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In this paper, we will show how to obtain asymptotic solutions for the problem of pricing

Asian options. Under the assumption that the underlying follows geometric Brownian motion,

we will derive Taylor expansion series for the fixed and floating strike Asian options. While

there will be no analytical formulae for calculating expansion coefficients, we will provide

relatively simple algorithms for calculating them. The methodology is particularly effective

for the case of continuously sampled fixed-strike Asian calls where it takes only seconds

to obtain constants for the Taylor expansion series that can converge beyond 10 significant

digits. It is needless to say that we need to calculate Taylor expansion constants only once

and the option price would be an analytical expression constructed from a cumulative normal

distribution function, an exponential function and finite sums.
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1 Introduction

The Asian options have been around for decades. In plain terms, these are similar to stand-

ard vanilla options except that the payout depends on the value of the underlying over the

life of the contract rather than just on its value at maturity. For example, the payout may

depend on an average price of the underlying calculated over the time of the contract. This

could be preferable for a buyer because average price is less susceptible to short-term

fluctuations caused by shocks to supply or demand. While these financial instruments

make sense from a business perspective, the problem of pricing them is not trivial at all.

If we assume that the underlying follows geometric Brownian Motion, the price for a

standard vanilla option can be calculated as an expectation with respect to a normally

distributed random variable. In the case of Asian options, the payout will depend on the

full path of the Brownian Motion and we need to take expectations with respect to a

random variable that is not normally distributed. For example, if we have a continuously

sampled fixed-strike call option, the payout will depend on an integral of the geometric

Brownian Motion. The full probabilistic analysis of this case is well described by H.

Geman and M. Yor [2]. As a matter of fact, the analytics has been developed to the

extent that we can write down Laplace transforms of the solutions or even have integral

representations for the distribution functions [13]. Unfortunately, this still leaves us with

the problem of calculating integrals for the expectations or inverse Laplace transforms.
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Alternatively, we can reduce the problem to the solution of a parabolic partial differential

equation (PDE). This gives us a whole new range of options because there are many

numerical methods developed for solving PDEs. Perhaps the most known algorithm, for

the case of Asian options, has been introduced by J. Vecer [9].

Other algorithms include the matched asymptotic expansions method. It has been first

introduced into the field of financial mathematics by S. Howison [4].

He has successfully applied it to a number of problems including discretely sampled

Barrier options [5]. Specifically, for Asian options, the method has been developed by L.

Rogers and Z. Shi [7] and then applied by J. Zhang in [11]. In his paper, J. Zhang is using

first-order approximation which is similar to our zero order for the case of the fixed-strike

Asian call. The remaining orders are solved numerically. He has further developed on

this by replacing the numeric algorithm with a perturbation method [12]. This resulted in

several orders of approximation that have very similar form to what we present here. The

other developments along this root include a paper by J. Dewynne and W. Shaw [1] which

derives Black–Scholes-like asymptotic solutions for the “Asian” PDE. In their paper, we

can find a Taylor series expansion algorithm for the PDE solution with explicit analytical

expressions for the first several orders. For all practical purposes, the algorithm gives

good approximation with simple analytical expressions.

Inspired by these results, we have derived a relatively easy algorithm for calculating all

Taylor expansion coefficients. In addition, we have given full consideration to the floating-

strike case which is often not covered as well in the literature as the fixed-strike case.

We will start with formulating the problem of pricing Asian options and then move

on to describe analytics for expanding the ‘Asian’ PDE solution in Taylor series. We will

consider two expansions. One is for the fixed-strike Asian options and the other is for the

floating-strike Asian options. While most of the analytics developed here will apply to the

case of continuously sampled options, a similar approach should work for other cases as

well. We will comment on how to extend algorithms beyond continuously sampled case

when appropriate. In the final section, we will validate numeric results for the same test

cases as in [1] and show how many expansion terms are required to obtain each result.

2 Reducing pricing problem to a parabolic PDE

For the purpose of this analysis, we will consider two types of Asians – fixed-strike calls

and floating-strike puts. The remaining two options (fixed-strike puts and floating-strike

calls) are trivially derived from the first ones (e.g. see [1]). Mathematical treatment of

these problems is almost the same. In contrast, fixed-strike calls and floating-strike puts

are fundamentally different problems. If we are to solve them probabilistically, for the first

problem we will need distribution of an integral of the geometric Brownian Motion and,

for the floating-strike put, we will need joint distribution functions between the integral

and a geometric Brownian Motion. It is clear that we should expect the second problem

to be more complex.

We can write the price of options as discounted expectation of the final pay-off in a

risk-neutral measure. For the fixed-strike Asian call, we have

Cx(St, K, r, δ, t, T ) = e−r(T−t)Et

[(
1

T

∫ T

0

ω(u)Sudu−K

)+
]
, (2.1)
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and for the floating-strike Asian put

Pf(St, λ, r, δ, t, T ) = e−r(T−t)Et

[(
1

T

∫ T

0

ω(u)Sudu− λST

)+
]
. (2.2)

Options are written at time zero and valued at time t. We are using the usual notation: T

denotes time at maturity, St – stock price at time t ∈ [0, T ], K – strike, r is the risk-free

rate of interest, δ is the continuous dividend yield on the stock and λ is a constant that

is usually set to 1. Both r and δ are assumed to be constant. ω(u) is a weight function

which is non-negative, its integral over time interval [0, T ] is equal to T and
∫ t

0 ω(u)du

is piecewise continuous on [0, T ]. There are two special cases of interest. When ω(u) is

equal to 1, we have continuously sampled options and, if ω(u) is a sum of delta functions

multiplied by T/N (N is the number of delta functions), we have discreetly sampled

Asian options. When St follows geometric Brownian Motion and t = 0, the problems are

mathematically equivalent

Cx(S0, K, r, δ, 0, T ) = Pf

(
S0,

K

S0
, δ, r, 0, T

)
. (2.3)

The identity comes from V Henderson and R Wojakowski [3]. Unfortunately, for t > 0,

the relationship does not hold. Nevertheless, we can reduce these problems to the same

parabolic PDE but with two different initial conditions. From [1], we know that this is

the PDE we need to solve

∂φ(η, τ)

∂τ
=

1

2
σ2η2 ∂2φ(η, τ)

∂η2
+

(
W (τ)

T
− (r − δ)η

)
∂φ(η, τ)

∂η
(2.4)

with the initial condition of φ(η, 0) equal to max(η, 0) for the fixed-strike call and max(η−
λ, 0) for the floating-strike put. By τ we define time to maturity (T − t) and W (τ) is simply

ω(T − t). The following equalities will hold

Cx(St, K, r, δ, t, T ) = Ste
−q(T−t)φ

(
It −KT

StT
, T − t

)
, (2.5)

Pf(St, λ, δ, r, t, T ) = Ste
−q(T−t)φ

(
It

StT
, T − t

)
, (2.6)

where It =
∫ t

0
ω(u)Sudu.

