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We generate ray-class fields over imaginary quadratic fields in terms of
Siegel–Ramachandra invariants, which are an extension of a result of Schertz. By
making use of quotients of Siegel–Ramachandra invariants we also construct ray-class
invariants over imaginary quadratic fields whose minimal polynomials have relatively
small coefficients, from which we are able to solve certain quadratic Diophantine
equations.
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1. Introduction

Let K be an imaginary quadratic field, f be a non-zero integral ideal of K and let
Cl(f) be the ray-class group of K modulo f. Then, by class field theory, there exists
a unique abelian extension of K whose Galois group is isomorphic to Cl(f) via the
Artin map

σ : Cl(f) ∼−→ Gal(Kf/K). (1.1)

We call it the ray-class field of K modulo f, which is denoted by Kf. Since any
abelian extension of K is contained in some ray-class field Kf, the generation of ray-
class fields of K is a key step towards Hilbert’s 12th problem. In 1964, Ramachandra
[10, theorem 10] constructed a primitive generator of Kf over K by applying the
Kronecker limit formula. However, his invariants involve products of high powers of
singular values of Klein forms and the discriminant Delta function, which are quite
complicated to use in practice. On the other hand, Schertz tried to find rather
simpler generators of Kf over K for practical use. And he conjectured that the
Siegel–Ramachandra invariants would be the right answer and gave a conditional
proof (see [11, theorems 3 and 4] or [12, theorem 6.8.4]).

In this paper we shall first generate ray-class fields Kf over K via Siegel–Rama-
chandra invariants by improving Schertz’s idea (theorem 4.6). By making use of the
quotient of Siegel–Ramachandra invariants we shall also construct a primitive gen-
erator of Kf over K whose minimal polynomial has relatively small coefficients, and
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present several examples (see theorem 5.4, remark 5.6 and examples 5.8 and 5.9).
This ray-class invariant becomes a real algebraic integer with certain conditions (see
lemma 6.2 and theorem 6.3). Lastly, we shall apply the real ray-class invariant to
solving certain quadratic Diophantine equations (see theorem 6.3 and examples 6.6
and 6.7).

Notation. For z ∈ C we denote by z̄ the complex conjugate of z and by Im(z)
the imaginary part of z, and set qz = e2πiz. If G is a group and g1, g2, . . . , gr are
elements of G, let 〈g1, g2, . . . , gr〉 be the subgroup of G generated by g1, g2, . . . , gr,
and let Gn be the subgroup {gn | g ∈ G} of G for n ∈ Z>0. Moreover, if H is a
subgroup of G and g ∈ G, we mean by [g] the coset gH of H in G. The transpose of
a matrix α is denoted by tα. If R is a ring with identity, R× indicates the group of
all invertible elements of R. For a number field K, let OK be the ring of algebraic
integers of K and let dK be the discriminant of K. If a ∈ OK , we denote by (a) the
principal ideal of K generated by a. When a is an integral ideal of K, we mean by
N (a) the absolute norm of an ideal a. For a positive integer N , we let ζN = e2πi/N

be a primitive Nth root of unity.

2. Shimura’s reciprocity law

We shall review an algorithm for finding all conjugates of the special value of a
modular function over an imaginary quadratic field by using Shimura’s reciprocity
law.

For a lattice L in C, the Weierstrass ℘-function is defined by

℘(z; L) =
1
z2 +

∑
ω∈L\{0}

(
1

(z − ω)2
− 1

ω2

)
(z ∈ C).

Let H = {z ∈ C | Im(z) > 0} be the complex upper half-plane. For τ ∈ H, we let

g2(τ) = 60
∑

ω∈[τ,1]\{0}

1
ω4 , g3(τ) = 140

∑
ω∈[τ,1]\{0}

1
ω6 , ∆(τ) = g2(τ)3 − 27g3(τ)2.

Then the j-invariant is defined by

j(τ) = 1728
g2(τ)
∆(τ)

(τ ∈ H).

For a rational vector r = [ r1
r2 ] ∈ Q2 \ Z2, we define the Fricke function by

fr(τ) = −2735 g2(τ)g3(τ)
∆(τ)

℘(r1τ + r2; [τ, 1]) (τ ∈ H).

And, for a positive integer N , let

Γ (N) =
{[

a b

c d

]
∈ SL2(Z)

∣∣∣∣
[
a b

c d

]
≡

[
1 0
0 1

]
(mod N)

}
,

FN = Q

(
j(τ), fr(τ) : r ∈ 1

N
Z2 \ Z2

)
.
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We call FN the modular function field of level N over Q. Then the function field
C(X(N)) on the modular curve X(N) = Γ (N) \ (H ∪ P1(Q)) is equal to CFN ,
and FN consists of all functions in C(X(N)) whose Fourier coefficients lie in the
cyclotomic field Q(ζN ) [7, ch. 6, § 3]. As is well known, FN is a Galois extension of
F1 = Q(j(τ)) and

Gal(FN/F1) ∼= GL2(Z/NZ)/{±I2} ∼= GN · SL2(Z/NZ)/{±I2}, (2.1)

where

GN =
{[

1 0
0 d

] ∣∣∣∣ d ∈ (Z/NZ)×
}

.

More precisely, the element [ 1 0
0 d ] ∈ GN acts on FN by∑

n�−∞
cnqn/N

τ �→
∑

n�−∞
cσd
n qn/N

τ , (2.2)

where
∑

n�−∞ cnq
n/N
τ is the Fourier expansion of a function in FN and σd ∈

Gal(Q(ζN )/Q) satisfies ζσd

N = ζd
N . And, γ ∈ SL2(Z/NZ)/{±I2} acts on h ∈ FN by

hγ(τ) = h(γ̃τ),

where γ̃ is a preimage of γ of the reduction SL2(Z) → SL2(Z/NZ)/{±I2} [7, ch. 6,
theorem 3].

Now let K be an imaginary quadratic field of discriminant dK and set

θ =

{
1
2

√
dK if dK ≡ 0 (mod 4),

1
2 (−1 +

√
dK) if dK ≡ 1 (mod 4),

(2.3)

so that OK = Z[θ]. Then its minimal polynomial over Q is

min(θ, Q) = X2 + BθX + Cθ =

{
X2 − 1

4dK if dK ≡ 0 (mod 4),

X2 + X + 1
4 (1 − dK) if dK ≡ 1 (mod 4).

Proposition 2.1. When f = NOK for a positive integer N , we have

Kf = K(N) = K(h(θ) : h ∈ FN,θ),

where FN,θ = {h ∈ FN | h is defined and finite at θ}. If N = 1, then K(1) is merely
the Hilbert class field of K.

Proof. See [7, ch. 10 § 1, corollary].

For a positive integer N we define a subgroup WN,θ of GL2(Z/NZ) by

WN,θ =
{ [

t − Bθs −Cθs

s t

]
∈ GL2(Z/NZ)

∣∣∣∣ t, s ∈ Z/NZ

}
.

Then we have the following proposition.
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Proposition 2.2. We attain a surjective homomorphism

ϕN,θ : WN,θ → Gal(K(N)/K(1))

α �→ (h(θ) �→ hα(θ))h∈FN,θ
,

whose kernel is

{
±

[
1 0
0 1

] }
if K 
= Q(

√
−1), Q(

√
−3),

{
±

[
1 0
0 1

]
,±

[
0 −1
1 0

] }
if K = Q(

√
−1),

{
±

[
1 0
0 1

]
,±

[
−1 −1
1 0

]
,±

[
0 1

−1 −1

] }
if K = Q(

√
−3).

Proof. See [3, § 3] or [16, § 3].

On the other hand, observe that the subgroup

{[(ω)] ∈ Cl(NOK) | ω ∈ OK is prime to N}

is isomorphic to Gal(K(N)/K(1)) via the Artin map σ in (1.1).

Proposition 2.3. Let N be a positive integer and let ω ∈ OK be prime to N .
Write ω = sθ + t with s, t ∈ Z. Then, for h ∈ FN,θ we obtain

h(θ)σ([(ω)]) = hα(θ), where α =
[
t − Bθs −Cθs

s t

]
∈ WN,θ.

Proof. See [14, theorem 6.31].

For convenience we denote the quadratic form aX2 + bXY + cY 2 ∈ Z[X, Y ] by
[a, b, c]. Let C(dK) be the form class group of discriminant dK . Then we identify
C(dK) with the set of all reduced quadratic forms, namely [2, theorem 2.8]

C(dK) = {[a, b, c] ∈ Z[X, Y ] | gcd(a, b, c) = 1, b2 − 4ac = dK ,

− a < b � a < c or 0 � b � a = c}.

Here we note that if [a, b, c] ∈ C(dK), then a �
√

−dK/3 [2, p. 29] and C(dK) is
isomorphic to Gal(K(1)/K) [2, theorem 7.7]. For Q = [a, b, c] ∈ C(dK), we let

θQ =
−b +

√
dK

2a
∈ H.

Further, we define βQ = (βp)p ∈
∏

p GL2(Zp) as follows.
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Case 1 (dK ≡ 0 (mod 4)).

βp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
a 1

2b

0 1

]
if p � a,

[
− 1

2b −c

1 0

]
if p|a and p � c,

[
−a − 1

2b −c − 1
2b

1 −1

]
if p|a and p|c.

Case 2 (dK ≡ 1 (mod 4)).

