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Abstract
The multi-arm robotic systems consisting of redundant robots are able to conduct more complex and coordinated
tasks, such as manipulating large or heavy objects. The challenges of the motion planning and control for such sys-
tems mainly arise from the closed-chain constraint and redundancy resolution problem. The closed-chain constraint
reduces the configuration space to lower-dimensional subsets, making it difficult for sampling feasible configura-
tions and planning path connecting them. A global motion planner is proposed in this paper for the closed-chain
systems, and motions in different disconnected manifolds are efficiently bridged by two type regrasping moves. The
regrasping moves are automatically chosen by the planner based on cost-saving principle, which greatly improve the
success rate and efficiency. Furthermore, to obtain the optional inverse kinematic solutions satisfying joint physical
limits (e.g., joint position, velocity, acceleration limits) in the planning, the redundancy resolution problem for dual
redundant robots is converted into a unified quadratic programming problem based on the combination of two diff
erent-level optimizing criteria, i.e. the minimization velocity norm (MVN) and infinity norm torque-minimization
(INTM). The Dual-MVN-INTM scheme guarantees smooth velocity, acceleration profiles, and zero final velocity
at the end of motion. Finally, the planning results of three complex closed-chain manipulation task using two Franka
Emika Panda robots and two Kinova Jaco2 robots in both simulation and experiment demonstrate the effectiveness
and efficiency of the proposed method.

1. Introduction

Complex coordinated robotic tasks, such as moving large or heavy objects, are making multi-arm robotic
systems necessary. In addition, redundant robots are more flexible and suitable for complex tasks because
that the redundant degrees of freedom (DoFs) can be utilized to avoid joint limits or obstacles. Thus,
the multi-redundant robotic systems undoubtedly can complete complex tasks more flexibly. However,
the additional complexity leads to difficulties in planning and control, which basically boils down to the
closed kinematic chain (CKC) constraint and redundancy-resolution problem.

The greatest challenge in the planning is the CKC constraint, which reduces the system’s configura-
tion space to sub-manifolds of lower dimension [1, 2]. As a result, the probability of directly sampling
a valid configuration tends to be zero, which makes it difcult to directly utilize existing sampling-based
planners, such as PRM [3] and RRT [2]. Previous solution is projecting configurations onto the con-
straint surface [4, 5, 6, 7, 8, 9]. However, such methods introduce undesirable restrictions or computation
costs [10]. Moreover, the global path is generated only when feasible configurations can be connected
sequentially. Due to the joint limits, one configuration is only connectable to a certain set of adjacent
configurations. For a complex closed-chain task, there could be several connectable subsets, or named
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connected components (CCs) [11], between the start and the target. Most previous methods focus on
solving motion planning in a single CC for relatively simple tasks. In this paper, we solve the closed-
chain motion planning at the global level. The SE(3) object trajectory is interpolated first and dual-robot
trajectories are then computed using a proposed quadratic programs (QP) based inverse kinematic (IK)
solver. Regrasping moves, IK-switch, and Grasp-switch are integrated in a unified regrasping framework
to connect different CCs.

In order to obtain the joint trajectory of the redundant robot in the planning, the IK problem or termed
redundancy-resolution problem needed to be addressed. The traditional solution is the pseudoinverse
formulation [12]. Optimization methods, especially QP-based methods, are preferred in recent years for
their fast computation speed [13]. Many optimization criteria [14, 15, 16, 17, 18, 19, 20, 21, 22, 23] have
been proposed to obtain optional IK solutions satisfying the physical limits. Nevertheless, these methods
mainly aim at solving the redundancy resolution problem for a single robot [14, 15, 16, 17, 18, 19, 20, 21]
or simple 3D position trajectory tracking tasks using 6 DOF robots [22, 23]. In this paper, a bi-criteria
QP-based Dual-MVN-INTM scheme is proposed and integrated in the motion planning for closed-chain
manipulation task with dual-redundant robots. The results are verified on 6D end-effector trajectory
tracking tasks. The QPs of the two robots are unified into one single QP and solved by a simplified dual
neural network (DNN) efficiently. The proposed scheme can remedy the discontinuity phenomenon and
guarantee zero final velocities.

In summary, the main contributions of this paper are three-folds: 1) a global dual-redundant-robot
closed-chain motion planner is proposed to solve difficult planning tasks. IK-switch or Grasp-switch
regrasping moves are flexibly chosen to connect disconnected components. 2) A Dual-MVN-INTM
redundancy resolution scheme is presented for complex 6D trajectory tracking in the planning, which
computes the smooth joint trajectory that satisfy physical limits with a real-time speed. 3) The inte-
gration of Dual-MVN-INTM scheme for dual-redundant robots and the efficient regrasping mechanism
greatly improve the planning performance. Our planner outperforms the previous planner [11] by 27%
on success rate with a 1.78×faster speed and 56% less required regrasping moves. The remainder of this
paper is organized as follows. Section 2 discusses related works. Section 3 formulates the closed-chain
manipulation task. Section 4 illustrates the global motion planner in detail. The trajectory generation
and Dual-MVN-INTM scheme is presented in Section 5. Simulation and experiment results are given
and discussed in Section 6. Section 7 concludes this paper.

