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Background. Genomewide association studies (GWASs) on antidepressant efficacy have yielded modest results. A poss-
ible reason is that response is influenced by other factors, which possibly interact with genetic variation. We used a
GWAS model to predict antidepressant response, by including predictors previously known to affect response, such
as quality of life (QoL). We also evaluated the association between genes, previously implicated in gene–environment
(G×E) interactions, and response using an enrichment analysis.

Method. We examined a sample of 1426 depressed patients from the Sequenced Treatment Alternatives to Relieve
Depression (STAR*D) trial: 774 responders, 652 non-responders and 418865 single nucleotide polymorphisms (SNPs)
were analysed. First, in a GWAS model, we investigated whether genetic variations interact with patients’ levels of
QoL to predict response, after controlling for demographic characteristics, severity and population stratification.
Second, we conducted an enrichment analysis exploring whether candidate genes that have emerged from prior G×E
interaction studies on depression are associated with treatment response.

Results. The GWAS model, with QoL as a moderator, yielded one SNP (rs520210) associated with response in
the NEDD4L gene (p=3.64×10–8). In the Caucasian sample only, we observed a drop in significance for this SNP. The
enrichment analysis showed that SNPs within serotonergic genes contained more significant markers that predicted
response, compared with a random set of genes in the genome.

Conclusions. Our findings point to possible target genes, which are proposed for further independent replication. Our
enrichment analysis provides further support, in a genomewide context, of the role of serotonergic genes in influencing
antidepressant response.
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Introduction

Major depressive disorder (MDD) is a highly recurrent
and prevalent disorder with societal costs. Despite
the increased amount of available pharmacological
treatments, many patients do not respond with the
first-line treatment, while others experience costly
delays until they find which treatment is efficacious
for them. Whereas it is estimated that about 50% of
patients with uncomplicated MDD will respond to
any single antidepressant (Papakostas & Fava, 2008,
2009), other reports show lower response rates
(Souery et al. 2007). For example, in a large, multicentre
trial, the Sequenced Treatment Alternatives to Relieve
Depression (STAR*D), approximately one in three
patients with MDD achieved remission after being

treated with the selective serotonin reuptake inhibitor
(SSRI) citalopram (Trivedi et al. 2006a).

There is substantial evidence that antidepressant
response is to a certain extent heritable (O’Reilly et al.
1994; Franchini et al. 1998). Pharmacogenetic research
seems to be a promising path toward personalized
treatment; however, the link between genetic risk
variants and response to treatment is far from direct.
To date, genomewide association studies (GWASs) on
treatment response of antidepressants (Ising et al.
2009; Garriock et al. 2010; Uher et al. 2010) provide
modest results, which do not reach genomewide sig-
nificance and are hard to replicate, thereby making
any translation into potential clinical utility difficult.
On the other hand, there is a substantial research
showing that candidate polymorphisms of target pro-
teins may be involved in antidepressant drug action
(Serretti et al. 2005; Kato & Serretti, 2010; Porcelli
et al. 2011). Environmental factors, both early and late
in life, also influence treatment response (Uher, 2011).
It has been recently observed that the same genes,
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environments, and gene–environment (G×E) inter-
actions implicated in aetiological pathways to de-
pression may also play a role in predicting treatment
response (Keers & Uher, 2012). Genetic variation, as
on the serotonin-transporter-linked polymorphic
region (5-HTTLPR) for example, may increase the
risk for MDD (Uher & McGuffin, 2010) or may lead
to a worse response to the SSRI treatment (Mandelli
et al. 2009; Keers et al. 2011) under unfavourable psy-
chosocial environmental conditions. Although there is
accumulating evidence of G×E interactions on the
aetiology of depression emerging from candidate
gene studies, statistical and methodological challenges
hinder GWASs to examine the potential moderating
role of life stressors (Khoury & Wacholder, 2009).
However, considering the complexity of the pheno-
type, it has been suggested that alternative pharma-
cogenetic study designs should be considered, in
particular those that take into account the manifold
sociodemographic and environmental variables that
make an impact on treatment response in the clinical
setting (Malhotra, 2010). Such factors may interact
with genetic variation to influence antidepressant
response. For example, the patient’s quality of life
(QoL) has been previously found to be an independent
predictor of acute antidepressant treatment response
(Pyne et al. 2001) and low QoL was associated with
lower remission scores in the STAR*D trial (Trivedi
et al. 2006a).

The aim of the present study was twofold. First, in
an attempt to improve the predictive model of treat-
ment response, we examined the possible moderating
role of the patient’s level of QoL, in a GWAS model
of treatment response to citalopram, in a large group
of depressed patients from the STAR*D trial. Other
sociodemographic and clinical characteristics, such as
age, sex and symptom severity, known to influence
response to treatment (Drago & Serretti, 2011), were
also included in the model. Second, since a number
of candidate genes have emerged from prior G×E
interaction studies on depression, we were interested
in investigating whether this specific and possibly
putative cluster of genes is likely to represent a causal
pathway in predicting treatment response. We there-
fore constructed an enrichment analysis to examine
whether those genes are associated with antidepress-
ant treatment response.

