom right, deploys the ATC Agents, using the config-
urations provided in the controllers section and providing

them with the information regarding the base of operations
they will have jurisdiction over.

This implementation allows ATC Agents to be aware of
their own operating configuration and of airport configura-
tion. With this information, the ATC Agent is capable of per-
forming typical traffic control operations. Figure 7 shows the
interface of an ATC Agent; the airport configuration of the
SDL file (partly shown in Fig. 8) was used to construct the
airport runway and taxiway network (runways are shown in
light gray, while taxiways are shown in either blue, when
not in use, or red, when being used by an aircraft), which is
used for ground traffic management (Sousa, 2010).

Figure 9 contains an example of a vehicle type (an aircraft)
specification using SDL (only one payload station is shown
for simplicity).

Figure 10 shows the main screen for the teams editing tool.
By using the same process, this interface allows for the
manipulation of TDL files and their contents. The Launch
button deploys the vehicle agents, using the configurations
from both this panel and the scenario editing panel (viz., ve-
hicle type definition), as well as information regarding opera-
tional constraints, namely, the bases of operations that can be
used, the areas that cannot be flown through, and the areas
that require some sort of communication with the respective
controller. The information regarding the bases of operations
that can be used is important to determine where the plane can

Fig. 7. ATC Agent Monitoring tab.
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land, in case it needs to refuel, or when the mission is over.
The no-fly areas have a direct impact in route planning,
because they must be avoided; the information regarding con-
trollers also has a direct impact in the behavior of the aircraft
when inside the areas controlled by them. In addition, agents
representing robotic vehicles now have self-awareness as to
what sensors or cargo they carry (in a structured manner).

Figure 11 contains an example of a vehicle specification
using TDL. Notice that the agentTypeID attribute corre-
sponds to the vehicle type shown above, and as such, the pay-
load stations also correspond to the ones shown above (and
the respective dimensions and weight restrictions must be re-
spected).

SDL and TDL combine the advantages of XML with the
ability to describe a set of entities used to depict a scenario
and a team, respectively. Unlike the languages referenced in
Section 2, which are targeted at specific needs (geographical

features, aeronautical information, or others), SDL and TDL
allow for the description of distinctive entities, of not only
geographical nature (such as bases of operations and no-fly
areas), but also controllers and vehicles, and their distinctive
and idiosyncratic features. This diversity of represented enti-
ties allows for the definition of all the necessary elements to
describe the static components of the envisioned system.

7. VALIDATION AND RESULTS

To validate the developed dialects, a group of experts and
practitioners was formed. Most members of this group were
informally consulted during the development stage of the
dialects, using an iterative process by which each of them
was able to both review the current state of the dialects and
provide additional input for their development, in a Delphi-
like process, used in many works (Abreu et al., 2012;

Fig. 8. Airport example (SDL).
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Almeida et al., 2013). In addition, in a second stage, after the
dialects were defined, a survey was conducted among the
members, in order to assess their satisfaction with the quality
of the dialects, based on the concepts and concerns each one
brought forward.

The survey was divided into three parts: the first part was
divided into two sections, each one related to each of the dia-
lects as a whole, and each one composed of nine questions
that evaluate the overall satisfaction with the specific dialect,
as well as aspects that could be improved. The second part is

divided into five smaller sections focusing on five portions of
the dialects (bases of operations, controllers, no-fly areas, and
agent types from SDL, as well as individual agents from
TDL), each of which includes three questions. The third
part, which includes one question and a practical exercise,
is focused on the Control Panel, and relates to the usability
of this tool as a means of creating and editing a simple sce-
nario and a team using SDL and TDL. In the practical exer-
cise, the participants were asked to use the Control Panel to
define a simple airport (with a single runway, two taxiways,

Fig. 9. Vehicle type example (SDL).
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and four parking spaces); a controller that operates within the
vicinities of that airport; two vehicle types; and a team of four
vehicles (two of each kind) to operate from the previously de-
fined base of operations. After that, they were asked to fill out
a System Usability Scale (SUS; Brooke, 1996) survey to mea-
sure its usability.

A total of 42 responses were collected from the group (leav-
ing out 4 members who were unavailable to participate). Out of
these 42 participants, 14 are practitioners (most of which have
some sort of connection to protective and armed forces) and 28
are researchers in the area and adjacent areas.