2. Related works

2.1. Motion planning for closed-chain manipulation

The motion planning problem for CKC systems is to find a path that satisfies robot limits, CKC con-
straint, and collision avoidance to connect the start and goal configuration [10]. The low dimensionality
of the constraint manifold makes this problem hard to solve [3]. Common approach for sampling valid
configurations is through projection. For instance, [5, 6] break the CKC into open sub-chains, and sample
the configuration for the active chain and compute for the passive chain under CKC constraint. However,
this approach introduces artificial singularities, and the passive chain need to be non-redundant [10].
Newton-Raphson projection method [24] iteratively reduces the projecting residual, which achieves
better success rate but slower speed. Furthermore, configurations are sampled on a tangent space of
the constraint manifold to improve projection performance in recent works [7, 8, 9]. After feasible con-
figurations are obtained, projection method [2, 25] or differential IK [5, 26] is used for local connections.
However, these methods aim to address planning in a single connected component. Global-level plan-
ning, i.e., planning paths that connect different components, is required for solving complex closed-chain
tasks. Gharbi et al. [27] solve this problem via singular configurations, but full knowledge of IK classes
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characterization is need. Koga et al. [28] first use regrasping to get away the local minimum in the ran-
domized potential field but joint limits are ignored. More recent work [11] utilizes regrasping moves
between different IKs of a same grasp pose (IK-switch) to bridge different components. Although the
result is promising, only a single grasp pose greatly limits the flexibility of manipulating objects and thus
reduces the success rate. Moreover, the planner in [11] is designed for nonredundant robots, and the IK
is obtained by closed-form solution using IK fast [29], which restricts its extension to redundant robots.
In this paper, we extend the global planner by integrating both IK-switch and Grasp-switch moves in the
planning. Our planner can flexibly choose the two approaches efficiently to improve the success rate of
planning. Furthermore, we use dual-redundant robots in view of their better efficacy and flexibility, and
the IKs that satisfy joint limits are obtained by a proposed QP-based IK solver quickly.

There exist more recent works solving motion planning of multi-arm robot systems. Preda et al. [30]
develop a motion planning architecture for dual-arm surgical robot completing a suturing task. Xu et al.
[31] present a coordinated motion planning approach for a dual-arm space robot capturing the target.
However, both suturing task in [30] and capturing task in [31] involve separate motions for the two
arms only, and thus closed-chain motions are not considered. Similar problem exists in [32], where
the authors use a dual-arm robot to perform human-demonstrated tasks without closed-chain motions.
Optimization-based approaches are also proposed to address motion planning with closed kinematics.
For example, the planning problem is formulated and solved as an optimization problem in [33] and
[34], but these methods lack the ability to solve planning at a global level. A recent interesting work
presented in [35] utilizes grasp-hold changes to address human-robot collaboration tasks (joint actions
for rotating the object), where the key is adapting motions according to the partner’s intension. Whereas
we use grasp changes to bridge different constraint components in the global dual-robot closed-chain
motion planning, which results in an improved planning performance.

2.2. Inverse kinematics (redundancy resolution) of redundant robot

A fundamental issue in motion planning and control of redundant robots is the IK (redundancy res-
olution) problem, since that infinite IK solutions exist due to the redundancy [13, 36]. Conventional
solution is the pseudo-inverse-based formulation. However, the computation is time consuming, and
joint inequality constraints are difficult to be formulated [24]. Therefore, to overcome the shortcomings,
many works formulate the redundancy resolution as a QP problem built on different optimization cri-
teria, such as minimum velocity norm (MVN) [14], infinity norm velocity minimization (INVM) [37],
minimum acceleration norm [38], infinity-norm acceleration minimization (INAM) [39], infinity-norm
torque minimization (INTM) [40], and so on. In order to meet multiple requirements in more complex
applications, multi-criteria optimization methods that combine different schemes are proposed, such as
MVN-INVM [41], bi-criteria torque optimization [18], two-infinity norm switching [42], MVN-MTN
[16], and bi-criteria pseudoinverse minimization [43]. However, although proved effective in simple
tasks using a single manipulator, these methods lack the ability to solve the multi-robot planning and
control problem. Some recent works consider the coordination motion of dual-redundant-robot [22, 23],
but their methods are only designed for predefined 3D position trajectory tracking tasks using two 6 DoF
robots in a simulation environment. As a contrast, optimization-based redundancy resolution for dual-
robot in random 6D motion planning is rarely studied. In this paper, in order to make a more effective
utilization of input power in the 6D manipulation task of large object and remedy joint torque insta-
bility of INTM, two QPs for two robots are formulated combining MVN and INTM scheme, which
is further unified into one QP for simultaneous control of dual arms. Our optimization scheme, termed
Dual-MVN-INTM, is organically integrated in the closed-chain motion planning and guarantees smooth
planned joint trajectories that satisfy joint limits. Escande et al. [44] present a hierarchical QP solution for
generating humanoid-robot motions with both equality and inequality constraints considered. However,
the start and target configurations can be locally connected in their close-chain task, which means their
method is probably not suitable for the global-level tasks discussed in this paper.
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Figure 1. A CKC system consisting of two redundant robots and an object, where {L} and {R} denote
the base frame of the left robot and right robot, respectively, {W} denotes the world frame, and {obj}
denotes the object frame.

The formulated QPs that subject to both robot equality and inequality constraints are complicated and
large-scale, which makes it difficult and inefficient for traditional numerical QP solvers to solve [13, 18].
Therefore, recurrent neural networks (RNNs) are widely applied due to their efficient parallel compu-
tational nature [13]. Different types of RNNs that enable real-time applications are utilized to solve
the QP-formed IK problem, such as the Lagrangian neural network (LNN) [45], the primal-dual neural
network (PDNN) [46], the DNN [47], linear variational inequalities-based PDNN (LVI-PDNN) [19],
simplified LVI-PDNN (S-LVI-PDNN) [22], and simplified DNN (S-DNN) [18]. Among these RNNs,
DNN uses the dual decision variables only and directly uses Karush-Kuhn-Tucker (KKT) condition [48]
and projection operator to reduce network complexity and increase efficiency. S-DNN further reduces
the complexity of DNN while preserves the desirable convergence property. Thus, we formulate an
S-DNN model in this paper for the real-time solving of our Dual-MVN-INTM scheme, which makes
sure the computation efficiency of our method.