Method

Participants

The STAR*D trial has been previously described in
detail elsewhere (Fava et al. 2003; Rush et al. 2003). In
brief, we focused on data collected at level 1 of the

trial, wherein all participants were treated with citalo-
pram. Genotypic and phenotypic data are available
from the National Institute of Mental Health (NIMH)
Center for Collaborative Genetic Studies on Mental
Disorders.

Genotypic information was available for 1939
STAR*D samples. Genotyping was performed for 964
samples from the STAR*D discovery project using
the Human Mapping 500 K Array set (Affymetrix
Inc., USA). An additional 975 samples was genotyped
using the Genome-Wide Human SNP Array 5.0
(Affymetrix Inc., USA). This sample and genotyping
techniques have been described in detail by Garriock
et al. (2010). The two groups were balanced in terms
of variables such as ethnicity, sex and responders
and non-responders (Garriock et al. 2010).

Quality control was performed using PLINK v1.07
(Purcell et al. 2007). A total of 496415 markers were
initially included and the following single nucleotide
polymorphisms (SNPs) were subsequently removed:
10144 SNPs with minor allele frequencies (MAFs)
<1%; 44483 SNPs that failed the missingness per
marker test (>0.05); 23121 SNPs on the basis of the
Hardy–Weinberg equilibrium test (10×10–5); and 74
SNPs that existed in duplicate. The remaining 418865
SNPs were used for further analyses.

Population heterogeneity

The –GENOME function was used in PLINK and in-
dependence was computed by the –INDEP function on
the basis of 50 SNPs in the window, five SNP window
shift, and a variance inflation factor of 2. A total of 140
313 independent SNPs were yielded after frequency
and genotype pruning. Clusters were computed
using a forced entry of 10 clusters using the K function
in PLINK. This was done to simulate the 10 clusters
used by Garriock et al. (2010) and as previously
suggested (Price et al. 2006). Quantile–quantile (Q-Q)
plots of expected and observed p values were con-
structed for the phenotype and adjustment for clusters
significantly improved inflation (λ=1.03; for Q-Q plot,
see online Supplementary Fig. S1).

Phenotype

The phenotype was constructed on the basis of the
Garriock et al. (2010) study. In brief, the responders
group was comprised of participants that showed a
50% or greater reduction, from baseline to final visit,
in the self-report 16-item Quick Inventory of
Depressive Symptomatology (QIDS-SR). Participants
who did not meet this criterion were non-responders.
Only participants who completed a 6-week window
of treatment with citalopram were included. Due to
different versions of the data files in the STAR*D,
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in our study there were available phenotypic data
for 1947 participants; 969 showed non-response,
whereas 978 responded to antidepressant treatment.
Participants who belonged to ethnic groups that com-
prised only a small proportion of the sample were
excluded: Asian ancestry (n=21), Pacific Island ances-
try (n=10), Native American (n=16) or mixed (n=68)
or unknown (n=1). Subsequently, there were 1279
non-Hispanic Caucasians, 305 African-Americans and
247 Hispanic Caucasians available for analyses. Of
those 1831, 189 had not completed 42 days of treatment
and were excluded. Another 88 participants were
removed because they had more than 5% of their
genotypes missing; 30 participants were shown to be
cryptically related to others in the sample [assessed
using an identity by descent (IBD) >0.1875 in PLINK;
Anderson et al. 2010]. Of the remaining participants,
40 participants were coded with ambiguous sex
(genetic–clinical sex disagreement assessed in PLINK)
and therefore excluded. Covariate data, including the
QoL measurement, were not available for 64 par-
ticipants. This yielded a final sample size of 1426 par-
ticipants for analyses on the response phenotype.

Assessment of QoL and covariates

The Quality of Life Enjoyment and Satisfaction
Questionnaire was used to have an estimate of a per-
son’s functioning and QoL upon entering the trial
(Daly et al. 2010). The measure was administered
using an interactive voice response telephone inter-
view, within 72 h of the baseline visit (Daly et al.
2010). It is a self-report 16-item questionnaire, which
measures specific domains such as quality of social
relationships, living or housing situation and physical
health (Endicott et al. 1993). Each item is scored on a
five-point Likert scale (1=very poor to 5=very good)
indicating the degree of satisfaction achieved during
the past week.

Covariates

We included age and sex as covariates since socio-
demographic variables were associated with anti-
depressant response in the STAR*D (Drago &
Serretti, 2011) and it has been found that sex mediates
the effects of experimental manipulation of serotoni-
nergic levels on mood (Booij et al. 2002). Patients’
symptom severity was previously associated with
QoL levels, in the STAR*D trial (Trivedi et al. 2006b),
so we included the severity of depressive symptoms
at baseline as another covariate (continuous variable).
We also controlled for genetic stratification (population
clusters).

Statistical analysis

Part A, GWASs

(i) A genomewide interaction model was examined
in PLINK, using logistic regression, including
the –INTERACTION, and –PARAMETERS functions, with
QoL as the interaction factor and treatment
response as the outcome, while controlling for
covariates sex, age, depression severity and popu-
lation clusters. Interaction was assessed using the
additive model, and QoL was binary (median
split: high >43 v. low 443). The log odds ratio
(OR) (βGadd ×QoL) of the interaction effect was the
main outcome. This model was adopted from
Cornelis et al. (2012) who suggested that dichoto-
mizing the interaction variable results in a model
that is less subject to inflation (λ=about 1.01).
Although some information may be lost due to
this dichotomization, this saturated model may
eliminate some mis-specification under the null
hypothesis and decrease type I error (Cornelis
et al. 2012). We also run an exploratory analysis
with response as a continuous trait (percentage
change on the QIDS from baseline).

