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SUMMARY
This paper presents an indirect adaptive fuzzy control
scheme for a class of unknown multi-input multi-output
(MIMO) nonlinear systems with external disturbances.
Within this scheme, the dynamic fuzzy logic system (DFLS)
is employed to identify the unknown nonlinear MIMO
systems. The control law and parameter adaptation laws
of DFLS are derived based on the Lyapunov synthesis
approach. The control law is robustified in H∞ sense
to attenuate external disturbance, model uncertainties,
and fuzzy approximation errors. It is shown that under
appropriate assumptions it guarantees the boundness of
all signals in the closed-loop system and the asymptotic
convergence to zero of tracking errors. An extensive
simulation on the tracking control of a two-link rigid robotic
manipulator verifies the effectiveness of the proposed
algorithms.

KEYWORDS: MIMO nonlinear systems; DFLS; Lyapunov
synthesis approach.

1. Introduction
Identification and control of nonlinear systems has attracted
a lot of attention and represents a challenging area in control
community during the last two decades. The development
of geometric nonlinear control theory and, in particular,
feedback linearization methods have led to great success in
the development of controllers for nonlinear systems.1,2 A
key assumption in these techniques is that the dynamics of
nonlinear systems is exactly known. Some limitations of this
theory appear because real systems may have uncertainties.
Thus, to deal with uncertain nonlinear systems, many
adaptive control approaches have been proposed. Adaptive
control approaches are applied to systems with parameter
uncertainties. Several results can be found in refs. [3–6], and
the references therein.

Since introduced by Zadeh,7 the fuzzy set theory has
received a great deal of attention in both theoretical research
and implementation techniques. It has been successfully
adopted in many soft-computing applications with special
emphasis on control systems. Traditionally, fuzzy logic
system has been applied to control a dynamic system
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without an explicit model,8 and the design was based on
the compositional rule of inference. Fuzzy logic controllers
have been synthesized from a collection of fuzzy IF-
THEN rules to form rule-based controllers in refs. [9]
and [10]. The key features behind the success of fuzzy
logic systems that allow it to be one of the most efficient
intelligent techniques are that these provide a systematic
and efficient framework to incorporate linguistic information
from human experts, simulate human thinking procedure, and
at the same time universal function approximators. These
features allow fuzzy systems to handle the problems of
modeling and control of complex and ill-defined nonlinear
dynamic systems. Based on the universal approximation
theorem,11 several stable adaptive fuzzy control schemes
have been developed for unknown single-input single-
output (SISO) nonlinear systems,11–14 for multi-input multi-
output (MIMO) nonlinear systems15–17 and for large-scale
interconnected nonlinear systems18–20 to achieve stable
performance criterion. The stability analysis in such schemes
is performed using the Lyapunov synthesis approach.
However, these adaptive fuzzy control schemes are static
in nature. Motivated by the fact that most of the physical
systems are generally dynamic, this suggests that one may
introduce some sort of dynamics to these static fuzzy models
in order to cope with the dynamic nature of physical systems.
This would provide a new tool in the control of dynamic
systems. A dynamic structure called the dynamic fuzzy logic
system (DFLS) was introduced by Lee and Vukovich,21,22

who successfully applied this concept to the identification of
single-link robotic manipulator.21 Stable identification and
adaptive control based on DFLS was performed in ref. [22].
This work extended to a larger class of SISO nonlinear
systems in ref. [23].

However, previous works on DFLS are limited to only
SISO nonlinear systems, and still MIMO nonlinear systems
have not been addressed. Based on the initial results of DFLS
for SISO nonlinear systems,22,23 an extended adaptive fuzzy
control scheme for MIMO nonlinear systems based on the
DFLS approach is developed in this paper. Furthermore, the
proposed control scheme is designed via an H∞ tracking
performance, which can greatly attenuate disturbances,
model uncertainties, and fuzzy approximation errors.

The paper is organized as follows. A class of MIMO
nonlinear systems and control objectives are described in
Section 2. Section 3 presents a brief description of static fuzzy
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systems and DFLS. The DFLS-based adaptive control design
is presented in Section 4. In Section 5, the proposed control
algorithm is used to control a two-link robot manipulator.
Section 6 concludes this paper.

2. System Description
In this paper, we consider a class of MIMO nonlinear system
represented by the following set of differential equations:

y
(n1)
1 = f1(x) +

p∑
j=1

g1j (x)uj + d1

...

y
(np)
p = fp(x) +

p∑
j=1

gpj (x)uj + dp

, (1)

where x = [y1, ẏ1, . . . , y
(n1−1)
1 , . . . , yp, ẏp, . . . , y

(np−1)
p ]T

is the overall state vector which is assumed to be
available for measurements, u = [u1, . . . , up]T is the
control input vector,y = [y1, . . . , yp]T is the output vector,
D = [d1, . . . , dp]T denotes the external disturbance, and
fi(x), and gij (x), i, j = 1, . . . p, are smooth unknown
nonlinear functions. Let us denote

y(n) = [
y

(n1)
1 . . . y

(np)
p

]T
, F (x) = [f1(x) . . . fp(x)]T ,

G(x) =

⎡
⎢⎣

g11(x) · · · g1p(x)
...