βp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
a (b − 1)/2
0 1

]
if p � a,

[
− 1

2 (b + 1) −c

1 0

]
if p|a and p � c,

[
−a − 1

2 (b + 1) −c + 1
2 (1 − b)

1 −1

]
if p|a and p|c.

Proposition 2.4. For a positive integer N , we achieve a one-to-one correspon-
dence

WN,θ/ker(ϕN,θ) × C(dK) → Gal(K(N)/K)

(α, Q) �→ (h(θ) �→ hα̃βQ(θQ))h∈FN,θ
.

Here, α̃ is the preimage of α of the reduction

WN,θ/{±I2} → WN,θ/ker(ϕN,θ)

and the action of βQ on FN is described by the action of β ∈ GL2(Z/NZ)/{±I2}
so that β ≡ βp (mod NZp) for all primes p|N .

Proof. This is immediate from proposition 2.2 and [3, § 4].

3. Siegel–Ramachandra invariants

In this section we introduce the arithmetic properties of Siegel functions and de-
scribe some necessary facts about Siegel–Ramachandra invariants for later use.

For a rational vector r = [ r1
r2 ] ∈ Q2 \ Z2, we define the Siegel function gr(τ) on

H by the following infinite product:

gr(τ) = −qB2(r1)/2
τ eπir2(r1−1)(1 − qr1

τ e2πir2)
∞∏

n=1

(1 − qn+r1
τ e2πir2)(1 − qn−r1

τ e−2πir2),

where B2(X) = X2 − X + 1
6 is the second Bernoulli polynomial. Then it has no

zeros and poles on H (see [15] or [6, p. 36]). The following proposition describes the
modularity criterion for Siegel functions.
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Proposition 3.1. Let N � 2 be a positive integer and let {m(r)}r=[ r1
r2 ]∈(1/N)Z2\Z2

be a family of integers such that m(r) = 0 except for finitely many r. A finite
product of Siegel functions

ζ
∏

r∈(1/N)Z2\Z2

gr(τ)m(r)

belongs to FN if∑
r

m(r)(Nr1)2 ≡
∑

r

m(r)(Nr2)2 ≡ 0 (mod gcd(2, N) · N),

∑
r

m(r)(Nr1)(Nr2) ≡ 0 (mod N),

∑
r

m(r) · gcd(12, N) ≡ 0 (mod 12).

Here,
ζ =

∏
r

eπir2(1−r1)m(r) ∈ Q(ζ2N2).

Proof. See [6, ch. 3, theorems 5.2 and 5.3].

Proposition 3.2. Let r, s ∈ (1/N)Z2 \ Z2 for a positive integer N � 2.

(i) gr(τ)12N satisfies the relation

gr(τ)12N = g−r(τ)12N = g〈r〉(τ)12N ,

where 〈X〉 is the fractional part of X ∈ R such that 0 � 〈X〉 < 1 and

〈r〉 =
[
〈r1〉
〈r2〉

]
.

(ii) gr(τ)12N belongs to FN . Moreover, α ∈ GL2(Z/NZ)/{±I2} acts on it by

(gr(τ)12N )α = gtαr(τ)12N .

(iii) For γ =
[

a b
c d

]
∈ SL2(Z) we have(

gr(τ)
gs(τ)

)
◦ γ =

gtγr(τ)
gtγs(τ)

.

Proof. See [6, ch. 2, § 1].

Let L be a lattice in C and let t ∈ C \ L be a point of finite order with respect
to L. We choose a basis [ω1, ω2] of L such that z = ω1/ω2 ∈ H and write

t = r1ω1 + r2ω2 for some
[
r1

r2

]
∈ Q2 \ Z2.

We also define a function g(t, [ω1, ω2]) = g[ r1
r2 ](z), which depends on the choice of

ω1, ω2. However, by raising it to the 12th power we obtain a function g12(t, L) of t
and L [6, p. 31].
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Now let K be an imaginary quadratic field of discriminant dK , let f be a non-
trivial proper integral ideal of K and let N be the smallest positive integer in f. For
C ∈ Cl(f), we define the Siegel–Ramachandra invariant of conductor f at C by

gf(C) = g12N (1, fc−1),

where c is any integral ideal in C. This value depends only on f and the class C,
and not on the choice of c.

Proposition 3.3. Let C, C ′ ∈ Cl(f) with f 
= OK .

(i) gf(C) lies in Kf as an algebraic integer. If N is composite, gf(C) is a unit in
Kf.

(ii) We have the transformation formula

gf(C)σ(C′) = gf(CC ′),

where σ is the Artin map stated in (1.1).

(iii) gf(C ′)/gf(C) is a unit in Kf.

Proof. See [7, ch. 19, theorem 3] and [6, ch. 11, theorem 1.2].

Further, we let a be an integral ideal of K that is not divisible by f. For a class
C ∈ Cl(f), we define the Robert invariant by

ua(C) =
g12(1, fc−1)N (a)

g12(1, fa−1c−1)
,

where c is any integral ideal in C. This depends only on the class C. Note that
ua(C) belongs to Kf, but it is not necessarily a unit [6, ch. 11, theorem 4.1]. We
shall take products of such invariants with a linear condition in order to get units.
Let C0 be the unit class in Cl(f), and let R∗

f be the group of all finite products
∏
a

ua(C0)m(a) (m(a) ∈ Z)

taken with all integral ideals a of K prime to 6N satisfying
∑

a
m(a)(N (a) − 1) = 0.

Then R∗
f becomes a subgroup of the units in Kf [6, ch. 11, theorem 4.2].

Let ωKf
be the number of roots of unity in Kf, and define the group

Φf(ωKf
) =

{ ∏
C∈Cl(f)

gf(C)n(C)
∣∣∣∣ ∑

C

n(C) = 0

and
∑
C

n(C)N (aC) ≡ 0 (mod ωKf
)
}

,

where aC is any integral ideal in C prime to 6N and the exponents n(C) are
integers. The value N (aC) (mod ωKf

) does not depend on the choice of aC [6, ch. 9,
lemma 4.1], and so the group is well defined.
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Proposition 3.4. We have

(R∗
f )

N = Φf(ωKf
).

Proof. See [6, ch. 11, theorem 4.3]

Lemma 3.5. Let f = NOK for a positive integer N � 2 and let C ′ be an element
of Cl(f) satisfying N (aC′) ≡ 1 (mod ωKf

) for some integral ideal aC′ in C ′ prime
to 6N . Then any N th root of the value gf(C ′)/gf(C0) is a unit in Kf.

Proof. Observe that gf(C ′)/gf(C0) ∈ Φf(ωKf
). It then follows from proposition 3.4

that
gf(C ′)
gf(C0)

= uN for some u ∈ R
∗
f .

Since u is a unit in Kf and ζN ∈ Q(ζN ) ⊂ K(N) = Kf, any Nth root of the value
gf(C ′)/gf(C0) is also a unit in Kf.

Let f be a non-trivial integral ideal of K and χ be a character of Cl(f). The conduc-
tor of χ is defined by the largest ideal g dividing f such that χ is obtained by a com-
position of a character of Cl(g) and the natural homomorphism Cl(f) → Cl(g), and
we denote it by fχ. Similarly, if χ′ is a character of (OK/f)×, then we define the con-
ductor of χ′ by the largest ideal g dividing f for which χ′ is induced by a composition
of a character of (OK/g)× with the natural homomorphism (OK/f)× → (OK/g)×,
and denote it by fχ′ . The map

(OK/f)× → Cl(f)
α + f �→ [(α)]

(3.1)

is a well-defined homomorphism whose kernel is

{α + f ∈ (OK/f)× | α ∈ O×
K}.

For a character χ of Cl(f), we derive a character χ′ of (OK/f)× by composing with
the map (3.1). Then, by definition, fχ = fχ′ is immediate.

Now let χ be a non-trivial character of Cl(f) with f 
= OK and let χ0 be the
primitive character of Cl(fχ) corresponding to χ. We define the Stickelberger element
and the L-function for χ by

Sf(χ, gf) =
∑

C∈Cl(f)

χ(C) log |gf(C)|,

Lf(s, χ) =
∑

(0) 	=a⊂OK

gcd(a,f)=1

χ(a)
N (a)s

(s ∈ C),

respectively. The second Kronecker limit formula explains the relation between the
Stickelberger element and the L-function as follows.
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Proposition 3.6. Let χ be a non-trivial character of Cl(f) with fχ 
= OK . Then
we have

Lfχ
(1, χ0)

∏
p|f

p�fχ

(1 − χ̄0([p])) = − 2πχ0([γdK fχ])
6N(fχ)ω(fχ)Tγ(χ̄0)

√
−dK

· Sf(χ̄, gf),

where dK is the different ideal of K/Q, γ is an element of K such that γdK fχ is an
integral ideal of K prime to fχ, N(fχ) is the smallest positive integer in fχ, ω(fχ)
is the number of roots of unity in K that are ≡ 1 (mod fχ) and

Tγ(χ̄0) =
∑

x+fχ∈(OK/fχ)×

χ̄0([xOK ])e2πi TrK/Q(γx).

Proof. See [6, ch. 11, § 2, LF2].

Remark 3.7. Since χ0 is a non-trivial character of Cl(fχ), we obtain Lfχ
(1, χ0) 
= 0

[4, ch. V, theorem 10.2]. Furthermore, the Gauss sum Tγ(χ̄0) is also non-zero [7,
ch. 22, § 1, G3]. If every prime ideal factor of f divides fχ, then we understand the
Euler factor

∏
p|f, p�fχ

(1 − χ̄0([p])) to be 1, and hence we conclude that Sf(χ̄, gf) 
= 0.