Let us now see how we can simplify equation (2.4) further. First, we can make times τ

and T dimensionless by scaling them with volatility: τσ = σ2τ and Tσ = σ2T . The volatility

scaled times would normally be less than 0.01 which makes them good candidates for

expanding solutions in Taylor series. The physical times will not appear in the context of

this problem anymore. Scaling times with volatility leads us to redefine the risk-free rate

of interest and dividends as follows:

ρ =
r − δ

σ2
. (2.7)

Here, ρ has no dimension but its value would not necessarily be small because we obtain
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it by dividing the difference between the interest rate and the dividend yield by the square

of the volatility and these are usually of the same order of magnitude. And, finally, we

substitute W (u) with

Wσ(u) = W
( u

σ2

)
. (2.8)

Now we are ready to simplify equation (2.4) by introducing the following change of

variables

φ (η, τ) = ψ

(
ηe−ρτσ +

1

Tσ

∫ τσ

0

Wσ(u)e
−ρudu, τσ

)
= ψ(ξ, τσ). (2.9)

Substituting the above expression (2.9) into our original PDE (2.4), we can see that the

first derivative with respect to ξ disappears and we are left with the following expression:

∂ψ(ξ, τσ)

∂τσ
=

1

2
e−2ρτση2 ∂2ψ(ξ, τσ)

∂ξ2
. (2.10)

Noting that ξ = ηe−ρτσ + 1
Tσ

∫ τσ
0
Wσ(u)e

−ρudu, we immediately get

∂ψ(ξ, τσ)

∂τσ
=

1

2
(ξ − η∗(τσ))

2 ∂2ψ(ξ, τσ)

∂ξ2
, (2.11)

where

η∗(τσ) =
1

Tσ

∫ τσ

0

Wσ(u)e
−ρudu. (2.12)

The initial conditions are the same as before

ψ(ξ, 0) = max(ξ, 0) (2.13)

for the fixed-strike call and

ψ(ξ, 0) = max(ξ − λ, 0) (2.14)

for the floating-strike put.

We now have a PDE (2.11) that will be the starting point for our expansion in Taylor

series. The equation is slightly different from the one used by J. Vecer [9] or W. Shaw [1].

This is because we would like to introduce two Taylor expansions and, as we will see, this

form of PDE is more “natural” to work with. The problems however are equivalent and

we will obtain the same (up to a simple change of variables) first orders of the expansion

as in [1].

3 Expanding PDE solutions in Taylor series

In the previous section, we have introduced a parabolic PDE (2.11) with dimensionless

parameters which solves our original problem of pricing Asian options. No useful analytic

solutions are known for equations (2.11)–(2.14) and one of the popular numerical methods

would be the Finite Difference method. We will attempt to get full expansion for the

solution in Taylor series.

First, let us note that ψ is a function of two variables τσ , ξ and it is also a functional

of η∗(τσ). While we would love to have direct Taylor expansion in τσ and ξ, there is no
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obvious way of getting it from the PDE (2.11) itself. If we attempt to search for solutions

as Taylor series, function η∗(τσ) would stop us from getting simple identities between

expansion coefficients and it is not clear how to make sure that ψ satisfies the initial

conditions.

Since we do not have any other variables, the prospect of solving this problem gets

obscure. Luckily, there is nothing to stop us from adding more variables. Then, we can

obtain the solution to our original problem by setting made-up variables to a constant

(e.g. let us say 1).

There seems to be two variables that work best. We will call them α and β. Let us now

modify our PDE as follows:

∂ψ(ξ, τσ, α, β)

∂τσ
=

1

2
(αξ − βη∗(τσ))

2 ∂2ψ(ξ, τσ, α, β)

∂ξ2
, (3.1)

where we have the fixed-strike call initial condition max(ξ, 0) for the α expansion and the

floating-strike put initial condition max(ξ − λ, 0) for the β expansion.

The choice for α, β and initial conditions makes sense in the following context. We

want to expand ψ(ξ, τσ, α, β) in α and β around α = 0, β = 0 and it is preferable that zero

expansion orders have simple analytical form and satisfy the initial conditions. The latter

will make sure that all the following orders (1, 2, 3, . . .) are zero at time 0. It is clear that

PDEs with zero initial conditions could be much easier to solve.

By setting α or β to zero in equation (3.1), we can see that zero-order solution for

the β expansion is equal exactly to the solution of the Black–Scholes PDE and in the α

expansion case it has an analytical form as well.

For the special case of our original PDE, α and β are equal to 1 which is relatively far

from the Taylor expansion point zero. This means that we should not expect our algorithms

to perform well and we therefore need to understand under what conditions each expansion

works best. We can get some insights from the formula (3.1). In particular, we can see

that α and β expansions are in some way complementary. When |αξ| � |βη∗(τσ)|, small

changes in β will have little impact on how the solution of equation (3.1) develops across

the time dimension and, conversely, when |αξ| � |βη∗(τσ)|, the solution should have little

sensitivity to changes in α. Therefore, we should expect the α expansion to work better for

low values of |ξ| and the β expansion should perform better for high values of |ξ|. It is

also clear that we should expect both α and β expansions to perform well for low values

of σ2(T − t) simply because this is our volatility-scaled time τσ and by moving away from

the initial condition at time zero we can only expect our approximation to get worse.

The choice of initial conditions naturally allocates α expansion to the problem of the

fixed-strike Asian call and β expansion nicely fits the problem for the floating-strike Asian

put. If we value options at time zero, the symmetry relationship (2.3) will make these

algorithms interchangeable – we can use either of them to price any type of the Asian

option.

3.1 Fixed-strike Asian call

In this section, we will show how to get full Taylor expansion for the price of a fixed-strike

Asian call. The expansion will be in α around zero and we therefore start by differentiating
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both sides of equation (3.1) with α and setting α to zero. This will give us a system of

differential equations for α expansion orders. We need to differentiate n times to get n′s

expansion order. We will also set β to 1. For better readability of formulas, let us remove

σ subscript from times τ and T . From now on, τ and T will denote volatility-scaled times.

Let us also denote partial derivatives with subscripts and ∂nψ(ξ,τσ ,α,1)
∂αn

evaluated at α = 0

with ψ(n) (n = 0, 1, . . .). This gives us

ψ(0)
τ − 1

2
η∗(τ)2ψ(0)

ξξ = 0,

ψ(1)
τ − 1

2
η∗(τ)2ψ(1)

ξξ = −η∗(τ)ξψ(0)
ξξ ,

ψ(2)
τ − 1

2
η∗(τ)2ψ(2)

ξξ = −2η∗(τ)ξψ(1)
ξξ + ξ2ψ

(0)
ξξ

. . .

ψ(n)
τ − 1

2
η∗(τ)2ψ(n)

ξξ = −nη∗(τ)ξψ(n−1)
ξξ +

1

2
n(n− 1)ξ2ψ

(n−2)
ξξ (3.2)

. . .

with the initial condition of max(ξ, 0) for ψ(0) and 0 for (ψ(1),ψ(2), . . .). Then, we would

hope that the solution to our original PDE (2.11) is

ψ(ξ, τ) =

+∞∑
n=0

1

n!
ψ(n)(ξ, τ). (3.3)

Strictly speaking, the above sum may not converge at all or it may not converge to the

solution of our original PDE. The maximum we can do is to test convergence empirically

and see if our calculations agree with other algorithms accepted for solving this particular

problem. We will do this in the Validation of results section. Also, it is interesting to note

that n! in the above expression is in some way redundant. We could have removed it (e.g.

as it has been done in [1]) and got rid of n and n(n− 1) in equations (3.2) as well.

