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SUMMARY
When computer vision technique is used in robotics, robotic
hand–eye calibration is a very important research task. Many
algorithms have been proposed for hand–eye calibration.
Based on these algorithms, we introduce a new hand–eye
calibration algorithm in this paper, which employs the screw
motion theory to establish a hand–eye matrix equation
by using quaternion and gets a simultaneous result for
rotation and translation by solving linear equations. The
algorithm proposed in this paper has high accuracy and
stable computational efficiency and can be understood
easily. Both simulations and real experiments show the
superiority of our algorithm over the comparative algorithms.

KEYWORDS: Computer vision; Robotic hands; Pose
estimation and registration; Surgical robots; Visual servoing;
Hand-eye calibration.

1. Introduction
When computer vision technique is used in robotics, such as
robot-assisted measurement, the robot sensors are usually
mounted on the robot hand to form a hand–eye system.
It is necessary to know the relative position between the
robot sensor and the robot hand. Hand–eye calibration is the
process of computing the relative 3D position and orientation
of the sensor frame with respect to the robot hand frame.
Because both the sensor frame and the robot hand frame are
usually located inside the camera and the robot, the relative
position between them cannot be measured directly.

Many approaches have been proposed in the literature.1−10

The usual way to describe the hand–eye calibration is by
means of 4 × 4 homogeneous transformation matrices. Shiu
and Ahmad1 have firstly formulated the well-known hand–
eye calibration equation:

AX = XB, (1)

where A = A2A
−1
1 and B = B−1

2 B1. As shown in
Fig. 1, X is the transformation from camera to robot hand,
Ai(i = 1, 2) is the transformation matrix from the camera to
the world coordinate system at the ith pose, and Bi(i = 1, 2)
is the transformation from the robot base to the end-effector
coordinate system at the ith pose. All homogeneous matrices
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(A, B, X) in Eq. (1) have the same form

(
RM �tM
0T 1

)
(M ∈ {A, B, X}),

so Eq. (1) can be written as follows:

RARX = RXRB, (2)

RA�tX + �tA = RX�tB + �tX. (3)

Tsai and Lenz2 proposed a more efficient linear algorithm
for solving the hand–eye calibration. Rotation axis for matrix
R is used in their method. Zhuang and Shiu3 solved the
hand–eye calibration problem by using a one-stage iterative
algorithm. Not only is this algorithm less sensitive to noise,
it does not have the drawback of two-stage algorithm that
rotation estimation errors propagate to position errors. Chou
and Kamel4 presented an algorithm based on quaternions
and gave a closed-form solution to the problem. Horaud
and Dornaika5 firstly applied a simultaneous nonlinear
minimization with respect to the rotation quaternion and the
translation vector, and achieved good experimental results.
Daniilidis6 used dual quaternions in the hand–eye calibration
algorithm and described the solution via the singular value
decomposition (SVD). The algorithms proposed in refs. [8–
10] not only do the hand–eye calibration but also give
other useful parameters of the robot system. However, all
the algorithms above have no clear description in hand–eye
geometry.

Chen7 employed the screw motion theory to analyze hand–
eye calibration and gave the motion constraints of hand–eye
geometry, but he did not describe how to solve the hand–
eye calibration problem in his constraints. In this paper,
we describe a new hand–eye calibration method, which
applies the rotation quaternions in the motion constraints of
hand–eye geometry. By using the SVD, we get the solution
of our method simultaneously for rotation and translation
without nonlinear minimization. Both simulations and real
experiments show that the performance of our method is
better than the comparative algorithms’.

2. Screw Motion Decomposition
According to Chasles’ theorem,7 a general rigid body
displacement can be accomplished by means of a rotation
about a unique axis and a translation along the same axis.
Such a description of rigid body displacement is called a
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Fig. 1. Hand–eye calibration by solving AX = XB.

Fig. 2. The geometry of a screw.

screw, and the unique axis is called the screw axis. The screw
axis is a line in space, which in parametric form is described
by

L : �p = �c + k�u, 0 < k < +∞,

where �u is a unit direction vector representing the axis of
rotation, �c is the position of the line to the origin, and �c · �u =
0. The two quantities associated with the screw axis are the
rotation angle θ and the translation d. A screw is denoted by
(d, θ, L).