4. Generation of ray-class fields by Siegel–Ramachandra invariants

In this section we improve the result of Schertz [12] concerning construction of
ray-class fields by means of Siegel–Ramachandra invariants.

Let K be an imaginary quadratic field of discriminant dK and let ωK be the
number of roots of unity in K. For a non-trivial integral ideal f of K, we regard
ω(f) as the number of roots of unity in K that are equivalent to 1 (mod f). Let φ
be the Euler function for ideals, namely

φ(f) = |(OK/f)×| = N (f)
∏
p|f

p prime

(
1 − 1

N (p)

)
. (4.1)

Proposition 4.1. If f is a non-trivial integral ideal of K, then we get

[Kf:K] = hKφ(f)
ω(f)
ωK

,

where hK is the class number of K.

Proof. See [8, ch. VI, theorem 1].

Lemma 4.2. Let H ⊂ G be two finite abelian groups, let g ∈ G \ H and n be the
order of the coset [g] in G/H. Then for any character χ of H, we can extend it to
a character ψ of G such that ψ(g) is any fixed nth root of χ(gn).

Proof. See [13, ch. VI, proposition 1].

Now, let f be a non-trivial proper integral ideal of K with prime ideal factorization

f =
r∏

i=1

p
ni
i ,
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and let C0 be the unit class in Cl(f). Consider the quotient group

G = (OK/f)×/{α + f ∈ (OK/f)× | α ∈ O×
K}.

Then one can view G as a subgroup of Cl(f) via the map (3.1). For each i, we set

Gi = (OK/p
ni
i )×/{α + p

ni
i ∈ (OK/p

ni
i )× | α ∈ O×

K}.

Proposition 4.3. Assume that |Gi| > 2 for every i. Then, for any class C (
=
C0) ∈ Cl(f) there exists a character χ of Cl(f) such that χ(C) 
= 1 and pi|fχ for
all i.

Proof. Since C 
= C0, there is a character χ of Cl(f) such that χ(C) 
= 1. We set
n to be the order of C in the quotient group Cl(f)/G. Then Cn = [(β)] for some
β ∈ OK that is relatively prime to f. Suppose that fχ is not divided by pi for some
i. If Gi 
= 〈β + p

ni
i 〉, then we can find a non-trivial character ψ of (OK/p

ni
i )× for

which ψ is trivial on {α + p
ni
i ∈ (OK/p

ni
i )× | α ∈ O×

K} and ψ(β + p
ni
i ) = 1. By

composing with a natural homomorphism (OK/f)× → (OK/p
ni
i )×, we are able to

extend ψ to a character ψ′ of (OK/f)× whose conductor is divisible only by pi.
Observe that ψ′ is trivial on {α + f ∈ (OK/f)× | α ∈ O×

K}, and so ψ′ becomes a
character of G. It then follows from lemma 4.2 that we can also extend ψ′ to a
character ψ′′ of Cl(f) such that ψ′′(C) = 1. Now assume that Gi = 〈β + p

ni
i 〉. Since

|Gi| > 2, there is a non-trivial character ψ of (OK/p
ni
i )× such that ψ is trivial on

{α + p
ni
i ∈ (OK/p

ni
i )× | α ∈ O×

K} and ψ(β + p
ni
i ) 
= 1, χ(Cn)−1. In a similar way,

one can extend ψ to a character ψ′′ of Cl(f) in such a way that fψ′′ is divisible
only by pi and ψ′′(C) 
= χ(C)−1. Therefore, the character χψ′′ of Cl(f) satisfies
χψ′′(C) 
= 1, pi|fχψ′′ and fχ|fχψ′′ in both cases. By continuing this process for all i,
we finally obtain the desired character.

Lemma 4.4. With the notation above, |Gi| = 1, 2 if and only if p
ni
i satisfies one of

the following conditions.

Case 1 (K 
= Q(
√

−1), Q(
√

−3)).

• 2 is not inert in K, pi is lying over 2 and ni = 1, 2 or 3.

• 3 is not inert in K, pi is lying over 3 and ni = 1.

• 5 is not inert in K, pi is lying over 5 and ni = 1.

Case 2 (K = Q(
√

−1)).

• pi is lying over 2 and ni = 1, 2, 3 or 4.

• pi is lying over 3 and ni = 1.

• pi is lying over 5 and ni = 1.

Case 3 (K = Q(
√

−3)).

• pi is lying over 2 and ni = 1 or 2.

• pi is lying over 3 and ni = 1 or 2.
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• pi is lying over 7 and ni = 1.

• pi is lying over 13 and ni = 1.

Proof. First, we note that

|Gi| = φ(pni
i )

ω(pni
i )

ωK
. (4.2)

Let pi be a prime number such that pi is lying over pi. It then follows from (4.1)
that

φ(pni
i ) =

{
p2ni

i − p2ni−2
i if pi is inert in K,

pni
i − pni−1

i otherwise.
(4.3)

If K 
= Q(
√

−1), Q(
√

−3), then ωK = 2 and

ω(pni
i ) =

{
2 if p

ni
i |2OK ,

1 otherwise.
(4.4)

If K = Q(
√

−1), then ωK = 4 and

(
dK

pi

)
=

(
−4
pi

)
=

⎧⎪⎨
⎪⎩

1 if pi ≡ 1 (mod 4),
−1 if pi ≡ 3 (mod 4),
0 if pi = 2,

(4.5)

where (dK/pi) stands for the Kronecker symbol. Since 2OK = (1 −
√

−1)2OK , we
deduce that

ω(pni
i ) =

⎧⎪⎨
⎪⎩

4 if p
ni
i = (1 −

√
−1)OK ,

2 if p
ni
i 
= (1 −

√
−1)OK and p

ni
i |2OK ,

1 otherwise.
(4.6)

If K = Q(
√

−3), then ωK = 6 and

(
dK

pi

)
=

(
−3
pi

)
=

⎧⎪⎨
⎪⎩

1 if pi ≡ 1, 7 (mod 12),
−1 if pi ≡ 5, 11 (mod 12) or pi = 2,

0 if pi = 3.

(4.7)

Here we observe that 2 is inert in K and 3 is ramified in K, so to speak: 3OK =
( 1
2 (3 +

√
−3))2OK . One can then readily show that

ω(pni
i ) =

⎧⎪⎨
⎪⎩

3 if p
ni
i = ( 1

2 (3 +
√

−3))OK ,

2 if p
ni
i = 2OK ,

1 otherwise.
(4.8)

Therefore, the lemma follows from (4.2)–(4.8).
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Remark 4.5. If 2 is not inert in K, pi is lying over 2 and ni = 1, then

Kf = K
fp

−ni
i

.

Indeed, we see from proposition 4.1 that

[K
fp

−ni
i

:K] =
ω(fp−ni

i )
φ(pni

i )ω(f)
· [Kf:K]. (4.9)

Since φ(pni
i ) = 1 and ω(fp−ni

i ) = ω(f) in this case, we obtain the conclusion.

From now on we assume that Kf 
= K
fp

−ni
i

for every i and let Nf be the number
of i such that |Gi| = 1 or 2. After reordering prime ideal factors of f if necessary, we
may suppose that |Gi| = 1 or 2 for i = 1, 2, . . . ,Nf. For any intermediate field F of
the extension Kf/K we mean by Cl(Kf/F ) the subgroup of Cl(f) corresponding to
Gal(Kf/F ) via the Artin map σ stated in (1.1).

Theorem 4.6. Let f be a non-trivial proper integral ideal of K with prime ideal
factorization f =

∏r
i=1 p

ni
i such that |Gi| = 1 or 2 for i = 1, 2, . . . ,Nf. Assume that

Kf 
= K
fp

−ni
i

for every i and
Nf∑
i=1

1
φ(pni

i )
� 1

2
. (4.10)

Then, for any class C ∈ Cl(f) and any non-zero integer n, we get

Kf = K(gf(C)n). (4.11)

In particular, if Nf = 0 or 1, then the assumption (4.10) is always satisfied, and
hence we have the desired result, (4.11).

Proof. Let F = K(gf(C0)n). On the contrary suppose that F is properly contained
in Kf, i.e. Cl(Kf/F ) 
= {1}. Then we claim that there exists a character χ of Cl(f)
satisfying χ|Cl(Kf/F ) 
= 1 and pi|fχ for i = 1, 2, . . . ,Nf. Indeed, we deduce that

M1 = |{characters χ of Cl(f) | χ|Cl(Kf/F ) 
= 1}|

= |{characters χ of Cl(f)}| − |{characters χ of Cl(f) | χ|Cl(Kf/F ) = 1}|

= [Kf:K] − [F :K]

= [Kf:K]
(

1 − 1
[Kf:F ]

)

� 1
2 [Kf:K]. (4.12)

Thus, if Nf = 0, the claim is clear. Observe that a trivial character is not contained
in the set stated in (4.12). Now assume Nf � 1 and let

M2 = |{characters χ 
= 1 of Cl(f) | pi � fχ for some i ∈ {1, 2, . . . ,Nf}}|.
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First, we suppose Nf 
= 2. Then we derive that

M2 = |{characters χ of Cl(f) | pi � fχ for some i ∈ {1, 2, . . . ,Nf}}| − 1

= |{characters χ of Cl(f) | fχ|fp−ni
i for some i ∈ {1, 2, . . . ,Nf}}| − 1

�
Nf∑
i=1

|{characters χ of Cl(fp−ni
i )}| − 1

=
Nf∑
i=1

[K
fp

−ni
i

:K] − 1

=
( Nf∑

i=1

ω(fp−ni
i )

φ(pni
i )ω(f)

)
[Kf:K] − 1 (by (4.9)).

