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An n-dimensional analogue of the Klein bottle arose in our study of topological
complexity of planar polygon spaces. We determine its integral cohomology algebra
and stable homotopy type, and give an explicit immersion and embedding in
Euclidean space.
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1. Introduction

The space

Kn = (S1)n/(z1, . . . , zn−1, zn) ∼ (z1, . . . , zn−1,−zn) (1.1)

arose naturally in the author’s study of topological complexity of planar polygon
spaces. The model

Kn ≈ ((S1)n−1 × I)/(z1, . . . , zn−1, 0) ∼ (z1, . . . , zn−1, 1) (1.2)

shows that K2 is the Klein bottle, and Kn is a natural generalization. Here, of
course, z denotes complex conjugation. A homeomorphism from (1.1) to (1.2) is
given by

[(z1 . . . , zn−1, e
2πitn)] �→ [(z1, . . . , zn−1, 2tn mod 1)].

The author wrote several papers, culminating in [5], computing the topolog-
ical complexity of the space M(�) = M(�1, . . . , �n) of planar polygons with side
lengths �1, . . . , �n, identified under isometry. For generic length vectors, this space
is an (n − 3)-manifold, and hence satisfies TC(M(�)) � 2n − 5. See [7,11]. Using
its mod-2 cohomology algebra, we showed that it is usually true that TC(M(�)) �
2n − 6, within 1 of optimal. In fact, the only planar n-gon spaces which are known
to have TC(M(�)) < 2n − 6 are those which are homeomorphic to RPn−3 (for many
values of n) or the torus Tn−3. We feel that planar polygon spaces which are home-
omorphic to the spaces Kn−3 studied here are the best candidates for another such
example. We elaborate on this in § 5, but have not yet made any advances in this
direction.
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In § 2, we compute H∗(Kn; Z2) as an algebra over the Steenrod algebra, the
algebra H∗(Kn; Z), and π1(Kn). In § 3, we determine the span and immersion and
embedding dimensions of these manifolds, and give an explicit immersion of Kn in
R

n+1, analogous to the familiar picture of a Klein bottle. There is an interesting
dependence of the span and embedding dimension of Kn on the parity of n. In § 4,
we show that ΣKn has the homotopy type of a wedge of spheres and mod-2 Moore
spaces.

One might think to consider the related space Kn,r := (S1)n/(z1, . . . , zn) ∼
(w1, . . . , wn), where wi =

{
zi i � r

−zi i > r
for some r < n − 1. However, this would

not be interesting due to the following proposition.

Proposition 1.1. The space Kn,r defined above is homeomorphic to Kr+1 ×
(S1)n−r−1.

Proof. There are inverse homeomorphisms h : Kn,r → Kr+1 × (S1)n−r−1 and h′ :
Kr+1 × (S1)n−r−1 → Kn,r defined by

h[(z1, . . . , zn)] = ([(z1, . . . , zr+1)], (z−1
r+1zr+2, . . . , z

−1
r+1zn))

and

h′([(z1, . . . , zr+1)], (zr+2, . . . , zn)) = [(z1, . . . , zr+1, zr+1zr+2, . . . , zr+1zn)]. �

The term ‘n-dimensional Klein bottle’ was applied in [2,13,15] to a different
space, Sn−1 × I/(x, 0) ∼ (h(x), 1), where h is an orientation-reversing isometry of
Sn−1. This is the reason for our use of the word ‘An’ in our title.

2. Cohomology and fundamental group of Kn

We begin by determining H∗(Kn; Z2) as an algebra. The following lemma is useful.
We thank J.-C.Hausmann for discussions about this lemma.

Lemma 2.1. Suppose M is a space with free involution τ , with quotient M . Let
X = (S1 × M)/(z, x) ∼ (z, τ(x)). There is an algebra isomorphism

H∗(X; Z2) ≈ H∗(M ; Z2)[y]/(y2 = w1y),

where |y| = 1 and w1 ∈ H1(M ; Z2) classifies the double cover M → M .

Proof. The space X is the sphere bundle of the 2-plane bundle θ over M given by

(R × R × M)/(s, t, x) ∼ (s,−t, τ(x)) → M.

There is a cofiber sequence S(θ)
j−→ D(θ) → T (θ) with S(θ) = X, D(θ) � M , and

a section s : M → X defined by s([x]) = [(1, 0, x)]. Thus there is a split SES

0 → H∗(M)
j∗
−→ H∗(X) → H∗+1(Tθ) → 0,
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with all coefficients in this proof being Z2. Let y ∈ H1(X) correspond to the Thom
class U ∈ H2(Tθ) under this splitting. Then y2 = Sq1 y corresponds to Sq1 U =
w1(θ) ∪ U . Since, as a real bundle, θ is isomorphic to the sum of a trivial bundle
and the line bundle associated with the double cover, we obtain y2 = w1y. Using
the Thom isomorphism, we obtain the ring isomorphism

H∗X ≈ H∗M ⊕ H∗M · y
with y2 = w1y. �

The following result was obtained in a much different form and by much different
methods in [11].