3. Closed-chain manipulation task modeling

In this section, we formulate the motion planning problem of closed-chain systems. Moreover, we
present two regrasping moves, i.e., IK-switch and Grasp-switch, to efficiently and flexibly connect con-
straint components caused by the closed-chain constraint, such that the global motion planning can be
addressed.

3.1. Motion planning problem of closed-chain systems

Consider a CKC system (Fig. 1) consisting of two redundant robots and a moveable object. Let Ci
robot ⊆

R
ni denote the configuration space of the ith robot, where ni is the number of DoF. If consider the

position and orientation of the end-effector, the dimension of task space m = 6, and the redundancy for
a 7 DoF robot is 1. Let Cobj ⊆ SE (3) be the object’s configuration space, then the system’s composite
configuration space can be expressed as Ccomposite = Co

robot × C1
robot × Cobj. A composite configuration

is denoted as c = (θo, θ1, Tobj) ∈ Ccomposite , where θi ∈ Ci
robot is the configuration of the ith robot, and

Tobj ∈ Cobj is the configuration of the object.
The CKC is formed when two robots manipulating a single object and can be expressed as nonlinear

equations g(c) = 0. Hence, the set of all composite configurations that satisfy CKC is a subset Ccc:

Ccc = {c|c ∈ Ccomposite, g(c) = 0} (1)
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Figure 2. Start and goal configurations in two CKC motion planning problems. (a, c) : Start configura-
tions. (b, d) : Goal configurations. There are no continuous feasible paths without breaking the closed
chains.

Note that in this case, the grasping pose TGrasp of the robots, i.e., the relative transformations between
the robot end-effectors and the object, can be uniquely determined by the composite configuration c:

TGraspi = Tobj,efi = T−1
obj · Tefi (θi) (2)

where Tefi (θi) is the transformation of the ith robot’s end-effector. Define a projection f :Ccomposite → Cobj
that maps composite configurations to object configurations, such that given c = (θo, θ1, Tobj), f (c) =
Tobj. Moreover, let Cb ⊂ Ccomposite denote the restricted region due to obstacles and joint position limits,
then the free configuration space can be expressed as Cfree = Ccomposite\Cb. Accordingly, the set of feasi-
ble composite configurations that respect the CKC constraint, joint position limits, and are collision-free
can be defined as

Cfeasible = {c|c ∈ Ccc ∩ Cfree} (3)

With the definitions determined above, the motion planning problem of a CKC system can be described
as follows. Given a start composite configuration cstart ∈ Cfeasible and a goal object configuration Tobjgoa1 ∈
Cobj, find a continuous path P:[0, 1] → Cfeasible such that P(0) = cstart , f (P(1)) = Tobj.

3.2. Constraint manifolds and regrasping moves

The CKC constraint reduces the composite configuration space to a lower-dimensional constraint man-
ifold in the ambient space. Due to the physical limits, the robots sometimes cannot move from one
configuration to the next one while satisfying the CKC constraint. Thus, the definition of essentially
mutually disconnected (EMD) [11] is introduced: Given a composite configuration c ∈ Cfeasible, the set
of all feasible configurations that can be reached from c by continuous and feasible paths is referred
to as the connected component S(c) . Two component components, S(c1) and S(c2) , are EMD if they
are indeed disconnected (S(c1) ∩ S(c2) = Ø) or they could not be connected in a reasonable amount of
time. For the planning queries shown in Fig. 2, the components containing the start and the goal are
disconnected, thus the system cannot realize the required motion without breaking the CKC.

The key of solving the planning at global level is how to plan motions crossing different EMD com-
ponents. As shown in Fig. 3, there exists two ways to connect different EMD components: a. IK- switch:
regrasping moves between different IK solutions of a same grasping pose. b. Grasp-switch: regrasping
moves between different grasping poses for the object. Different IK solutions or grasping poses can cor-
respond to different EMD components, hence the conversion between different IK solutions or grasping
poses can realize the required connection. However, for a specific object configuration, IK solving may
fail due to the limits such as obstacle avoidance or robot physical limits. In this case, the Grasp-switch
method and the utilization of redundant robots become necessary. In addition, Grasp-switch can also be
an optional choice for more flexible connections of EMDs in the planning. Therefore, the two methods
are integrated into a unified regrasping framework, more details are introduced in Section 4.3.
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Figure 3. Connecting different EMD components using IK-switch moves and Grasp-switch moves.

4. Global motion planning for closed-chain manipulation

In this section, we illustrate the proposed global closed-chain motion planner. The brief overview of
the algorithm is given first. Then the two stages of the planner, i.e., closed-chain motion planning and
regrasping motion planning are presented in details. The closed-chain motions generated by the first
stage are flexibly connected by IK-switch or grasp-switch moves to solve the task.

4.1. Overview of planning algorithm

The planner follows the classical sampling-based RRT architecture. As shown in Fig. 3, in the first stage
(Section 4.2), the planer samples and plans the SE(3) path for the object, and the object trajectory is
computed via Quintic Polynomial Interpolation (Section 5.1). The QP-based differential IK algorithm
(Section 5.2) is then used to map the SE(3) trajectory to the joint space quickly. When the IK solution
fails at some SE(3) configurations due to the CKC constraint, the planner computes the valid regrasping
configuration for IK-switch or Grasp-switch moves at these nodes. The output of the first stage will be
several closed-chain motion segments with regrasping requests. The second stage of the planner (Section
4.3) deals with these requests and connects the motion segments via IK-switch or Grasp-switch moves
to generate the global trajectory.

4.2. Closed-chain motion planning

Different from [11] that only a single grasp pose is utilized, for the start configuration cstart and the object
goal configuration Tgoa1, the goal configuration cgoa1 is computed using the grasp pose of the last node
in this paper. The Graspit! simulator is used to generate valid grasp poses for a certain manipulation
object, and the top ranked m grasps are saved in a predefined grasp pose list Grasplist (4) after testing
and selecting.