Because of the difference in background of the two iden-
tified groups, the authors felt pertinent to assess as to whether
or not different results were obtained from these two groups.
For that, and in each question, the Shapiro–Wilk test was used
to test the normality of the data (using S as the value of the test
and P as the significance for the test, considering an a level of
0.05). The results obtained for each question varied from S¼
0.7896 for P ¼ 0.06647 to S¼ 0.9099 for P ¼ 0.4671. After
that, the two groups were tested using a Mann–Whitney–Wil-
cox test (using W as the value of the test), with an a level set
at 0.05. These tests produced results that show that the two
groups are not distinct; the p values for the several questions

ranged from 0.1719 to 0.7449. Results range from W ¼ 5.5
for P ¼ 0.1719 to W ¼ 10.5 for P ¼ 0.7449. Because the
two groups cannot be considered distinct in terms of results,
these were analyzed together.

7.1. Part I: Dialect validation

This part of the survey was composed of five questions using
a 5-point Likert scale, three questions that called for written
comments and one question to assess knowledge of langua-
ges or syntaxes with similar goals (followed by a comparison
with SDL or TDL, if the answer is positive). For the first
question (“Are you satisfied with the representation of your
concerns in SDL/TDL?”), 81% of the respondents answered
agree or strongly agree regarding SDL, obtaining an average
classification of 4.07 out of 5, while 78.6% answered agree or
strongly agree regarding TDL, obtaining an average classifi-
cation of 4.02 out of 5. For the second question, regarding the
flexibility of SDL/TDL in the specification of a scenario and
team, an average of 3.9 was achieved for SDL, with 69% of
answers being rated as agree or strongly agree, and an aver-
age of 4.0 was achieved for TDL, with 73.8% of answers

Fig. 10. Teams configuration tool.
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Fig. 11. Vehicle example (TDL).
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being rated as agree or strongly agree. The following three
questions are free-text questions, and ask the user to point
the main concerns he had regarding SDL and TDL that
were present in the dialects’ specification, concerns that are
not represented in SDL or TDL, and concerns he feels are rep-
resented in SDL or TDL that are not necessary or desired.
These collected answers were used to plan future extensions
of both SDL and TDL, as presented in Section 8. It should be
noted that a wide range of answers was obtained, in most cases
not presenting consensual results (e.g., one respondent may
consider one concern to be superfluous while others consider
it to be an asset). The users were then asked as to whether
they were aware of other dialects or syntaxes with similar
goals. Fifteen out of the 42 respondents answered yes regarding
SDL, and 12 answered yes regarding TDL. For these indi-
viduals, two additional questions were considered, regarding
the comparison of SDL and/or TDL to that/those other dialects.
The first one, considering again a response in a 5-point Likert
scale, obtained an average of 4.1 out of 5 for SDL, with 12 out
of the 15 respondents considering SDL to be better or far better
than the other one(s). Regarding TDL, an average of 3.9 was
achieved, with 9 out of the 12 respondents considering TDL
to be better or far better than the other one(s). The second
question, in free-text, asked the user to list the main advan-
tages/disadvantages of SDL/TDL (which were then added to
other free-text responses to plan for future extensions of the
dialects). The final three questions asked the user if he feels
SDL and TDL helps in defining a scenario and a team (in con-
trast to not having such dialects); if he thinks SDL /TDL has
applicability; and finally to make an overall evaluation of
SDL/TDL. The average results for SDL are 3.88, 3.88, and
3.95 with 73.8%, 71.4%, and 81%, respectively, of answers
being agree or strongly agree for each of the three questions.
The average results for TDL are 3.93, 3.98, and 4.05 with
76.2%, 76.2%, and 78.6%, respectively, of answers being
agree or strongly agree for each of the three questions.

7.2. Part II: Detailed dialect validation

This part of the survey was composed of five sections, each of
which contained three questions. The first question, using a
Likert scale, asks the user to indicate if he agrees that that
part of SDL (or TDL, for the fifth section) represents his con-
cerns. The remaining two questions are free-text questions
and are meant to identify concepts and concerns either not
represented in SDL/TDL or that the user thinks are superflu-
ous or overdetailed. The results for the first question average
4.2 for the section regarding bases of operations, 4.3 for the
no-fly areas section, 3.9 for the controller section, 3.8 for
the agent type section, and 4.1 for the agent section, which
results in a combined average of 4.06. Despite these results,
few respondents with an answer distinct from strongly agree
in Question 1 were able to identify and list any concerns under-
or overrepresented in the dialects. All the answers to the last
two questions were compiled for each section, and the sugges-
tions are being taken into consideration (see Section 8).

7.3. Part III: Tool usability

This part of the survey was composed of one question and a
practical exercise followed by a SUS questionnaire. The first
question asks the user if he believes the Control Panel accu-
rately allows for the specification of SDL and TDL files.
The results have an average of 4.1 out of 5, with 85.8% of re-
spondents answering agree or strongly agree.