Theorem 2.2. There is an algebra isomorphism

H∗(Kn; Z2) ≈ Z2[R, V1, . . . , Vn−1]/(R2, V 2
i + RVi),

with |R| = |Vi| = 1.

Proof. This follows by induction on n from lemma 2.1 with M = (S1)n−1, M =
Kn−1, and X = Kn. The only additional ingredient required is to know that the
class R which classifies the double cover (S1)n−1 → Kn−1 pulls back to the similar
class for (S1)n → Kn. This follows from the fact that there is a pullback diagram

(S1)n p−−−−→ (S1)n−1⏐⏐�qn

⏐⏐�qn−1

Kn
p−−−−→ Kn−1.

Here p(w1, . . . , wn) = (w1, . . . , wn−2, wn), and p is defined similarly. This pullback
property is proved by noting that a point in the pullback is

([z1, . . . , zn], (w1, . . . , wn−2, wn)),

where [z1, . . . , zn] = [z1, . . . , zn−1,−zn], such that

(z1, . . . , zn−2, zn) = (w1, . . . , wn−2, wn) or (w1, . . . , wn−2,−wn).

Such a point is uniquely described as (z1, . . . , zn) if zn = wn, or (z1, . . . , zn−1,−zn)
if zn = −wn. �

One corollary is the precise value of the (reduced) Lusternik-Schnirelmann
category cat(Kn).

Corollary 2.3. For n � 2, we have cat(Kn) = n.

Proof. Since H∗(Kn; Z2) has an n-fold nontrivial cup product, n � cat(Kn)
by [3, proposition 1.5], and since Kn is an n-manifold, cat(Kn) � n by
[3, theorem 1.7]. �

Also, we have the following immediate corollary, the entire A-module structure.
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H0 H1 H2 H3 H4

1 R
V1 − RV1

V2 − RV2

V3 − RV3

V1V2 RV1V2

V1V3 RV1V3

V2V3 RV2V3

V1V2V3 − RV1V2V3

Corollary 2.4. In H∗(Kn; Z2), for j > 0 and distinct subscripts of V ,

Sqj(RεVi1 · · ·Vir
) =

{
RVi1 · · ·Vir

j = 1, ε = 0, r odd
0 otherwise.

Proof. Since R2 = 0, Sq1(RεVi1 · · ·Vir
) = rRε+1Vi1 · · ·Vir

. Action of Sqj for j > 1
will have all terms divisible by R2 = 0. �

This result suggested the possibility of a splitting of ΣKn, which we prove in
theorem 4.3.

The depiction of H∗(K4; Z2) in table 2 might be helpful. The horizontal lines
indicate the action of Sq1.

Theorem 2.2 is used later to prove proposition 5.1, which is used for lower bounds
of topological complexity.

Denote by ΛR the exterior algebra over a ring R on a set of generators, with
superscript od (resp. ev) (resp. k) referring to the subspace spanned by products
of an odd (resp. even) number of (resp. k) generators.

Theorem 2.5. There are elements R and Zi of grading 1 such that there is an
isomorphism of graded rings

H∗(Kn; Z) ≈ Λev
Z

[Z1, . . . , Zn−1] ⊕ R · Λev
Z

[Z1, . . . , Zn−1] ⊕ R · Λod
Z2

[Z1, . . . , Zn−1],

with R2 = 0 and products of elements in the first summand with all others as in the
exterior algebra.

Proof. We use the description of Kn in (1.2). If h : X → X is a homeomorphism and
X̃ = X × I/(x, 0) ∼ (h(x), 1), then a Mayer-Vietoris argument shows that there is
an exact sequence, with any coefficients,

→ Hr(X̃) → Hr(X) h∗−1−→ Hr(X) → Hr+1(X̃) → .
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This can be obtained by letting A = X × (0, 1) and B = X̃ − (X × {1/2}). Then
H∗(A) ⊕ H∗(B) → H∗(A ∩ B) becomes

H∗(X) ⊕ H∗(X) → H∗(X) ⊕ H∗(X)

with connecting homomorphism
(

1 1
1 h∗

)
, of which the kernel and cokernel are the

same as that of h∗ − 1 on H∗(X).
In our case, X = Tn−1 and (h∗ − 1) on Hr(Tn−1) is multiplication by (−1)r − 1.