Grasplist = [[T0
Grasp0

, T0
Grasp1

], · · · , [Tm−1
Grasp0

, Tm−1
Grasp1

]] (4)

The pseudo-code of the closed-chain planning algorithm is shown in Algorithm 1. The algorithm takes
the initial nodeVstart and the target nodeVgoa1 as root nodes to grow the forward tree Tf . and the backward
tree Tb, where Vstart and Vgoa1 are endowed with the initial grasping pose Grasplist [0]. Brief descriptions
of some key functions in Algorithm 1 are given below.
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• SampleSE3Config() This function samples the object configuration Trand = (R, p) in SE(3), where R
is uniformly sampled in SO (3), and p is uniformly sampled within a allowed range for the task.

• Extend() This function expands Tf toward Trand and generates new nodes. In Algorithm 2,
NearestNeighbor() searches over all nodes in Tf and finds the node with an object configuration near-
est to Trand and a regrasping number less than Rmax. For T0 = (R0, p0) and T1 = (R1, p1) , the minimal
distance between R0 and R1 in SO (3) is the Euclidean length ‖r‖, where

[r] = log (RT
0 R1) (5)

[r] denotes the skew-symmetric of r ∈R
3. The distance between T0 and T1 in SE(3) is then defined as

the combination of ‖r‖ and the Euclidean distance between the translation vectors:

d = (‖r‖2 + ‖p0 − p1‖2)1/2 (6)

NewSE3Config() generates the new object configuration at a predetermined step size in the direc-
tion from f (Vnear.c) to Trand. InterpolateSE3Traj() interpolates a collision-free object SE(3) trajectory
PSE3 connecting f (Vnear.c) and Tnew, then ComputeCTraj() is called to compute a closed-chain com-
posite trajectory Pcomposite tracking PSE3. When the end of Pcomposite needs regrasping, the regrasping
configuration is assigned to Vnew. Finally, Vnew is added to the tree Tf .

• Connect() This function tries to connect the two trees via Vnew and returns the connected trajectory
Pconnect. The procedure is similar with the function Extend() and shown in Algorithm 3. The difference
is that the extend goal is the given node instead of a new sampled one.

• InterpolateSE3Traj() This function computes a smooth SE(3) trajectory connecting the object config-
uration f (Vnem.c) and Tnew. Details are illustrated in Section 5.1.

• ComputeCTraj(): As shown in Algorithm 4, this function computes the closed-chain composite tra-
jectory Pcomposite to track PSE3. DifferentialIK() (Section 5.2) is called to compute the IK solutions for
dual redundant robots following PSE3. When the IK solution fails at certain Tobj, GetRegraspConfig()
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.

is used to compute the valid regrasping configuration. The final output of ComputeCTraj() will be the
trajectory starting from Vstart and following longest possible along PSE3.

4.3. Regrasping motion planning

When the first stage successfully connects Tf and Tb, and returns the trajectory Pconnect, the global path
is found. At this point, the algorithm turns to plan the regrasping motion for the nodes with regrasp-
ing requests. The whole regrasping process is divided into three stages: a). Two robots transfer the
object from the current configuration Tcur to the placement configuration Tplace. b). The robot that needs
regrasping performs the regrasping motion. c). Two robots move the object back to Tcur. The pseudo-code
is shown in Algorithm 5. Some key functions are briefly described as follows.

• ExtractGlobalVertices(): Starting from the intersection node of Tf and Tb, this function extracts the
parent node of the node until Vstart and Vgoa1, and finally returns all nodes in the global path.
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• SamplePlacementConfig(): This function samples a valid placement configuration Tplace that close
to the object configuration f (VC), which depends on the environment and is similar to the one
in [11].

• ComputeCTraj(): In stage a), this function computes the closed-chain trajectory Pbefore from current
configuration f (VC) to Tplace. The grasping poses are set to the ones corresponding to the current
node’s parent node. In stage c), the grasping poses are same with the current node (has been changed
by GetRegraspConfig() ). The returned trajectory moves the object from f (VC) to Tplace, then the order
of the path points is reversed to get the correct trajectory (from Tplace to f (VC) ).

• GetRegraspConfig(): This function is the key of integrating both IK-switch and Grasp-switch into
a unified regrasping framework. As shown in Algorithm 6, when regrasping is needed, it first tries
to compute the regrasping configuration using IK-switch (with the grasping poses unchanged), then
the grasping pose is changed to each one in Grasplist in turn. The configuration farthest from the
joint position limits is selected. All the configurations corresponding to IK-switch and Grasp-switch
are compared and the one closest to the original configuration is chosen as the regrasping config-
uration. Finally, the regrasping configuration, the regrasping type, and the grasping pose index are
returned.

• BiRRT() In stage c), this function plans the regrasping path. The start point is the robot con-
figuration the end of Pbefore, and the goal is the robot configuration corresponding to the start
of Pafter.

5. Trajectory generation for dual redundant robot

In this section, we illustrate details of trajectory generation in the planning. The 6D SE(3) trajectory
is first interpolated using quintic polynomial interpolation for both rotation part and translation part.
Then we present the Dual-MVN-INTM scheme to convert the SE(3) trajectory to the joint space for
both redundant robots. Two QPs are formulated, unified, and solved to obtain smooth joint trajectories
that satisfy robot physical limits with a real-time speed.
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5.1. Trajectory interpolation in SE(3)

The rotational motion and translation motion are decoupled in the interpolation. For the rotation part,
for two rotation matrices Ro, Rf ∈ SO(3), the corresponding angular velocity vectors ω0,ωf ∈R

3 and the
angular acceleration vectors ω̇o, ω̇f ∈R

3, the smooth trajectory [R(t)]t∈[o,tf ] in SO(3) connecting Ro and
Rf is computed through quintic polynomial interpolation for the axis-angle