Let us now start with solving our system of differential equations (3.2) for ψ(0)

ψ(0) (ξ, τ) = ξN

(
ξ√
η̂(τ)

)
+

√
η̂(τ)

2π
e− ξ2

2η̂(τ) , (3.4)

where N is the normal cumulative density function and η̂(τ) is the square of η∗(u) function

integrated over [0, τ]

η̂(τ) =

∫ τ

0

η∗(u)2du. (3.5)

It is clear that η̂(τ) is a strictly increasing function of its argument and it is zero at time

zero. We can therefore view η̂ as a ‘natural’ clock for our problem. In particular, it defines

how ψ(0) develops over time. It is relatively easy to guess ψ(1) as

ψ(1)(ξ, τ) = − ξ√
2πη̂(τ)3

e− ξ2

2η̂(τ)

∫ τ

0

η̂(u)η∗(u)du. (3.6)

It is interesting to note that instead of guessing solutions we could have rewritten the

problems using η̂ as an independent time-like variable and derive equations (3.4) and (3.6)
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in a very straightforward way similar to how it has been done in [1]. This method however

has very limited utility beyond order 1. The solutions for higher orders are not easy to

obtain and we have not seen them presented for a general form of η∗(τ). Everything now

depends on how successfully we can solve PDE of the following type:

∂ψ(ξ, τ)

∂τ
− 1

2
η∗(τ)2

∂ψ(ξ, τ)

∂ξ2
= φ(ξ, τ), (3.7)

where the initial condition is ψ(ξ, 0) = 0 and φ(ξ, τ) is given. In the context of our

problem, ψ(ξ, τ) would be ψ(n) (n = 2, 3, . . .) with φ(ξ, τ) calculated from two preceding

orders. We can write the solution to the above PDE (3.7) as some transformation Ex,η̂[.]

applied to the function φ(ξ, τ)

ψ(ξ, τ) = Ex,η̂ [φ(ξ, τ)] = E

[∫ τ

0

φ(ξ + x
√
η̂(τ) − η̂(u), u)du

]
, (3.8)

where x is a normally distributed random variable with variance 1. We can prove this

relationship as follows. First, let us introduce a standard Brownian motion in the above

equation

ψ(ξ, τ) = E

[∫ τ

0

φ(ξ + Bη̂(τ)−η̂(u), u)du

]
. (3.9)

From Itô’s lemma, we know that

φ(ξ + Bv, u) = φ(ξ, u) +

∫ v

0

φξ(ξ + Bv, u)dBv +

∫ v

0

1

2
φξξ(ξ + Bv, u)dv. (3.10)

Therefore, we can write equation (3.9) as

ψ(ξ, τ) =

∫ τ

0

φ(ξ, u)du+
1

2

∫ τ

0

∫ η̂(τ)−η̂(u)

0

E[φξξ(ξ + Bv, u)]dvdu. (3.11)

We can then differentiate both sides with τ and replace the remaining expectation with ψ

using identity (3.9). This will give us our result (3.7). Throughout the proof, we assumed

that φ is in C2,1(R, [0, T ]) and L1. This is sufficient for Itô’s lemma to work and all of the

above expectations, integrals and derivatives will exist.

Straightforward application of this result (3.8) to our system of differential equations

(3.2) immediately yields all orders greater then 1

ψ(n)(ξ, τ) = Ex,η̂

[
−nη∗(τ)ξψ(n−1)

ξξ +
1

2
n(n− 1)ξ2ψ

(n−2)
ξξ

]
. (3.12)

Therefore, we have a viable way of obtaining all orders of the α expansion. For example,

this is how we can get ψ(2). First, we note that ψ(0) and ψ(1) are known from equations

(3.4) and (3.6). We then substitute them into the above identity (3.12) and calculate the

argument for the transformation Ex,η̂[.]. Finally, we apply the transformation. For that we

need to replace τ with u and ξ with ξ + x
√
η̂(τ) − η̂(u). Then, we take expectation with

respect to x (it is normally distributed with variance 1) and integrate over u from 0 to τ.
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This would give us the result

ψ(2)(ξ, τ) = e− ξ2

2η̂(τ) (2ξ4η2(1,1,1)(τ) + ξ2(η̂(τ)2η2(0,2,0)(τ)

− 12η̂(τ)η2(1,1,1)(τ) + 6η̂(τ)2η2(1,0,1)(τ)) + (−η̂(τ)3η2(0,2,0)(τ) + η̂(τ)4η2(0,1,0)(τ)

+ 6η̂(τ)2η2(1,1,1)(τ) − 6η̂(τ)3η2(1,0,1)(τ)))/
√

2πη̂(τ)9, (3.13)

where

η2(k,l,m)(τ) =

∫ τ

0

η∗(u)kη̂(u)l
(∫ u

0

η∗(u1)η̂(u1)du1

)m

du. (3.14)

Immediately, we can see that the functional form for ψ(2) is not as simple as we have

seen for the previous orders. In order to obtain ψ(3), we need to follow equation (3.12)

again. However, differentiating by ξ in equation (3.12) will result in even more complex

analytical expressions. We need to optimise our algorithm further. For that, we note that

the expansion orders 1 (3.6) and 2 (3.13) have similar forms with respect to ξ. They

are both ξ polynomials multiplied by the exponential function. Substituting this type of

expressions into equation (3.12) will yield the argument for Ex,η̂[.] transformation which

again is a ξ polynomial multiplied by the exponential function. We will see next what

happens when we apply Ex,η̂[.] transformation to this class of functions. Let us start with

the following identity:

E
[
(ξ + ax)ne− 1

2 ( ξ+ax
b

)2
]

= e
− ξ2

2(a2+b2)

	n/2
∑
k=0

n!ξn−2ka2k

2k(n− 2k)!k!

(
b2

a2 + b2

) 1
2 +n−k

, (3.15)

where, as before, x is a normally distributed random variable with variance one, a, b

are real constants, n is an integer and by 	n/2
 we denote the greatest integer less than

or equal to n/2. We can see that this identity holds by re-writing the expectation as an

integral w.r.t x; then, through a simple change of variables, we can remove the first power

of x in the exponential, re-write multiplier in front of the exponential as x polynomial and

the result will follow from the known formulae for moments of a normally distributed

random variable. For our problem, this means that

Ex,η̂
[
ξne− ξ2

2η̂(τ) f(τ)
]

= e− ξ2

2η̂(τ)

	n/2
∑
k=0

n!ξn−2k

2k(n− 2k)!k!

∫ τ

0

f(u)gn,k(τ, u)du, (3.16)

where

gn,k(τ, u) = (η̂(τ) − η̂(u))k
(
η̂(u)

η̂(τ)

) 1
2 +n−k

. (3.17)

It is clear from the above identity (3.16) that applying transformation Ex,η̂[.] to a ξ

polynomial multiplied by the exponential function gives us ξ polynomials multiplied by

the same exponential function and even the maximum power of ξ stays the same. This

means that all α expansion orders will be very predictable functions of ξ. As a matter

of fact, if trying to derive ψ(3) and above manually, we would see even more patterns

emerging. In particular, we would be tempted to search for solutions in the following
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form:

ψ(n)(ξ, τ) =
τ5n

T 3n
√

2πη̂(τ)3n−1
e− ξ2

2η̂(τ)

3n−2∑
m=0

An,m(τ)η̂(τ)− m
2 ξm (3.18)

where n � 1. We can substitute the above formula into equation (3.12) and, with the help

of identity (3.16), obtain the following relationship for An,m(τ) :

An,m(τ) =

∫ τ

0

3n−2∑
k=m

(1 + (−1)m+k)k!

