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UNDECIDABILITY OF THE FIRST ORDER THEORIES OF FREE
NONCOMMUTATIVE LIE ALGEBRAS

OLGA KHARLAMPOVICHAND ALEXEI MYASNIKOV

Abstract. Let R be a commutative integral unital domain and L a free noncommutative Lie algebra
over R. In this article we show that the ring R and its action on L are 0-interpretable in L, viewed as
a ring with the standard ring language +, ·, 0. Furthermore, if R has characteristic zero then we prove
that the elementary theory Th(L) of L in the standard ring language is undecidable. To do so we show
that the arithmetic N = 〈N,+, ·, 0〉 is 0-interpretable in L. This implies that the theory of Th(L) has the
independence property. These results answer some old questions on model theory of free Lie algebras.

§1. Introduction. In this article we continue our program on model theory of
groups and algebras outlined at the ICM in Korea in 2014 [7]. Let R be a com-
mutative integral unital domain and L a free noncommutative Lie algebra over R.
We show that the ring R and its action on L are 0-interpretable in L, viewed as a
ring in the standard ring language +, ·, 0. Furthermore, if R has characteristic zero
then we prove that the arithmetic N = 〈N,+, ·, 0〉 is 0-interpretable in L. Hence the
elementary theory Th(L) of L in the standard ring language is undecidable and has
the independence property. These answer some old questions on model theory of
free Lie algebras. Along thewaywe further developed themethod that usesmaximal
rings of scalars in Lie rings that gives a general approach to study first order theories
of arbitrary noncommutative finitely generated Lie algebras.
The question about decidability of the first-order theory of noncommutative free
Lie algebras was well-known in Malcev’s school of algebra and logic in Russia. In
1963 Lavrov showed that if the elementary theory Th(R) of the integral domain R
is undecidable then the elementary theory Th(L) of L is also undecidable. To this
end he interpreted the ring R in L [4].
In 1986 Baudisch proved in [2] that the theory Th(L) is unstable for every such
ring of coefficients R. To obtain this result he uniformly interpreted every initial
segment of Presburger arithmetic in L. Following Lavrov he also showed that the
ring R and its action on L are interpretable (with the use of parameters) in L.
In the same article Baudisch stated the following open problems: Does the theory
Th(L) of a free noncommutative Lie algebraL over a commutative integral domain
have the independence property? Is Th(L) undecidable? Is it possible to interpret
the initial segments of the natural numbers with addition and multiplication in it?
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FREE NONCOMMUTATIVE LIE ALGEBRAS 1205

Independently, in the book [3] Bokut’ andKukin asked a similar question: for which
integral domains R the theory Th(L) is decidable?
As we havementioned already, our results completely answer the questions above
in the case when the ring R has characteristic zero. It seems plausible that similar
results hold for arbitrary infinite integral domains R. However, our techniques do
not work if the ringR is finite, so the following question seems to be very interesting.
Is the theory Th(L) undecidable when the ring R is a finite field? More precisely, is
the arithmetic N = 〈N,+, ·, 0〉 interpretable in a free noncommutative Lie algebra
L over a finite field?
We would like to mention that our proofs seem general enough to get similar
results for some other Lie algebras, in particular, for various N-graded Lie alge-
bras where the maximal rings of scalars are integral domains. Actually, we prove
that for an arbitrary finitely generated Lie R-algebra L over an arbitrary commu-
tative associative unital ring R the maximal ring of scalars of L and its action on
L/Ann(L) and L2 are 0-interpretable in L. This gives a general approach to study
first order theories of finitely generated Lie algebras. To interpret arithmetic in such
an algebraL one also needs some weak finiteness divisibility conditions onL, which
in the case of a free Lie algebra L come from the fact that L is N-graded. Note,
that the model theory of finite dimensional Lie algebras over fields was studied
in [13].
This article is a continuation of the research in [8–10] onmodel theory of free asso-
ciative algebras. For some time we thought that model theory of free Lie algebras,
though very different from the case of free groups (see [6, 15]), will be somewhat
reminiscent of the model theory of free pro-p-groups (see [5, 12]). Now, it looks
much more like the model theory of free associative algebras, though the proofs are
more technical. The main difference is that in free associative algebras a centralizer
of a noninvertible element is isomorphic to the ring of polynomials in one-variable,
hence the known results from commutative algebra and number theory can be
applied. In free Lie algebras we had to exploit some interesting module structures
and unusual divisibility arguments. It seems possible that one can develop current
techniques a bit further and study equations in free Lie algebras as well as elemen-
tary equivalence of such algebras in the way it was done for free associative ones.
There are two interesting open questions here: whether one can interpret the weak
second order theory of the ring R in a free noncommutative Lie algebra L with
coefficients in R; and if the Diophantine problem in L is decidable.