If Nf = 1, then M2 � 1
2 [Kf:K] − 1 since Kf 
= K

fp
−ni
i

for every i. And, if Nf � 3,
then ω(f) = ω(fp−ni

i ) = 1 for every i because f has at least three prime ideal factors.
Hence, we attain M2 � 1

2 [Kf:K] − 1, again by the assumption (4.10). Now, assume
Nf = 2. Since f has at least two prime ideal factors, we obtain that

M2 = |{characters χ of Cl(f) | fχ|fp−ni
i for some i ∈ {1, 2}}| − 1

=
2∑

i=1

|{characters χ of Cl(fp−ni
i )}| − |{characters χ of Cl(fp−n1

1 p
−n2
2 )}| − 1

=
2∑

i=1

[K
fp

−ni
i

:K] − [K
fp

−n1
1 p

−n2
2

:K] − 1

=
( 2∑

i=1

ω(fp−ni
i )

φ(pni
i )

− ω(fp−n1
1 p

−n2
2 )

φ(pn1
1 )φ(pn2

2 )

)
[Kf:K] − 1.

Here we note that ω(fp−ni
i ) 
= 1 occurs only when f = p

n1
1 p

n2
2 , and ω(fp−n1

1 p
−n2
2 ) =

ωK in this case. Using this fact, one can check that if assumption (4.10) holds, then( 2∑
i=1

ω(fp−ni
i )

φ(pni
i )

− ω(fp−n1
1 p

−n2
2 )

φ(pn1
1 )φ(pn2

2 )

)
� 1

2
, (4.13)

which yields M2 � 1
2 [Kf:K] − 1. Thus, for any Nf � 1 we have M1 > M2, and so

the claim is proved. Furthermore, the proof of proposition 4.3 shows that there is a
character ψ′′ of Cl(f) for which χψ′′|Cl(Kf/F ) 
= 1, fχ|fχψ′′ and pi|fχψ′′ for all i. So,
by replacing χ by χψ′′, we get a character χ of Cl(f) satisfying χ|Cl(Kf/F ) 
= 1 and
pi|fχ for all i.

Since χ is non-trivial and fχ 
= OK , we have Sf(χ̄, gf) 
= 0 by proposition 3.6. On
the other hand, we deduce that

Sf(χ̄, gf) =
1
n

∑
C∈Cl(f)

χ̄(C) log |gf(C)n|

=
1
n

∑
C∈Cl(f)

χ̄(C) log |(gf(C0)n)σ(C)| (by proposition 3.3)
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=
1
n

∑
[C1]∈Cl(f)/Cl(Kf/F )

( ∑
C2∈Cl(Kf/F )

χ̄(C1C2) log |(gf(C0)n)σ(C1C2)|
)

=
1
n

∑
[C1]∈Cl(f)/Cl(Kf/F )

χ̄(C1) log |(gf(C0)n)σ(C1)|
( ∑

C2∈Cl(Kf/F )

χ̄(C2)
)

= 0,

because gf(C0)n ∈ F and χ|Cl(Kf/F ) 
= 1. This gives a contradiction. Therefore,
F = Kf, and so Kf = K(gf(C)n) for any C ∈ Cl(f) since gf(C)n = (gf(C0)n)σ(C)

by proposition 3.3.

Remark 4.7.

(i) If Nf = 2 and f = p
n1
1 p

n2
2 , then one can show that the inequality (4.13)

holds except in the case where K 
= Q(
√

−1), Q(
√

−3), 2 is ramified in K
and f = p2

(2)p(5). Here, p(p) stands for a prime ideal of K lying over a prime
number p. Therefore, we are able to establish theorem 4.6, again under the
above condition.

(ii) Schertz conjectured [12, conjecture 6.8.3] that (4.11) holds for any non-trivial
proper integral ideal f of K. In theorem 4.6 we present a conditional proof of
his conjecture.

5. Ray-class fields constructed by smaller generators

In this section we shall construct ray-class invariants over imaginary quadratic fields
whose minimal polynomials have relatively small coefficients.

Let K = Q(
√

−d) be an imaginary quadratic field with a square-free integer
d > 0, let f be a non-trivial proper integral ideal of K and let θ be as in (2.3). In
what follows we adopt the notation of § 4.

Lemma 5.1. Let r, s ∈ (1/N)Z2 \ Z2 for a positive integer N � 2. Then we obtain
that

gr(θ)gcd(2,N)·N

gs(θ)gcd(2,N)·N

lies in the ray-class field K(N) = Kf with f = NOK .

Proof. This is immediate from propositions 2.1 and 3.1.

Lemma 5.2. Let

f = NOK =
r∏

i=1

p
ni
i

for an integer N � 2 and let p be an odd prime dividing N (if any). Assume that
Kf 
= K

fp
−ni
i

for every i. Then there is an element β ∈ OK prime to 6N for which

https://doi.org/10.1017/S0308210516000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210516000263


Construction of ray-class fields 795

NK/Q(β) ≡ 1 (mod ωKf
), and the ray class [(β)] ∈ Cl(f) is of order kp, where

kp =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
ωK

(
p −

(
dK

p

))
if p � dK , ordp(N) = 1 and N = p,

1
2

(
p −

(
dK

p

))
if p � dK , ordp(N) = 1 and N 
= p,

p otherwise.

Here (dK/p) is the Kronecker symbol.

Proof. Let

N ′ =

{
4N if 3|N,

12N if 3 � N,

with prime decomposition N ′ =
∏

� �n� . Then np = ordp(N ′) = ordp(N) and
ωKf

divides N ′ [6, ch. 9, lemma 4.3]. Hence, it suffices to find β ∈ OK for which
NK/Q(β) ≡ 1 (mod N ′) and the order of the ray class [(β)] ∈ Cl(f) is kp. For
simplicity, we let m = p − (dK/p) and define a homomorphism

ÑK/Q,n : (OK/nOK)× → (Z/nZ)×

ω + nOK �→ NK/Q(ω) + nZ

for each integer n � 2.

Case 1. First, suppose that p � dK and ordp(N) = 1. We claim that the homomor-
phism

ÑK/Q,p : (OK/pOK)× → (Z/pZ)×

is surjective and ker(ÑK/Q,p) ∼= Z/mZ. Indeed, we can write

OK/pOK = {x + y
√

−d + pOK | x, y ∈ Fp}

because gcd(2, p) = 1. Then one can readily show that the map

{ω + pOK ∈ (OK/pOK)× | NK/Q(ω) ≡ 1 (mod p)} → C(Fp)

x + y
√

−d + pOK �→ (x, y)

is a well-defined isomorphism, where C : x2 − (−d)y2 = 1 is the Pell conic over Fp.
Hence, ker(ÑK/Q,p) ∼= C(Fp) ∼= Z/mZ [9, § 2.1] and the claim is proved by (4.1). We
choose ω ∈ OK so that ker(ÑK/Q,p) = 〈ω + pOK〉. Then, by the Chinese remainder
theorem, there exist ω′ ∈ OK for which for each prime � divides N ′:

ω′ ≡
{

ω (mod �n�OK) if � = p,

1 (mod �n�OK) if � 
= p.

We observe that ω′ is prime to 6N and that ω′+N ′OK is contained in ker(ÑK/Q,N ′)
and is of order m in (OK/NOK)×. If N = p, then the ray class [(ω′)] ∈ Cl(f) is of
order m/ωK because

{ε + pOK ∈ (OK/pOK)× | ε ∈ O×
K} ⊂ ker(ÑK/Q,p) = 〈ω′ + pOK〉.
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When N 
= p, we derive that

(the order of [(ω′)] in Cl(f)) =

{
m/2 if − 1 + NOK ∈ 〈ω′ + NOK〉,
m otherwise.

Therefore, we can find β ∈ OK with the desired properties.

Case 2. Now, assume that ordp(N) > 1 or p|dK . Let

β =

⎧⎪⎪⎨
⎪⎪⎩

1 +
2N

p

√
−d if p = 3,

1 +
6N

p

√
−d if p 
= 3.

(5.1)

Then NK/Q(β) ≡ 1 (mod N ′) and β + NOK is of order p in (OK/NOK)× because
p2 divides Nd. And we claim that

{ε + NOK ∈ (OK/NOK)× | ε ∈ O×
K} ∩ 〈β + NOK〉 = {1 + NOK},

since p is an odd prime and Kf 
= K
fp

−ni
i

for every i. Thus, the ray class [(β)] ∈ Cl(f)
is of order p, as desired.

Remark 5.3. If p is an odd prime such that p − (dK/p) is a power of 2, then p
is either a Mersenne prime or a Fermat prime. Observe that forty-eight Mersenne
primes and five Fermat primes were known as of May 2014.