2m!((k − m)/2)!

u5n−1

τ5n

(
η̂(τ) − η̂(u)

2η̂(τ)

) k−m
2

(
η̂(τ)

η̂(u)

) 3n−m−2
2

(−nT 3u−4η∗(u)η̂(u)Ân−1,k−1(u) +
1

2
n(n− 1)T 6u−9η̂(u)3Ân−2,k−2(u))du, (3.19)

where by Ân,k(u) we denote

Ân,k(u) = An,k−2 − (1 + 2k)An,k1I{n>0} + (k + 1)(k + 2)An,k+2, (3.20)

with A0,−2 = 1 and An,m = 0 for all other negative m’s, n < 1 and for m > 3n − 2. This

is all we need to obtain any α expansion order. We have analytical expression for ψ(0)

(3.4) and equation (3.18) gives us all orders above zero. Let us now look at the above

algorithm more closely.

Firstly, we notice that An,m is calculated from two preceding orders of the α expansion

multiplied by n and n(n− 1). This introduces n! type of growth and we therefore need to

be careful not to assume that the α expansion converges unconditionally. This is simply

not true.

Secondly, we can see that η̂(u) appears in the denominator and, since it is zero at the

start of our integration interval, the integral may not exist. In particular, for discreetly

sampled options, if the last sample is not taken at maturity, the η̂(u) and all its derivatives

will be zero around a neighbourhood of zero. The integral will not exist and we will

therefore need to enforce that the last sample is taken at maturity. But this is fine because,

if interest rates are constant, the final payout is already known if we know the last sample.

Let us now see how we can apply this algorithm for the special case of continuously

sampled fixed-strike Asian call. For continuously sampled options, the η∗(τ) function takes

the following form:

η∗(τ) =
1

ρT
(1 − e−ρτ). (3.21)

We would like to remind that T and τ are volatility-scaled times and should not be

confused with physical times.

Then, we just need to implement the algorithm (3.19). If we substitute the above equation

for η∗(τ) and η̂(τ) (which is just an integral of η∗(u)2 over [0, τ]) into our algorithm (3.19),

we will find that An,m(τ)’s will only depend on ρτ. This should not be a surprise because, it

is due to our choice of the functional form for the solution (3.18), we have things working

out nicely for this special case.

It should be noted that the expression (3.19) includes integration over time which creates

some problems. Firstly, we would want to have analytical expressions for all expansion

orders which means that we cannot do integration numerically. We need to use tools

which can take integrals analytically, e.g. Wolfram Mathematica [10]. Secondly, looking
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at the form of the integrand, it is easy to see that there is no guarantee that the integrals

can be taken analytically. Our algorithm would then clearly fail. And, finally, taking

integrals analytically takes time. The time it takes to obtain the solution will increase with

each order and for the 8th order it took us around 24 h with an average modern personal

computer.

Having gone through the process, we would obtain quite complex analytical expressions

with 8th order taking more then 20 screens of a Wolfram Mathematica [10] notebook.

The expressions will not be numerically stable for high orders and we will need to expand

An,m(τ) in Taylor series with respect to τ. This means that, although it is nice to have

analytical expressions for the α expansion orders, they are really of little practical use. We

will only need Taylor expansions in τ for all α orders.

Am,n’s are functions of ρτ and we obtain them through multiple integration of analytical

functions of the known form. If we remember what we already know about our solution

(3.18), we can easily derive the following representation for ψ(n)’s:

ψ(n)(ξ, τ) =
τ5n

√
2πη̂(τ)

(3n−1)
2 T 3n

e− ξ2

2η̂(τ)

+∞∑
i=0

3n−2∑
j=0

an,i,j η̂(τ)
− j

2 ξj(ρτ)i, (3.22)

where an,i,j ’s are real constants. One way of calculating them is to directly expand Am,n(τ)’s

that we had obtained earlier. There is however a simpler way. It should be noted, that,

in order to calculate an,i,j ’s, we do not need any(!) of the analytics we have developed so

far. We can just use a brute force approach. We take the above representation (3.22) as

given and substitute it directly into the system of differential equations at the start of this

section (3.2). At first sight, it may look complicated because we have to multiply a Taylor

expansion with unknown coefficients by functions η̂(u) and η∗(u) and then we need to

solve for an,i,j ’s which, for a given n, is a matrix with one finite and one infinite dimension.

Such problems could be notoriously hard to solve. However, for our special case, it all

works out very nicely. The products give us convolution sums and the resulting system of

linear equations is surprisingly easy to solve.

This will give us the algorithm we were looking for

an,i,j = −3

(
i∑

k=1

((2 + j − 3n)(k + 3) + 2(i− k + 5n))Ψ1,kan,i−k,j

−
i∑

k=0

((k + 3)(2 + 3j + j2)Ψ1,kan,i−k,j+2 − 2nΨ2,kân−1,i−k,j−1

+ n(n− 1)Ψ3,kân−2,i−k,j−2)

)/
(3(2 + j − 3n) + 2(i+ 5n)),

where, as before, by the hat over a we mean the following identity:

ân,i,j(u) = an,i,j−2 − (1 + 2j)an,i,j1I{n>0} + (j + 1)(j + 2)an,i,j+2, (3.23)

and by Ψm,k ’s we denote Taylor expansion coefficients for the functions in {.}k brackets

Ψ1,k = {u−3T 2ρ3η̂(u)}k = (−1)k(2k+2 − 2)/(k + 3)!,
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Ψ2,k = {u−7ρTη∗(u)(ρ3T 2η̂(u))2}k = (−1)k(397 − 29+k29

+ 36+k118 − 47+k9 + 57+k + (80 − 28+k5 + 36+k4)k + 4k2)/4/(k + 7)!,

Ψ3,k = {u−12(ρ3T 2η̂(u))4}k = (−1)k(−15987 + 210+k7971 + 232+3k − 312+k523

+ 210+k312+k31 + 411+k613 − 511+k197 − 712+k + 2(−1889 + 211+k323

− 311+k80 + 29+k311+k + 49+k297 − 511+k3)k + 12(−25 + 29+k11

+ 217+2k − 310+k)k2 + 8(−1 + 27+k)k3)/(k + 12)!.

We start with a0,0,−2 = 1 and we set an,i,j ’s to zero for all other negative j’s, for n < 1,

i < 0 and for j > 3n − 2. For given n and i, the index j should run in reverse order

from 3n − 2 to 0. n runs from 1 and i from 0 up. The maximum n will determine the

number of expansion orders required in α and the maximum i determines the number of

expansion terms in τ. If we want to keep error for each n of the same order of magnitude

with respect to τ, we would need to increase maximum i as n goes up. This is because our

representation (3.22) explicitly includes τ, T and our new clock η̂ which are of the same

order of magnitude as τ. It is clear that the maximum i will need to go up by 1 for each

extra α order.

When interest rates are equal to the dividend yield on the stock, we have ρ = 0 and

from the representation (3.22) we can see that the summation in i will disappear. Our

algorithm (3.22) will then simplify significantly. First sum will disappear all together and,

in the second sum, we will only have to keep the term with k equal to zero. Ψm,k will

become real numbers. The resulting algorithm (in C++ or Wolfram Mathematica [10])

will then consist of only 2 ‘for’ loops around 1 relatively short line of code.

The algorithm we have presented here is invariant to changes in any of our parameters.

We calculate Taylor expansion constants an,i,j ’s and these are just real numbers independent

of our inputs. It is sufficient to calculate them only once and have them stored for future

re-use through the formula (3.22). This completes specifications for the algorithm.

We have kept things general up to a point where we started to search for solutions in the

form (3.18). This choice has been made to ensure that, for continuously sampled options,

our An,m(τ)’s functions only depend on ρτ. For other cases, it may not be possible to find a

solution that would make our algorithm invariant to changes in ρ. It is however clear that

the algorithm for calculating An,m’s (3.18) holds for a general case which means that, if

everything else fails, we can still try to get explicit expressions for the α expansion orders

by integrating expressions, constructed from two previous orders, over volatility-scaled

time.