A rigid body displacement is usually described as a
rotation followed by a translation. There is a conversion
between the conventional motion description, denoted by
(R, �t), and the corresponding screw description (d, θ, L).
According to the Rodrigues formula, we can describe R as
a rotation through an angle φ and around a unit axis �r that
passes through the origin. As shown in Fig. 2, we have

�t = d �u + (I − R)�c. (4)

Using the Rodrigues formula,

R�c = �c + sin(φ)�r × �c + (1 − cos φ)�r × (�r × �c), (5)

and �r · �c = 0, it follows that

�c = (�t − (�t · �r)�r + cot(φ/2)�r × �t)/2. (6)

Then, the screw translation d, the rotation angle θ , and the
direction vector �u can be determined as in ref. [7].

3. Matrix Equation Based on Screw Motion Constraint
We can get the following equation from (2):

RA = RXRBRT
X,

which is a similarity transformation since RX is an orthogonal
matrix. Hence, an eigenvector �v of RB corresponds to an
eigenvector RX �v of RA. Screw axis �uB is an eigenvector of
RB , the corresponding eigenvector of RA is RX �uB . Then we
have the formulation of screw axis:

�uA = RX �uB. (7)

According to (4), we can rewrite �tA and �tB . Substituting them
into (3), and dA = dB , yields

�cA = RX�cB + �tX − (�uA · �tX)�uA. (8)

Equations (7) and (8) are applied in our hand–eye calibration
algorithm as Chen’s screw motion constraint.7

Substituting the quaternion q for the rotation matrix RX,
we have the screw motion constraint as

uA = quBq̄, (9)

cA = qcBq̄ + UtX, (10)

where

U =

⎛
⎜⎝

0 0 0 0
0
0 UA

0

⎞
⎟⎠

UA =
⎛
⎝ 1 − u2

A1 −uA1uA2 −uA1uA3

−uA1uA2 1 − u2
A2 −uA2uA3

−uA1uA3 −uA2uA3 1 − u2
A3

⎞
⎠

and �uA = [uA1 uA2 uA3]. The quaternion v is described
as the form (0, �v), so uA = (0, �uA), uB = (0, �uB), cA =
(0, �cA), cB = (0, �cB), and tX = (0, �tX).

Multiplying (9) and (10) on the right with q, we obtain

uAq = quB,

cAq = qcB + Uq ′,

which may be rewritten as

uAq − quB = 0,

cAq − qcB − Uq ′ = 0,
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where q ′ = tXq. Because the scale part from each of the two
equations above is redundant, we have in total six equations
with eight unknowns, which can be written as

( �uA − �uB Skew(�uA + �uB) 03×1 03×3

�cA − �cB Skew(�cA + �cB) 03×1 − UA

) (
q

q ′

)
= 0.

(11)

The coefficient matrix of the matrix vector equation above
is a 6 × 8 matrix, and the vector of unknowns [qT , q ′T ]T

is an 8D vector. Skew(�u) is the antisymmetric matrix
corresponding to the cross-product with �u. Matrix (11) is
the key equation of our hand–eye calibration algorithm in
this paper.

4. Solution of the Hand–Eye Matrix Equation
Equation (11) is an ill equation and has not the unique
solution. This is nothing new, since it is well known that
the hand–eye transformation can be determined from at least
two motions of the hand–eye system only if the screw axes
are not parallel.7 Suppose that n ≥ 2 motions are given. We
construct a 6n × 8 matrix

A = [
ST

1 ST
2 · · · ST

n

]T
, (12)

where Si(i = 1, 2, . . . , n) is the coefficient matrix of
Eq. (11) at the ith motion. Si is maximally of rank 6, so
A has the maximal rank 6. The equation A[qT , q ′T ]T = 0
has the unique solution, which belongs to the null space of
A.

We compute the singular value decomposition A =
U�V T , where � is a diagonal matrix with the singular
values, U is composed of the left-singular vectors, and V

is composed of the right-singular vectors. If the rank is 6, the
last two right-singular vectors �v7 and �v8, which correspond
to the two vanishing singular values, span the null space
of A.6 In the presence of noise, we always choose the
two right-singular vectors corresponding to the two minimal
singular values as �v7 and �v8. The solution of the equation
A[qT , q ′T ]T = 0 must be a linear combination of them. If �v7

and �v8 are written as being composed of two 4 × 1 vectors,
�v7 = [�uT

1 , �vT
1 ]T and �v8 = [�uT

2 , �vT
2 ]T , then the solution can be

written as (
q

q ′

)
= λ1

(�u1

�v1

)
+ λ2

(�u2

�v2

)
.