(ii) A genomewide logistic regression model on treat-
ment response, including all covariates (and QoL)
and omitting the interaction term, was tested.
This analysis was conducted in order to control
for a possible lack in reliability due to the inclusion
of the interaction term in the first model (Purcell
et al. 2007). The WGAViewer program (http://
compute1.lsrc.duke.edu/softwares/WGAViewer/)
was used for the inspection of the GWAS results
(Ge et al. 2008).

Part B, enrichment analysis

Genes were selected on the basis of their prior impli-
cation in G×E interaction studies. G×E studies were
searched via published articles and reviews in the
National Center for Biotechnology Information
(NCBI) PubMed database. Screening of the resulting
studies resulted in a list of 15 genes that have been pre-
viously examined together with environmental factors
in predicting depression status or severity, or anti-
depressant response. The list constructed for the
enrichment analysis involved the following 15 genes:
SLC6A4 (serotonin transporter); TPH1 (tryptophan
hydroxylase 1); TPH2 (tryptophan hydroxylase 2);
MAOA (monoamine oxidase A); HTR1A (serotonin
receptor 1A); HTR2A (serotonin receptor 2A); HTR2C
(serotonin receptor 2C); CRHR1 (corticotropin-
releasing hormone receptor 1); NR3C1 (glucocorticoid
receptor subfamily 3, group C, member 1); FKBP5
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(FK506 binding protein 5); BDNF (brain-derived
neurotrophic factor); SLC6A3 (dopamine transporter);
DRD2 (dopamine receptor D2); COMT (catechol-O-
methyltransferase); and GABRA2 (GABA A receptor
α2). The enrichment analysis was conducted using
the following steps. The genomic sections that con-
tained the genes were identified (PLINK annotation);
these sections were imputed (using the CEU
HapMap 1000 genomes), checked for quality (imputa-
tion quality score >0.9) and pruned (r2 >0.2); SNPs
with low MAF were excluded. Then, the association
between the phenotype and the list of SNPs (original
and imputed) harboured by those genes was tested.
From the remaining part of the genome a random
selection of variations was taken 10–5 times (the num-
ber of total SNPs being the same as in the ‘gene list
of interest’, and all of them belonging to genes ran-
domly selected throughout the genome). The associ-
ation of this random list of variations with the
phenotype was tested. Then, the number of variations
significantly (p<0.05) associated with the outcome in
the ‘gene list of interest’ and the ‘random list’ were
tested for a significant differential distribution
(Fisher’s exact test). The permuted pwas then extracted
from the 105 Fisher tests, as suggested previously
(Phipson & Smyth, 2010). Subsequently, the
GeneMANIA program (University of Toronto; http://
www.genemania.org/) was used to produce networks
of the top pathway list genes on the basis of their gen-
etic interaction, physical interaction, co-expression or
co-localization with the identified proteins, as used
by other investigators (Siddiqui et al. 2012).

Results

The GWAS analysis involved 418865 SNPs for associ-
ation with treatment response and moderation by
QoL. Of the 1426 participants included in the analysis,
774 participants were responders and 652 were non-
responders to treatment. Sociodemographic character-
istics are shown in Table 1. Responders had a lower
mean age compared with non-responders. There
were no significant sex differences on the response out-
come, although it can be observed that males were
slightly over-represented in the non-responder group
(χ21=3.47, p=0.06). QoL scores were normally distribu-
ted in the sample. In the whole sample, QoL scores
correlated with severity of depression: the higher
the symptoms, the lower the QoL (Pearson’s r=–0.54,
p<0.001). Responders were more likely to report a
higher QoL compared with non-responders (χ21=
33.26, p<0.001). Responders also had lower symptom
severity upon entering the trial (t1424 =4.51, p<0.001).
There were also differences in ethnicity between
responders and non-responders (χ22=23.92, p<0.001);

African-Americans were over-represented in the
non-responder group compared with the responder
group.

Genomewide association analysis

Genomewide interaction

The results of this model are presented in Table 2,
where p values of the interaction effect are reported.
We found one SNP (rs520210) within the NEDD4L
(neural precursor cell expressed, developmentally
down-regulated 4-like E3) gene that was associated
with treatment response. Responders were most likely
to be carriers of the minor allele (A), compared with
non-responders, especially those reporting low QoL
upon entering the trial. Visual inspection of the results
showed that for all top 10 resulting SNPs, responders
had higher frequencies of the minor allele, compared
with non-responders. Non-responders with high QoL
were more likely to have low minor allele frequencies
for the top SNPs (online Supplementary Fig. S2).
The Manhattan plot of this analysis is reported in
online Supplementary Fig. S3. For purposes of ethnic
specificity, and since African-Americans were over-
represented in the non-responder group, we repeated
the model including only Caucasian individuals. Of
the 1426 patients, 238 were excluded, who were of
African-American ancestry; this group was too small
for a separate GWAS analysis. The results in the
Caucasian sample (n=1188; 171 Hispanics included)
correlate with those of the whole sample; however,