3.2 Floating-strike Asian put

In this section, we will show how to get full Taylor expansion for the price of the floating-

strike Asian put. This time, we need to expand PDE solutions in β and, analogously to

the α case, we can get a system of equations for all β expansion orders from equation

(3.1) by differentiating both sides with β and setting β to zero. We need to differentiate n

times to get n′s expansion order. We will also set α to 1. Then, we have

ψ(0)
τ − 1

2
ξ2ψ

(0)
ξξ = 0,
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ψ(1)
τ − 1

2
ξ2ψ

(1)
ξξ = −η∗(τ)ξψ(0)

ξξ ,

ψ(2)
τ − 1

2
ξ2ψ

(2)
ξξ = −2η∗(τ)ξψ(1) + η∗(τ)2ψ(0)

ξξ

. . .

ψ(n)
τ − 1

2
ξ2ψ

(n)
ξξ = −nη∗(τ)ξψ(n−1)

ξξ +
1

2
n(n− 1)η∗(τ)2ψ(n−2)

ξξ (3.24)

. . .

with the initial condition of max(ξ− λ, 0) for ψ(0) and 0 for (ψ(1),ψ(2), . . .). Firstly, we need

to remove ξ2 in front of the second derivative through the following change of variables:

ζ− = Log

[
ξ

λ

]
− 1

2
τ. (3.25)

This will transform the above system of differential equations into

ψ(0)
τ − 1

2
ψ

(0)
ζ−ζ−

= 0,

ψ(1)
τ − 1

2
ψ

(1)
ζ−ζ−

= −η∗(τ)λ−1e−ζ−− 1
2 τ

(
ψ

(0)
ζ−ζ−

− ψ
(0)
ζ−

)
,

ψ(2)
τ − 1

2
ψ

(2)
ζ−ζ−

= −2η∗(τ)λ−1e−ζ−− 1
2 τ

(
ψ

(1)
ζ−ζ−

− ψ
(1)
ζ−

)
+ η∗(τ)2λ−2e−2ζ−−τ(ψ(0)

ζ−ζ−
− ψ

(0)
ζ−

)
. . .

ψ(n)
τ − 1

2
ψ

(n)
ζ−ζ−

= −nη∗(τ)λ−1e−ζ−− 1
2 τ

(
ψ

(n−1)
ζ−ζ−

− ψ
(n−1)
ζ−

)
+

1

2
n(n− 1)η∗(τ)2λ−2e−2ζ−−τ(ψ(n−2)

ζ−ζ−
− ψ

(n−2)
ζ−

)
(3.26)

. . .

with the initial conditions of λmax(eζ− − 1, 0) for ψ(0) and 0 for the higher orders.

Mathematically, the problem is still analogous to the α case and we will therefore proceed

in the same way. First, let us guess ψ(0), i.e.

ψ(0)(ζ±, τ) = λeζ+− 1
2 τN

(
ζ+√
τ

)
− λN

(
ζ−√
τ

)
. (3.27)

Here, we define ζ+ as ζ− (3.25) but with the plus sign in front of the half τ. The two ζ’s

are similar to the two inputs into the Black–Scholes formula for the vanilla call. These

are sometimes denoted by h+, h− or d1, d2. For orders (1, 2, 3, . . .), similarly to the α, case,

we can write

ψ(n)(ζ±, τ) = Ex,τ
[

− nη∗(τ)λ−1e−ζ−− 1
2 τ(ψ(n−1)

ζ−ζ−
− ψ

(n−1)
ζ−

)

+
1

2
n(n− 1)η∗(τ)2λ−2e−2ζ−−τ(ψ(n−2)

ζ−ζ−
− ψ

(n−2)
ζ−

)
]
, (3.28)
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where we define ψ(n) = 0 for negative n (to allow for the case of n=1) and the transform-

ation Ex,τ[.] is the same as before except that we replace η̂(τ) with τ

Ex,τ[φ(ζ±, τ)] = E

[∫ τ

0

φ(ζ− + x
√
τ− u, u)du

]
, (3.29)

where x is a normally distributed random variable with variance 1. It is interesting that,

for the β case, our PDEs (3.26) are nothing but canonical Heat Equations with the Source.

Their solutions would usually be expressed as a convolution integral of their fundamental

solution with the Source function which is equivalent to the above transformation. We

can now substitute equation (3.27) into equation (3.28) and obtain ψ(1)

ψ(1)(ζ±, τ) = − 1√
2πτ

∫ τ

0

e− (ζ−+u)2

2τ η∗(u)du. (3.30)

ζ− cannot be taken outside integration which means that we cannot split τ and ζ− in a

way we did for the α case. It is therefore not clear if we can improve on our algorithm

(3.28) further. The β expansion appears to be more difficult to handle for a general case.

Let us now look at the special case of continuously sampled floating-strike Asian put.

The η∗(τ) function is given by equation (3.21). We have analytical expression for ψ(0)

(3.27) and we can obtain ψ(1) from equation (3.30)

ψ(1)(ζ±, τ) =
1

ρT
eρζ−+ 1

2 ρ
2τ

(
N

(
ζ+ + ρτ√

τ

)
−N

(
ζ− + ρτ√

τ

))

+
1

ρT

(
N

(
ζ−√
τ

)
−N

(
ζ+√
τ

))
. (3.31)

Our zero order (3.27) is exactly equal to the solution of the Black–Scholes PDE and

the first order above shows what happens if we deviate slightly from the ‘Black–Scholes

world’.

For the following orders (2, 3, . . .), we need to use transformation (3.28) again. This is

not as complicated as it looks thanks to the following identity:

Ex,τ

[
eaζ−+ a2τ

2 +bτN

(
ζ− + (a+ c)τ√

τ

)]

=
1

b
e
a2τ
2 +aζ−

(
ebtN

(
ζ− + (c+ a)τ√

τ

)
−N

(
ζ− + aτ√

τ

))

+
1

b
e(a− b

c
)ζ−+

(a− b
c )2τ

2

(
N

(
ζ− + (a− b

c
)τ

√
τ

)
−N

(
ζ− + (c+ a− b

c
)τ

√
τ

))
, (3.32)

where a, b, c are real constants. We can prove it by substituting its right-hand side into

ψτ − 1
2
ψζ−ζ− and making sure that we get the argument of the Ex,τ[.] transformation. This

is simply because we have introduced Ex,τ[.] as a way to solve the Heat Equation with

the Source.

The above identity (3.32) combined with our algorithm (3.28) and the functional forms

of ψ(0) (3.27) and ψ(1) (3.31) should make it clear that all β expansion terms greater then
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zero will have the following representation:

ψ(n)(ζ±, τ) =

n−1∑
k=0

Mk∑
m=0

∂k

∂ζk−

(
eak,mζ−+bk,mτN

(
ζ− + ck,mτ√

τ

))
, (3.33)

where ak,m’s, bk,m’s and ck,m’s are real constants One way to show this is to substitute the

above equation into our algorithm (3.28) and see what happens. It helps to know that,

because our functions are from C+∞,1(R, (0, T ]) and L1, ∂k

∂ζk−
and Ex,τ[.] will commute.

While we can continue beyond order 1, we have found that the algorithm is not as

easy to implement with Wolfram Mathematica [10] as in the α case. The main reason is

that the identity (3.32) does not seem to be recognised by the software and we have to

apply it ourselves. In any case, we will get complex analytical expressions with 8th order

taking more than 30 screens of a Wolfram Mathematica [10] notebook. Similar to the α

case, high orders will not be numerically stable and we will need to have them expanded

in Taylor series with respect to τ and ζ− anyway.