§2. Maximal rings of scalars.
2.1. Maximal rings of scalars of bilinear maps. Let R be a commutative associa-
tive ring with unity 1, andM1,M2, N exactR-modules. Letf : M1×M2 → N be an
R-bilinear map. For a subset E1 ⊆M1 we define the right annulator of E1 (relative
to f) by Annr(E1) = {y ∈M2 | f(E1, y) = 0}. Similarly, for a subset E2 ⊆M2 we
define the left annulator of E2 by Annl (E2) = {x ∈M1 | f(x,E2) = 0}.
We say that

1) f is nondegenerate if Annl (M2) = 0 and Annr(M1) = 0.
2) f is onto if the submodule (equivalently, the subgroup) 〈f(M1,M2)〉 generated
by f(M1,M2) is equal to N .
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Note that the conditions 1) – 2) do not depend on the ring R, i.e., whether they
hold or not in f depends only on the abelian group structure ofM and N .
For any nondegenerate onto bilinear map f : M1 ×M2 → N there is a uniquely
definedmaximal ring of scalars P(f), which is an analogue of the centroid of a ring.
More precisely, a commutative associative unital ring P is called a “ring of scalars”
of f if M1,M2, and N admit the structure of faithful P-modules such that f is
P-bilinear. A ring of scalars P of f is called maximal if for every ring of scalars P′

of f there is a monomorphism � : P′ → P such that for every α ∈ P′ its actions
on M1,M2, and N are the same as the actions of �(α). It is easy to see that the
maximal ring of scalars of f exits, it is unique up to isomorphism, as well as its
actions onM1,M2, and N . We denote the unique maximal ring of scalars of f by
P(f). In fact, the ring P(f) can be constructed as follows.
Let End (M1), End (M2), End (N) be the ring of endomorphisms ofM1,M2, and
N (hereM1,M2, andN are viewed as abelian groups). Below for an endomorphism
� and an element x the image of � on x is denoted by �x.
If P is a ring of scalars of f then the actions of P on M1,M2, and N give
embeddings P → End (Mi), P → End (N), i = 1, 2, which give rise to the diagonal
embedding Φ : P → End (M1)×End (M2)×End (N). Denote the direct product of
ringsEnd (M1)×End (M2)×End (N) byK(f). Let �i : K(f)→Mi , � : K(f)→
N be the canonical projections of K(f) onto its direct factors. Since P is a ring
of scalars of f every α ∈ Φ(P) ≤ K(f) satisfies the following conditions for any
x ∈M1, y ∈M2:

f(�1(α)x, y) = f(x, �2(α)y) = �(α)f(x, y). (1)

It is not hard to see that the set P(f) of all elements α ∈ K(f) which satisfy the
condition (1) is a commutative unital subring ofK(f). We showed above that every
ring of scalars of f embeds into P(f) in such a way that its action onM1,M2, N
agrees with the action of P(f). Hence P(f) is the maximal ring of scalars of f.
To interpret P(f) in f we need another description of P(f). Let M (f) =
End (M1) × End (M2) and � = �1 × �2 be the canonical projection of K(f) onto
M (f). As we mentioned above we may assume that P(f) is a subring of K(f),
the restriction of � on P(f) gives a homomorphism � : P(f) → M (f). Clearly,
� : P(f) → M (f) is injective and for every α ∈ �(P(f)) the following conditions
(S) and (Wn) hold for every n ∈ N:

(S) for every x ∈M1, y ∈M2
f(�1(α)x, y) = f(x, �2(α)y);

(Wn) for every xk, x′k ∈M1, yk, y′k ∈M2, k = 1, . . . , n
Σnk=1f(xk, yk) = Σ

n
k=1f(x

′
k, y

′
k)→ Σnk=1f(�1(α)xk, yk) = Σnk=1f(�1(α)x′k, y′k).