. . .
...

gp1(x) · · · gpp(x)

⎤
⎥⎦ , and D =

⎡
⎢⎣

d1
...

dp

⎤
⎥⎦ .

Then the dynamic system described by Eq. (1) can be
rewritten in the following compact form:

y(n) = F (x) + G(x)u + D. (2)

Throughout this paper, the following assumptions are
considered for system (1).
Assumption 1. The matrix G(x) is bounded away from sin-
gularity over compact set Uc ⊂ Rn, specifically ‖G(x)‖2 =
T race(GT (x)G(x)) ≥ b1 ≥ 0, where b1 represents the
smallest singular value of G(x).
Assumption 2. The reference trajectories, ymi, i =
1, · · · , p, are known bounded functions of time with known
bounded derivatives, and it is assumed to be ri- times
differentiable.
Control objectives: Develop a feedback control law u(t)
(based on DFLS), which ensures the boundness of all
variables in closed-loop systems and the parameters of
DFLS, and guarantees output tracking of a specified desired
trajectory ymi = [ym1, · · · , ymp]T . In addition, for a given
disturbance attenuation level ρ > 0, the following H∞
tracking performance index is achieved:

1

2

∫ T

0
eT Qe dt ≤1

2
eT
i (0)Piei(0) + 1

2
hiz̃

T z̃(0)

+1

2
�T (0)�(0) + 1

2
ρ2

∫ T

0
δT δ dt, (3)
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Fig. 1. MIMO fuzzy logic system.

where e is the error vector, δ ∈ L2 [0, T ] is the combined
disturbance and approximation error for T ∈ [0, ∞], Q and P
are positive matrices of proper dimensions, � is a parameter
approximation error vector, z̃ is a identification error vector,
and h is a design parameter.

3. Description of DFLS
The DFLS is composed of an ordinary fuzzy logic system
(also referred as a static fuzzy logic system) and a dynamic
element. The basic structure of a fuzzy logic system
considered in this paper, which has been widely used in
identification and control of nonlinear systems, is shown in
Fig. 1; it is composed of four major components, namely, a
fuzzification interface, a fuzzy rule base, a fuzzy inference
engine, and a defuzzification interface.

For MIMO fuzzy systems, the fuzzy rule base is made up
of the following inference rule:

Rl : IF x1 is F l
1 AND x2 is F l

2 AND . . . AND xi is F l
i AND

. . . AND xn is F l
n

THEN y1 is Gl
1 AND y2 is Gl

2 AND . . . AND yj is Gl
j

AND . . . AND yp is Gl
p

,

(4)
where F l

1 and Gl
1 are fuzzy sets in R, l = 1, 2, · · · , N ; i =

1, 2, · · · , n; j = 1, 2, · · · , p. Fuzzy inference Eq. (4) can
be decomposed and expressed as:

Rl : IF x1 is F l
1 AND x2 is F l

2 AND . . . AND xi is F l
i AND

. . . AND xn is F l
n

THEN yj is Gl
j , (j = 1, 2, · · · , p).

Through center-average defuzzifier, product inference, and
singleton fuzzifier,11 the output of a fuzzy logic system can
be expressed as

yj (x) =
∑N

l=1 ȳl
( ∏n

i μF l
i
(xi)

)
∑N

l=1

( ∏n
i μF l

i
(xi)

) , (5)

where ȳl is the center of the fuzzy set Gl at which μl
G achieves

its maximum value, and we assume that μl
G(ȳl) = 1.

Equation (5) can be written as

yj (x) = Ȳ T
j φ(x), j = 1, 2, · · · , p, (6)

where Ȳ T
j = [ȳ1

j , · · · , ȳN
j ]T is a vector of adjustable

parameters, and φ(x) = [φ1, · · · , φN ]T is a regression vector
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Fig. 2. MIMO dynamic fuzzy logic system.

with each φl variable defined as a fuzzy basis function
(FBF)11 as

φl =
∏n

i μF l
i
(xi)∑N

l=1

( ∏n
i μF l

i
(xi)

) . (7)

Define Ȳ = [Ȳ1, · · · , Ȳp]l×p as a matrix of adjustable
parameters. MIMO fuzzy system can be expressed as

y = Ȳ T φ(x). (8)

The MIMO DFLS, shown in Fig. 2, can now be described by
the following differential equations:

˙̂y1 = −α1ŷ1 + Ȳ T
1 φ(x),

...
˙̂yp = −αpŷp + Ȳ T

p φ(x).