Theorem 5.4. Let f =
∏r

i=1 p
ni
i be a non-trivial proper integral ideal of K and

let C ′ be an element of G (⊂ Cl(f)) whose order is an odd prime p. Assume that
Kf 
= K

fp
−ni
i

and |Gi| > 2 for every i. If p > 3 or |Gi| > 3 for every i, then for
any non-zero integer n the unit

gf(C ′)n

gf(C0)n

generates Kf over K.
Moreover, if f = NOK for an integer N � 2 and C ′ = [(β′)] for some β′ ∈ OK

prime to 6N with NK/Q(β′) ≡ 1 (mod ωKf
), then

Kf = K

⎛
⎜⎝

g[
s/N
t/N

](θ)m

g[ 0
1/N

](θ)m

⎞
⎟⎠ ,

where β′ = sθ + t with s, t ∈ Z and

m =

{
gcd(N, 3) if N is odd,

4 · gcd( 1
2N, 3) if N is even.

Proof. Let F = K(gf(C ′)n/gf(C0)n). Suppose F � Kf, namely, Cl(Kf/F ) 
= {1}.
We then claim that there exists a character χ of Cl(f) such that χ|Cl(Kf/F ) 
= 1,
χ(C ′) 
= 1 and pi|fχ for every i. Indeed, one can achieve

|{characters χ 
= 1 of Cl(f) | χ(C ′) = 1}| =
1
p
[Kf:K] − 1.
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It also follows from (4.12) that

|{characters χ of Cl(f) | χ|Cl(Kf/F ) 
= 1}| � 1
2 [Kf:K] >

1
p
[Kf:K] − 1.

Thus, there is a character χ of Cl(f) satisfying χ|Cl(Kf/F ) 
= 1 and χ(C ′) 
= 1. Since
C ′ ∈ G, we may write C ′ = [(β′)] for some β′ ∈ OK which is prime to f. Choose
C ′′ ∈ Cl(Kf/F ) of prime order � satisfying χ(C ′′) 
= 1. Here, we assume that fχ is
not divided by pi for some i. We then consider the following two cases.

Case 1 (C ′′ 
∈ G). The proof of proposition 4.3 shows that there exists a non-
trivial character ψ of Gi such that ψ([β′ + p

ni
i ]) 
= χ(C ′)−1. And, we can extend

ψ to a character ψ′ of G whose conductor is divisible only by pi. Since C ′′ 
∈ G
and ψ′((C ′′)�) = 1, one can also extend ψ′ to a character ψ′′ of Cl(f) so as to
have ψ′′(C ′′) = 1 by lemma 4.2. Note that the character χψ′′ of Cl(f) satisfies
χψ′′(C ′) 
= 1, χψ′′(C ′′) = χ(C ′′) 
= 1, pi|fχψ′′ and fχ|fχψ′′ . And we replace χ by
χψ′′.

Case 2 (C ′′ ∈ G). Let β′′ ∈ OK such that C ′′ = [(β′′)] in Cl(f).

(i) If Gi 
= 〈[β′′ + p
ni
i ]〉, we can choose a trivial character ψ1 of the proper

subgroup 〈[β′′ +p
ni
i ]〉 of Gi. Since 〈[β′′ +p

ni
i ]〉 ∼= {1} or Z/�Z in the group Gi,

we have either 〈[β′+p
ni
i ]〉 = 〈[β′′+p

ni
i ]〉 � Gi or 〈[β′+p

ni
i ]〉∩〈[β′′+p

ni
i ]〉 = {1}.

And, by using lemma 4.2, we can extend ψ1 to a non-trivial character ψ of
Gi such that ψ(β′ + p

ni
i ) 
= χ(C ′)−1 due to the fact that p � 3.

(ii) Now assume that Gi = 〈[β′′ + p
ni
i ]〉 ∼= Z/�Z. Then � > 2 because |Gi| > 2. If

β′ + p
ni
i ∈ {α + p

ni
i ∈ (OK/p

ni
i )× | α ∈ O×

K}, there is a non-trivial character
ψ of Gi for which ψ([β′′ + p

ni
i ]) 
= χ(C ′′)−1. Observe that ψ([β′ + p

ni
i ]) = 1.

On the other hand, if β′ + p
ni
i 
∈ {α + p

ni
i ∈ (OK/p

ni
i )× | α ∈ O×

K}, then 〈[β′+
p

ni
i ]〉 = 〈[β′′ + p

ni
i ]〉 and p = �. And we see that p, � > 3 by hypothesis. Let

ψ1 be a character of Gi such that ψ1([β′ + p
ni
i ]) = ζp. Then ψ, ψ2, . . . , ψp−1

are distinct non-trivial characters of Gi and we derive

|{ψj
1 | ψj

1([β
′ + p

ni
i ]) 
= χ(C ′)−1}1�j�p−1| = p − 2.

Meanwhile, ψ1([β′′ + p
ni
i ]) = ζs

p for some 1 � s � p − 1. If

ψj1
1 ([β′′ + p

ni
i ]) = ψj2

1 ([β′′ + p
ni
i ])

for some 1 � j1, j2 � p−1, then ζ
s(j1−j2)
p = 1, and so j1 = j2. Hence, we have

|{ψj
1 | ψj

1([β
′ + p

ni
i ]) 
= χ(C ′)−1, ψj

1([β
′′ + p

ni
i ]) 
= χ(C ′′)−1}1�j�p−1|

� p − 3 > 0.

We choose a character ψ of Gi in the above set.

Therefore, in all cases we can extend ψ to a character ψ′′ of Cl(f) in a similar
fashion, and it satisfies χψ′′(C ′) 
= 1, χψ′′(C ′′) 
= 1, pi|fχψ′′ and fχ|fχψ′′ . Now, we
replace χ by χψ′′.

By continuing this process for every i, we get the claim.
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Since χ is non-trivial and pi|fχ for every i, we have Sf(χ̄, gf) 
= 0 by proposition 3.6
and remark 3.7. On the other hand, we deduce that

(χ(C ′) − 1)Sf(χ̄, gf)

= (χ̄(C ′−1) − 1)
∑

C∈Cl(f)

χ̄(C) log |gf(C)|

=
1
n

∑
C∈Cl(f)

χ̄(C) log
∣∣∣∣gf(CC ′)n

gf(C)n

∣∣∣∣
=

1
n

∑
C∈Cl(f)

χ̄(C) log
∣∣∣∣
(

gf(C ′)n

gf(C0)n

)σ(C)∣∣∣∣ (by proposition 3.3)

=
1
n

∑
[C1]∈Cl(f)/Cl(Kf/F )

( ∑
C2∈Cl(Kf/F )

χ̄(C1C2) log
∣∣∣∣
(

gf(C ′)n

gf(C0)n

)σ(C1C2)∣∣∣∣
)

=
1
n

∑
[C1]∈Cl(f)/Cl(Kf/F )

χ̄(C1) log
∣∣∣∣
(

gf(C ′)n

gf(C0)n

)σ(C1)∣∣∣∣
( ∑

C2∈Cl(Kf/F )

χ̄(C2)
)

= 0,

because χ̄ is non-trivial on Cl(Kf/F ). And it yields a contradiction, since χ(C ′)−1 
=
0. Therefore, we conclude that F = Kf.

If f = NOK for a positive integer N � 2 and β′ = sθ + t is prime to 6N with
NK/Q(β′) ≡ 1 (mod ωKf

), then any Nth root of the value gf(C ′)/gf(C0) generates
Kf over K by lemma 3.5. Write min(θ, Q) = X2 + BθX + Cθ. Then we have, by
definition,

gf(C0) = g[ 0
1/N

](θ)12N

and
gf(C ′) = gf(C0)σ(C′) = g[

t−Bθs s
−Cθs t

][ 0
1/N

](θ)12N = g[
s/N
t/N

](θ)12N

by propositions 2.3, 3.2 and 3.3. Therefore,

Kf = K

⎛
⎜⎝

g[
s/N
t/N

](θ)12

g[ 0
1/N

](θ)12

⎞
⎟⎠ ,

and hence we get the conclusion by lemma 5.1.

Remark 5.5.

(i) As in lemma 4.4 one can show that |Gi| = 3 if and only if p
ni
i satisfies one of

the following conditions.

Case 1 (K 
= Q(
√

−1), Q(
√

−3)).

• 2 is inert in K, pi is lying over 2 and ni = 1.
• 3 is not inert in K, pi is lying over 3 and ni = 2.
• 7 is not inert in K, pi is lying over 7 and ni = 1.
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Case 2 (K = Q(
√

−1)).

• pi is lying over 13 and ni = 1.

Case 3 (K = Q(
√

−3)).

• pi is lying over 3 and ni = 3.

• pi is lying over 19 and ni = 1.

The first claim of theorem 5.4 would be an improvement of Schertz’s result [12,
theorem 6.8.4].

Remark 5.6.

(i) Suppose (
gf(C ′)
gf(C0)

)σ(C)


= gf(C ′)
gf(C0)

for every C ∈ G \ {1}. Then we may consider only case 1 in the proof of
theorem 5.4. Thus, one can prove that theorem 5.4 is still valid for any prime
p with the assumptions Kf 
= K

fp
−ni
i

and |Gi| > 2 for every i.

(ii) Let f = NOK for a positive integer N � 2 and let � be an odd prime dividing
N . For any odd prime p dividing k�, there exists β′ ∈ OK prime to 6N for
which NK/Q(β′) ≡ 1 (mod ωKf

) and the order of the ray class [(β′)] is p by
lemma 5.2.

The following corollary would be an explicit example of theorem 5.4.

Corollary 5.7. Let f = NOK for a positive integer N � 2 and let p be an odd
prime dividing N (if any). Further, we set β ∈ OK as in (5.1) and C ′ = [(β)] ∈
Cl(f). Assume that Kf 
= K

fp
−ni
i

, |Gi| > 2 for every i and p2 divides NdK .