We obtain commutative diagrams of exact sequences in which Xi �→ Vi.

0 −−−−−→ Λ2k−1
Z2

[X1, . . . , Xn−1]
δ−−−−−→ H2k(Kn; Z)

q−−−−−→ Λ2k
Z

[X1, . . . , Xn−1] −−−−−→ 0

ρ2

⏐⏐� ρ

⏐⏐� ⏐⏐�
0 −−−−−→ Λ2k−1

Z2
[V1, . . . , Vn−1]

δ′−−−−−→ H2k(Kn; Z2) −−−−−→ Λ2k
Z2

[V1, . . . , Vn−1] −−−−−→ 0

0 −−−−−→ Λ2k
Z

[X1, . . . , Xn−1]
δ−−−−−→ H2k+1(Kn; Z) −−−−−→ 0⏐⏐� ρ

⏐⏐� ⏐⏐�
0 −−−−−→ Λ2k

Z2
[V1, . . . , Vn−1]

δ′−−−−−→ H2k+1(Kn; Z2) −−−−−→ Λ2k+1
Z2

[V1, . . . , Vn−1] −−−−−→ 0

The homomorphisms δ′ are multiplication by R in theorem 2.2.
The exact sequences show clearly that the abelian group structure of H∗(Kn; Z)

is as claimed. Some care is required to show that the product structure is, too.
If S = {s1, . . . , s�} ⊂ [[n − 1]] = {1, . . . , n − 1}, there is a natural map pS,n :

Kn → K�+1 sending [(z1, . . . , zn−1, t)] �→ [(zs1 , . . . , zs�
, t)]. The induced cohomology

homorphisms are compatible with the above diagrams, and are injective.
For all m, H1(Km; Z) = Z, generated compatibly by R = δ(1) in the second dia-

gram. If m is odd, Km is orientable by proposition 3.1. Let Z[[m−1]] ∈ Hm−1(Km; Z)
denote the cap product of an orientation class with R which satisfies q(Z[[m−1]]) =
X1 · · ·Xm−1 in the first diagram. Thus our orientation class is R · Z[[m−1]].

For S = {s1, . . . , s2k} ⊂ [[n − 1]] and ε ∈ {0, 1}, let RεZS ∈ H2k+ε(Kn; Z) equal
p∗S,n(RεZ[[2k]]). This class is what we will call RεZs1 · · ·Zs2k

, once we establish the
multiplicative structure. Note that single classes Zs do not exist.

These classes satisfy the multiplicative structure of an exterior algebra (e.g.,
Zi,jZk,� = −Zi,kZj,� if i < j < k < �) since they do when q or ρ is applied in the
first diagram, and ρ2 is bijective. Thus we rename them as RεZs1 · · ·Zs2k

; they
comprise the first two summands in the statement of the theorem.

The remaining classes are in im(δ) in the first diagram. Since these classes have
order 2, the product formulas involving them and (perhaps) the Z classes above are
implied by theorem 2.2. �

We can use a combination of the Atiyah-Hirzebruch spectral sequence and the
exact sequences used in the cohomology proof above to obtain similar results for
the ring structure of KU∗(Kn) and KO∗(Kn), but the results are not particularly
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surprising or useful. Theorem 4.3 is also helpful. For example, the ring KO∗(K4)
is isomorphic to

KO∗〈R,X1X2,X1X3,X2X3, RX1X2, RX1X3, RX2X3〉
⊕ KO∗(M0(2))〈RX1, RX2, RX3, RX1X2X3〉,

where R and Xi have grading 1.
The fundamental group of Kn is a straightforward generalization of that of the

Klein bottle.

Proposition 2.6. The fundamental group π1(Kn) has generators a1, . . . , an with
relations ajan = ana−1

j , 1 � j � n − 1, and aiaj = ajai, 1 � i < j � n − 1. The

double cover p : Tn → Kn satisfies p∗(gj) =

{
aj j < n

a2
n j = n.

Proof. Using model (1.1) for Kn, let aj = [fj ], where fj : I → Kn is defined by

fj(t) =

{
[(1j−1, e2πit, 1n−j)] j < n

[(1n−1, eπit)] j = n.

The homotopy between fjfn and fnfj is exactly as in the Klein bottle, and the
commuting of ai and aj follows from that in the torus. Since p∗ is an isomorphism
from π1(Tn) to an index-2 subgroup of the group described, this group must equal
π1(Kn). �

3. Span, immersions, and embeddings of Kn

In this section, we show that if n is odd, Kn is parallelizable and embeds in R
n+1,

while if n is even, it has n − 1 linearly independent vector fields. For all n, we
obtain an explicit immersion of Kn in R

n+1 and embedding in R
n+2, analogous to

the familiar picture of a Klein bottle.
We begin with the following result for the tangent bundle.