Perhaps we should take a different approach. Let us re-write our system of differential

equation (3.26) in the following form:

ψ(n)
τ − 1

2

(
ψ

(n)
ζ+ζ+

− 2ψ(n)
ζ+

)
=φ(n), (3.34)

φ(n) = −nη∗(τ)λ−1e−ζ++ 1
2 τ

(
ψ

(n−1)
ζ+ζ+

− ψ
(n−1)
ζ+

)
+

1

2
n(n− 1)η∗(τ)2λ−2e−2ζ++τ

(
ψ

(n−2)
ζ+ζ+

− ψ
(n−2)
ζ+

)
, (3.35)

with ψ(ζ+, 0) = 0 and ψ(n) = 0 for negative n. This is for n � 1 and ψ(0) is defined by

equation (3.31). It happens that for our special case of η∗(τ) (3.21), we can write φ(n) as

φ(n)(ζ+, τ) =
1

(λT )n−1

1√
2πτ

e− ζ2+
2τ

(
1

T

) +∞∑
i=0

+∞∑
j=0

j−1∑
k=0

cn,i,j,kζ
i
+τ

jρk (3.36)

and look for solutions in the form

ψ(n)(ζ+, τ) =
1

(Kλ)n−1

1√
2πτ

e− ζ2+
2τ

( τ
T

) +∞∑
i=0

+∞∑
j=0

j−1∑
k=0

bn,i,j,kζ
i
+τ

jρk, (3.37)

where for k � j, n = 0 and for negative indexes we define {bn,i,j,k} and {cn,i,j,k} as equal to

{0}. By notation {.}, we mean a collection of bn,i,j,k ’s or cn,i,j,k ’s with all indexes running

from −∞ to +∞ unless we specify otherwise. Substituting analytical expression for φ(0)

(3.31) and ψ(0) (3.37) into equation (3.35), we get a very simple algorithm for calculating

{c1,i,j,k}

c1,0,j,j−1 =
(−1)j

j!
(3.38)

and c1,i,j,k = 0 for i > 0, k� j−1 and for negative indexes. This will be our starting point.

The next step is to substitute expressions for ψ(n) (3.37) and φ(n) (3.36) into equation (3.34)
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and get an algorithm for calculating {bn,i,j,k}

bn,i,j,j−l =
bn,i−1,j,j−l
j + i+ 1

+
0.5(1 + i)(2 + i)bn,i+2,j−1,j−l

j + i+ 1

− (1 + i)bn,i+1,j−1,j−l
j + i+ 1

+
cn,i,j,j−l
j + i+ 1

. (3.39)

For a given n, we will know {cn,i,j,k} and this will be enough to calculate {bn,i,j,j−1} then

{bn,i,j,j−2} and so on (it helps if we remember that {bn,i,j,k} = {0} for k = j, n = 0 and for

negative indexes). The above equation (3.39) therefore maps {cn,i,j,k} to {bn,i,j,k} for a given

n. The map is linear and we can therefore write it as

bn,i,j,k = Bi,j,kcn,i,j,k, (3.40)

where B is a tensor defined by the relationship (3.39) and we using the usual shorthand

notation for tensors which excludes
∑

’s. Now the only remaining piece is to explain how

to calculate {cn,i,j,k} from ψ(n−1) and ψ(n−2). The formula for φ(n) (3.36) and equation (3.35)

give us the required relationship

+∞∑
i=0

+∞∑
j=0

j−1∑
k=0

cn,i,j,kζ
i
+τ

jρk = −n
(

(1 − e−ρτ)

ρτ
e−ζ++ 1

2 τ

)
Ψ (n−1)

+
1

2
n(n− 1)τ

(
(1 − e−ρτ)

ρτ
e−ζ++ 1

2 τ

)2

Ψ (n−2), (3.41)

where Ψ (n−1) and Ψ (n−2) are calculated from sums in the expression for ψ(n) (3.37)

Ψ (n) =

(
τ2

∂2

∂ζ2
+

− (2ζ+τ+ τ2)
∂

∂ζ+
+ (ζ2

+ − τ+ ζ+τ)

) +∞∑
i=0

+∞∑
j=0

j−1∑
k=0

bn,i,j,kζ
i
+τ

jρk. (3.42)

We need to get rid of sums and for that we need to know what happens to {bn,i,j,k} when

we apply three basic transformations. Namely, when we calculate Ψ (n) from equation

(3.42), we get

bn,i,j,k → bn,i−2,j,k + bn,i−1,j−1,k − (1 + 2i)bn,i,j−1,k

−(i+ 1)bn,i+1,j−2,k + (i+ 2)(i+ 1)bn,i+2,j−2,k . (3.43)

When we multiply by (1−e−ρτ)
ρτ

e−ζ++ 1
2 τ

bn,i,j,k →
i∑
l=0

j∑
m=k+1

k∑
n=0

(−1)i−l+k−n2−j+m

(i− l)!(j − m)!(k − n+ 1)!
bn,l,n+m−k,n, (3.44)

and, trivially, when we multiply by τ

bn,i,j,k → bn,i,j−1,k . (3.45)

All the three transformations (3.43)–(3.45) map {bn,i,j,k} to {bn,i,j,k}. The maps, again,

are linear and we can define them with tensors Zi,j,k , Hi,j,k , T i,j,k . Then, we can write our
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algorithm in full

bn,i,j,k = Bi,j,kHi,j,k

(
−nZi,j,kbn−1,i,j,k +

1

2
n(n− 1)T i,j,kHi,j,kZi,j,kbn−2,i,j,k

)
. (3.46)

This is for n > 2. For n = 2, we have

b2,i,j,k = Bi,j,kHi,j,k(−2Zi,j,kb1,i,j,k − T i,j,kc1,i,j,k), (3.47)

and, finally, for n = 1

b1,i,j,k = Bi,j,kc1,i,j,k , (3.48)

where {c1,i,j,k} is given by (3.38). Tensors in the above equations do not necessarily commute

which means that the order they are applied in is important. Also, when implementing

tensor Hi,j,k , there is no need to do three-dimensional summation in equation (3.44). It is

more efficient to calculate first sum (counting from the right) for indexes (l, m, n) then use

results to calculate the second sum for indexes (l, m, k) and so on.

This gives us the algorithm for calculating {bn,i,j,k} except that we have to start with

{c1,i,j,k} defined by equation (3.38) and it can only have a finite number of elements (let us

say i ∈ [0, i0] and j ∈ [0, j0]). This will result in {bn,i,j,k} having a finite number of elements

as well (let us say i ∈ [0, in] and j ∈ [0, jn]). This means that instead of exact solution, we

will have its approximation such that

ψ(n)(ζ+, τ) =
1

(λT )n−1

1√
2πτ

e− ζ2+
2τ

( τ
T

) ⎛
⎝ in∑

i=0

jn∑
j=0

j−1∑
k=0

bn,i,j,kζ
i
+τ

jρk + O(τjn+1, ζin+1
+ )

⎞
⎠ . (3.49)

While we are fine with the O(τjn+1) (τ is usually small), O(ζin+1
+ ) may present a problem.