Table 1. Sociodemographic characteristics of the sample (n=1426)

Responders
(n=774)

Non-responders
(n=652)

Sex, n (%)
Males 289 (37.3) 275 (42.2)
Females 485 (62.7) 377 (57.8)

Mean age, years (S.D.)* 42.54 (13.40) 45.02 (13.06)
Mean depressive
symptoms, QIDS (S.D.)*

14.80 (5.06) 16.01 (5.03)

QoL, n (%)*
High 451 (58.3) 280 (42.9)
Low 323 (41.7) 372 (57.1)

Ethnicity, n (%)*
White non-Hispanic 591 (76.3) 426 (65.3)
African-American 98 (12.7) 140 (21.5)
Hispanic 85 (11.0) 86 (13.2)

S.D., Standard deviation; QIDS, Quick Inventory of
Depressive Symptomatology; QoL, quality of life.
* p<0.001.
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lower significance values were noted for the top SNP
rs520210 (p=1.87×10–6). The rs520210 (NEDD4L),
rs11775176 (tumour necrosis factor receptor super-
family, member 10b; TNFRSF10B), rs156466 (inter-
genic: LOC100505738; SEMA5A), rs408465 (SLC37A1;
PDE9A) and rs11701162 (SLC37A1; PDE9A) were con-
sistently among the top 20 SNPs in both analyses
(Table 2; online Supplementary Table S1). Running
the model in Caucasians with Hispanics excluded
(n=1017), we observed that the rs12427491 (LRCH1),
rs156466 (intergenic: LOC100505738; SEMA5A) and
rs408465 (SLC37A1; PDE9A) variants were the only
ones resulting among the top 15 (online Supplemen-
tary Table S2), as in the original model with the
whole sample. The rs520210 SNP did not reach geno-
mewide significance (p=6.98×10–5), but the effect was
in the same direction with an OR of 0.79 for minor
allele carriers. Finally, in an exploratory analysis we
investigated response to treatment by using the con-
tinuous quantitative trait as an outcome, namely the
percentage change in QIDS from baseline. The
rs520210 SNP did not reach genomewide significance
(p=1.35×10–5) and it did not result among the top 15

SNPs, but the effect remained in the same direction
(online Supplementary Table S3). The top SNPs of
the latter analysis did not correlate with the ones
with response using a dichotomous outcome.

A logistic regression model on treatment response, including
all covariates

We performed another logistic regression model on
treatment response, entering the QoL factor simply as
a covariate (no interaction factor), together with the
rest of the covariates (age, sex, symptom severity,
population clusters). Results were very similar to the
interaction model: the top SNP was also rs520210
(p=7.01×10–7). The top eight SNPs of this analysis
were also found within the top SNPs of the interaction
analysis. Top SNPs for this analysis are shown in
online Supplementary Table S4, while a Manhattan
plot is shown in online Supplementary Fig. S4.
Results for the two models are very similar; however,
higher p values result from the interaction model.
From the latter regression model, we also examined
each main effect of the covariates separately, including

Table 2. Top 15 SNPs of the genomewide interaction model on citalopram treatment response

SNP Rank p CHR Position Type Allelea Closest gene
Distance
to gened ORb t

rs520210 1 3.64×10–8 18 55808073 Intron variant A NEDD4L 0 0.76 –5.51
rs4650956 2 1.05×10–7 1 176996052 Intron variant G ASTN1 0 0.77 –5.32
rs6682507 3 2.06×10–7 1 177000203 Intron variant T ASTN1 0 0.77 –5.19
rs156466 4 2.12×10–7 5 8743390 Intergenic variant G LOC100505738,

SEMA5A
291748 0.70 –5.19

rs11701162 5 3.22×10–7 21 44026143 Intergenic variant A SLC37A1; PDE9A 24593 0.76 –5.11
rs10913287 6 3.31×10–7 1 176969316 Intron variant C ASTN1 0 0.78 –5.11
rs6672689 7 4.16×10–7 1 177009394 Intron variant A ASTN1 0 0.78 –5.06
rs11775176 8 4.20×10–7 8 22893034 Intron variantc A TNFRSF10B 0 0.78 –5.06
rs408465 9 4.75×10–7 21 44006207 Intergenic variant T SLC37A1, PDE9A 4657 0.79 –5.04
rs6131468 10 4.89×10–7 20 1387687 Intergenic variant T FKBP1A, NSFL1C –13881 0.79 –5.03
rs9534442 11 9.34×10–7 13 47197754 Intron variant T LRCH1 0 0.79 –5.07
rs12427491 12 1.01×10–6 13 47205810 Intron variant T LRCH1 0 0.79 –5.06
rs4814229 13 1.01×10–6 20 1388219 Intergenic variant G FKBP1A, NSFL1C –14413 0.79 –5.05
rs10798494 14 1.07×10–6 1 176964273 Intron variant T ASTN1 0 0.79 –4.87
rs449888 15 2.27×10–6 21 44003992 Intergenic variant G SLC37A1, PDE9A 2442 0.79 –4.86