Proposition 3.1. For k > 0, the Stiefel-Whitney classes of the tangent bundle of
Kn are given by

wk(τ(Kn)) =

{
R k = 1, n even
0 otherwise.

Proof. We use Wu’s formula, as given in [14, theorem 11.14], which states that,
for an n-manifold M , if vj denotes the jth Wu class, which satisfies vj ∪ x = Sqj x

for all x ∈ Hn−j(M), then wk(τ(M)) =
∑

j
Sqk−j vj . Since, using corollary 2.4,

for j > 0, vj = 0 in H∗(Kn) unless j = 1 and n is even, in which case v1 = R, the
result follows since only Sq0 acts nontrivially on R. �

This leads us to the following stronger result.
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Theorem 3.2. If n is odd, the tangent bundle τ(Kn) is isomorphic to a trivial
bundle. If n is even, τ(Kn) ≈ η ⊕ (n − 1)ε, where η is a line bundle with w1 = R,
and 2τ(Kn) is isomorphic to a trivial bundle.

Proof. Using model (1.2), τ(Kn) has total space

(Rn × (S1)n−1 × I)/(t1, . . . , tn, z1, . . . , zn−1, 0)

∼ (−t1, . . . ,−tn−1, tn, z1, . . . , zn−1, 1).

If n is odd, an isomorphism to the trivial bundle,

(Rn × (S1)n−1 × I)/(t1, . . . , tn, z1, . . . , zn−1, 0) ∼ (t1, . . . , tn−1, tn, z1, . . . , zn−1, 1),

is given by sending ((
t1
t2

)
, . . . ,

(
tn−2
tn−1

)
, tn, z1, . . . , zn−1, s

)
to ((

cos(πs) − sin(πs)
sin(πs) cos(πs)

) (
t1
t2

)
, . . . ,

(
cos(πs) − sin(πs)
sin(πs) cos(πs)

) (
tn−2
tn−1

)
, tn, z1, . . . , zn−1, s

)
.

Here we have found it convenient to use matrix notation for pairs of components.
If n is even, there is a similar isomorphism from τ(Kn) to (n − 1)ε ⊕ η, where η

has total space

(R × (S1)n−1 × I)/(t, z1, . . . , zn−1, 0) ∼ (−t, z1, . . . , zn−1, 1),

with the t corresponding to tn−1. This is the line bundle associated with the double
cover, with w1 = R. Twice this bundle is trivial, using the same rotation matrices
as above. �

We quickly deduce the span and immersion dimension of Kn.

Corollary 3.3. The span of Kn (i.e., the maximal number of linearly independent
vector fields) is n if n is odd, and n − 1 if n is even. For all n, Kn immerses in
R

n+1.

Proof. Since the span is the dimension of the largest trivial subbundle, that part
is immediate from theorem 3.2. By Hirsch’s Theorem ([12]), Kn immerses in R

n+1

since there is a 1-dimensional vector bundle over it, ε if n is odd and η if n is even,
whose sum with the tangent bundle is trivial. �

We can obtain an explicit immersion of Kn in R
n+1, analogous to the familiar

picture of the Klein bottle K2 in R
3. We use the following lemma.

Lemma 3.4. Let θ = (θ1, . . . , θn−1) with θi ∈ R mod 2π. A parametrization

(x1(θ), . . . , xn(θ))
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of an embedding of Tn−1 in R
n satisfying x1(−θ) = x1(θ) and xi(−θ) = −xi(θ) for

2 � i � n can be given as follows. Choose positive real numbers ri, 1 � i � n − 1,
satisfying ri >

∑
j>i

rj. Let

wn = rn−1

wi = ri−1 + wi+1 cos θi for 1 < i � n − 1

xi = wi sin θi−1 for 1 < i � n

x1 = w2 cos θ1.

For example, if n = 4,

x1 = (r1 + (r2 + r3 cos θ3) cos θ2) cos θ1

x2 = (r1 + (r2 + r3 cos θ3) cos θ2) sin θ1

x3 = (r2 + r3 cos θ3) sin θ2

x4 = r3 sin θ3.

Proof of Lemma 3.4. The proof is by induction on n. Assume the result is known
for n − 1. Take the parametrized Tn−2, using r-values r2, . . . , rn−1 and θ values
θ2, . . . , θn−1, in the x1x3 · · ·xn-plane. Translate it by r1 units in the x1 coordinate.
Rotate it around the x3 · · ·xn-plane. All xi with i � 3 remain unaffected, while

x1 = (r1 + x′
1) cos θ1

x2 = (r1 + x′
1) sin θ1,

where x′
1 is the x1-value before translating. �

Note that the maximum x in the embedding of lemma 3.4 is r1 + · · · + rn−1.