We claim that �(P(f)) consists precisely of those elements α ∈ M (f) for which
the conditions (S) and (Wn) hold for every n ∈ N. Denote by Sym(f) the subset
of all elements α ∈ M (f) which satisfy (S) (we call them f-symmetric) and by
Wn(Sym(f)) the subset of those α ∈ Sym(f) which satisfy (Wn). Put

PSW (f) =
∞⋂

n=1

Wn(Sym(f)).
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Clearly, �(P(f)) ⊆ PSW (f). To show the equality it suffices to show that for every
α ∈ PSW (f) there is � ∈ End (N) such that (1) holds, i.e., for any x ∈M1, y ∈M2

f(�1(α)x, y) = f(x, �2(α)y) = �f(x, y).

To this end for a given α ∈ PSW (f) and given x ∈ M1, y ∈ M2 define �f(x, y) =
f(�1(α)x, y). Since α satisfies (W1) this definition is correct, i.e., for any x′ ∈
M − 1, y′ ∈ M2 one has �f(x, y) = �f(x′, y′). Similarly, since α satisfies all the
conditions (Wn) one can correctly extend the definition of � by linearity on the
whole subgroupN0 generated in N by the set f(M1,M2). Since f is ontoN0 = N ,
so � ∈ End (N) and (1) holds, as required. This shows that �(P(f)) = PSW (f), as
claimed.
To study model theoretic properties of f : M1 ×M2 → N one associates with f
a three-sorted structureA(f) = 〈M1,M2, N ;f〉, whereM1,M2, andN are abelian
groups equipped with the map f (the language of A(f) consists of additive group
languages forM1,M2, and N , and the predicate symbol for the graph of f). Our
goal is to show that the ring P(f) as well as its actions on the modules M1,M2,
and N , are interpretable in the structure A(f). For this we need f to satisfy some
finiteness conditions.
We say that

3) a finite subset E1 ⊆ M1 is called a left complete system for f if Annr(E1) =
Annr(M1). Similarly, a finite subset E2 ⊆ M2 is called a right complete system
for f if Annl (E2) = Annl (M2). In this case we say that a pair (E1, E2) is a
finite complete system for f.

4) f hasfinitewidth if there exists somenatural numberm, such that for any z ∈ N
there are some xi ∈ M1, yi ∈ M2, i = 1, . . . , m such that z =

∑m
i=1 f(xi , yi ).

The least such m is termed the width of f.

Theorem 2.1. [14] Letf be anR-bilinear mapM1×M2 → N that satisfies 1)–4)
above. Then the maximal ring of scalars P(f) for f and its actions onM and N are
0-interpretable in A(f) uniformly in the size of the finite complete system and the
width of f.

2.2. Maximal rings of scalars of finitely generated Lie algebras. In this section
we prove some results on maximal rings of scalars in finitely generated Lie algebras
and also in free Lie algebras of arbitrary rank.
Assume thatR is an integral domain (commutative associative and unital). LetL
be a Lie R-algebra. Denote by L2 the R-submodule of L generated by all products
xy where x, y ∈ L. Then the multiplication map fL : L×L→ L2 isR-bilinear and
onto. This map induces a nondegenerate R-bilinear onto map f̄L : L/Ann(L) ×
L/Ann(L)→ L2, where Ann(L) = {x ∈ L | xL = 0}.
Lemma 2.2. Let L be a finitely generated LieR-algebra. Then the bilinear map f̄L
satisfies all the conditions 1)–4). In particular, if Ann(L) = 0 then the multiplication
fL satisfies all the conditions 1)–4).

Proof. Suppose L is generated (as an algebra) by a finite set X . The map f̄L
satisfies conditions 1) and 2) by construction. To prove 3) it suffices to show that
Ann(L) = Ann(X ). Let a ∈ Ann(X ) and b ∈ L. To show that ab = 0 we may
assume by linearity that b is a product of elements from X . If b ∈ X then ab = 0,
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otherwise, b = uv, where u, v are products of elements of X of shorter length. By
induction on length au = av = 0. Since L is Lie then a(uv) = −u(va)− v(au) =
u(av)−v(au) = 0, hence the claim. To show 4)we prove thatL2 = Lx1+ · · ·+Lxn,
where X = {x1, . . . , xn}. Clearly, it suffice to show that every product p of elements
fromX belongs toM = Lx1 + · · ·+Lxn. Note that p = uv for some Lie words u, v
in X . We use induction on the length of v (as a Lie word in X ) to show that p ∈M .
If v is an element from X then there is nothing to prove. Otherwise, v = v1v2 where
v1, v2 are Lie words in X of smaller length. Then u(v1v2) = −v1(v2u) − v2(uv1) =
(v2u)v1 + (uv1)v2. Now by induction on the length of the second factors we get that
(v2u)v1, (uv1)v2, and hence (v2u)v1 + (uv1)v2, are inM , as required. �
Theorem 2.3. Let L be a finitely generated Lie R-algebra. Then the maximal
ring of scalars of the bilinear map f̄L and its action on L/Ann(L) and L2 are
0-interpretable in L (viewed in the language of rings) uniformly in the size of a finite
generating set of L.