SNP, Single nucleotide polymorphism; CHR, chromosome; OR, odds ratio; NEDD4L, neural precursor cell expressed,
developmentally down-regulated 4-like E3; ASTN1, astrotactin 1; LOC100505738, uncharacterized LOC100505738;
SEMA5A, TNFRSF10B, tumour necrosis factor receptor superfamily, member 10b; SLC37A1, solute carrier family 37
(glycerol-3-phosphate transporter), member 1; PDE9A, phosphodiesterase 9A; FKBP1A, FK506 binding protein
1A; NSFL1C, NSFL1 (p97) cofactor (p47); LRCH1, leucine-rich repeats and calponin homology domain containing 1;
NMD, nonsense-mediated decay.

a Minor allele.
b Odds ratio for minor allele.
c NMD transcript variant.
d Base pairs.
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QoL. No SNP reached genomewide significance; how-
ever, QoL and population-cluster variables showed the
most significant moderations; Manhattan plots for each
covariate are presented in online Supplementary
Fig. S5.

Enrichment analysis

10×105 Fisher’s exact tests served for extrapolating the
permutated p value describing the enrichment in the
original lists of genes compared with 10×105 random
ones, with respect to the association of single SNPs
with the phenotype under analysis. Each of the
10×105 random groups was created as to meet two cri-
teria: (1) being as large as the original one (same num-
ber of SNPs); and (2) enlisting SNPs that only belong to
genes selected randomly in the genome. We found that
the number of SNPs significantly (p<0.05) associated
with the phenotype in the original list was four times
as large as what was expected by chance (21% com-
pared with 5%, permutated (105) p value: 0.01976).
Further exploration of the original gene list showed
that significant SNPs were mainly found within the
serotonergic genes (Table 3). The MAOA, GABRA2,
CREB1, CRHR1, NR3C1 and BDNF genes did not con-
tain SNPs that were significantly associated with
response. A full list of SNPs of the investigated genes
and their level of significance is reported in online
Supplementary Table S5.

The association between the genes in the form of a
biological network is presented in Fig. 1. According
to functional enrichment analysis in the GeneMANIA
program, most network genes are involved in the regu-
lation of neurotransmission and drug binding, which
appear as top functions of the network. Furthermore,
the SLC6A4, SLC6A3 and DRD2 genes are involved
in monoamine transport; the HTR2A and DRD2
genes are involved in G-protein coupled amine recep-
tor activity, and the SLC6A3 and COMT genes are
involved in the neurotransmitter biosynthetic process.
A more detailed account of the functionality of the net-
work of genes can be found in online Supplementary
Table S6.

Discussion

The present study undertook two approaches in order
to predict antidepressant treatment response. First, we
examined whether genetic variations interact with the
patients’ levels of QoL to predict antidepressant
response, after controlling for demographic character-
istics, depression severity and population stratification.
Second, we conducted an enrichment analysis, which
explored whether candidate genes (that have emerged
from prior gene–environment interaction studies) are

associated with treatment response, in a genomewide
context.

Genomewide interaction

Our model for predicting response to citalopram in the
STAR*D sample yielded interesting candidate genetic
loci. The top finding that survived genomewide signifi-
cance involves a SNP (rs520210) of the NEDD4L gene,
which has not been previously reported. We found
that responders were most likely to be carriers of the
minor allele (A), compared with non-responders,
especially those reporting low QoL upon entering the
trial. QoL probably explains a certain degree of var-
iance in treatment response, since more pronounced
genetic effects were observed in the interaction model
and since QoL was shown to be among the most (stat-
istically) relevant covariates (online Supplementary
Fig. S5). However, a lower significance level (not reach-
ing genomewide significance) was observed for the
rs520210 SNP in the analysis with the Caucasian
sample only, where it was among the top SNPs,
when Hispanics were included, and it did not result
among the top SNPs when Hispanics were excluded
(n=1017). Furthermore, few SNPs and genes were con-
sistent across all models. Decreased statistical power
due to the lower sample size could explain these dis-
crepancies; however, other factors may also play a
role. African-Americans were over-represented in the
non-responder group, which may have influenced the
results observed in the whole sample. Although stat-
istically controlled for, effects of population stratifica-
tion cannot be excluded. For this reason, we have
also reported results in Caucasians separately (see
online Supplementary Tables S1 and S2). Several
SNPs showed a trend of association in the whole
sample, but not in the smaller ethnic homogeneous
samples, whereas a number of genes or intergenic
regions (NEDD4L, LRCH1, SLC37A1, TNFRSF10B,
SEMA5A) appeared among the top hits across models.
The relative lack of consistency raises the possibility
that some observations are false positive, largely
dependent on sample size, or ethnic group, and easily
disappear when group sizes change.