Using the two constraints

qT q = 1 and qT q ′ = 0, (13)

we can have two quadratic equations in λ1 and λ2:

(λ1 �u1 + λ2 �u2)T (λ1 �u1 + λ2 �u2) = 1, (14)

λ2
1 �uT

1 �v1 + λ1λ2
(�uT

1 �v2 + �uT
2 �v1

) + λ2
2 �uT

2 �v1 = 0. (15)

Since λ1 and λ2 both never vanish, we set s = λ1/λ2 without
loss of generality that λ2 �= 0. Inserting λ1 = sλ2 in Eqs. (14)

and (15) yields

λ2
2(s �u1 + �u2)T (s �u1 + �u2) = 1, (16)

λ2
2

[
s2 �uT

1 �v1 + s
(�uT

1 �v2 + �uT
2 �v1

) + �uT
2 �v2

] = 0. (17)

From Eq. (17), two solutions for s are obtained. Considering
the presence of noise, we choose from the two solutions for
s the one that gives the largest module value for s �u1 + �u2.
λ2 is computed from Eq. (16) and has the same sign with s.
Then λ1 is computed by s and λ2. After getting [qT , q ′T ]T ,
we can compute the parameter �tX from q ′ = tXq.

5. Hand–Eye Calibration Algorithm Procedure
The recommended hand–eye calibration procedure is as
follows:

1. Given n (n ≥ 2) robot motions (�uB, �cB) with nonparallel
screw axes and the corresponding camera motions
(�uA, �cA), construct the matrix A in Eq. (12).

2. Compute the SVD of A and find the smallest two singular
values due to noise. Take the corresponding two right-
singular vectors �v7 and �v8.

3. Solve the two solutions of s in Eq. (17); choose the solution
making the largest norm of s �u1 + �u2.

4. Compute λ1 and λ2 using Eq. (16).
5. Get the result [qT , q ′T ]T = λ1�v7 + λ2�v8, and solve �tX

from q ′ = tXq.

6. Experiments
To experimentally test our method, we performed simulations
and real experiments. Our tests compared our method with
two additional methods. The first one is similar to the method
proposed by Horaud and Dornaika.5 The additional method
has the objective function

f (q, �tX) = ‖�uAq − q �uB‖2 + ‖((RA − I )�tX − �tA)q − q�tB‖2

(18)

to be minimized with respect to q and �tX subject to ‖q‖2 = 1.
The Levenberg–Marquardt minimization is applied in the
method. Like every iterative nonlinear minimization, it needs
starting values. The second comparative method we applied
was the dual quaternion method described by Daniilidis,6

which is similar to our method in the matrix equation. In the
following sections, we denote our method based on screw
motion constraint by “SM,” the method based on nonlinear
minimization by “LM,” and the dual quaternion method by
“DQ.”

6.1. Simulations
We establish 20 hand motions (RB, �tB) in a realistic setup
similar to the real experiments of the next section, and then
use the setup to compute the corresponding camera motions
(RA, �tA). Gaussian noise is added to both the hand and camera
motions. The noise is added as absolute value to the unit
rotation quaternion and as relative value to the translation
vector. For each noise level (defined by standard deviation)
and for a large number N of trials, we compute the errors
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Fig. 3. Errors in rotation and translation with variation in noise level.

associated with rotation and translation as follows:

eq =
√√√√ 1

N

N∑
i=1

‖q − q̃i‖2, (19)

et =
√

1
N

∑N
i=1 ‖�t − t̃i‖2

‖�t‖ , (20)

where q and �t are the nominal values of the hand–eye
transformation, q̃i and t̃i are the estimated rotation and
translation for some trial i, and N = 1000.

In Fig. 3, we compare our SM algorithm with the DQ
algorithm and the LM algorithm under different noise levels
with 20 hand–eye motions. The SM and DQ methods exhibit
better behavior than the LM method in the experiment.
The SM and DQ methods have very close performances,
though the SM method is a little better than the DQ method
in performance. The reason for this similarity is that the

two methods have the similar form of solution in the
hand–eye calibration matrix equation. We also compute the
standard deviation of the rotation and translation errors in
the SM algorithm at noise level 0.1. The standard deviation
of rotation errors is 0.015, and the standard deviation of
translation errors is 0.1. The results of the standard deviation
show that the error fluctuation of the SM algorithm is small
and acceptable.

Figure 4 shows the rotational and translational errors as
a function of the number of motions. In the experiment, we
vary the number of motions from 2 to 20, and we keep the
noise level at 0.1. It is noticed that the SM method and the
DQ method are more accurate than the LM method. For a
few motions, the LM method does not converge properly.
With the increasing of motions, all the three methods can get
the low rotational and translational errors.