Proof. Let A be a finite generating set of L. As was shown in Lemma 2.2 the set
L2 is 0-definable in L uniformly in the size of the set A. Hence the bilinear map f̄L,
i.e., the structure A(f̄L), is 0-interpretable in L uniformly in the size of A. Now by
Theorem 2.1 the maximal ring of scalars of f̄L and its action on L/Ann(L) and L2

are 0-interpretable in A(f̄L), hence in L, uniformly in the size of a finite complete
system of f̄L and the width of f̄L, which by Lemma 2.2 are uniform in the size of
A. This proves the theorem. �

2.3. Maximal rings of scalars of free Lie algebras. Let L be a free Lie algebra
with finite set of free generators X over an integral domain R.
An element u ∈ L can be uniquely decomposed as a sum of homogeneous
elements u = u1 + · · · + un of pair-wise distinct weights (or degrees) with respect
to system of free generators X . Notice that u = 0 ←→ u1 = 0, . . . , un = 0. By ū
we denote the homogeneous component of u of the highest weight. By wt(u) we
denote the weight of ū. Observe, that wt(ūv̄) = wt(ū) + wt(v̄) provided ūv̄ 
= 0.
Denote by H the set of Hall basis commutators on X (see [11] or [1]), then H
forms an R-basis of L as the R-module. We need the following well-known result,
furthermore, since we need the argument used in its proof we provide a short proof
as well.

Lemma 2.4. Let L be a free noncommutative Lie algebra with system of free
generatorsX over an integral domain R. Then:

1) for any nonzero u, v ∈ L if uv = 0 then αu = �v for some nonzero α, � ∈ R.
2) Let u ∈ H be a basic commutator over X . Then for any v ∈ L if uv = 0 then
there is α ∈ R such that v = αu.
Proof. To show 1) let u, v ∈ L and u =∑

ui , v =
∑
vj be their decompositions

on homogeneous components. Assume that u1 = ū, v1 = v̄. Since uv = 0 it follows
that ūv̄ = 0. Then by Theorem 5.10 from [11]αū = �v̄ for someα, � ∈ R. Consider
u′ = αu−�v then u′v = 0 andwt(u′) < wt(u). The argument above shows that the
components of the highest weight in u′ and v are linearly dependent, hence either
of the same weight, or u′ = 0. Since wt(u′) < wt(v) we get u′ = αu − �v = 0, as
claimed.
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To prove 2) take u ∈ H. Suppose uv = 0 for some v ∈ L. Consider the decom-
position v =

∑
i vi of v into homogeneous components with respect to X . Then

uv =
∑
i uvi = 0 hence uvi = 0 for each such i . It follows fromTheorem 5.10 in [11]

that u and vi are linearly dependent over R. Since H is an R-basis of R it follows
that v is homogeneous of the same weight as u and αv = �u for some α, � ∈ R.
Since v is in the same homogeneous component as u it follows that v =

∑
i αiui

where ui are the basic commutators fromH of the same weight as u, so u is one of
them, say u = u1. The equality αv =

∑
i ααiui = �u1 implies that αi = 0 for i ≥ 2

and αα1 = � . Hence αv = αα1u, so v = α1u, as claimed. �
Proposition 2.5. Let L be a noncommutative free Lie algebra over an integral
domainR. Then the maximal ring of scalars P(fL) of the multiplication bilinear map
fL is isomorphic to the ring R.

Proof. Let L be a free Lie algebra over R with system of free generators X .
Notice first that Annl (L) = Annr(L) = 0 and fL is onto (see Lemma 2.2), so the
maximal ring of scalars P = P(fL) exists.
Let H be a Hall basis of L. By Lemma 2.4 for any x ∈ H and a ∈ L if ax = 0
then a ∈ Rx. Let α ∈ P, then the action of α on L gives an R-endomorphism
φα of R-module L such that φα(xy) = φα(x)y = xφα(y). Hence the action by
α is completely determined by its action on H. Take an arbitrary x ∈ H. One
has, φα(xx) = 0 = (φα(x)x), so φα(x) ∈ Rx, say φα(x) = αxx, where αx ∈ R.
Similarly, for y ∈ H φα(y) = αyy for some αy ∈ R. It follows that φα(xy) =
αx(xy) = αy(xy), hence αx = αy for any x, y ∈ H. Therefore, φα acts on L
precisely by multiplication of αx . This shows that P = R. �
From Theorem 2.1 and Proposition 2.5 we get the following result.