Nevertheless, our analyses yielded some interesting
loci that can be further investigated in future studies.
The NEDD4L (18q21.31) gene is the gene for encoding
the ubiquitin protein ligase enzyme. Ubiquitins are
small regulatory proteins that direct protein recycling
and are then functional to the housekeeping activities
of cells. Our result is consistent with the one reported
by Garriock et al. (2010) who found another ubiquitin
E3 protein ligase (UBE3C) gene involved in antide-
pressant response in the same sample. Both genes are
involved in the ubiquitin-dependent protein catabolic
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Table 3. Significant SNPs within significant genes of the pathwaya

Gene SNP CHR Position
Major
allele

Minor
allele

Non-
responders
MAF

Responders
MAF ORb (95% CI) p

HTR2A rs9562683 13 46298746 A C 0.288 0.353 1.354 (1.155–1.588) 0.00033
rs977003 13 46313002 A C 0.465 0.526 1.278 (1.102–1.482) 0.00200
rs4942577 13 46295455 A G 0.275 0.328 0.776 (0.660–0.913) 0.00389
rs985934 13 46353726 A G 0.359 0.411 0.802 (0.689–0.934) 0.00633
rs9526245 13 46343968 G T 0.197 0.240 1.289 (1.077–1.542) 0.00868
rs2770297 13 46344666 C T 0.252 0.297 1.255 (1.063–1.482) 0.01054
rs1928040 13 46345237 A G 0.501 0.454 0.828 (0.714–0.961) 0.01852
rs1328683 13 46356875 C T 0.187 0.223 0.803 (0.668–0.965) 0.02191
rs6313 13 46367941 A G 0.423 0.378 0.830 (0.714–0.965) 0.02214
rs985933 13 46353864 A G 0.370 0.414 1.202 (1.034–1.399) 0.02470
rs6316 13 46369224 C T 0.025 0.013 0.522 (0.297–0.917) 0.02967
rs582854 13 46343878 G T 0.371 0.411 0.845 (0.725–0.984) 0.03653
rs7335733 13 46294464 G T 0.015 0.007 0.483 (0.229–1.019) 0.04095

SLC6A3 rs2550948 5 1503444 C T 0.504 0.442 0.780 (0.672–0.904) 0.00077
rs2937639 5 1496728 A G 0.475 0.424 0.811 (0.700–0.941) 0.00326
rs2937649 5 1510317 C T 0.021 0.008 0.356 (0.180–0.703) 0.00375
rs2963242 5 1490726 C T 0.028 0.012 2.345 (1.342–4.097) 0.00461
rs16877324 5 1428977 A G 0.039 0.023 1.753 (1.132–2.712) 0.01372

SLC6A4 rs8076005 17 25571336 A G 0.290 0.243 1.275 (1.079–1.506) 0.00696
TPH1 rs10832879 11 18027232 C T 0.030 0.009 3.214 (1.730–5.973) 0.00032

rs7937368 11 18030005 A T 0.475 0.423 1.232 (1.062–1.429) 0.01148
rs211135 11 17980543 A C 0.494 0.445 0.822 (0.709–0.952) 0.01172
rs1079785 11 18028849 A G 0.475 0.424 0.814 (0.702–0.944) 0.01240
rs10741734 11 18001224 A G 0.360 0.402 0.837 (0.718–0.975) 0.04109
rs1800532 11 18004392 G T 0.349 0.388 0.844 (0.725–0.984) 0.04373

TPH2 rs10879355 12 70699276 C T 0.426 0.382 1.200 (1.033–1.395) 0.01777
rs1386485 12 70698634 A C 0.440 0.396 1.200 (1.032–1.395) 0.01971
rs1386483 12 70698761 A G 0.443 0.400 0.838 (0.721–0.974) 0.02071
rs11179052 12 70698968 C T 0.404 0.364 1.187 (1.020–1.381) 0.02788
rs11179065 12 70707768 A G 0.109 0.084 0.751 (0.585–0.965) 0.04181
rs11179003 12 70629554 C T 0.048 0.034 1.461 (1.004–2.125) 0.04773

COMT rs5993889 22 18335375 G T 0.026 0.011 0.414 (0.230–0.745) 0.00336
rs9332377 22 18335692 A G 0.206 0.170 0.791 (0.654–0.957) 0.01578

FKBP5 rs16878806 6 35677097 A G 0.075 0.047 1.642 (1.201–2.244) 0.00364
rs9394312 6 35780308 C G 0.409 0.460 1.235 (1.061–1.437) 0.00600
rs1475774 6 35727532 C T 0.050 0.032 1.608 (1.101–2.348) 0.01840
rs9470056 6 35630123 A G 0.167 0.198 1.224 (1.010–1.484) 0.04310

DRD2 rs4581480 11 112829684 C T 0.189 0.147 0.738 (0.605–0.900) 0.00546
rs17529477 11 112822277 C T 0.261 0.298 0.830 (0.703–0.979) 0.01911
rs2245805 11 112795909 A C 0.310 0.269 0.821 (0.698–0.966) 0.02054
rs2002453 11 112794508 A G 0.309 0.269 0.823 (0.699–0.968) 0.02199
rs11214606 11 112815079 A G 0.035 0.052 1.505 (1.036–2.187) 0.03297
rs4421776 11 112866861 A G 0.265 0.302 1.200 (1.019–1.414) 0.03708
rs4611239 11 112869481 C T 0.266 0.302 0.838 (0.711–0.987) 0.04428

SNP, Single nucleotide polymorphism; CHR, chromosome; MAF, minor allele frequency; OR, odds ratio; CI, confidence
interval; HTR2A, serotonin receptor 2A; SLC6A3, dopamine transporter; SLC6A4, serotonin transporter; TPH1, tryptophan
hydroxylase 1; TPH2, tryptophan hydroxylase 2; COMT, catechol-O-methyltransferase; FKBP5, FK506 binding protein 5;
DRD2, dopamine receptor D2.