(9)

Using the definition in Eq. (8), Eq. (9) can be written in the
following compact form:

˙̂y = −αŷ + Ȳ T φ(x), (10)

where ŷ = [ŷ1, · · · , ŷp] is the output of the MIMO DFLS,
α = diag[α1, · · · , αp] is a positive constant matrix.

The DFLS described by Eq. (10) was shown to possess
universal approximating capabilities to a large class of
nonlinear dynamic systems.21

Let z ∈ Rp, a vector defined as

z =

⎡
⎢⎣

z1
...

zp

⎤
⎥⎦ =

⎡
⎢⎣

y
(n1−1)
1

...
y

(np−1)
p

⎤
⎥⎦ . (11)

System (1) can be written as

ż1 = f1(x) +
p∑

j=1

g1j (x)uj + d1

...

żp = fp(x) +
p∑

j=1

gpj (x)uj + dp

. (12)

Alternatively, Eq. (12) can be written in the compact form
as

ż = F (x) + G(x)u + D. (13)

According to the universal approximation theorem,21 the
following DFLS can be used to identify the unknown MIMO
nonlinear system (12),

˙̂y = −αŷ + Ȳ T φ(x, u). (14)

Our objective now is to develop an appropriate control
law for input u in Eq. (1), and an adaptation law for the
parameter matrix Ȳ of the DFLS (14) such that the closed-
loop system is stable in the sense that the tracking errors
ej = ymj − yj , j = 1, · · · , p, as well as the identification
errors and identifier parameters are all uniformly bounded.

4. DFLS-Based Adaptive Control
In this section, we develop an adaptive control scheme for
system (1) based on DFLS-based identification.

Consider system (1) for the given reference trajectories,
ym = [ym1, · · · , ymp]T . Let us define the tracking errors as

e1 = ym1 − y1
...
ep = ymp − yp

. (15)

Denote e = [e1, · · · , ep]T , then e = ym − y.

If system (1) is known, i.e., F (x) and G(x) are known and
D = 0, then the feedback law

⎡
⎢⎣

u1
...

up

⎤
⎥⎦ =

⎡
⎢⎣

g11(x) · · · g1p(x)
...

. . .
...

gp1(x) · · · gpp(x)

⎤
⎥⎦

−1

⎛
⎜⎝−

⎡
⎢⎣

f1(x)
...

fp(x)

⎤
⎥⎦ +

⎡
⎢⎣

v1
...

vp

⎤
⎥⎦

⎞
⎟⎠ (16)

yields the linearize systems,

⎡
⎢⎣

y
(n1)
1
...

y
(np)
p

⎤
⎥⎦ =

⎡
⎢⎣

v1
...

vp

⎤
⎥⎦ . (17)

For reference trajectories to be asymptotically tracked, we
choose

v1 = y
(n1)
m1 + k1r1e

(n1−1)
1 + · · · + k11e1
...

vp = y
(np)
mp + kprp

e
(np−1)
p + · · · + kp1ep

. (18)

Substituting Eq. (16) in Eq. (1) yields

e
(n1)
1 + k1r1e

(n1−1)
1 + · · · + k11e1 = 0

...
e

(np)
p + kprp

e
(np−1)
p + · · · + kp1ep = 0

. (19)
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If the coefficients kij are chosen such that all polynomials
in Eq. (19) are Hurwitz stable, then we can conclude that
limt→∞ ei(t) = 0, which is a main objective of control.
However, the nonlinear functions fi(x), Gij (x) are unknown.

Consider the MIMO DFLS in the form of Eq. (9),

˙̂z1 = −α1ẑ1 + Ȳ T
1 φ(x, u)

...
˙̂zp = −αpẑp + Ȳ T

p φ(x, u)

, (20)

which can be used to identify the unknown MIMO
nonlinear system (12). Define identification errors as z̃i =
ẑi − zi, i = 1, 2, · · · p. Our objective is to develop an
appropriate control law for input ui and an adaptive law for
the identifier parameters Ȳi such that closed-loop system is
stable.

The expression for żi in Eq. (12) can be written as

ż1 = −α1z1 + Ȳ T
1 φ(x, u) − r1(x, u, φ, Ȳ1),

...
żp = −αpzp + Ȳ T

p φ(x, u) − rp(x, u, φ, Ȳp),

(21)

where ri(x, u, φ, Ȳi) represents the static modeling error of
the DFLS identifier and can be expressed as

ri(x, u, φ, Ȳi) = −α1z1 + Ȳ T
i φ(x, u) − fi(x)

−
p∑

j=1

gij (x)uj − di. (22)