R(t) = R0e[r], r =
5∑

i=0

aiti (7)

where a0, a1, a2, a3, a4, a5 ∈R
3 are constant vectors and can be computed through the following

boundary conditions
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r0 = a0 = 03×1

rf = a0 + a1tf + a2t2
f + a3t3

f + a4t4
f + a5t5

f

ṙ0 = a1 =ω0

ṙf = a1 + 2a2tf + 3a3t2
f + 4a4t3

f + 5a5t4
f =Λ−1(rf )ωf

r̈0 = 2a2 = ω̇0

r̈f = 2a2 + 6a3tf + 12a4t2
f + 20a5t3

f =Λ−1(rf )(ω̇f −Ω(rf , ṙf )) (8)
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The exponential coordinates rf , the matrix �, and the vector � can be computed as follows

[rf ] = log (RT
0 Rf ) (9)

Λ(r) = I − 1 − cos ||r||
||r||2 [r] + ||r|| − sin ||r||

||r||3 [r]2 (10)

Ω(r, ṙ) = ‖r‖ − sin‖r‖
‖r‖3 ṙ × (r × ṙ) − 2 cos‖r‖ + ‖r‖ sin‖r‖ − 2

‖r‖4 r	ṙ(r × ṙ)

+ 3 sin‖r‖ − ‖r‖ cos‖r‖ − 2‖r‖
‖r‖5 r	r(r × (r × ṙ)) (11)

For the translation part, given the translation vectors p0, pf ∈R
3, the linear velocity vectors v0, vf ∈R

3

and the linear acceleration vectors v̇o, v̇f ∈R
3, a quintic polynomial is used to interpolate the position

trajectory [p(t)]t∈[0,tf ] between p0 and pf :

p(t)t∈[0,tf ] =
5∑

i=0

kiti (12)

Similar with the rotation part, the coefficients k5, k4, k3, k2, k1, ko can be computed by the boundary
condition p(t) = pt , v(t) = vt , v̇(t) = v̇t , t = 0, tf . As shown in Section 6.2, such interpolation method has
many advantages. First, decoupling the rotational motion from the translational motion yields a straight-
line motion in Cartesian space, where the frame origin follows a straight line while the axis of rotation
is constant in the body frame. Second, the interpolated trajectory is short and smooth, and the start and
final velocity and acceleration conditions can be considered. Finally, the first and second derivatives are
smooth and easy to compute.
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Figure 4. System structure of Dual-MVN-INTM scheme for the dual-redundant robot.

5.2. Quadratic program-based redundant resolution

To minimize the input power of redundant robots in the large object manipulation task, the joint torque
minimization criteria are used for the redundancy resolution. And to remedy the joint torque instability
and divergence phenomenon exists in the INTM scheme, a Dual-MVN-INTM different-level minimiza-
tion scheme is proposed in this paper. As shown in Fig. 4, MVN scheme and INTM scheme are integrated
via a weighting factor in the form of a QP for each robot, then the two QPs are unified into a standard
QP and formulated to an S-DNN model for fast solving. Note that the proposed scheme is solved at
acceleration level with joint position, velocity, and acceleration limits considered.

Given an end-effector trajectory in terms of position, orientation and velocity, acceleration twist,
and the joint acceleration θ̈ (t) computed through Dual-MVN-INTM scheme, suppose the initial joint
position and velocity θ (0), θ̇ (0) is known, joint positions can then be computed by Euler integration:

θ (tk+1) = θ (tk) + θ̇ (tk)Δt (13)

θ̇ (tk+1) = θ̇(tk) + θ̈ (tk)Δt (14)

5.2.1. QP formulation and unification
For an n DoF robot, the relationship between the end-effector velocity twist Vb = [ωb, νb] ∈R

6 in the
end-effector (or body) frame and the joint velocity θ̇ ∈R

n can be expressed as

Vb = Jb(θ )θ̇ (15)

where Jb(θ ) ∈R
m×n is the Jacobian expressed in end-effector frame. Note that V , J are used to replace

Vb, Jb for simplicity in remainder of this paper.
Take the derivative of (15) with respect to time t:

J(θ )θ̈ = V̇ − J̇(θ )θ̇ = V̇τ (16)

Without considering the friction force at the joint, the dynamic equation of the n DOF robot is

τ = M(θ )θ̈ + c(θ , θ̇ ) + g(θ ) (17)

where M(θ ) ∈R
n×n is the symmetric positive-definite mass matrix, c(θ , θ̇ ) ∈R

n is a vector of Coriolis
and centripetal torques, and g(θ ) ∈R

n is a vector of gravitational torques.
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The bi-criteria scheme that combined MVN and INTM for a single robot can be formulated as:

min
θ̇ ,τ

1
2
{α||θ̇ ||22 + (1 − α)||τ ||2∞}

s.t. J(θ )θ̈ = V̇τ
τ = M(θ )θ̈ + c(θ , θ̇ ) + g(θ )

θ− � θ � θ+

θ̇− � θ̇ � θ̇+

θ̈− � θ̈ � θ̈+ (18)

where ‖ · ‖2 and ‖ · ‖∞ represent the two-norm and infinity-norm of a vector. α ∈ [0, 1] is the weighting
factor to balance the two schemes. θ+, θ̇+, θ̈+ ∈R

n and θ−, θ̇−, θ̈− ∈R
n denote the upper and lower

limits of joint position, velocity, and acceleration, respectively.
The MVN-INTM scheme is built on different levels (velocity and torque). To solve the optimization

problem at the same level, the MVN scheme and INTM scheme are unified at the acceleration level. More
precisely, the velocity-level minimization of||θ̇ ||22/2 is approximately equivalent to the minimization of
θ̈Tθ̈/2 + λθ̇T θ̈ [17], where λ> 0 ∈ R should be set as large as the robot system would permit. The
torque-level minimization of (1 − α)||τ ||2∞/2 is equivalent to the minimization of (1 − α)s2/2 [15],
where s = ‖T ‖∞, such that [