a Total number of SNPs examined in: HTR2A, 39; SLC6A3, 18; SLC6A4, 9; TPH1, 9; TPH2, 32; COMT, 14; FKBP5, 9; DRD2,
19. For a full list of SNPs and genes within the pathway please refer to online Supplementary Table S5.

b OR for minor allele.
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process, and inhibitor-SMAD (I-SMAD) binding.
Ubiquitin proteasome pathway components (PSMD9,
USP36) were recently observed in a pathway analysis
exploring the risk for MDD (Wong et al. 2012).
Furthermore, the area where NEDD4L is located
(namely, area 18q21–23) has been previously shown
to contain significant loci in a GWAS of bipolar II dis-
order (Nwulia et al. 2007) and in a linkage study of

bipolar I and bipolar II (Baron, 2002). In addition,
considering the role of the NEDD4L gene in processes
involving sodium imbalances, polymorphisms in
NEDD4L have been implicated extensively in hyper-
tension (Kristjansson et al. 2002; Araki et al. 2008), as
well as in treatment efficacy of β-blockers in hyperten-
sive patients (Svensson-Färbom et al. 2011). Association
between this gene and hypertension is particularly
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Fig. 1. Network of the enriched genes. Network analyses showed that the genes involved in monoamine transport and
regulation of neurotransmitter levels (DRD2, SLC6A3, SLC6A4; dopamine receptor D2, dopamine transporter, serotonin
transporter, respectively) are interrelated; HTR2A (serotonin receptor 2A) is primarily involved in drug binding modulation
and is interconnected with other serotonergic genes. MPD2, monophosphate deaminase 2; GRM2, glutamate receptor
metabotropic 2; PICK1, protein interacting with PRKCA 1; AC133561.1, uncharacterized protein; YWHAE, tyrosine
3-monooxygenase/tryptophan 5-monooxygenase activation protein, epsilon polypeptide; TPH2, tryptophan hydroxylase 2;
TPH1, tryptophan hydroxylase 1; PAH, phenylalanine hydroxylase; TH, tyrosine hydroxylase; ACT-bd, amino acid binding
ACT domain protein; FKBP5, FK506 binding protein 5; CHUK, conserved helix-loop-helix ubiquitous kinase; LRTOMT,
leucine rich transmembrane and 0-methyltransferase domain containing; COMT, catechol-O-methyltransferase; LITAF,
lipopolysaccharide-induced tumour necrosis factor (TNF) factor; COMTD1, catechol-O-methyltransferase domain containing 1.
Further functions are shown in online Supplementary Table S6. The network was designed using GeneMANIA (University of
Toronto; http://www.genemania.org/).
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interesting, since it has been recently shown that
depressed patients under serotonergic antidepressant
treatment have an increased risk of hypertension
(Licht et al. 2009). Future studies may want to further
investigate this gene in G×E models of treatment
response, with hypertension or related illness as the
‘E’ parameter.

From the top findings of the GWAS in the whole
sample, several SNPs belong to the astrotactin
(ASTN1) gene. The neuronal protein astrotactin
(ASTN1) is a well-known receptor for glial-guided
neuronal migration (Fishell & Hatten, 1991; Zheng
et al. 1996), a fundamental process in the development
of the laminar structure of cortical regions of the
brain (Wilson et al. 2010). Interestingly, a pharmaco-
genetic GWAS on antidepressant response in an
independent sample (GENome-based therapeutic
drugs for DEPression; GENDEP) located a gene
[UST (uronyl-2-sulfotransferase) gene, 6q25.1)], which
also plays a role in neuronal migration (Uher et al.
2010). The TNFRSF10B gene is another interesting
gene that resulted among the top 10 SNPs in the
whole sample and in Caucasians (including
Hispanics). This gene binds to the TRAIL protein
[tumour necrosis factor (TNF)-related apoptosis-
inducing ligand, a ligand that induces the process
of cell death], and plays a major role in the apopto-
tic process and activation of nuclear factor-κB
(NF-κB)-inducing kinase activity. NF-κB has been
reported as a mediator of stress-impaired neurogenesis
and depressive-like phenotypes (Koo et al. 2010), and
mediator of stress response (LaPlant et al. 2009), in
animal models.

Furthermore, other genes that were consistently
observed in the Caucasian, as well as in the whole,
sample were an intergenic region near SEMA5A,
which has been previously associated with autism
(Weiss et al. 2009), intergenic regions near SLC37A1
(which is a glycerol-3-phosphate transporter), and the
LRCH1 gene; the latter two genes have not been associ-
ated yet with psychiatric disorders. Finally, intergenic
variations near FKBP12 arose as promising loci.
FKBP12 is the prototype of the FKBP family and
binds immunosuppressive drugs, such as FK506 and
rapamycin (Harding et al. 1989). From the FKBP
group, FKBP5 has been previously associated with
the recurrence of depressive episodes and antidepress-
ant response in an independent study (Binder et al.
2004), and in the STAR*D trial using a candidate
gene approach (Lekman et al. 2008). Furthermore, the
FKBP5 modulated effects of childhood trauma in
predicting major depression (Appel et al. 2011;
Zimmermann et al. 2011). The FKBP5 gene was also
one of the significant genes implicated in our enrich-
ment analysis.