By Lemma 1 in ref. [21], there are existed optimal
parameter vectors,

Ȳ ∗
i = min

‖Ȳi‖
{Ȳi : ‖Ȳi‖ ≤ MȲi

}, (23)

which minimize the static modeling error, ri , such that

sup
(x,u)∈�

|ri(x, u, φ, Ȳ ∗
i )| ≤ Mr

i , (24)

where MȲi
and Mr

i are positive design constants. In the
following, we develop an adaptive law for Ȳi . Replacing
Ȳi by Ȳ ∗

i in Eq. (21) results in

ż1 = −α1z1 + Ȳ ∗T

1 φ(x, u) − r1(x, u, φ, Ȳ ∗
1 )

...
żp = −αpzp + Ȳ ∗T

p φ(x, u) − rp(x, u, φ, Ȳ ∗
p )

. (25)

Subtracting Eq. (25) from Eq. (20) yields

˙̃z1 = −α1z̃1 + �T
1 φ(x, u) + r1(x, u, φ, Ȳ ∗

1 )
...
˙̃zp = −αpz̃p + �T

pφ(x, u) + rp(x, u, φ, Ȳ ∗
p )

, (26)

where �i = Ȳi − Ȳ ∗
1 is the parameter estimation error.

In this situation, we propose the following control law,
which is based on DFLS:

⎡
⎢⎣

u1
...

up

⎤
⎥⎦ =

⎡
⎢⎣

ĝ11(x) · · · ĝ1p(x)
...

. . .
...

ĝp1(x) · · · ĝpp(x)

⎤
⎥⎦

−1 ⎛
⎜⎝

⎡
⎢⎣

α1 0 0

0
. . . 0

0 0 αp

⎤
⎥⎦

⎡
⎢⎣

z1
...

zp

⎤
⎥⎦

−

⎡
⎢⎣

Ȳ T
1 φ(x, 0)

...
Ȳ T

p φ(x, 0)

⎤
⎥⎦ +

⎡
⎢⎣

v1
...

vp

⎤
⎥⎦ +

⎡
⎢⎣

ur1
...

ur2

⎤
⎥⎦

⎞
⎟⎠ . (27)

Alternatively, Eq. (27) can be written in the compact form
as

u = Ĝ(x)−1[α z − Ȳ T φ(x, 0) + v + ur ], (28)

where Ĝ(x) is a static fuzzy logic estimation of G(x). Each
element gij (x) of the control gain matrix G(x) is a nonlinear
function of the state vector x and can be approximated by a
fuzzy logic system in the form of Eq. (6) as

ĝij (x) = Ȳ T
ij φ(x). (29)

The adaptive law for the parameter vectors Ȳij will be
defined later. φ(x, 0) = φ(x, u) |u=0 and ur is a robust
compensator, which is defined as

uri = 1

λi

BT
i Piei, (30)

where λi and Pi are the solutions of the following Riccati-like
equation:

AT
i Pi + PiAi − Qi −

(
2

λi

− 1

ρ2

)
PiBiB

T
i Pi = 0. (31)

It is noticed that the Riccati equation (31) has a solution
P = P T ≥ 0 if and only if 2ρ2 ≥ λi.

Using Eq. (27), we can rewrite Eq. (12) as follows:

⎡
⎢⎣

ż1
...

żp

⎤
⎥⎦ =

⎡
⎢⎣

f1(x)
...

fp(x)

⎤
⎥⎦ + (

G(x) + Ĝ(x) − Ĝ(x)
)
G−1(x)

×

⎛
⎜⎝

⎡
⎢⎣

α1 0 0

0
. . . 0

0 0 αp

⎤
⎥⎦

⎡
⎢⎣

z1
...

zp

⎤
⎥⎦ −

⎡
⎢⎣

Ȳ T
1 φ(x, 0)

...
Ȳ T

p φ(x, 0)

⎤
⎥⎦

+

⎡
⎢⎣

v1
...

vp

⎤
⎥⎦ +

⎡
⎢⎣

ur1
...

ur2

⎤
⎥⎦

⎞
⎟⎠ +

⎡
⎢⎣

d1
...

dp

⎤
⎥⎦ . (32)

Using Eqs. (17), (18), and (32), and after straight-forward
manipulations, it can be easily obtained:
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⎢⎢⎣

e
(n1)
1 + k1r1e

(n1−1)
1 + · · · + k11e1

...

e
(np)
p + kprp

e
(np−1)
p + · · · + kp1ep

⎤
⎥⎥⎦

=

⎡
⎢⎣

f1(x) + α1z1 − Ȳ T
1 φ(x, 0)

...
fp(x) + αpzp − Ȳ T

p φ(x, 0)

⎤
⎥⎦+ (G(x) − Ĝ(x))

⎡
⎢⎣

u1
...

up

⎤
⎥⎦

+

⎡
⎢⎣

ur1
...

ur2

⎤
⎥⎦ +

⎡
⎢⎣

d1
...

dp

⎤
⎥⎦ . (33)

It is clear from Eq. (33) that uri can attenuate external
disturbance and fuzzy approximation errors.