M −17×1

−M −17×1

] [
θ̈

s

]
�

[−c − g

c + g

]
(19)

To solve the MVN-INTM scheme at acceleration level, the joint position and velocity limits should also
be converted in the form of joint acceleration [38]:

η− � θ̈ � η+ (20)

where the ith element of the new upper and lower bound constraints are

η−
i = max{κp(μθ−

i − θi), κv(θ̇−
i − θ̇i), θ̈−

i }
η+

i = min{κp(μθ+
i − θi), κv(θ̇+

i − θ̇i), θ̈+
i }, 0<μ< 1, κp > 0, κv > 0

When the joints enter into the dangerous zone [θ−,μθ−] and [μθ+, θ+], the adjustment coefcient κp
prevents the joints from getting closer to the limits. Coefcients κp > 0, κv > 0 determine the deceleration
magnitude and should be selected such that the feasible region of θ̈ converted by the joint position
and velocity limits is not smaller than the original one. However, without elaborate selection of the
coefficients in practice, such conversion may encounter the phenomenon that the converted lower bounds
are beyond the converted upper bounds. Therefore, modifications have been made to the aforementioned
conversion in this paper to make it more robust for different robots:

η−
i = min{max{κp(μθ−

i − θi), κv(θ̇−
i − θ̇i), θ̈−

i }, θ̈+
i } (21)

η+
i = max{min{κp(μθ+

i − θi), κv(θ̇+
i − θ̇i), θ̈+

i }, θ̈−
i } (22)

With the conversions made above, by defining the decision variable x = [θ̈T , s]T ∈ Rn+1, the MVN-
INTM scheme for a single robot can be expressed as the following QP :

min
x

xT Qx/2 + pT x
s.t. Ax = b

Cx � d
x− � x � x+

(23)
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where the coefficient matrices and vector are defined as

Q =
[
αI 0

0 (1− α)

]
∈ R(n+1)×(n+1), p =

[
αλθ̇

0

]
∈ Rn+1

A = [J 0] ∈ Rm×(n+1), b = V̇τ ∈ Rm

C =
[

M −1n×1

−M −1n×1

]
∈ R2n×(n+1), d =

[−c − g
c + g

]
∈ R2n

x− = [η−, 0]T ∈ Rn+1, x+ = [η+, w]T ∈ Rn+1, here w is a large constant used to replace +∞. In order
to improve the computational efficiency, by defining the decision variable u = [xL, xR]T , the two QPs of
left and right robot can be unified into a standard QP:

min
u

uT Wu/2 + PT u
s.t. Eu = f

Gu � h
u− � u � u+

(24)

where the coefficient matrices and vector are defined as

W =
[

QL 0

0 QR

]
∈ R2(n+1)×2(n+1), P =

[
pL

pR

]
∈ R2(n+1)

E =
[

AL 0

0 AR

]
∈ R2m×2(n+1), f =

[
bL

bR

]
∈ R2m G =

[
CL 0

0 CR

]
∈ R4n×2(n+1), h =

[
dL

dR

]
∈ R4n

u− =
[

x−
L

x−
R

]
∈ R2(n+1), u+ =

[
x+

L

x+
R

]
∈ R2(n+1)

coefficient matrices and variables QL/R, pL/R, AL/R, bL/R, CL/R, dL/R x−
L/R, x+

L/R are the same as those
defined in (23), and the subscript L, R correspond to left and right robot, respectively.

5.2.2. QP solver based on simplified dual neural network
At this point, the IK problem of dual-redundant-robot is transformed into a unified time-varying QP
problem. The matrix W is positive definite, so the objective function in (24) is strictly convex. And the
feasible region of the constraints in (24) is a closed convex set. Therefore, the optimal solution of the QP
problem (24) is unique and satisfies the KKT conditions [48]. Since traditional numerical QP solver is
inefficient for solving of the large-scale QP-formed IK like (24) [13], many researchers use the parallel
computational RNNs instead for real-time computations [13, 14, 15, 16, 17, 18, 19]. In this paper, in
order to solve our Dual-MVN-INTM scheme in real time, we formulate (24) into an architecture-efficient
RNN model S-DNN [18], which further reduces the compute complexity than DNN while preserving
the desirable convergence property.

By defining K: = [G, I]T ∈ R(6n+2)×(2n+2), ζ− = [ − ∞, u−]T ∈ R6n+2, ζ+ = [h, u+]T ∈ R6n+2 the
inequality constraints in (24) can be reformulated as

ζ− � Ku � ζ+ (25)

Consider (24) as the primal problem P and D as its dual problem. The Lagrangian function of P is

L(u, λ, ν) = uT Wu/2 + gT u + λT
1 (ζ− − Ku) + λT

2 (Ku − ζ+) + νT (Eu − f ) (26)

where λ1, λ2 ∈R
p is the dual variables for the inequality constraints, ν ∈R

m is the dual variable for the
equality constraints. According to KKT conditions, if u∗ is the optimal solution of P, and (λ∗

1, λ∗
2, ν∗)
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is the optimal solution of D, then (u∗, λ∗
1, λ∗

2, ν∗) should satisfy

Wu + P + ETν − KTλ1 + KTλ2 = 0 (27)

Eu = f (28)

ζ− � Ku � ζ+ (29)

λ1, λ2 � 0 (30)

λT
1 (ζ− − Ku) = λT

2 (Ku − ζ+) = 0 (31)

Define ψ = λ1 − λ2, then the constraints (29)∼(31) are equivalent to

Ku = g(Ku −ψ) (32)

where gi(vi) =
⎧⎨
⎩
ζ−

i if vi < ζ
−
i

vi if ζ−
i ≤ vi ≤ ζ+

i , i = 1, ..., p
ζ+

i if vi < ζ
+
i

Since W is invertible, (27) can be reformulated as

u = −W−1(P + ETν − KTψ) (33)