Corollary 2.6. Let L be a noncommutative free Lie algebra of finite rank over
an integral domain R. Then the ring R and its action on L is 0-interpretable in L
uniformly in the rank of L.

Notice that Theorem 2.3 gives the result for any finitely generated noncommu-
tative free Lie algebra. To get an interpretation of R and its action on L for an
arbitrary noncommutative free Lie algebra over R one needs to work a bit more.

Theorem 2.7. LetL be a noncommutative free Lie algebra over an integral domain
R. Then the ring R and its action on L are 0-interpretable in L uniformly on the class
of such algebras L.

Proof. Let x ∈ L, x 
= 0. The formula
φ(x, z) = (x ∈ C (z)) ∧ ∀e∃e′ ∈ C (e)(xe = ze′)

defines inL the predicate x ∈ Rz (here by x ∈ C (z) we denote the formula xz = 0).
Indeed, if x = αz then xz = 0. Take an arbitrary e ∈ L and put e′ = αe. Then
e′ ∈ C (e) and xe = αze = zαe = ze′, as required. Conversely, suppose φ(x, z)
holds in L on x, z. Then take a basic commutator e ∈ L that does not appear in the
decomposition of x and y into nontrivial linear combinations of basic commutators
in A. Since e′ ∈ C (e) it follows from Lemma 2.4 that e′ = αe for some α ∈ R. The
equality xe = ze′ = zαe implies that (x − αz)e = 0, so x −αz ∈ C (e). Because of
the choice of e the latter can happen only if x − αz = 0, i.e., x ∈ C (z), as claimed.
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Recall that elements of Sym(fx,y) are interpreted in fx,y by the values on the
complete system x, y, i.e., as elements (rx, ry), r ∈ R. This gives the following
interpretation. For a fixed 0 
= x ∈ L we turn Rx into a ring by interpreting an
addition ⊕ and a multiplication ⊗ as follows. We put xr ⊕ xs as the standard
addition in L, so xr ⊕ xs = xr + xs = x(r + s). To define the multiplication ⊗ we
need to interpret first the following predicate on x, x′, y, y′ ∈ L:

∃r ∈ R(x′ = rx ∧ y′ = ry).
It is easy to see that the condition above holds on elements x, x′, y, y′ ∈ L if these
elements satsify the following formula

Φ(x, x′, y, y′) = (x′ ∈ Rx) ∧ (y′ ∈ Ry) ∧ (x′y = xy′).
Now we define the multiplication ⊗ on Rx: if x1, x2, x3 ∈ Rx then
x1⊗x2 = x3 ⇐⇒ ∀y �= 0∃y′ ∈ L∃s, t ∈ R(x2 = sx∧y′ = sy∧x3 = tx∧x1y′ = txy).
The condition on the right can bewritten by a formula in the ring language using the
formula Φ(x, x′, y, y′) above. Observe that the multiplication ⊗ corresponds to the
multiplication in R. Indeed, since x1, x2, x3 ∈ Rx then x1 = rx, x2 = sx, x3 = tx
for some r, s, t ∈ R. For any 0 
= y ∈ L there is y′ = sy, hence x1y′ = rs(xy), and
then x3 = rsx, as required.
The argument above shows that we interpreted the ring R as the structure
Rx = 〈Rx : ⊕x,⊗x〉 in L with the parameter x 
= 0 uniformly in x. The formula
Φ(x, x′, y, y′) defines an isomorphism Rx → Ry which maps x′ → y′. Indeed, if
Φ(x, x′, y, y′) holds in L on elements x, x′, y, y′ then x′ = rx, y′ = ry for some
(unique) r ∈ R. Thus, for each nonzero x, y ∈ L we defined an isomorphism
Rx → Ry uniformly in x, y. Now consider a definable subset in L× L:

D = {(x′, x) | x 
= 0, x′ ∈ Rx}.
The formula Φ(x, x′, y, y′) defines an equivalence relation ∼ on D. Moreover, the
formulas that interpret operations ⊕x and ⊗x on Rx uniformly in x 
= 0 allow one
to define by formulas operations ⊕ and ⊗ on the set of equivalence classes D/∼.
Indeed, for ∗x ∈ {⊕x,⊗x} for (x′1, x1), (x′2, x2), (x′3, x3) ∈ D put

[(x′1, x1)]∗[(x′2, x2)] = [(x′3, x3)]⇐⇒ ∃z1, z2, z3, z[z1∗z z2 = z3
3∧

i=1

(zi , z) ∼ (x′i , xi )].