After all, ζ+ is not necessarily small. However, looking at the form of expansion (3.37) we

can see that only when ζ+ = O(τ
1
2 ) we would be concerned about the multiplier in front

of e− ζ2+
2τ . For all other cases, we can expect the exponential to be sufficiently small so that

it dampens the effect of whatever ζ+ polynomial multiplies it. We can therefore assume

that ζ+ is of the same order as τ
1
2 which results in the following approximation for ψ(n)

ψ(n)(ζ+, τ) ≈ 1

(λT )n−1

1√
2πτ

e− ζ2+
2τ

( τ
T

)⎛
⎝ 2jn∑

i=0

jn∑
j=0

j−1∑
k=0

bn,i,j,kζ
i
+τ

jρk + O(τjn+1)

⎞
⎠ . (3.50)

This keeps expansion in ζ+ under control and slightly simplifies the problem – we only

need to know i0 and j0 for a given jn. It is easy to see that jn = j0. This is because none of

the algorithms (3.39), (3.43)–(3.45) require elements with time indexes higher then j. For

i0, this is not the case. From equation (3.39), it follows that for calculating bn,in,j,j−l , we

need two extra elements in i from a previous step - bn,in+1,j−1,j−l , bn,in+2,j−1,j−l . For a given

n, we have j steps (l = 1, 2, . . . j) to complete the algorithm and we will therefore lose 2jn
expansion orders in ζ+ by moving from n to n + 1. As a matter of fact, for n > 0, two

extra orders in ζ+ will be lost through differentiation by ζ+ (3.43) as well. Our total loss

by moving from 0 to n can be accounted for as 2(jn + 1)n− 2. We should therefore have
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Table 1. Test cases

No. S K r δ σ T No S K r δ σ T

1 1.9 2 0.05 0 0.5 1 1∗ 1.9 2 0.05 0.1 0.5 1

2 2.0 2 0.05 0 0.5 1 2∗ 2.0 2 0.05 0.1 0.5 1

3 2.1 2 0.05 0 0.5 1 3∗ 2.1 2 0.05 0.1 0.5 1

4 2.0 2 0.02 0 0.1 1 4∗ 2.0 2 0.02 0.04 0.1 1

5 2.0 2 0.18 0 0.3 1 5∗ 2.0 2 0.18 0.36 0.3 1

6 2.0 2 0.0125 0 0.25 2 6∗ 2.0 2 0.0125 0.025 0.25 2

7 2.0 2 0.05 0 0.5 2 7∗ 2.0 2 0.05 0.1 0.5 2

4A 2.0 2 0.02 0 0.05 1 4A∗ 2.0 2 0.02 0.1 0.05 1

4B 2.0 2 0.02 0 0.01 1 4B∗ 2.0 2 0.02 0.05 0.01 1

4C 2.0 2 0.02 0 0.005 1 4C∗ 2.0 2 0.02 0.01 0.005 1

4D 2.0 2 0.02 0 0.001 1 4D∗ 2.0 2 0.02 0.005 0.001 1

Test Cases with two stars (1∗∗, 2∗∗, . . .) are the same as above except that r = δ = 0.

i0 = 2jn + 2(jn + 1)n− 2. Since we know that j0 = jn, this completes specifications for the

algorithm.

The algorithm is easy to implement in low-level programming languages like C++.

This clearly gives an advantage of speed. However, we will still encounter performance

issues for higher orders. The problem is that the maximum dimension for the tensors is

defined by i0 = 2jn + 2(jn + 1)n − 2, where jn is our required accuracy for expansion in

τ and, if multiplied by n, it can easily yield dimensions above 100. In addition, Tn−1 in

the denominator of equation (3.50) will compound the problem because, as n increases,

we will have to increase jn as well. We should remind though – it is sufficient to run

this algorithm once. This will give us expansion constants bn,i,j,k ’s which we can store

for repeated use through the formula (3.50). The algorithm for calculating option prices

would be just an analytical expression constructed from the Black–Scholes formula ψ(0),

exponential functions and finite sums.

3.3 Validation of results

Let us now see how our algorithms perform for real-life pricing problems. For bench-

marking purpose, we will use the same test cases as in [1]. We present them in Table 1.

We should note that T denotes time to maturity and it is not volatility-scaled as before.

The results are given for the fixed-strike continuously sampled Asian call valued at time

zero and we will calculate them directly with the α expansion algorithm. For the β case,

we will have to use symmetry relationship (2.3) and we therefore need to make sure that

the test cases are relevant for the β algorithm. When we apply equation (2.3), there are

two things that happen. First, we have to replace λ of the floating-strike option with

K/S and, for the given test cases, K/S will be close to 1 which makes perfect sense. This

parameter is usually chosen to be 1 anyway. The other thing is that we have to swap

interest rate with dividends yield but, again, this should not be a problem because they

are of the same magnitude and we are testing for them being greater as well as less than

one another.
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Table 2. Test results

No. α10 β6 Price α10 β6 Price∗ α10 β6 Price∗∗

1 08 14 0.1931737903 09 15 0.1475616974 08 15 0.1692015821

2 08 16 0.2464156905 08 16 0.1917469269 10 16 0.2178147105

3 09 20 0.3062203648 08 16 0.2423155009 10 19 0.2729242550

4 05 11 0.0559860415 04 12 0.0357853435 04 12 0.0451430808

5 07 14 0.2183875466 08 14 0.0522606611 06 16 0.1151881714

6 07 15 0.1722687410 07 16 0.1453078196 08 06 0.1583800234

7 12 ∗∗ 0.3500952190 12 ∗∗ 0.2404951680 10 ∗∗ 0.2913151865

4A 04 11 0.0339411768 04 11 0.0140247437 04 11 0.0225755301

4B 03 10 0.0199277917 03 10 0.0001902534 02 06 0.0045153614

4C 02 09 0.0197357059 02 10 0.0000003799 02 09 0.0022576847

4D 00 00 0.0197353227 00 00 0.0000000000 00 07 0.0004515372

No. α10 β6 Delta α10 β6 Delta∗ α10 β6 Delta∗∗

1 09 21 0.4980939002 10 20 0.4091308357 10 19 0.4524927373

2 10 18 0.5660494294 09 19 0.4742428248 09 24 0.5192587592

3 09 ∗∗ 0.6291244896 09 ∗∗ 0.5365266568 10 18 0.5821693826

4 05 18 0.5721077914 05 18 0.4273173018 05 18 0.4991286298

5 08 17 0.6615412349 08 19 0.2491029903 07 16 0.4406882508

6 09 18 0.5499955934 09 15 0.4893201669 07 12 0.5193605520

7 12 ∗∗ 0.5834996605 11 ∗∗ 0.4436099158 10 ∗∗ 0.5108971711

4A 04 ∗∗ 0.6334899176 04 ∗∗ 0.3579777783 05 ∗∗ 0.4946145273

4B 04 ∗∗ 0.9490766340 04 ∗∗ 0.0406269249 03 ∗∗ 0.4910024096

4C 03 ∗∗ 0.9898046675 03 ∗∗ 0.0002598102 03 ∗∗ 0.4905508737

4D 00 ∗∗ 0.9900663347 00 ∗∗ 0.0000000000 01 ∗∗ 0.4901896441

Price∗ and Price∗∗ are results for the Test Cases with stars - (1∗ − 4D∗) and (1∗∗ − 4D∗∗).

α10 and β6 columns show the minimum number of α and β expansion terms required to calculate

10 and six significant digits, respectively.

For the α algorithm, test cases 1 − 7 cover parameter values commonly used in practice

and 4A − 4D give us better view of the low-volatility scenarios. Then, we want to test

for dividends yield being higher than interest rate and we introduce test cases 1∗ − 4D∗.