Equation (32) can be written as

e
(ni )
i + kiri

e
(ni−1)
i + · · · + ki1ei = fi(x) + αizi − Ȳ T

i φ(x, 0)

+
p∑

j=1

(gij (x) − ĝij (x))uj − uri + di, i = 1, 2, · · ·p.

(34)

The state-space form for Eq. (34) can be written as

ėi = Aiei + Biuri + Bi

[
fi(x) + αizi − Ȳ T

i φ(x, 0)

+
p∑

j=1

(
gij (x) − ĝij (x)

)
uj

]
+ Bi di, (35)

where

Ai =

⎡
⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

−kini
−ki(ni−1) −ki(ni−2) · · · −ki1

⎤
⎥⎥⎦ ,

Bi =

⎡
⎢⎢⎣

0
0
...
1

⎤
⎥⎥⎦ .

Using Eq. (22) with u = 0, we can write

ėi = Aiei + Biuri + Bi

[
− �T

i φ(x, 0)

+
p∑

j=1

(gij (x) − ĝij (x))uj − ri(x, u, 0, Ȳ ∗
i )

]
. (36)

As stated before, the control gain functions gij (x) can be
approximated by a static fuzzy logic system (6). Thus, it
follows that

gij (x) = ĝij (x) + κij = Ȳ T
ij φ(x) + κij , (37)

where Ȳij is an adjustable parameter vector, φ(x) is
an FBF, and κij is a fuzzy approximation error. Define
optimal parameter estimates Ȳ ∗

ij such that it minimizes the
approximation error. Therefore, we can write

gij (x) = Ȳ ∗T

ij φ(x) + κ∗
ij , (38)

where κ∗
ij is the minimum approximation error. Using

Eqs. (37) and (38), Equation (36) can be written as

ėi = Aiei + Biuri + Bi

⎡
⎣−�T

i φ(x, 0) −
p∑

j=1

�T
ijφ(x)uj

⎤
⎦

+Biwi, (39)

where �T
ij = Ȳ T

ij − Ȳ ∗T

ij and wi = κ∗
ij + ri(x, u, 0, Ȳ ∗

i ).
The adaptive laws are chosen as

˙̄Y i = −ηihi z̃iφ(x, u) + ηiφ(x, 0)BT
i Piei, (40)

and

˙̄Y ij = −ηij e
T
i PiBiφ(x)uj . (41)

Theorem 1. Consider an unknown MIMO nonlinear
dynamic system (1) which is controlled by (27) and to be
identified by the DFLS (20) by adjusting the parameter
vectors Ȳ T

i and Ȳ T
ij with the adaptive laws (40) and (41)

respectively, then the closed-loop system possesses the
following properties:

(i) All signals in the closed-loop system are uniformly
bounded.

(ii) For a given disturbance attenuation level, the proposed
tracking performance index (3) is achieved.

Proof. Choose a Lyapunov function as

V = V1 + · · · + Vp, (42)

Vi = 1

2
eT
i Piei + 1

2
hiz̃

2
i + 1

2ηi

�T
i �i +

p∑
j=1

1

2ηij

�T
ij�ij .

(43)

Differentiating V , Vi and using Eqs. (26) and (39), we
obtain

V̇ = V̇1 + · · · + V̇p, (44)

V̇i = 1

2
ėT
i Piei + 1

2
eT
i Pi ėi + hiz̃i

˙̃zi + 1

ηi

�̇T
i �i

+
p∑

j=1

1

ηij

�̇T
ij�ij
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= 1

2

[
eT
i AT

i Piei − 1

λi

eT
i PiBiB

T
i ei

− φ(x, 0)T �iB
T
i Piei −

p∑
j=1

φ(x)�ijB
T
i eiuj

+ wiB
T
i Piei + eT

i PiAiei − 1

λi

eT
i PiBiB

T
i ei

−eT
i PiBi�

T
i φ(x, 0) −

p∑
j=1

eT
i PiBi�

T
ijφ(x)uj

+ eT
i PiBiwi

]
+ hiz̃i

[−αiz̃i + �T
i φ(x, u)

+ ri(x, u, φ, Ȳ ∗
i )

] + 1

ηi

˙̄Y
T

i �i +
p∑

j=1

1

ηij

˙̄Y
T

ij�ij

= eT
i

(
AT

i Pi + PiAi − 2

λi

eT
i PiBiB

T
i ei

)
ei − αihi z̃

2
i

+ 1

ηi

( ˙̄Y
T

i + ηihi z̃iφ
T (x, u) − ηiφ(x, 0)BT

i Piei

)
�i

+
p∑

j=1

1

ηij

( ˙̄Y
T

ij + ηij e
T
i PiBiφ

T (x)uj

)
�ij

+ hiz̃iri(x, u, φ, Ȳ ∗
i ) +1

2

(
wiB

T
i Piei + eT

i PiBiwi

)
.