These define operations ⊕ and ⊗ on D/ ∼ such that the resulting structure
RD = 〈D/∼: ⊕,⊗〉 is isomorphic toR. Notice that this interpretation does not use
any parameters from L. The formula Φ(x, x′, y, y′) defines an action of an element
[(x′, x)] ∈ RD on an arbitrary nonzero element y ∈ L, where the result of this
action is an element y′ ∈ L such that (x′, x) ∼ (y′, y).
This proves the theorem. �
2.4. Definability of the rank. Now we show that the rank of a free Lie algebra is
definable by first-order formulas.
Recall that a Lie ring L has L2 of finite width if there is a number m such that
every element w ∈ L2 is equal to a sum of the type u1v1 + · · · + umvm for some
ui , vi ∈ L. The minimal such m is called the width of L.
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We showed in the proof of Lemma 2.2 that every finitely generated Lie algebra
has finite width.

Lemma 2.8. Let L be a Lie algebra. Then:

1) the sentence

∀u1, v1, . . . , um+1, vm+1∃u′1, v′1, . . . , u′m, v′m(
m+1∑

i=1

uivi =
m∑

j=1

u′jv
′
j)

holds in L if and only if the width of L2 is finite and is less or equal to m.
2) Consider a formula

�m(a1, . . . , am) = ∀u1, v1, . . . , um+1, vm+1∃, v′1, . . . , v′m(
m+1∑

i=1

uivi =
m∑

j=1

ajv
′
j).

Then ifL is generated as an algebra by elements u1, . . . , um then�m(u1, . . . , um)
holds in L. Furthermore, if �m(a1, . . . , am) holds in an arbitrary algebra Lie L
on some elements then L2 is of width at mostm in L and it is defined in L by the
following formula

Sm(y) = ∃a1, . . . , am∃v1, . . . , vm(�m(a1, . . . , am) ∧ y =
m∑

i+1

aivi).

Proof. By a straightforward argument. �
Corollary 2.9. Let R be an integral domain and L a free Lie R- algebra of finite
rank. Consider the following formula:

φm(a1, . . . , am) = ∀y∃α1, . . . , αm ∈ R∃z1, . . . , zm ∈ L(y = Σni=1αiai + Σni=1aizi),
where αi ∈ R and αiai mean the corresponding formulas from the interpretation ofR
and its action on L from Theorem 2.6. Then:

1) the formula
Δm = ∃a1, . . . , am(φm ∧ �m)

(here �m is the formula from Lemma 2.8) holds in L if and only if the rank of L
is at mostm.

2) the formula Δm ∧ ¬Δm−1 holds in L if and only if L has rank m.
Proof. To see 1) suppose thatΔm holds inL, so there are elements u1, . . . , um ∈ L
such that φm and �m both hold on u1, . . . , um. Then L/L2 as an R-module is
generated by m elements. Conversely, suppose the rank of L is at most m. Then
there are elements u1, . . . , um ∈ L that generate L. Hence by Lemma 2.8 �m holds
in L on u1, . . . , um and L2 = Lu1 + · · ·+Lun. Note also thatL is generated modulo
L2 by u1, . . . , um as anR-module, so the formula Δm holds in L. This proves 1) and
2) now follows from 1). �

§3. Interpretability of the arithmetic . Let A = {a, b, a1, . . . , an} be a system of
free generators of a free Lie algebra L with coefficients in an integral domain R.
If z1, z2, . . . , zn in L, we denote (((z1, z2), z3), . . . , zn) by (z1, z2, z3, . . . , zn). For
u, v ∈ L and α ∈ R by u(v + α) we denote the element uv + αu ∈ L and refer to
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it as a “product” of u and v + α. This is just a notation. One can look at this as
follows.
The endomorphismad (v) : x → [x, v] of theR-moduleL+ generates inEnd (L+)
an R-subalgebra 〈ad (v)〉R which is isomorphic to the ring of polynomials R[v], so
R[v] acts on L as a subalgebra of End (L+).
Now we establish some properties of the action above that we will need in the
proof of Theorem 3.2:

a) For any u, v ∈ L and any α, � ∈ R the following holds:
�u(v + α) = u(�v + �α), u(v + α) = u((v + �u) + α),

b) For any u, v ∈ L and any α ∈ R one has
u(v + α) = 0←→ u = 0.