6.2. Real experiments
The real experiment is conducted with two CCD cameras
mounted on the last joint of a MOTOMAN CYR-UPJ Robot

Fig. 4. Errors in rotation and translation as a function of the number of motions.
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Fig. 5. The physical hand–eye calibration setup.

(Fig. 5). The cameras are calibrated with Zhang’s method.11

We have done three independent experiments by using the
robot system. The first one is proposed in ref. [5], which
uses the residual error to show the performance of hand–
eye calibration algorithms. The second one, which is also
applied in the classic paper by Tsai and Lenz,2 has the ability
to predict the camera pose by using only robot-motion data.
The third one is the dot-hit experiment: the gripper of the
robot is moved to hit the dots on the calibration pattern, by
using reconstruction of dots to show the error of position.

In the first experiment, a data set was obtained with 20
different positions of the hand–eye device with respect to
a calibration object after 20 motions. Using the data set, we
test our algorithm (SM), the dual quaternion algorithm (DQ),
and the nonlinear algorithm (LM). Table I summarizes the
results obtained with the data set. The second column of
the table shows the sum of squares of the absolute error in
rotation, ER,

ER =
∑

‖RARX − RXRB‖2. (21)

The third column shows the relative error in translation, Et,

Et =
∑ ‖(RA − I )�tX − RX�tB + �tA‖2∑ ‖RX�tB − �tA‖2

. (22)

In the real experiment, the SM algorithm provides less error
than the LM algorithm and the DQ algorithm.

The cameras are moved to 20 different locations
in the second experiment. We compute the hand–eye
transformation by using the three methods (LM, SM, and
DQ) from stations one through N(4 < N < 15). Then we
predict the camera pose Âi(i = 15, . . . , 20) for the stations

Table I. The first real experiment results.

Algorithm ER Et

LM 0.00035 0.0231
DQ 0.00043 0.0193
SM 0.00032 0.0186

Fig. 6. Errors in comparing the predicted camera pose Âi and the
camera pose Ai averaged over 6 stations.

Fig. 7. The dot-hit experiment with the position probe.

15–20 from the robot motion Bi(i = 15, . . . , 20) and the first
camera pose A1:

Âi = XB−1
i X−1A1. (23)

We compare Âi and Ai (i = 15, . . . , 20) and average the
error with six stations. Figure 6 shows the rotational and
translational errors as a function of the number N. For other
reasons such as camera calibration error, the experiment
results do not show the obvious difference in the performance
of the three methods. However, the mean error of our method
is the lowest.

The third experiment is the dot-hit assessment. As shown
in Fig. 7, we move the gripper of the robot to hit 10 dots
on the calibration pattern and reconstruct the positions of
dots using the position probe. Using the position probe,
we can achieve the coordinates of the dots in the camera
frame �Di

c (i = 1, 2, . . . , 10). If we compute the hand–eye
transformation X by hand–eye calibration algorithms, we
can get the coordinates of the dots in the robot base frame

https://doi.org/10.1017/S0263574708004608 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708004608


222 Hand–eye calibration algorithm based on screw motions

Fig. 8. The absolute errors of the dot positions in the dot-hit
experiment.

�Di
r (i = 1, 2, . . . , 10), and

D̃i
r = C−1XD̃i

c, (24)

where C is the transformation from the robot base frame
to the robot gripper frame, D̃i

r = ( �DiT
r , 1)T and D̃i

c =
( �DiT

c , 1)T . Comparing the positions �Di
R from the robot

controller and the reconstruction positions �Di
r of the position

probe, we can get Fig. 8, which shows the absolute position
errors ‖ �Di

R − �Di
r‖ by using three hand–eye calibration

methods (LM, SM, and DQ). The absolute position errors
of the three methods are very close at every dot, but the mean
(0.505) and standard deviation (0.313) of our method’s errors
are smaller than those of the other two methods’ errors.

6.3. Qualitative perturbation analysis
It is interesting to notice that the SM algorithm and the DQ
algorithm have the superior performance in the simulations
and the real experiments. We will try to explain it by using

qualitative perturbation analysis with respect to the rotation
quaternion q.

Firstly, consider the following matrix:

Â = A + �A,

where Â is a perturbed version of the coefficient matrix A

in the SM algorithm and the DQ algorithm with perturbation
�A. Define the correlation matrix

R̂ = E{ÂT Â} = E{(A + �A)T (A + �A)}.