(i) If p = 3 and |Gi| > 3 for every i, then the special value

γ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g[
2/3
1/N

](θ)3

g[ 0
1/N

](θ)3 if dK ≡ 0 (mod 4),

g[
4/3

2/3+1/N

](θ)3

g[ 0
1/N

](θ)3 if dK ≡ 1 (mod 4),

generates Kf (= K(N)) over K. It is a unit in Kf and is a 4N th root of
gf(C ′)/gf(C0).
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(ii) If p > 3, then the special value

γ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

g[
6/p
1/N

](θ)
g[ 0

1/N

](θ) if dK ≡ 0 (mod 4),

g[
12/p

6/p+1/N

](θ)
g[ 0

1/N

](θ) if dK ≡ 1 (mod 4),

generates Kf over K. Further, it is a unit in Kf and is a 12N th root of
gf(C ′)/gf(C0).

Proof. Note that β is prime to 6N , NK/Q(β) ≡ 1 (mod ωKf
) and the ray class

[(β)] ∈ Cl(f) is of order p by lemma 5.2. Hence, if p > 3 or |Gi| > 3 for every i,
then by theorem 5.4, we obtain

Kf = K

(
gf(C ′)
gf(C0)

)
.

(i) If p = 3, then we can write

β =

⎧⎪⎪⎨
⎪⎪⎩

2N

3
θ + 1 if dK ≡ 0 (mod 4),

4N

3
θ +

2N

3
+ 1 if dK ≡ 1 (mod 4).

Here we observe that
gf(C0) = g[ 0

1/N

](θ)12N

by definition and

gf(C ′) = gf(C0)σ(C′) =

⎧⎪⎪⎨
⎪⎪⎩

g[
2/3
1/N

](θ)12N if dK ≡ 0 (mod 4),

g[
4/3

2/3+1/N

](θ)12N if dK ≡ 1 (mod 4),

by propositions 2.3, 3.2 and 3.3. Since ζN ∈ FN , we see that the functions

g[
2/3
1/N

](τ)3

g[ 0
1/N

](τ)3
and

g[
4/3

2/3+1/N

](τ)3

g[ 0
1/N

](τ)3

belong to FN by proposition 3.1. Thus, its special value at θ lies in Kf = K(N)
by proposition 2.1, and so it generates Kf over K.

(ii) If p > 3, then we may write

β =

⎧⎪⎪⎨
⎪⎪⎩

6N

p
θ + 1 if dK ≡ 0 (mod 4),

12N

p
θ +

6N

p
+ 1 if dK ≡ 1 (mod 4).
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And, in a similar way one can readily show that the special value γp generates
Kf over K. On the other hand, γ12 is an element of Kf by theorem 5.4.
Therefore, we get

Kf = K(γ),

owing to the fact that gcd(p, 12) = 1.

Example 5.8. Let K = Q(
√

−7) and θ = 1
2 (−1 +

√
−7). Then the class number

hK is 1.

(i) Let f = 9OK . Then 3 is inert in K and so |Gi| > 3 for every i. Hence, the special
value

γ =

g[
4/3
7/9

](θ)3

g[ 0
1/9

](θ)3

generates K(9) over K by corollary 5.7.
Here we note that Gal(K(9)/K) ∼= W9,θ/{±I2} by proposition 2.4, and hence we

obtain

W9,θ/{±I2}

=
{ [

1 0
0 1

]
,

[
2 0
0 2

]
,

[
4 0
0 4

]
,

[
8 7
1 0

]
,

[
0 7
1 1

]
,

[
1 7
1 2

]
,

[
2 7
1 3

]
,

[
3 7
1 4

]
,

[
4 7
1 5

]
,

[
5 7
1 6

]
,

[
6 7
1 7

]
,

[
7 7
1 8

]
,

[
7 5
2 0

]
,

[
8 5
2 1

]
,

[
0 5
2 2

]
,

[
1 5
2 3

]
,

[
2 5
2 4

]
,

[
3 5
2 5

]
,

[
4 5
2 6

]
,

[
5 5
2 7

]
,

[
6 5
2 8

]
,

[
7 3
3 1

]
,

[
8 3
3 2

]
,

[
1 3
3 4

]
,

[
2 3
3 5

]
,

[
4 3
3 7

]
,

[
5 3
3 8

]
,

[
5 1
4 0

]
,

[
6 1
4 1

]
,

[
7 1
4 2

]
,

[
8 1
4 3

]
,

[
0 1
4 4

]
,

[
1 1
4 5

]
,

[
2 1
4 6

]
,

[
3 1
4 7

]
,

[
4 1
4 8

] }
.

And, in general, if α ∈ GL2(Z/NZ)/{±I2} for a positive integer N � 2, then one
can find α′ ∈ SL2(Z) satisfying

α ≡
[
1 0
0 det(α)

]
· α′ (mod N)

by (2.1). If a function gr(τ)m/gs(τ)m lies in FN for some r, s ∈ Q2 \ Z2 and
m ∈ Z>0, we attain

(
gr(τ)m

gs(τ)m

)α

=
a(r)
a(s)

·
gtα′

[ 1 0
0 det(α)

]
r
(τ)m

gtα′
[ 1 0
0 det(α)

]
s
(τ)m
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by (2.2) and proposition 3.2. Here

a(r) =

{
−1 if mNr2(r1 − 1) is odd and det(α) is even,

1 otherwise,

for r = [ r1
r2 ] ∈ Q2 \ Z2. In our case, the function

g[
4/3
7/9

](τ)3

g[ 0
1/9

](τ)3

belongs to F9 and so we can find all conjugates of γ over K by using proposition 2.4.
Therefore, we derive the minimal polynomial of γ over Q as

min(γ, Q) =
∏

τ∈Gal(K(9)/K)

(X − γτ )(X − γτ )

= X72 + 90X71 + 1 152X70 − 22 371X69 + 458 820X68 − 29 836 953X67

+ 491 027 613X66 − 1 938 660 903X65 − 20 725 828 920X64

+ 218 606 201 947X63 − 87 981 391 440X62 − 9 726 726 330 846X61

+ 74 685 511 048 146X60 − 296 777 453 271 966X59

+ 741 369 035 579 850X58 − 1 250 575 046 567 529X57

+ 1 668 303 706 335 570X56 − 3 404 755 297 594 260X55

+ 12 286 071 601 634 287X54 − 32 591 232 085 278 402X53

+ 35 114 715 622 084 023X52 + 37 809 379 416 794 814X51

− 111 424 993 786 127 475X50 − 44 163 687 277 340 892X49

+ 282 536 182 740 148 884X48 − 43 713 385 246 904 949X47

− 422 588 747 471 994 153X46 + 222 731 731 243 593 448X45

+ 334 105 708 870 044 999X44 − 414 268 957 496 144 781X43

+ 13 834 474 218 095 754X42 + 634 423 686 065 669 232X41

− 404 320 599 974 193 246X40 − 761 298 152 585 541 393X39

+ 489 778 367 476 257 828X38 + 416 185 685 059 783 914X37

− 442 068 360 347 754 785X36 + 416 185 685 059 783 914X35

+ 489 778 367 476 257 828X34 − 761 298 152 585 541 393X33

− 404 320 599 974 193 246X32 + 634 423 686 065 669 232X31

+ 13 834 474 218 095 754X30 − 414 268 957 496 144 781X29

+ 334 105 708 870 044 999X28 + 222 731 731 243 593 448X27

− 422 588 747 471 994 153X26 − 43 713 385 246 904 949X25

+ 282 536 182 740 148 884X24 − 44 163 687 277 340 892X23

− 111 424 993 786 127 475X22 + 37 809 379 416 794 814X21
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+ 35 114 715 622 084 023X20 − 32 591 232 085 278 402X19

+ 12 286 071 601 634 287X18 − 3 404 755 297 594 260X17

+ 1 668 303 706 335 570X16 − 1 250 575 046 567 529X15

+ 741 369 035 579 850X14 − 296 777 453 271 966X13

+ 74 685 511 048 146X12 − 9 726 726 330 846X11

− 87 981 391 440X10 + 218 606 201 947X9 − 20 725 828 920X8

− 1 938 660 903X7 + 491 027 613X6 − 29 836 953X5 + 458 820X4

− 22 371X3 + 1 152X2 + 90X + 1,

which claims that γ is a unit as desired.
On the other hand, the Siegel–Ramachandra invariant

gf(C0) = g[ 0
1/9

](θ)108

also generates K(9) over K by theorem 4.6. Observe that it is a real algebraic
integer, and so its minimal polynomial over K has integer coefficients [6, lemma 2.1
and theorem 2.2]. One can then compute the minimal polynomial of g[ 0

1/9

](θ)108
over K as follows:

min
(
g[ 0

1/9

](θ)108, K
)

≈ X36 − 5.8014 × 1016X35 + 1.2510 × 1033X34 − 1.2073 × 1049X33

+ 5.2876 × 1064X32 − 1.3770 × 1080X31 + 4.5041 × 1095X30

+ 7.1821 × 10109X29 + 3.5929 × 10125X28 + 6.0405 × 10140X27

− 2.6727 × 10153X26 + 4.0906 × 10166X25 + 1.5461 × 10178X24

+ 2.5470 × 10189X23 − 8.8165 × 10197X22 + 1.2086 × 10206X21

− 6.5232 × 10213X20 + 1.1931 × 10221X19 + 1.1532 × 10226X18

+ 1.8902 × 10231X17 + 5.0656 × 10233X16 + 4.0609 × 10234X15

+ 1.3087 × 10235X14 + 1.8279 × 10235X13 + 1.0208 × 10235X12

+ 1.3732 × 10234X11 − 5.1693 × 10229X10 + 1.5848 × 10225X9

+ 1.2122 × 10218X8 − 1.7829 × 10211X7 + 1.2402 × 10204X6

+ 5.8968 × 10184X5 + 7.7183 × 10164X4 + 1.3109 × 10144X3

− 1.2605 × 10110X2 + 1.1125 × 1076X + 5.8150 × 1025.