(45)

Using the adaptive laws (40) and (41), Eq. (45) can be
simplified into

V̇i ≤ eT
i

(
AT

i Pi + PiAi − 2

λi

eT
i PiBiB

T
i ei

)
ei − αihi z̃

2
i

−hiz̃iri(x, u, φ, Ȳ ∗
i ) − 1

2

(
wiB

T
i Piei + eT

i PiBiwi

)
.

(46)

Using the following triangular inequality for the third term
in Eq. (46),

hiz̃iri(x, u, φ, Ȳ ∗
i ) ≤ h2

i z̃
2
i

2ρ2
+ ρ2

2
r2
i (x, u, φ, Ȳ ∗

i ). (47)

Substituting Eq. (47) and using the Riccati equation (31),
Eq. (46) becomes

V̇i ≤ −eT
i Qei − 1

2ρ2
i

eT
i PiBiB

T
i ei − αihi z̃

2
i + h2

i z̃
2
i

2ρ2

+ρ2

2
r2
i (x, u, φ, Ȳ ∗

i ) + 1

2

(
wiB

T
i Piei + eT

i PiBiwi

)
.

(48)

Note that the third and fourth terms are negative in
Eq. (48),

V̇i ≤ −eT
i Qei − 1

2ρ2
eT
i PiBiB

T
i ei −

(
αihi − h2

i

2ρ2

)
z̃2
i

+ρ2

2
r2
i (x, u, φ, Ȳ ∗

i ) + 1

2

(
wiB

T
i Piei + eT

i PiBiwi

)
.

(49)

The third term in Eq. (49) can be made negative by
choosing hi ≤ 2αiρ

2,

V̇i ≤ −eT
i Qei − 1

2

(
1

ρ
eT
i PiB − ρwi

)2

+ρ2

2

(
r2
i (x, u, φ, Ȳ ∗

i ) + w2
i

)
. (50)

Since 1
2 ( 1

ρ
eT
i PiB − ρwi)2 ≥ 0, from Eq. (50) we obtain

V̇i ≤ −eT
i Qei + 1

2
ρ2δ2

i , (51)

where δ2
i = r2

i (x, u, φ, Ȳ ∗
i ) + w2

i . After some straightfor-
ward manipulations, we can deduce

V̇i ≤ −ciVi + μi, (52)

where ci = min{λ, 1
ηi

, 1
ηij

} with λ = inf λmin(Qi )
subλmax(Qi )

and μi =
1

2ρ2

∑p

i=1 δ2
i .

From Eqs. (52) and (44) we obtain

V̇ ≤ −cV + μ, (53)

where c = ∑p

i=1 ci , μ = ∑p

i=1 μi.

This implies that all signals in the closed-loop system are
bounded. Thus, the control objective (i) is realized.

Integrating Eq. (50) from t = 0 to t = T , we have

1

2

∫ T

0
eT
i Qeidt ≤ Vi(0) − Vi(T ) + 1

2
ρ2

∫ T

0
δ2
i dt . (54)

Since Vi(T ) ≥ 0, we can write Eq. (54) as follows:

1

2

∫ T

0
eT
i Qeidt ≤ Vi(0) + 1

2
ρ2

∫ T

0
δ2
i dt

= 1

2
eT
i (0)Piei(0) + 1

2
hiz̃

2
i (0) + 1

2ηi

�T
i (0)�i(0)

+
p∑

j=1

1

2ηij

�T
ij (0)�ij (0) + 1

2
ρ2

∫ T

0
δ2
i dt.

(55)

Let Q = diag [Q1, · · · , QP ], P = diag [P1, · · · , PP ],
e = [

eT
1 , · · · , eT

P

]T
, z̃ = [

z̃1, · · · z̃p

]T
,

� =
[

1

η1
�T

1 , · · · , 1

ηp

�T
p ,

1

η11
�T

11, · · · ,
1

ηpp

�T
pp,

]T

, and

δ = [
δ1, · · · , δp

]T
.
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Fig. 3. Two-link robotic manipulator.

Then from Eq. (55) we obtain

1

2

∫ T

0
eT Qedt ≤1

2
eT (0)Pe(0) + 1

2
hz̃T z̃(0)

+1

2
�T (0)�(0) + +1

2
ρ2

∫ T

0
δT δdt. (56)

Thus, the control objective (ii) is achieved and the proof
of Theorem 1 is completed.

For the sake of clarity of presentation, the overall design
procedure of the DFLS scheme is summarized in the
following steps:

Step 1. Specify the coefficients kij such that Ai is Hurwitz
stable and meets the required transient response on
tracking error dynamics.

Step 2. Specify positive-definite matrices Qi , desired
attenuation level ρ, and the weighting factor λi such that
2ρ2 ≥ λi .