The practical exercise consisted in asking the user to define
a simple scenario and a team using the Control Panel; the
characteristics of each of the components of the scenario
and team were specified and given to the users. These exer-
cises were timed, and the definitions were also validated ac-
cording to the desired characteristics. On average, partici-
pants took 34:51 min to define the scenario and team, with
the minimum time being 24:37 min and the maximum of
44:53 min. While these values may seem excessive for the
definition of a simple scenario and team, one has to keep in
mind that the definition of both scenario and team only needs
to be performed once. The SUS survey produced an overall
score of 86.7 (out of a maximum of 100), which can be con-
sidered a good score (Lewis & Sauro, 2009).

8. CONCLUSIONS AND FUTURE WORK

The main conclusions are drawn and the main future work
areas are pointed out in this section. Regarding the intended
characteristics of the languages, most of them were accom-
plished by using an XML dialect to implement the languages:
readability, extensibility, system independence, and data vali-
dation (through the use of XML Schemas). Being XML-
based dialects, both SDL and TDL can easily be extended,
by adding or altering the structure or contents of any part of
the dialects. Automated tools (the XML Schema Definition
Tool) facilitate the process of adapting the developed applica-
tion to rapidly meet the changes made to the dialects. Because
XML is easily readable and editable by humans, both SDL
and TDL files can be manually altered in any text editor.

All intended structures were represented in either SDL or
TDL: operating scenario (bases of operations, including air-
port, port, and ground stations, and vehicle types), control
structures (controllers) and constraints, both at a global (no-
fly areas) and a team (additional no-fly areas and usable bases
of operations) level, as well as team composition (vehicles).
These dialects allow for a high-level definition of the operating
scenario and team composition and capabilities, which allows
any platform that is based on these dialects to be used by non-
experts as well.

A survey conducted among 42 participants showed that
SDL and TDL generally receive a positive evaluation, as
well as the Control Panel sections that deal with SDL and
TDL files. The overall evaluation of SDL achieved a score
of 4 points (out of 5), with 81% of the answers at�4; the over-
all evaluation of TDL was a score of 4 (out of 5), with 78.6%
of the answers at�4. Regarding the usability of the developed
tool, an average score of 86.7 was achieved in the SUS test.
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These results prove not only that a tool based on SDL and
TDL can be easily used by nonexperts to setup an operating
scenario and define a team of vehicles but also that SDL
and TDL can be used to specify all aspects regarded as impor-
tant for scenario and team definition.

Some extensions and part of existing dialects could have
been used in specific portions of the described dialects:

† GML could have been used to describe areas (no-fly and
controller areas) in more detail. Even though controller
and no-fly areas are expressed as either a polygon or a
circle, with lower and upper altitude limits (which corre-
spond to how these areas are usually defined in the real
world; Federal Aviation Administration, 2010), a gener-
alization could be made, as to express other geometrical
forms, or even area composition (e.g., applying Boolean
operations to areas);

† The X3D dialect could have been used for describing inde-
tail the payload areas and sensor dimensions (or even the
rough external aspect of the vehicles; Web3DConsortium,
2008). Even though the information contained in the lan-
guage definition is enough for the purposes of this simula-
tion platform, a more detailed description of the geometry
of payload areas and cargo could help automate the process
of matching sensors to payloads (Allen et al., 2009);

† SensorML (OGC, 2007b) could have been used to de-
scribe the sensors that each agent is equipped with,
thus allowing for higher interoperability (Aloisio et al.,
2006);

† The Aeronautical Information Exchange Model could
have been used in the description of some aeronautical
structures, namely, within the airport (Brunk & Poros-
nicu, 2005).

However, we decided not to implement these features on
the short term (instead using simplified versions of several
concepts from these dialects), mainly because of two reasons:
it would represent a level of detail that was not intended in the
languages and small tools can be easily developed to make
the conversion between dialects (or the SDL and TDL
definitions can be changed to allow both forms of element
definition).

A complete description of the road system, as well as mar-
itime and aerial routes (or at least the corridors for the air-
ports) could have been also included, either as information
explicitly present on the files or as a specification of a source
for the information, such as a geographic information system-
based database or an external service (Huang et al., 2009).

As previously mentioned, flight simulators have detailed
descriptions of airports and their structures. As such, a tool
could also be developed to extract that information from a
flight simulator, such as FSX, and convert it into SDL, thus
automating the process of creating airport descriptions, and
easily building a set of bases of operations that could be
used for aerial operations.

Further feedback from the community and improvement
suggestions are welcome, as to advance these dialects into
an extent where they will become more and more of a stan-
dard, providing support for several projects, and in several
areas.
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