Remark 3.5. By varying rn−1 through an appropriate range of values, we can
obtain a family of smoothly embedded disjoint Tn−1’s in R

n. For example, if D �
rn−1 � 2D, and ri = 2n−iD for 1 � i < n − 1 we have disjointly embedded Tn−1’s
with maximum x ranging from (2n − 3)D to (2n − 2)D.

Next, we review the parametrization of the Klein bottle given in [9]. This uses
the curve

α(t) = 〈5 sin(t), 2 sin2(t) cos(t), 0〉, 0 � t � π

as directrix. Note that α(π) = α(0) and α′(π) = −α′(0). This curve passes through
the centre of the band in figure 1. Orthogonal to the directrix are unit vec-
tors J(t) = 〈−v2, v1, 0〉 if α′(t)/‖α′(t)‖ = 〈v1, v2, 0〉. Note that J(π) = −J(0). With
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Figure 1. Projection of immersed Klein bottle.

J(t) = 〈j1, j2, 0〉 and

r(t) = 1
2 − 1

15 (2t − π)
√

t(π − t), (3.1)

the immersed Klein bottle is parametrized by

k(θ, t) = α(t) + r(t)〈j1 cos(θ), j2 cos(θ), sin(θ)〉, 0 � θ � 2π, 0 � t � π.

In figure 1, we illustrate the projection onto the x1x2-plane. There are circles of
radius r(t) perpendicular to the x1x2-plane, with each of the indicated lines as
diameters.

We will make a similar immersion of Kn in R
n+1 by placing disjoint Tn−1’s above

lines similar to those in figure 1. As t varies from π − ε to π, and then from 0 to ε,
the values r(t) will be varying, and we wish the associated Tn−1’s in the R

n sitting
above the appropriate segments to be disjoint. To this end, we must change the
formula (3.1) slightly. If the 1/15 in (3.1) is replaced by a number d, then a calculus
exercise shows that

1
2 − π2

4 d � r(t) � 1
2 + π2

4 d (3.2)

for all t. By choosing d = 2/(π2(2n+1 − 5)), this interval of r(t) values that we obtain
has the property that if we choose the values ri which determine an embedding of
Tn−1 in R

n as in remark 3.5 with D = 1/(2n+1 − 5), then distinct values of r(t)
will have disjointly embedded Tn−1’s with maximum x equal to r(t). [[The values
of d and D are those which make the interval in (3.2) agree with the [(2n − 3)D,
(2n − 2)D] of remark 3.5.]]

For (1/2) − (1/(2(2n+1 − 5))) � s � (1/2) + ((1/(2(2n+1 − 5)), let (x1(s, θ), . . . ,
xn(s, θ)) be the embedding of Tn−1 in R

n in lemma 3.4 with rn−1 = s − (1/2) +
((3/(2(2n+1 − 5))) and ri = 2n−i/(2n+1 − 5) for 1 � i � n − 2. Now with α(t) =
〈5 sin(t), 2 sin2(t) cos(t), 0 . . . , 0〉, j1(t) and j2(t) as above, and

r(t) =
1
2
− 2

π2(2n+1 − 5)
(2t − π)

√
t(π − t),

our parametrization of an immersion of Kn in R
n+1 is given by

kn(θ, t) = α(t) + 〈x1(r(t), θ)j1(t), x1(r(t), θ)j2(t), x2(r(t), θ), . . . , xn(r(t), θ)〉,
(3.3)

for 0 � θi � 2π, 0 � t � π. We have kn(θ, 0) = −kn(−θ, π), which makes it a model
of Kn. The [0, π] that we use for t here corresponds to the [0, 1] in (1.2); we use
[0, π] primarily for consistency with [9].
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To see that this is locally an embedding, note that kn(Tn−1 × t) ⊂ Jt ×
R

n−1, where Jt ⊂ R
2 is the segment with endpoints 〈5 sin t, 2 sin2 t cos t〉 ±

〈r(t)j1(t), r(t)j2(t)〉. For nearby values of t ∈ (0, π), the segments Jt are disjoint,
and Tn−1 is embedded in the n-dimensional space Jt × R

n−1. For a small positive
t and a t just < π, the segments Jt are not disjoint, but the values of r(t) vary in
any small neighbourhood of t = 0, and so the Tn−1’s are disjoint, due to our choice
of the values of ri.