But, we notice here that the coefficients of min(γ, Q) are much smaller than those
of min(g[ 0

1/9

](θ)108, K).

(ii) Let f = 5OK . Then 5 is inert in K and so |Gi| > 3 for every i. By lemma 5.2
we get an element β ∈ OK prime to 30 for which NK/Q(β) ≡ 1 (mod ωKf

) and the
ray class [(β)] ∈ Cl(f) is of order 3. Indeed, β = 6

√
−7+7 satisfies these conditions.
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Since β = 12θ + 13, the special value

γ =

g[
12/5
13/5

](θ)
g[ 0

1/5

](θ)

generates K(5) over K by theorem 5.4.
Since the function

g[
12/5
13/5

](τ)

g[ 0
1/5

](τ)

belongs to F25 by proposition 3.1, in order to estimate the minimal polynomial of
γ over Q we need to describe the action of Gal(K(25)/K). Since

[K(25):K] = 300 and [K(5):K] = 12,

we have ∏
τ∈Gal(K(25)/K)

(X − γτ ) = min(γ, K)25,

and hence we can find all conjugates of γ over K in a similar way as in (i). The
minimal polynomial of γ over Q is thus

min(γ, Q) = X24 − 3X23 + 3X22 − 3X21 + 11X20 − 3X19 + 24X18 − 24X17

+ 4X16 − 18X15 + 53X14 − 39X13 − 11X12 − 39X11 + 53X10

− 18X9 + 4X8 − 24X7 + 24X6

− 3X5 + 11X4 − 3X3 + 3X2 − 3X + 1.

On the other hand, the Siegel–Ramachandra invariant

gf(C0) = g[ 0
1/5

](θ)60

also generates K(5) over K by theorem 4.6, and its minimal polynomial over K is

min
(
g[ 0

1/5

](θ)60, K
)

= X12 − 531 770 250X11 + 52 496 782 397 690 625X10

+ 12 347 712 418 332 056 278 906 250X9

+ 517 064 715 767 117 085 870 064 453 125 000X8

+ 5 105 793 070 560 695 709 489 861 859 357 910 156 250X7

+ 30 043 009 324 891 990 472 511 274 397 078 094 482 421 875X6

+ 356 967 020 673 816 044 809 943 223 760 162 353 515 625 000X5

+ 5 338 772 150 500 577 473 141 088 454 029 560 089 111 328 125X4

https://doi.org/10.1017/S0308210516000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210516000263


Construction of ray-class fields 805

+ 263 440 400 470 778 826 352 188 828 480 243 682 861 328 125X3

− 4 471 591 562 072 879 160 572 290 420 532 226 562 500X2

+ 62 983 472 112 150 751 054 286 956 787 109 375X

+ 931 322 574 615 478 515 625.

Example 5.9. Let K = Q(
√

−5) and θ =
√

−5. Then the class number hK is 2.

(i) Let f = 4OK . Then 2 is ramified in K, and hence |Gi| > 2 for every i. Since
G ∼= W4,θ/{±I2} and

W4,θ/{±I2} =
{ [

1 0
0 1

]
,

[
1 2
2 1

]
,

[
0 3
1 0

]
,

[
2 3
1 2

] }
,

one can check by using propositions 2.3 and 3.2 that the ray class C ′ =
[(3

√
−5 + 2)] in Cl(f) is of order 2 and satisfies(

gf(C ′)
gf(C0)

)σ(C)


= gf(C ′)
gf(C0)

for every C ∈ G \ {1}. Thus, we see from remark 5.6 that

K(4) = K

(
gf(C ′)
gf(C0)

)
.

Furthermore, since NK/Q(3
√

−5 + 2) ≡ 1 (mod 48), the special value

γ =

g[
3/4
2/4

](θ)4

g[ 0
1/4

](θ)4

also generates K(4) over K.

Now that the function
g[

3/4
2/4

](τ)4

g[ 0
1/4

](τ)4

lies in F8 by proposition 3.1, in order to estimate the minimal polynomial of
γ over Q we need to know the action of Gal(K(8)/K). The form class group
C(dK) of discriminant dK = −20 consists of two reduced quadratic forms,

Q1 = [1, 0, 5] and Q2 = [2, 2, 3].

Thus, we have

θQ1 =
√

−5, βQ1 =
[
1 0
0 1

]
and θQ2 =

−1 +
√

−5
2

, βQ2 =
[
−1 −3
1 0

]
.

Then W8,θ/{±I2} and C(dK) determine the group Gal(K(8)/K) by proposi-
tion 2.4. It follows from proposition 4.1 that

[K(8):K] = 32 and [K(4):K] = 8,
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and so we attain ∏
τ∈Gal(K(8)/K)

(X − γτ ) = min(γ, K)4.

Therefore, the minimal polynomial of γ over Q is

min(γ, Q) = X16 + 3 024X14 + 128 700X12 + 53 296X10

− 124 026X8 + 53 296X6 + 128 700X4 + 3 024X2 + 1.

On the other hand, we deduce that

min
(
g[ 0

1/4

](θ)48, K
)

= X8 − 1 597 237 832 768X7 − 15 846 881 298 723 072X6

− 26 992 839 895 872 106 496X5 + 655 492 492 138 238 044 037 120X4

− 169 817 799 503 383 057 556 832 256X3

− 20 680 171 763 956 163 581 837 312X2

− 2 550 974 942 361 763 927 031 808X + 16 777 216.

(ii) Let f = 5OK . Then 5 is ramified in K, and hence |Gi| > 2 for every i. Since
5 divides dK = −20, the special value

γ =

g[
6/5
1/5

](θ)
g[ 0

1/5

](θ)

generates K(5) over K by corollary 5.7.

It then follows from propositions 3.1 and 4.1 that

g[
6/5
1/5

](τ)

g[ 0
1/5

](τ)
∈ F25

and
[K(25):K] = 500 and [K(5):K] = 20.

We deduce that ∏
τ∈Gal(K(25)/K)

(X − γτ ) = min(γ, K)25.

Observe that

θQ1 =
√

−5, βQ1 =
[
1 0
0 1

]
and θQ2 =

−1 +
√

−5
2

, βQ2 =
[
2 1
0 1

]
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in this case. Therefore, we obtain the minimal polynomial of γ over Q as
follows:

min(γ, Q) = X40 + 10X39 + 50X38 + 170X37 + 420X36 + 732X35 + 965X34

+ 1 380X33 + 2 545X32 + 4 460X31 + 6 798X30 + 7 880X29

+ 1 605X28 − 11 800X27 − 11 035X26 + 15 554X25

+ 31 975X24 + 3 050X23 − 29 125X22 − 20 050X21

− 2 145X20 − 20 050X19 − 29 125X18 + 3 050X17

+ 31 975X16 + 15 554X15 − 11 035X14 − 11 800X13

+ 1 605X12 + 7 880X11 + 6 798X10 + 4 460X9 + 2 545X8

+ 1 380X7 + 965X6 + 732X5 + 420X4 + 170X3

+ 50X210X + 1.

6. Application to quadratic Diophantine equations

Let n be a square-free positive integer, K = Q(
√

−n) and θ be as in (2.3). We
assume −n ≡ 2, 3 (mod 4), so that dK ≡ 0 (mod 4) and OK = Z[

√
−n]. By means

of ray-class invariants over K, Cho [1] provided a criterion for whether a given odd
prime p can be written in the form p = x2 + ny2 for some x, y ∈ Z with additional
conditions x ≡ 1 (mod N), y ≡ 0 (mod N) for each positive integer N .

Proposition 6.1. For a positive integer N , we let fN (X) ∈ Z[X] be the minimal
polynomial of a real algebraic integer that generates K(N) over K. If an odd prime
p divides neither nN nor the discriminant of fN (X), then

p = x2 + ny2 with x, y ∈ Z, x ≡ 1 (mod N), y ≡ 0 (mod N)

⇐⇒
(

−n

p

)
= 1 and fN (X) ≡ 0 (mod p) has an integer solution,

where (−n/p) is the Kronecker symbol.

Proof. See [1, theorem 1].

Lemma 6.2. Let N � 2 be an integer.

(i) For s ∈ Z \ NZ,
g[ 0

s/N

](θ)
g[ 0

1/N

](θ)
is a real number.