Step 3. Solve the Riccati equation (31) to obtain positive
definite matrices Pi .

Step 4. Select membership functions μFi
(·), i =

1, 2, . . . , N and incorporate expert knowledge as the
rule base if available to compute the fuzzy basis vectors
φ(x), φ(x, u).

Step 5. Apply the control law (27) with adaptive laws (40)
and (41).

5. Simulation Results
In order to demonstrate the effectiveness of the proposed
scheme, a simulation is performed for the tracking control
of a two-link rigid robot manipulator moving in a horizontal
plane as shown in Fig. 3.

The dynamics of the robotic manipulator are described by
the following differential equation:

[
M11 M12

M21 M22

] [
q̈1

q̈2

]
=

[−hq̇2 −hq̇2 − hq̇1

−hq̇1 0

] [
q̇1

q̇2

]
=

[
τ1

τ2

]
,

(57)

where

M11 = a1 + 2a3 cos(q2) + 2a4 sin(q2),

M22 = a2,

M21 = M12 = a2 + a3 cos(q2) + a4 sin(q2),

h = a3 sin(q2) − a4 cos(q2)

with

a1 = I1 + m1l
2
c1 + Ie + mel

2
ce + mel

2
1,

a2 = Ie + mel
2
ce,

a3 = mel1lce cos δe,

a4 = mel1lce sin δe.

In the simulation, the following parameter values are
used:

l1 = 0.1, lc1 = 0.5, m1 = 1.0, I1 = 0.12,

Ice = 0.6, δe = 0.6, me = 2.0, Ie = 0.25.

Since the inertia matrix M is positive definite, the system
can be written as

[
q̈1

q̈2

]
=

[
M11 M12

M21 M22

]−1 [−hq̇2 −hq̇2 − hq̇1

−hq̇1 0

] [
q̇1

q̇2

]

+
[
M11 M12

M21 M22

]−1 [
τ1

τ2

]
. (58)

Let x1 = q1, x2 = q̇1, x3 = q2, x4 = q̇2, y1 = x1,
y2 = x3,

G(x) = M−1, F (x) = M−1

[−hq̇2 −hq̇2 − hq̇1

−hq̇1 0

] [
q̇1

q̇2

]
.

Then the dynamics of a two-link robotic manipulator can
be expressed as

ÿ = F (x) + G(x)u + D. (59)

In simulation, we are going to consider the external
disturbance as d1 = 0.05 sin(20t) and d2 = 0.05 cos(20t).
The control objective is to force the angular positions of
the robot q1 and q2 to track desired reference trajectories. In
simulation, the performance of the control scheme is assessed
on two different reference signals, the first ym1 = ym2 =
0.2 sin(t) and the second ym1 = ym2 = 0.15 sin(0.5t) +
0.1 sin(2t).
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Fig. 4. (Colour online) Fuzzy membership functions.

The DFLS-based control scheme design procedure for
robotic manipulator is described in some details in the
following steps:
Step 1. k11 = k21 = 4, k12 = k22 = 10.
Step 2. We are going to perform simulation with two different
values of attenuation levels, ρ = 0.2, 0.1.
Case 1. (ρ = 0.2):

Select positive definite Q1 = Q2 = diag [10, 10] .

Select λ1 = λ2 = 0.02 such that 2ρ2 ≥ λi.

Case 2. (ρ = 0.1):

Select positive definite Q1 = Q2 = diag [10, 10] .

Select λ1 = λ2 = 0.01 such that 2ρ2 ≥ λi.

Step 3. Solving the Riccati equation for both values of
attenuation level.
Case 1. (ρ = 0.2):

P1 = P2 =
[

10.044 0.041
0.041 0.041

]
.

Case 2. (ρ = 0.1):

P1 = P2 =
[

10.033 0.031
0.031 0.031

]
.

Step 4. In this simulation study, seven Gaussian membership
functions are employed to construct the DFLS-based control
scheme of the following from:

μF 1
i

= 1/(1 + exp(5(xi + 1.5))), μF 2
i

= exp(−5(xi + 1)2),

μF 3
i

= exp(−5(xi + 0.5)2), μF 4
i

= exp(−5x2
i ),

μF 5
i

= exp(−5(xi − 0.5)2), μF 6
i

= exp(−5(xi − 1)2),

μF 7
i

= 1/(1 + exp(−5(xi − 1.5))).

The shape of these fuzzy membership functions is shown
in Fig. 4.

Assuming that there are no linguistic rules, we consider
the following fuzzy rule of inference:

Rl : IF x1 is F l
1 AND x2 is F l

2 AND

. . . AND xn is F l
n THEN y is Gl.