We can expand (3.3) to an explicit embedding of Kn in R
n+2 by

f(θ, t) = 〈kn(θ, t), sin(2t)〉. (3.4)

This is an embedding since the only points where kn(θ, t) = kn(θ
′
, t′) have sin(2t)

and sin(2t′) with opposite signs.
We improve this when n is odd in the following result, which benefited from a

discussion with Ryan Budney.

Theorem 3.6. If n is odd, then Kn can be embedded in R
n+1.

Proof. We observe that Kn is the total space of the S1-bundle over Kn−1 associated
with the 2-plane bundle η ⊕ ε, where w1(η) = R. Since n − 1 is even, the tangent
bundle τ(Kn−1) has w1 = R by proposition 3.1. Thus so does the tubular neigh-
bourhood ζ of the immersion of Kn−1 in R

n constructed above, when interpreted
as a line bundle, since τ(Kn−1) ⊕ ζ is trivial. Since line bundles are classified by
w1, we deduce that η and ζ are isomorphic. If the immersion is expanded to an
embedding in R

n+1 as in (3.4), the tubular neighbourhood is just ζ ⊕ ε, as it just
adds a component in the new direction. Let h be a bundle isomorphism of the disk
bundle D of η ⊕ ε to that of ζ ⊕ ε, interpreted as a subset of R

n+1. The restriction
of h to the boundary of D is our desired embedding of Kn in R

n+1. �

If n is even, Kn cannot be embedded in R
n+1 since w1 �= 0. Combining our

observations with the above theorem, we have the following corollary.

Corollary 3.7. The smallest Euclidean space in which Kn can be embedded is
R

n+1 if n is odd, and R
n+2 if n is even.

4. Splitting of ΣKn

In this section, we obtain an explicit splitting of ΣKn as a wedge of spheres and
mod-2 Moore spaces. Throughout, SX denotes unreduced suspension, and ΣX
reduced suspension. Cones are always reduced. We begin with a lemma.
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Lemma 4.1. Let h be a self-homeomorphism of a pointed space W , and

Z = (W × I)/(w, 0) ∼ (h(w), 1),

where the relation applies to all w ∈ W . Then

ΣZ � S2 ∨ MC(−Σh ∨ 1 : ΣW → ΣW ),

where the latter space refers to the mapping cone of the composite

ΣW
p−→ ΣW ∨ ΣW

−Σh∨1−→ ΣW,

with (−Σh)([t, w]) = [1 − t, h(w)].

Proof. We consider the cofiber sequence induced by the map W → Z defined by
w �→ [w, (1/2)], so ΣZ has the homotopy type of the mapping cone of the collapse
map Z ∪ CW

c−→ ΣW . We precede c by a homotopy equivalence Z/W
j−→ Z ∪

CW . This map

W × I

(w, 0) ∼ (h(w), 1),W × (1/2)
j−→ W × I ∪ C(W × (1/2))

(w, 0) ∼ (h(w), 1)

can be defined by

j([w, t]) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[w, 2t] 0 � t � 1
4[

4t − 1, w,
1
2

]
1
4 � t � 1

2

[3 − 4t, w, 1
2 ] 1

2 � t � 3
4

[w, 2t − 1] 3
4 � t � 1.

The composite c ◦ j :
W × I

(w, 0) ∼ (h(w), 1),W × (1/2)
→ ΣW sends

[w, t] �→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∗ 0 � t � 1
4

[4t − 1, w] 1
4 � t � 1

2

[3 − 4t, w] 1
2 � t � 3

4

∗ 3
4 � t � 1,

and this is homotopic to

j′ : [w, t] �→

⎧⎪⎨⎪⎩
[2t, w] 0 � t � 1

2
[2 − 2t, w]

1
2

� t � 1.
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There is a homotopy equivalence k : S1 ∨ SW → W × I

(w, 0) ∼ (h(w), 1),W × (1/2)
defined by

[t] �→

⎧⎪⎪⎨⎪⎪⎩
[
w0, t +

1
2

]
0 � t � 1

2[
w0, t − 1

2

]
1
2 � t � 1,

[t, w] �→
{

[h(w), t + 1
2 ] 0 � t � 1

2

[w, t − 1
2 ] 1

2 � t � 1.

To see that k is a homotopy equivalence, write it (up to a slight reparametrization
of S1) as

S1 ∨ SW
k′
−→ (W × [0, (1/2)]) ∪ I ∪ (W × [(1/2)′, 1])

(w, 0) ∼ (hw, 1), (w, (1/2)) ∼ 0, 1 ∼ (w, (1/2)′)

c′−→ W × I

(w, 0) ∼ (h(w), 1),W × (1/2)
,

where k′([t, w]) = k([t, w]), c′ collapses I, and

k′([t]) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[2t] 0 � t � 1

2[
w0, 2t − 1

2

]
1
2 � t � 3

4[
w0, 2t − 3

2

]
3
4 � t � 1.