(ii) For t ∈ Z,

ie(t/2N)πi

g[
1/2
t/N

](θ)
g[ 0

1/N

](θ)
is a real number.
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Proof. We obtain, by definition,

e(t/2N)πig[
1/2
t/N

](θ) = −q
B2(1/2)/2
θ (1 − q

1/2
θ ζt

N )
∞∏

n=1

(1 − q
n+1/2
θ ζt

N )(1 − q
n−1/2
θ ζ−t

N )

= −q
B2(1/2)/2
θ

∞∏
n=0

(1 − q
n+1/2
θ ζt

N )
∞∏

n=1

(1 − q
n−1/2
θ ζ−t

N )

= −q
B2(1/2)/2
θ

∞∏
n=1

(1 − q
n−1/2
θ ζt

N )(1 − q
n−1/2
θ ζ−t

N )

= −q
B2(1/2)/2
θ

∞∏
n=1

{1 − q
n−1/2
θ (ζt

N + ζ−t
N ) + q2n−1

θ },

and we deduce that

−ig[ 0
s/N

](θ) = iq1/12
θ e−(s/N)πi(1 − ζs

N )
∞∏

n=1

(1 − qn
θ ζs

N )(1 − qn
θ ζ−s

N )

= iq1/12
θ (ζ−s

2N − ζs
2N )

∞∏
n=1

{1 − qn
θ (ζs

N + ζ−s
N ) + q2n

θ }.

Since qθ, ζt
N + ζ−t

N and i(ζ−s
2N − ζs

2N ) are real numbers, we prove the lemma.

Theorem 6.3. Let N be a positive integer and let f = NOK with prime ideal
factorization

f =
r∏

i=1

p
ni
i .

Assume that Kf 
= K
fp

−ni
i

and |Gi| > 2 for every i.

(i) Let s be an integer prime to N such that the order of [s] in (Z/NZ)×/{±1}
is an odd prime p (if any). If p > 3 or |Gi| > 3 for every i, then the special
value

g[ 0
s/N

](θ)m

g[ 0
1/N

](θ)m

generates K(N) over K as a real algebraic integer, where m is an integer
dividing N for which m(s2−1) ≡ 0 (mod gcd(2, N)·N) and m ≡ N (mod 2).

(ii) When N is even, we set C ′ = [((N/2)θ + t)] ∈ Cl(f) with t ∈ Z such that
t2 ≡ 1 (mod N). We further assume that(

gf(C ′)
gf(C0)

)σ(C)


= gf(C ′)
gf(C0)

for every C ∈ G \ {1}. If 4 divides Nn, then the special value

e(2t/N)πi

g[
1/2
t/N

](θ)4

g[ 0
1/N

](θ)4
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is a real algebraic integer and generates K(N) over K. In particular, if 4
divides N , then the special value

e(t/N)πi

g[
1/2
t/N

](θ)2

g[ 0
1/N

](θ)2

also generates K(N) over K as a real algebraic integer.

Proof. (i) Let C ′ = [(s)] ∈ Cl(f). Then the order of C ′ in Cl(f) is p, and so we see
from theorem 5.4 that

K(N) = K

(
gf(C ′)
gf(C0)

)
,

and the function
g[ 0

s/N

](τ)m

g[ 0
1/N

](τ)m

lies in FN , from which we attain

γ =
g[ 0

s/N

](θ)m

g[ 0
1/N

](θ)m
∈ K(N)

by propositions 2.1 and 3.1. Since γ12N/m = gf(C ′)/gf(C0), the special value γ also
generates K(N) over K as a real algebraic integer by lemma 6.2. Note that m = N
always satisfies the condition m(s2 − 1) ≡ 0 (mod gcd(2, N) · N). Indeed, if N is
even, then s2 − 1 must be even because s is prime to N .

(ii) Now that (
Nθ

2
+ t

)2

≡ −Nn

4
N + tNθ + t2 ≡ 1 (mod NOK),

the ray class C ′ is of order 2 in Cl(f). Then it follows from remark 5.6 that

K(N) = K

(
gf(C ′)
gf(C0)

)
,

and the function

e(2t/N)πi

g[
1/2
t/N

](τ)4

g[ 0
1/N

](τ)4

lies in FN , which yields

γ = e(2t/N)πi

g[
1/2
t/N

](θ)4

g[ 0
1/N

](θ)4 ∈ K(N)

by propositions 2.1 and 3.1. Since γ3N = gf(C ′)/gf(C0), the special value γ also
generates K(N) over K and is a real algebraic integer by lemma 6.2.
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In particular, if 4 divides N , then we have

e(t/N)πi

g[
1/2
t/N

](τ)2

g[ 0
1/N

](τ)2
∈ FN

by proposition 3.1. And, similarly, we get the conclusion.

Remark 6.4. Recently, Jung et al . [5] proved that if N ≡ dK ≡ 0 (mod 4) and
|dK | � 4N4/3, then the ray class C ′ = [((1

2N)θ + ( 1
2N) + 1)] ∈ Cl(f) satisfies(

gf(C ′)
gf(C0)

)σ(C)


= gf(C ′)
gf(C0)

for every C ∈ G \ {1}. Thus, if Kf 
= K
fp

−ni
i

and |Gi| > 2 for every i, the special
value

e(1/2+1/N)πi

g[
1/2

1/2+1/N

](θ)2

g[ 0
1/N

](θ)2
generates K(N) over K as a real algebraic integer by theorem 6.3.

Corollary 6.5. Using the notation and assumptions in theorem 6.3, let p be an
odd prime satisfying p2|N (if any). If p > 3 or |Gi| > 3 for every i, then the special
value

g[ 0
1/p+1/N

](θ)m

g[ 0
1/N

](θ)m

generates K(N) over K as a real algebraic integer, where

m =

{
p if N is odd,

2p if N is even.

Proof. Let s = 1 + N/p. For a positive integer i, we have

si ≡ 1 +
N

p
i (mod N)

and hence the ray class [(s)] ∈ Cl(f) is of order p and m(s2−1) ≡ 0 (mod gcd(2, N)·
N). Therefore, the corollary follows from theorem 6.3(i).

Now, we are ready to apply the ray-class invariants in theorem 6.3 to the quadratic
Diophantine equations described in proposition 6.1.

Example 6.6. Let K = Q(
√

−1), θ =
√

−1 and f = 9OK . Then 3 is inert in K,
and hence |Gi| > 3 for every i. Since the ray class C ′ = [(4)] in Cl(f) is of order 3,
the special value

γ =
g[ 0

4/9

](θ)3
g[ 0

1/9

](θ)3
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generates K(9) over K as a real algebraic integer by corollary 6.5. Here we observe
that Gal(K(9)/K) ∼= W9,θ/ker(ϕ9,θ) by proposition 2.4, and we have

W9,θ/ker(ϕ9,θ)

=
{ [

1 0
0 1

]
,

[
0 7
2 0

]
,

[
0 5
4 0

]
,

[
1 8
1 1

]
,

[
1 7
2 1

]
,

[
1 6
3 1

]
,

[
1 5
4 1

]
,

[
1 4
5 1

]
,

[
1 3
6 1

]
,

[
1 2
7 1

]
,

[
2 7
2 2

]
,

[
2 6
3 2

]
,

[
2 5
4 2

]
,

[
2 4
5 2

]
,

[
2 3
6 2

]
,

[
3 5
4 3

]
,

[
3 4
5 3

]
,

[
4 5
4 4

] }
,

where ϕ9,θ is the homomorphism stated in proposition 2.2. Hence, we obtain the
minimal polynomial f9(X) of γ over K as

f9(X) = X18 − 36X17 + 234X16 + 1 086X15 + 2 547X14 + 12 294X13

+ 32 415X12 + 41 976X11 + 45 459X10 + 55 748X9 + 51 480X8

+ 22 914X7 − 1 092X6 − 5 310X5 − 1 719X4 + 6X3

+ 99X2 + 18X + 1

and so we achieve disc(f9(X)) = 254 · 3135 · 1276 · 8272. On the other hand, an
odd prime p satisfies (−1/p) = 1 if and only if p ≡ 1 (mod 4). Therefore, if p 
=
2, 3, 127, 827, we see by proposition 6.1 that a prime p can be expressed as p = x2+y2

for some x, y ∈ Z with conditions x ≡ 1 (mod 9), y ≡ 0 (mod 9) if and only if p ≡ 1
(mod 4) and f9(X) ≡ 0 (mod p) has an integer solution.

Example 6.7. Let K = Q(
√

−5), θ =
√

−5 and f = 4OK . Then 2 is ramified in K
and so |Gi| > 2 for every i. In a similar way as in example 5.9 one can show that
the ray class C ′ = [(2

√
−5 + 1)] ∈ Cl(f) satisfies(

gf(C ′)
gf(C0)

)σ(C)


= gf(C ′)
gf(C0)

for every C ∈ G \ {1}. Thus, the special value

γ = eπi/4

g[
1/2
1/4

](θ)2

g[ 0
1/4

](θ)2

generates K(4) over K as a real algebraic integer by theorem 6.3, and we get the
minimal polynomial f4(X) of γ over K as follows:

f4(X) = X8 + 16X7 − 12X6 + 16X5 + 38X4 − 16X3 − 12X2 − 16X + 1.

On the other hand, the discriminant of f4(X) is 268 · 54 and we derive that an
odd prime p satisfies (−5/p) = 1 if and only if p ≡ 1, 3, 7, 9 (mod 20). Therefore, if
p 
= 2, 5 we conclude that a prime p can be written in the form p = x2+5y2 for some
x, y ∈ Z with conditions x ≡ 1 (mod 4), y ≡ 0 (mod 4) if and only if p ≡ 1, 3, 7, 9
(mod 20) and X8 + 16X7 − 12X6 + 16X5 + 38X4 − 16X3 − 12X2 − 16X + 1 ≡ 0
(mod p) has an integer solution.
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