If the perturbation �A is irrelevant to A statistically, we have

R̂ = E{AT A} + E{�AT �A} = R + σ 2I,

where σ is the standard deviation of the noise. If rank(A) = 6
and R has the eigenvalue decomposition V �V T , then R̂ can
be written as

R̂ = V �V T + σ 2I = V (� + σ 2I )V T = V �V T ,

where � = � + σ 2I = diag(σ 2
1 + σ 2, σ 2

2 + σ 2, . . . , σ 2
6 +

σ 2, σ 2, σ 2) and � = diag(σ 2
1 , σ 2

2 , . . . , σ 2
6 , 0, 0), σ 2

i (i =
1, 2, . . . , 6), are the nonzero eigenvalues of R. According to
the formula above, we know that the last two right-singular
vectors of Â corresponding to the two minimal singular
values are equal in statistical concept to the two right-singular
vectors of A corresponding to the two vanishing singular
values. Hence, the lower error limit of the rotation quaternion
q in the SM algorithm and the DQ algorithm is vanishing.

Secondly, consider the following objective function in the
LM algorithm:

‖uAq − quB‖2.

When it converges to the global minimum δ, the objective
function is written as

‖uAq − quB‖2 = qT (B + �B)q = qT Bq + qT �Bq = δ,

Fig. 9. The robot-assisted surgical system (left); the distribution of cutting errors (right).

https://doi.org/10.1017/S0263574708004608 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708004608


Hand–eye calibration algorithm based on screw motions 223

where �B is the perturbation of B (see the appendix).
‖δ − qT �Bq‖ reflects indirectly the error of the rotation
quaternion q in the LM algorithm. The lower error limit of q

is not always vanishing.
From the perturbation analysis above, we know that the

influence of perturbation in the SM algorithm and the DQ
algorithm is smaller than that in the LM algorithm, if the noise
perturbation is independent to the motion data. However, the
real noise perturbation is not known and not independent.
As shown in the real experiments, the SM algorithm does
not show prominent superiority in performance. Therefore,
we apply a robust method to do hand–eye calibration in the
real application, which is denoted by “LM+SM.” We use
SM algorithm to give the initial values for LM algorithm’s
nonlinear minimization.

To clarify the merits of SM algorithm, we apply it in
a robot-assisted surgical system [Fig. 9 (left)], which has
a hand–eye robot for total knee arthroplasty. We do the
hand–eye calibration for the robot by using the LM+SM
algorithm, and then the robot performs the operation on
100 sawbone models (phantom bones). The distribution of
cutting errors is shown in Fig. 9 (right). Ninety-two percent
of sawbone models’ cutting errors are less than 2 mm, which
contain camera calibration errors, hand–eye calibration
errors, and robot operation errors. The hand–eye calibration
error accounts for a very small proportion of the cutting error.

7. Conclusion
In this paper, we proposed a new hand–eye calibration
algorithm based on screw motion constraints, which enabled
us to establish a linear homogeneous system for the solution
of rotation and translation parameters. The computation
of the null space with SVD in the algorithm yields
an accurate solution of hand–eye transformation. We
implemented two comparative algorithms (LM and DQ),
the LM algorithm involving a nonlinear minimization and
solving simultaneously for rotation and translation, the DQ
algorithm applying the dual quaternion in the hand–eye
calibration. We compared three algorithms in simulations and
real experiments, where we observe the superior performance
of SM algorithm. Furthermore, it is explained by using
qualitative perturbation analysis. In the future, we will do
some researches on the perturbation of noise to achieve a
better performance of our algorithm.

Appendix: The B matrix5

We can write,

‖uAq − quB‖2 = (Q(uA)q−W (uB)q)T (Q(uA)q−W (uB)q)

= qT (Q(uA) − W (uB))T (Q(uA) − W (uB))q.

Therefore, we can have the B matrix having the following
form:

B = (Q(uA) − W (uB))T (Q(uA) − W (uB)),

where

Q(u) =

⎛
⎜⎝

u0 −u1 −u2 −u3

u1 u0 −u3 u2

u2 u3 u0 −u1

u3 −u2 u1 u0

⎞
⎟⎠

and

W(u) =

⎛
⎜⎝

u0 −u1 −u2 −u3

u1 u0 u3 −u2

u2 −u3 u0 u1

u3 u2 −u1 u0

⎞
⎟⎠

with u = (u0, u1, u2, u3).
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