This k′ is a homotopy equivalence by Whitehead’s Theorem, as Van
Kampen/Mayer-Vietoris imply that it induces an isomorphism in π1 and H∗, and
c′ is a homotopy equivalence since it collapses a contractible subspace.

The composite j′ ◦ k : S1 ∨ SW → ΣW sends S1 to the basepoint and [t, w] to{
[1 − 2t, h(w)] 0 � t � 1

2

[2t − 1, w] 1
2 � t � 1.

Thus it factors through cw0 ∨ (−Σh ∨ 1) : S1 ∨ ΣW →
ΣW . Hence

ΣZ � MC(c ◦ j) � MC(j′) � MC(j′ ◦ k) � S2 ∨ MC(−Σh ∨ 1). �

We easily deduce the following corollary.

Corollary 4.2. If f : X → X and g : Y → Y are homeomorphisms of pointed
spaces, and Z = (X × Y × I)/(x, y, 0) ∼ (f(x), g(y), 1), then

ΣZ � S2 ∨ CX ∨ CY ∨ CX∧Y ,

where

CX = MC(−Σf ∨ 1 : ΣX → ΣX)

CY = MC(−Σg ∨ 1 : ΣY → ΣY )

CX∧Y = MC(−Σf ∧ g ∨ 1 : ΣX ∧ Y → ΣX ∧ Y ).
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Proof. We apply lemma 4.1 to f × g : X × Y → X × Y , using the following com-
mutative diagram, in which vertical maps are homotopy equivalences.

Σ(X × Y )
p−−−−−→ Σ(X × Y ) ∨ Σ(X × Y )

−Σ(f×g)∨1−−−−−−−−→ Σ(X × Y )⏐⏐�q

⏐⏐�q∨q

⏐⏐�q

ΣX ∨ ΣY ∨ ΣX ∧ Y
p−−−−−→ B

b−−−−−→ ΣX ∨ ΣY ∨ ΣX ∧ Y,

where B = ΣX ∨ ΣX ∨ ΣY ∨ ΣY ∨ (ΣX ∧ Y ) ∨ (ΣX ∧ Y ) and

b = (−Σf ∨ 1) ∨ (−Σg ∨ 1) ∨ (−Σf ∧ g ∨ 1).

By lemma 4.1, ΣZ has the homotopy type of the one-point union of S2 with
the cofiber of the first horizontal composite, which has the homotopy type of the
cofiber of the second horizontal composite, and this is what is claimed in this
corollary. �

This corollary can, of course, be iterated to a product of many spaces. Our space
Kn is the space Z in the iteration of the corollary applied to the map Tn−1 h−→ Tn−1

which is the reflection map z �→ z in each factor. Note that

ΣTn−1 �
∨

R⊂[[n−1]]

ΣS|R|,

where R ranges over all nonempty subsets of [[n − 1]] = {1, . . . , n − 1}. The map
−Σh ∨ 1 : ΣS|R| → ΣS|R| has degree 1 − (−1)|R|. The corollary says that our ΣKn

has the homotopy type of

S2 ∨
n−1∨
i=1

(
n−1

i

)
MC(Si+1 1−(−1)i

−→ Si+1),

from which the following splitting result follows immediately.

Theorem 4.3. There is a homotopy equivalence

ΣKn � S2 ∨
∨

even i>0

(
n−1

i

)
(Si+1 ∨ Si+2) ∨

∨
odd i

(
n−1

i

)
M i+2(2),

where M i+2(2) denotes the mod-2 Moore space Si+1 ∪2 ei+2.

5. Kn as a planar polygon space

In this section, we explain how the spaces Kn initially came to our attention as
planar polygon spaces, and what we might hope to discover about their topological
complexity. Recall that M(�) = M(�1, . . . , �n) is the space of planar polygons with
side lengths �1, . . . , �n, identified under isometry. If � is generic, then M(�) is an
(n − 3)-manifold, and hence satisfies TC(M(�)) � 2n − 5.

We may assume �1 � · · · � �n. A subset S of [[n]] is short if
∑

i∈S
�i <

∑
i�∈S

�i.

The genetic code of � is the set of maximal (under an ordering of subsets based on
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the inclusion of sets and size of numbers) elements (called genes) in the set of short
subsets of [[n]] which contain n. The homeomorphism type of M(�) is determined
by its genetic code. A gee is a gene with the n omitted.