Substituting (33) into (28) yields

EW−1(P + ETν − KTψ) = −f (34)

Because EW−1ET is invertible, ν can be expressed by ψ :

ν = −(EW−1ET )−1(f + EW−1P − EW−1KTψ) (35)

Substituting (35) into (33) yields

u = ( − W−1ET (EW−1ET )−1EW−1 + W−1)(KTψ − P)

+ W−1ET (EW−1ET )−1f (36)

Since W is symmetric, by defining T = W−1ET and J = T (TT WT )−1, (36) can be reformulated as

u = ( − JTT + W−1)(KTψ − P) + Jf (37)

Therefore, the optimal solution to the primal problem P is equivalent to the solution to (32) and (37),
which yield a S-DNN model [18] whose governing differential and output equations are

ψ̇ = ε(K(JTT − W−1)(KTψ − P) − KT Jf )

+ εg(K( − JTT + W−1)(KTψ − P) + KT Jf −ψ)

u = ( − JTT + W−1)(KTψ − P) + Jf (38)

where ε is the positive scaling parameter to control the convergence rate of the neural network.
The S-DNN defined by (38) is composed of only one layer of 6n + 2 neurons (number of inequality

constraints), which is much fewer than 6n + 2m + 2 neurons of the DNN, 18n + 2m + 8 neurons of
LNN, and 10n + 2m + 2 neurons of PDNN for solving the same QP (24). As shown in the experiments,
the formulated S-DNN model converges within less than 5 × 10−6s, which is very fast for computing
the required IK solutions.

6. Experiment

In order to illustrate our algorithm’s effectiveness and applicability, we design three difficult manipu-
lation tasks involving two different kinds of robots and three manipulation objects. We first illustrate
the experiment set-up and descriptions of three tasks in Section 6.1. In Section 6.2, one segment of the
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closed-chain motion in Task 1 is taken as an example to show the process and result of SE(3) trajectory
interpolation. Then the proposed Dual-MVN-INTM scheme is used to convert the SE(3) trajectory to
the joint space for both robots in Section 6.3. The results are further analyzed and compared to other
IK algorithms. Section 6.4 shows the simulated planning results of all three tasks, where our planner
and the planner in [11] are compared in term of planning success rate, required regrasping amount, and
planning time. In Section 6.5, we implement a physical experiment to demonstrate the effectiveness in
real world by solving one task with two 7 DoF Kinova Jaco2 robot.

6.1. Experiment set-up and task description

As shown in Fig. 2, the experiment platform consists of two 7 DOF robots and a manipulated object.
The motion planner is implemented in Python and the QP-based IK solver was integrated as subfunc-
tions. The collision checking is implemented using FCL [49]. All tasks were simulated on OpenRAVE
[29] and run on a PC platform with a 3. 6GHz Intel Core i7-9700K CPU. Two different kinds of robots-
7DoF Franka Emika Panda (Panda) and 7 DoF Kinova Jaco2 (Jaco2) are used. Each robot is equipped
with a parallel gripper, which can provide a clamping force ranging from 40N to 140N. The distance
between robot bases is set to 1.6 m. Three objects, including a 40 cm × 40cm × 37 cm square table, a
56 cm × 44cm × 50 cm stool, and a 43 cm × 22cm × 43 cm book shelf, are manipulated in three
different tasks.

In Task 1, two Panda robots are required to transfer and turn the square table upside down (Fig. 11).
In Task 2, the stool is moved and flipped back and forth by two Panda robots (Fig. 12). Task 3 is similar
with Taskl, where two Jaco2 robots are required to transfer and reverse the book shelf (Fig. 13). Our
planner is used in all these tasks to plan smooth global composite trajectories. The initial configurations
and corresponding target configurations are essentially mutually disconnected, which makes these three
tasks difficult and unsolvable for local planners.

6.2. SE(3) trajectory interpolation

Take a segment of the closed-chain motion in Task 1 as an example, we first show the process and result
of SE (3) trajectory interpolation. Tobj0, Tobj1 ∈ SE(3) are the start and the end configurations of this
segment, and TGraspl , TGraspr are the corresponding grasping poses of the left and the right robot. For
the left robot, the start configuration Tl0 = (Rl0, pl0) ∈ SE(3) and the end configuration Tl1 = (Rl1, pl1) ∈
SE(3) of the end-effector expressed in the coordinate frame {L〉 can be computed through the closed-
chain constraint. The time duration of this trajectory tf = 1.5s. The start and end velocity twists V0, V1 ∈
R

6, and the start and end acceleration twist V̇0, V̇1 ∈R
6 expressed in end-effector frame are set to zero:

V0 = (ω0, v0) = 06×1, V1 = (ω1, v1) = 06×1

V̇0 = (ω̇0, v̇0) = 06×1, V̇1 = (ω̇1, v̇1) = 06×1

We interpolate the SO(3) trajectory between R0 and R1 according to (7)

Rl(t) = Rl0e[a5t5+a4t4+a3t3+a2t2+a1t+a0], t ∈ [0, tf ]

Then we interpolate the translational trajectory between p0 and p1 according to (12)

pl(t) = k5t5 + k4t4 + k3t3 + k2t2 + k1t + k0, t ∈ [0, tf ]

So far, the SE(3) trajectory (Rl(t), pl(t)), t ∈ [0, tf ] of the left robot end-effector is ready, and the corre-
sponding velocity and acceleration twists Vl(t), V̇l(t) expressed in the end-effector coordinate frame can
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Figure 5. Interpolated SE(3) trajectories for two robots. (a)-(d) are for the left robot and (e)-(h) are for
the right robot. (a) and (e) are end-effector motions in Cartesian space. (b) and (f) are SE(3) configu-
ration profiles, where the orientations are denoted as axis angles. (c) and (g) are velocity profiles. (d)
and (h) are acceleration profiles.