Indeed, if uv + αu = 0 then ūv̄ = 0, hence by Lemma 2.4 either v̄ = 0, or
ū = 0, or rū = sv̄ for some nonzero r, s ∈ R. If ū = 0 then u = 0, as claimed.
If v̄ = 0 then v = 0 hence 0 = u(v + α) = uv + αu = αu, so u = 0. Suppose
now that rū = sv̄ for some nonzero r, s ∈ R. Put v′ = sv − ru. Then by a)

u(v′ + sα) = s(u(v + α)) = 0

and ūv̄ 
= 0 unless v′ = 0. The argument above shows that v′ = 0, but then as
was mentioned above u = 0, as claimed.

c) For any u, v ∈ L, and any α1, . . . , αn ∈ R if uv 
= 0 and ūv̄ 
= 0 then
wt(u(v + α1) . . . (v + αn)) = wt(u) + nwt(v).

This property follows by induction on n. In general the following holds:
d) For any u, v ∈ L, and any α1, . . . , αn ∈ R if uv 
= 0 then

wt(u(v + α1) . . . (v + αn)) = wt(u) + nwt(v′),

where v′ = v if ūv̄ 
= 0, otherwise v′ = �v − αu, where α, � ∈ R � {0} are
such that αū = �v̄ (such α, � ∈ R always exist if ūv̄ = 0).
Indeed, suppose uv 
= 0 but ūv̄ = 0. Fix any α, � ∈ R�{0} such that αū =
�v̄. Put v′ = αu − �v. Notice that uv′ 
= 0 and also wt(v′) < wt(v) = wt(u)
so ūv̄′ 
= 0. Denote

w = u(v + α1) . . . (v + αn).

Then by a)

�nw = u(�v + �α1) . . . (�v + �αn) = u(v′ + �α1) . . . (v′ + �αn).

Notice that wt(w) = wt(�nw). It follows from c) that

wt(�nw) = wt(u) + nwt(v′),

as claimed.

The following result holds in any Lie R-algebra.

Lemma 3.1. Let L be any Lie R-algebra. If u, v ∈ L, and α1, . . . , αn are pair-wise
distinct elements from R such that

u = u1(v + α1), . . . , u = un(v + αn),
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for some elements u1, . . . , un ∈ L then
	u = w(v + α1) . . . (v + αn)

for some element w ∈ L and 0 
= 	 ∈ R.
Proof. Case n = 2. Let

u = u1(v + α1) = u1v + α1u1,

u = u2(v + α2) = u2v + α2u2.

Then
(u1 − u2)v + α1(u1 − u2) = (α2 − α1)u2.

Notice that α2 − α1 
= 0. It follows that
(α2 − α1)u2 = (u1 − u2)(v + α1).

Hence

(α2 − α1)u = (α2 − α1)u2(v + α2) = (u1 − u2)(v + α1)(v + α2),
as required.
Case n ≥ 3. Let

u = u1(v + α1), u = u2(v + α2), . . . , u = un(v + αn).

By induction from the first n − 1 equalities one has
	1u = w1(v + α1) . . . (v + αn−1) = w ′

1(v + αn−1),

where 0 
= 	1 ∈ R,w ′
1 = w1(v+α1) . . . (v+αn−2). Similarly, considering the system

obtained from the initial one above by removing the equality u = un−1(v + αn−1)
one gets by induction that

	2u = w2(v + α1) . . . (v + αn−2)(v + αn) = w ′
2(v + αn),

where w ′
2 = w2(v + α1) . . . (v + αn−2).

Consider a system

	1u = w ′
1(v + αn−1),

	2u = w ′
2(v + αn).

Multiplying the first equation by 	2 and the second—by 	1 one gets

	u = 	2w ′
1(v + αn−1),

	u = 	1w ′
2(v + αn),

where 	 = 	1	2 
= 0. From the case n = 2 one gets
(αn − αn−1)	u = (	2w ′

1 − 	1w ′
2)(v + αn−1)(v + αn).