The polygon space M(1n−1, n − 2) is homeomorphic to RPn−3 (see [4]), whose
topological complexity is usually 1 greater than its immersion dimension (see [8]),
and this is known to often be much < 2n − 6. Its genetic code is 〈{n}〉, so its set
of gees is {∅}. The polygon space M(0n−3, 1, 1, 1) is homeomorphic to Tn−3 (see
[10]). This uses the convention that 0-lengths represent edges the sum of whose
lengths is <1. Its topological complexity is n − 2 (see [7]), and its genetic code is
〈{n, n − 3, n − 4, . . . , 1}〉.

In [5], it is proved that for any set of gees except {∅}, the associated set of n-gons
has topological complexity � 2n − 6 for sufficiently large n, by exhibiting elements
x1, . . . , x2n−7 ∈ H1(M(�); Z2) such that

2n−7∏
i=1

(xi ⊗ 1 + 1 ⊗ xi) �= 0 ∈ H∗(M(�) × M(�); Z2). (5.1)

It is also shown that for n � 8, excluding the RPn−3 and Tn−3 cases discussed
above, the only genetic codes for which we cannot find classes satisfying (5.1) are
those with a single gene {7, 3, 2, 1}, {7, 5, 2, 1}, {8, 4, 3, 2, 1}, or {8, 6, 3, 2, 1}. There
are more than 2600 genetic codes with n � 8.

The genetic code with single gene {n, n − 4, n − 5, . . . , 1} is closest to that of
the torus, and would seem to be the best candidate to have topological complexity
< 2n − 6. It is realized by the length vector (0n−4, 1, 1, 1, 2). By [10, proposition
2.1], this space is homeomorphic to the space Kn−3 defined by (1.1). We will show
in proposition 5.1 that for Kn−3 the largest nonzero product of the form (5.1) has
n − 1 factors, and so all we can deduce is TC(Kn−3) � n. The original goal of this
project was to try to decrease the gap (n to 2n − 5) for TC(Kn−3).

Here is the result that was used above to obtain a lower bound for TC(Kn−3). It
is convenient to denote V ⊗ 1 + 1 ⊗ V by V . Refer to theorem 2.2 for information
about H∗(Kn; Z2).

Proposition 5.1. In H∗(Kn × Kn; Z2), V1
3
V2

2
V 3 · · ·Vn−1 �= 0, but any product of

at least n + 3 terms of the form Vi or R is 0.

Proof. The expansion of the stated product includes the term

V1V
2
2 V3 · · ·Vn−2 ⊗ V 2

1 Vn−1 = RV1 · · ·Vn−2 ⊗ RV1Vn−1

and no other terms can cancel it.
Let Pi denote a product of i distinct V ’s. In the expansion of the product of n + k

Vi’s (some repeated) in bidegree (d, n + k − d), a term RPd−1 ⊗ RPn+k−d−1 has
n + k − 2 Vi’s occurring, so at least k − 1 must appear on both sides of the ⊗. These
can only be obtained from Vi

j
for j not a 2-power, hence j � 3. Such a term has

degree � 3(k − 1) + (n − 1 − (k − 1)) = n + 2k − 3. Therefore n + k � n + 2k − 3,
so k � 3. Using Pd instead of RPd−1, or including an R factor would similarly
imply the stronger result k � 2. If k = 3, a nonzero product would have to be (after
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possible reindexing) V1
3
V2

3
V3 · · ·Vn−1, and this equals, in bidegree (d, n + k − d),

a sum of pairs of terms such as

V 2
1 V2V3 · · ·Vd−1 ⊗ V1V

2
2 Vd · · ·Vn + V1V

2
2 V3 · · ·Vd−1 ⊗ V 2

1 V2Vd · · ·Vn = 0.

�

One might hope to improve the lower bound using cohomology with local coef-
ficients, as was done for K2 in [1]. Ordinary integral cohomology will not help
since H1(Kn × Kn) is spanned by R ⊗ 1 and 1 ⊗ R. On the other hand, one might
hope to improve the upper bound by finding motion planning rules similar to those
used for the torus, where in each factor we follow the shorter arc if the points are
not antipodal and move counterclockwise if they are. The domains of continuity
for this algorithm are the sets of pairs of points with a fixed number of antipodal
components. So far, we have not been able to obtain an improvement of either type.

Let M(�) = M(�1, . . . , �n) denote the space of planar polygons with the pre-
scribed side lengths, identified under oriented isometry. Then the double cover
M(0n−1, 1, 1, 1, 2) → M(0n−1, 1, 1, 1, 2) which identifies a polygon with its reflec-
tion across the long edge corresponds to the double cover Tn → Kn, using (1.1) for
Kn. Using [4], we can give n + 1 explicit motion planning rules between polygons in
M(0n−3, 1, 1, 1, 2) corresponding to the simple motion planning rules for the torus
described in the previous paragraph. See [6] for details.
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