In contrast, for the β algorithm, it all works the other way. Test cases 1∗ − 7∗ will cover

parameter values commonly used in practice (for test purposes, these would be equivalent

to the cases with no dividends and interest rate being equal to δ − r). While test cases

1 − 4D, on the other hand, are equivalent to having dividends yield higher then interest

rate. Finally, two star test cases have the same interpretation for both algorithms – they

are for the case of interest rate being equal to dividends yield.

We have results presented in Table 2. For all data points, we show the first 10 digits

after the comma and, in addition, we can see how many α and β orders it takes to

calculate each result with 10 and six significant digits, respectively. The series converges

and the results are precise for all visible digits. The price values exactly match outputs

from all non-asymptotic algorithms presented in [1] including V. Linetsky’s [6] algorithm

which is known for its high accuracy. We have also used a contour integral Mathematica
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Figure 1. (Colour online) Test Case 2: (a) number of α expansion terms required to achieve 10

significant digits of accuracy, ‘*’ is for the price and ‘-’ is for the delta; (b) β minus α expansion, the

dotted line is ξ/10000.

algorithm from [8] to validate both the price and the delta values. Looking at the number

of expansion orders, we can see that the α algorithm requires at most 12 expansion orders

and this is for the case of high volatility (σ = 0.5) and long maturity (T = 2). For

low-volatility cases 4A− 4D, we can see that it takes only four α orders to converge. Our

algorithms therefore seem to work better when volatility is low and when we are closer to

maturity. This was expected because we had PDEs evolving along volatility-scaled time τ

which means that low σ and T would reduce approximation error by taking us closer to

the initial conditions. The convergence does not seem to be impacted much if we vary r

or/and δ. Finally, for the β case, we can see similar patterns except that we only manage

to achieve six significant digits and, for the high-volatility Test Cases 7 and 7∗∗, we could

only get four. Also, the β algorithm failed to achieve six digits accuracy on many test

cases when calculating option’s delta.

While algorithms perform well for the Test Cases, we know that they would not be

stable for extreme values of our parameters. For example, let us see what happens if we

dramatically change the ratio S/K . For the fixed-strike Asian call, this is equivalent to

moving deep into or out of the money region. Figure 1(b) shows what happens. Looking

at the difference between α and β algorithms, we can see two regions of instability. For

the deep out of the money case, the α expansion fails. We can see an oscillating error

approximately when our spatial parameter ξ (dotted line) drops below –1. Increasing

number of expansion orders will make the frequency and amplitude of oscillations grow.

The series simply does not converge. This makes sense. We have originally introduced α

parameter in equation (3.1) as a multiplier in the form of ξ and it is natural to expect

that, for high |ξ|, the evolution of our solution across time coordinate gets very sensitive

to even small changes in α. This would imply that high orders of α expansion might start

contributing more to the dynamics of the solution leading to the explosion in the series.

The region of instability does not go all the way to zero and this is because we have the

exponential function which, for very high |ξ|, seems to dominate everything that multiplies

it. We have not detected any instabilities for deep in the money case and since this is the

region of low |ξ|’s there is no reason to expect any.
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Let us now look at the region of β instability. The ratio of K/S is substituted in

the β algorithm instead of its parameter λ which is a multiplier in front of the floating

strike ST . The algorithm fails when λ is small. Looking at the form of our expansion

orders in β (3.49), we can see that λ impacts our solution in a very trivial way. Its n − 1

power is included in the denominator of each β expansion order. Smaller λ therefore

induces growth of exponential type and the series explodes. This actually suggests that

the convergence of the β algorithm is of a geometric progression type. We have found no

instabilities for low values of S and, since this is the region of high λ’s, there is no reason

to expect any.

If we dramatically increase σ and/or r, both regions of instabilities will expand and the

length of the overlapping convergence region will (visibly) tend to zero.

3.4 Conclusion

We have derived Taylor expansion algorithms for the fixed-strike Asian call and floating-

strike Asian put. The expansions are by made-up variables α and β introduced in

a parabolic PDE with dimensionless parameters. For both cases, we have a generic

algorithm computing an expansion order from two preceding ones. It requires taking

expectations with respect to a normally distributed random variable and integrating over

time. We have simplified it further for the fixed-strike Asian call case, where we have an

explicit functional form with respect to our spatial coordinate and the algorithm only

requires integration over time.

For the special case of continuously sampled options, we have numeric algorithms com-

puting Taylor expansion constants and there is no need for any analytical transformations.

The algorithm is particularly effective for the case of the fixed-strike Asian call where

it is feasible to obtain expansion orders sufficient to satisfy any realistic requirement for

accuracy. For the floating-strike Asian put, accuracies up to six significant digits can easily

be obtained as well. In any case, we need to compute Taylor expansion constants only

once and the option price is then essentially given by analytical expressions constructed

from a cumulative distribution function, an exponential function and finite sums.

When we value options at time zero, we have some empirical evidence to suggest that

the algorithms are complementary. If price of the underlying is extremely high or low, the

solutions may not be stable. Nevertheless, if we are sufficiently close to maturity, it seems

that the algorithms will complement each other in such a way that if one fails the other

will provide even better approximation.

Acknowledgement

The author thanks his PhD supervisor Prof. William Shaw for his guidance and support.

The constructive feedback he gave during meetings and presentations was invaluable in

taking this paper to its logical conclusion. His paper [1] together with J. Dewynne was

very inspirational and the results presented here are really just the next logical step from

their work.

https://doi.org/10.1017/S0956792511000441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792511000441


Essentially exact asymptotic solutions for Asian derivatives 415

References

[1] Dewynne, J. N. & Shaw, W. T. (2008) Differential equations and asymptotic solutions for

arithmetic Asian option: “Black–Scholes formulae” for Asian rate calls. Eur. J. Appl. Math.

19, 353–391.

[2] Geman, H. & Yor, M. (1993) Bessel processes, Asian options and perpetuities. Math. Fin. 3,

349–375.

[3] Henderson, V. & Wojakowski, R. (2001) On the equivalence of floating and fixed-strike.

J. Appl. Probab. 39, 391–394.

[4] Howison, S. D. (2005) Matched asymptotic expansions in financial engineering. J. Eng. Math.

53(3–4), 385–406.

[5] Howison, S. D. & Steinberg, M. (2007) A matched asymptotic expansions approach to

continuity corrections for discretely sampled options. I. Barrier options. Appl. Math. Fin.

14(1), 63–89.

[6] Linetsky, V. (2004) Spectral expansions for Asian (average price) options. Oper. Res. 52(6),

856–867.

[7] Rogers, L. & Shi, Z. (1995) The value of an Asian option. J. Appl. Probab. 32, 1077–1088.

[8] Shaw, W. T. (1998) Modelling Financial Derivatives with Mathematica, Cambridge University

Press, Cambridge, UK.

[9] Vecer, J. (2002) A new PDE approach for pricing arithmetic Asian options. J. Comp. Fin. 4,

105–113.

[10] Wolfram Research, Inc. (2007) Mathematica, Version 6.0, Champaign, IL.

[11] Zhang, J. E. (2001) A semi-analytical method for pricing and hedging continuously sampled

arithmetic average rate options, J. Comp. Fin. 5, 59–79.

[12] Zhang, J. E. (2003) Pricing continuously sampled Asian options with perturbation method,

J. Futures Markets 23, 535–560.

[13] Yor, M. (1992) On some exponential functionals of Brownian motion. Adv. Appl. Probab. 24,

509–531, 1992a.

https://doi.org/10.1017/S0956792511000441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792511000441