Observe, that

	2w
′
1 − 	1w ′

2 = 	2w1(v + α1) . . . (v + αn−2)− 	1w2(v + α1) . . . (v + αn−2) =
(	2w1 − 	1w2)(v + α1) . . . (v + αn−2).
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Hence

	u = ((αn − αn−1)−1(	2w1 − 	1w2))(v + α1) . . . (v + αn−2)(v + αn−1)(v + αn),
as claimed. �
Theorem 3.2. Let R be an integral domain of characteristic 0 and L a free
noncommutative Lie algebra over R. Then

1) For any b ∈ L, b 
= 0, the formula
φ(x, b) = (x ∈ R) ∧ ∃v 
= 0∃u∀k ∈ R∀u1∃u2

(v = ub ∧ (v = u1(b + k) =⇒ (v = u2(b + k + 1) ∨ k = x)))
interprets N ⊆ R in L (in the formula above notation x ∈ R, as well as the
action of an α ∈ R on u ∈ L, means here that x belongs to the interpretation of
R in L from Theorem 2.6 and the action by α is also from this interpretation).

2) The formula ∃b[(b 
= 0) ∧ φ(x, b)] 0-interprets N ⊆ R in L.
Proof. We prove 1) first. Let m ∈ N. We need to show that L |= φ(m). Take any
a ∈ L, a 
= 0 and put v = ab(b + 1) . . . (b + m). Then, in the notation above, for
any k ∈ N for any i ≤ k there is ui ∈ L such that ab(b + 1) . . . (b + k) = ui(b + i).
Indeed, by the property b) above for any w ∈ L, and for any i, j ∈ R

w(b + i)(b + j) = w(b + j)(b + i).

This allows one to push (b + i) to the right in the “product” ab(b + 1) . . . (b + k).
Observe that for any α ∈ R� {0, 1, . . . , m} v 
= u(b + α) for any u ∈ L. Indeed,
if v = u(b + α) for such an α, then by Lemma 3.1

	v = u(b + 0)(b + 1) . . . (b +m)(b + α).

In this case by the properties abovewt(v) ≥ m+2, while by the choice of v we have
wt(v) = wt(a(b + 0)(b + 1) . . . (b +m)) = m + 1 - contradiction.
This shows that φ(m) holds in L.
Let now x ∈ R � N. We need to show that L 
|= φ(x). Suppose to the contrary
that L |= φ(x) for x ∈ R �N.
Then there exists v ∈ L, v 
= 0 such that

v = u0b = u1(b + 1) = u2(b + 2) = · · · = un+1(b + n + 1) = · · ·
for some ui ∈ L, i ∈ N.
Then by Lemma 3.1 for any n ∈ N one has

	nv = wn(b + 0)(b + 1) . . . (b + n)

for some 0 
= 	n ∈ R and wn ∈ L. Hence, since wnb 
= 0 (otherwise v = 0, but it is
not), one has wt(v) > n for every n ∈ N, but this is impossible since v 
= 0. Hence
L 
|= φ(x), as required.
2) follows immediately from 1). This proves the theorem. �
This result answers the question posed by Baudisch in [2] in the case of
characteristic zero.
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§4. Results. The following theorem answers questions by Baudisch in [2] and by
Bokut’ and Kukin [3] in the case of characteristic zero.
Theorem 4.1. The first order theory in the ring language of a free noncommutative
Lie algebra over an integral domain of characteristic zero is undecidable.
Proof. ByTheorem 3.2 the arithmeticN is interpretable inL in the ring language.
Hence the theory Th(L) is undecidable. �
Let T be a complete theory in a languageL. An L-formula φ(x, y) is said to have
the independence property (with respect to x, y) if in every model M of T there
is, for each n = {0, 1, . . . , n − 1} < 
, a family of tuples b0, . . . , bn−1 such that for
each of the 2n subsets X of n there is a tuple a ∈M for which

M |= ϕ(a, bi ) ⇔ i ∈ X.
The theory T has independence property if some formula does.
Note that the elementary theory of the arithmeticN = 〈N,+, ·, 0〉 is independent.
Indeed, the formula “y divides x”, i.e., the formula∃k(x = ky) has the independence
property. Clearly the independence property is inherited under interpretations. The
following theorem answers the question posed by Baudisch in [2] in the case of
characteristic zero.
Theorem 4.2. The first order theory of a free noncommutative Lie algebra over an
integral domain of characteristic zero has the independence property.
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