Now we can construct the fuzzy basis vectors
φ(x), φ(x, u) as follows:

φl(x) = μF 1
1
(x1)μF 1

2
(x2)μF 1

3
(x3)μF 1

4
(x4)∑7

l=1 μF 1
1
(x1)μF 1

2
(x2)μF 1

3
(x3)μF 1

4
(x4)

, (60)

φl(x, u)

= μF 1
1
(x1)μF 1

2
(x2)μF 1

3
(x3)μF 1

4
(x4)μF 1

5
(u1)μF 1

6
(u2)∑7

l=1 μF 1
1
(x1)μF 1

2
(x2)μF 1

3
(x3)μF 1

4
(x4)μF 1

5
(u1)μF 1

6
(u2)

,

(61)

φ(x) = [φ1(x), φ2(x), . . . φ7(x)]T ,

φ(x, u) = [φ1(x, u), φ2(x, u), . . . φ7(x, u)]T .

Step 5. Using all the data from the previous steps, we can
construct the control law (27) with adaptive laws (40) and
(41). The parameters of the control and adaptive laws are
selected as follows:

α1 =9, α2 =5, h1 =100, h2 =50, η1 =η1 =1,

η11 = η22 = 0.1, η12 = 0.11, η21 = 0.21.

The initial conditions are chosen as x1(0) = x3(0) = 0.1 and
x2(0) = x4(0) = 0, and the initial conditions for the adaptive
parameters are chosen to be zero. Simulation results for
the two attenuation levels are shown in Figs. 5–13 for
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Fig. 5. (Colour online) First link position tracking with ρ = 0.2 and ρ = 0.1
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Fig. 6. (Colour online) First link angular velocity with ρ = 0.2 and ρ = 0.1.
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Fig. 7. (Colour online) First link control signal with ρ = 0.2.
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Fig. 8. (Colour online) First link control signal with ρ = 0.1.
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Fig. 9. (Colour online) Second link position tracking with ρ = 0.2 and ρ = 0.1.
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Fig. 10. (Colour online) Second link angular velocity with ρ = 0.2 and ρ = 0.1.
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Fig. 11. (Colour online) Second link control signal with ρ = 0.2.
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Fig. 12. (Colour online) Second link control signal with ρ = 0.1.
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Fig. 13. (Colour online) Integral of error
∫ t

0 ‖e(t)‖2 dt with ρ = 0.2 and ρ = 0.1.
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Fig. 14. (Colour online) First link position tracking with ρ = 0.2 and ρ = 0.1.
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Fig. 15. (Colour online) First link angular velocity with ρ = 0.2 and ρ = 0.1.
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Fig. 16. (Colour online) First link control signal with ρ = 0.2.
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Fig. 17. (Colour online) First link control signal with ρ = 0.1.
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Fig. 18. (Colour online) Second link position tracking with ρ = 0.2 and ρ = 0.1.
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Fig. 19. (Colour online) Second link angular velocity with ρ = 0.2 and ρ = 0.1.
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Fig. 20. (Colour online) Second link control signal with ρ = 0.2.
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Fig. 21. (Colour online) Second link control signal with ρ = 0.1.
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Fig. 22. (Colour online) Integral of error
∫ t

0 ‖e(t)‖2 dt with ρ = 0.2 and ρ = 0.1.

https://doi.org/10.1017/S0263574712000264 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574712000264


Extended dynamic fuzzy logic system for a class of MIMO nonlinear systems 265

ym1 = ym2 = 0.2 sin(t), and Figs. 14–22 for ym1 = ym2 =
0.15 sin(0.5t) + 0.1 sin(2t). It can be observed from the
simulation results that the proposed DFLS-based adaptive
control scheme is able to achieve excellent position tracking
performances for a two-link robotics manipulator even with
unknown model dynamics, presence of external disturbances,
and whatever be the reference trajectory. Furthermore, it
is clear that smaller the values of the attenuation level ρ,

smaller will be the tracking errors, as shown in Figs. 13 and
22. It is also clear that smaller the attenuation level, better
the attenuation in the shuttering of control signals. However,
these advantages come to the extent of the starting value of
the control signal. The starting control signal (t = 0) is higher
in this case.

6. Conclusion
In this paper, an adaptive fuzzy control scheme is developed
based on DFLS for a class of uncertain nonlinear MIMO
systems. DFLS is used to identify the unknown nonlinear
system as a whole, and an adaptive fuzzy controller is
developed from the identified model. The fuzzy control law is
robustified by an H∞ compensator to attenuate the effect of
disturbances, model uncertainties, and fuzzy approximation
errors. The design of the control scheme is developed by the
Lyapunov synthesis approach to guarantee the stability of
the overall closed-loop system. It has been shown that the
proposed approach guarantees that all signals in the closed-
loop system are uniformly bounded, and tracking errors
falls to a small neighborhood of the origin. The proposed
scheme has been successfully applied to position tracking of
a two-link robotics manipulator. Simulation results show the
effectiveness of the proposed scheme.
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