Enrichment

We found that serotonergic genes implicated in pre-
viously published G×E interaction studies are part of
a network, which is likely to affect antidepressant
treatment response. Variation in the HTR2A gene has
been associated with antidepressant response or
remission in a number of studies (Uher et al. 2009;
Horstmann et al. 2010; Kishi et al. 2010; Lucae et al.
2010). The HTR2A gene was previously studied in
the STAR*D sample, using a candidate gene approach,
by McMahon et al. (2006), who examined 68 candidate
genes and found significant associations with only
two intronic variants in the HTR2A and treatment
response. HTR2A influence on citalopram response
was reproduced by Paddock et al. (2007) who used a
larger STAR*D sample and examined another large
number of candidate markers. To date, several variants
within HTR2A have been proposed to affect anti-
depressant response, but failures to replicate findings
also exist (Drago et al. 2009). By using a different
methodological approach from the above studies, our
observations from the enrichment analysis further sup-
port the role of the serotonergic genes in influencing
antidepressant response to citalopram. A variant in
the TPH1 gene also showed a strong effect (OR=3.2),
which could be worthy of further investigation.
Furthermore, several significant SNPs were found
within the FKBP5 gene, which has been previously
associated with treatment outcome in depression
in two independent studies (Binder et al. 2004;
Kirchheiner et al. 2008). In the STAR*D trial, it was pre-
viously examined using a candidate gene approach
(only two SNPs) and an association was found with
remission (Lekman et al. 2008).

Challenges and limitations

Our sample size has insufficient power to detect inter-
action effects (Murcray et al. 2011). Nevertheless, we
hypothesize that by considering a multifactorial, or
more individualized, model of antidepressant re-
sponse, genetic effects may become more detectable.
There is increasing evidence emerging from GWASs
that there are no genetic variants that contribute with
a large effect (Flint & Munafo, 2013). Hence, apart
from the large sample sizes that would provide suffi-
cient power to observe small effects, designing multi-
variate models of prediction with the tools available
in each study could assist in unravelling variants of
risk (Cohen-Woods et al. 2013).

Several limitations need to be acknowledged.
A major limitation with regard to the QoL measure
is that the level of depression severity of the patient
could have biased responses and might be intertwined
with the measure itself. Exploring the relationship
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between depression severity and QoL in our sample,
we found a moderate correlation (r=0.54); hence,
approximately 29% (r2=0.29) of a patient’s QoL can
be explained by his/her levels of depressive symptoms
upon entering the trial. Consequently, we statistically
controlled for the severity of depression in our
analyses. Depression severity is an inherent part of
the disorder; in fact, we can diagnose the disorder
due to the level of severity. QoL, however, also con-
tains aspects on physical health and quality of social
relationships that could be independent of (or not
affected by) the individual’s symptomatology. This is
supported by a factor analysis on the QoL measure
showing distinct factors ‘physical health’, ‘leisure
time activities’, ‘social relationships’ and ‘subjective
feelings’, the latter being more likely to overlap with
variance explained by depressive symptoms (Ritsner
et al. 2005). Interestingly, a recent study in the
STAR*D sample showed that QoL was a factor that
contributed significantly to the patients’ Individual
Burden of Illness Index, and the variance explained
by QoL was additional to that explained by depressive
symptoms in a principal component analysis (Cohen
et al. 2013). These additional aspects (satisfaction
with work, health issues, social relationships, family
relationships, economic condition, and leisure time)
represented by the QoL measure could be considered
as ‘external’ conditions, possibly approaching a proxy
of an environmental contributor. Apart from depress-
ive symptoms, several other factors that may have
affected reports on QoL could be the duration of
the episode, education, family status and other vari-
ables. Within the STAR*D trial, factors related to QoL
have been previously examined and only age and
depression severity were shown to have an im-
portant contribution (Daly et al. 2010), both factors
being taken into account in the present analysis.
Nevertheless, future studies would benefit from more
robust and independent assessments. Ultimately, the
assessment of important environmental adversities,
such as childhood maltreatment, would be an impor-
tant step in genomewide environment interactions
(Karg & Sen, 2012), since such events play a significant
role in the onset of depression and response to treat-
ment (Uher, 2011). It would be interesting, therefore,
to explore these G×E interactions in large samples,
such as the GENDEP or MARS (Munich Antidepress-
ant Response Signature), where environmental vari-
ables may be available. Finally, other factors that are
likely to moderate the relationship between genes
and antidepressant response could not be reported.
For example, epigenetic factors possibly conceal
some important effects in such investigations and are
worthy of future research. Our study also suffers
from other limitations of the STAR*D trial, as already

reported previously (Laje et al. 2009; Garriock et al.
2010).

Our study provides new insights for interesting
genetic markers and mechanistic pathways; however,
the variance explained is still modest. In addition,
our enrichment analysis revealed that certain genes
implicated in prior G×E studies are likely to affect
antidepressant treatment response. These findings
provide further incentives for research into the mech-
anisms of the proposed gene-related proteins in
relation to antidepressant action.

Supplementary material

For supplementary material accompanying this paper
visit http://dx.doi.org/10.1017/S0033291713001554.
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