be computed as follows:

Vl(t) =
[

wl(t)
vl(t)

]
=

[
Λ(r(t))ṙ(t)
RT (t)ṗ(t)

]

V̇l(t) =
[

ẇl(t)
v̇l(t)

]
=

[
Λ(r(t))r̈(t) +Ω(r, ṙ)
ṘT (t)ṗ(t) + RT (t)p̈(t)

]

where �(r(t)) and �(r, ṙ) can be computed via (10) and (11), respectively.
The SE(3) trajectory and the velocity twists of the right robot can be computed through the same

process. The final SE(3) trajectory of both end-effectors and the velocity and acceleration twist profiles
are shown in Fig. 5, where the rotational trajectory is shown in the form of axis-angle r(t). Note that
the segment shown in the figure is extracted for illustration convenience, while the whole closed-chain
trajectory consists of many motion segments like this. As can be seen form Fig. 5, the interpolated
method provides a straight-line motion in Cartesian space and the velocity and acceleration curves are
smooth, which make the interpolated trajectory ideal for the bimanual manipulation task discussed in
this paper.

6.3. Joint space trajectory conversion and comparing

In this section, the trajectory of the end-effector in task space is converted to joint space using different IK
algorithms for comparing and verifying the effectiveness of the proposed Dual-MVN-INTM redundancy
resolution scheme. The initial state of the left and right robot is

θL(0) = [ − 0.26, −1.02, 1.50, −1.10, 0.72, 2.82, 1.16]T rad

θR(0) = [ − 1.51, −0.56, −0.16, −2.31, −0.38, 3.34, 1.08]T rad

θ̇L(0) = θ̇R(0) = [0, 0, 0, 0, 0, 0, 0]T rad/s

The kinematic and dynamic parameters, joint limits of Panda robot can be obtained from [50].
Moreover, the design parameters used in INTM scheme and Dual-MVN-INTM λ= 30,μ= 0.9, κp =
κv = 15.
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Figure 6. Dual Panda end-effectors tracking the interpolated straight-line trajectory synthesized by the
pseudoinverse-based method. (a)-(d) are joint position, velocity, acceleration, torque profiles of the left
robot. (e)-(h) are corresponding profiles of the right robot, respectively.

In order to compare with the proposed Dual-MVN-INTM scheme, the pseudoinverse-based method
[12] is used first for the conversion: θ̇ = J+V + k0(In − J†J)∂w(θ )/∂θ , where the secondary objective
function ω(θ ) is chosen as ω(θ ) = −1/2n

∑n
i=1 ((θi − θ i)/(θ+

i − θ−
i ))2, which measures the distance

from joint position limits and is frequently-used. By maximizing this distance, redundancy is exploited to
keep the joint positions as close as possible to the middle value of the joint range θ i. The computed joint
position, velocity, acceleration, and torque profiles are shown in Fig. 6. As can be seen, the joint positions
are kept within the limits, and the joint variables are changed smoothly. However, such method only
considers the joint position limits. While dragging the joint positions to the middle, the joint velocities,
accelerations, or torques might exceed their limits. For example, for the left robot, at the time interval
[0.4,0.6], the velocity of joint 7 exceeds the limit. And for the right robot, at time interval [0.4,0.7], the
velocities of joint 1 and joint 3 exceed their limits, respectively, which is unacceptable in practice.

Fig. 7(a) and Fig. 7(d) show the joint trajectories of dual Panda robots synthesized by INTM scheme
[40] (i.e. α = 0) with joint position, velocity, acceleration limits considered. The corresponding joint
velocity, acceleration, torque profiles of dual robots are shown in Fig. 7(b)–(d) and Fig. 7(f) − (h) ,
respectively. As seen from Fig. 7, the joint variables are kept within their limits by incorporating joint
physical limits. However, some of the joint accelerations, joint velocities are so large that limits are
reached, such as joint 5 of the left robot and joint 5, 7 of the right robot. And abrupt increase or decrease
in these joint variables exhibited, which is because that INVM scheme minimizes the largest element of
the joint velocity or acceleration vector in magnitude. This phenomenon is not desirable in practice and
would cause damages to the robot. Furthermore, the final velocities of some joints are too large in the
real robotic applications. Therefore, the INVM scheme is unsuitable in practical applications.

Fig. 8(a) and Fig. 8(d) illustrates the joint trajectories of dual Panda robots synthesized by the pro-
posed Dual-MVN-INTM scheme (α= 0.6) with joint position, velocity, acceleration limits considered.
The corresponding joint velocity, acceleration, and torque profiles of dual robots are shown in Fig. 8(b)–
(d) and Fig. 8(f) − (h) , respectively. As seen from Fig. 8, the joint variables are all kept within the
feasible regions, and the curves are quite smooth without abrupt changes or chattering phenomena,
which illustrates the discontinuous problem occurred in the INTM scheme is remedied by the Dual-
MVN-INTM scheme. And the joint velocities, accelerations, and torques are smaller comparing with
INTM scheme (some variables in Fig. 7 are too large even reach the limits). To further verify the effec-
tiveness of trajectory tracking, the translational and rotational tracking errors of the dual robots are
shown in Fig. 9, where the rotational tracking errors are measured in the form of axis-angle, er and ep
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Figure 7. Dual Panda end-effectors tracking the interpolated straight-line trajectory synthesized by
INTM scheme (α= 0). (a)-(d) are joint position, velocity, acceleration, torque profiles of the left robot.
(e)-(h) are corresponding profiles of the right robot, respectively.

Figure 8. Dual Panda end-effectors tracking the interpolated straight-line trajectory synthesized by
Dual-MVN-INTM scheme (α= 0.6). (a)–(d) are joint position, velocity, acceleration, torque profiles
of the left robot. (e)–(h) are joint position, velocity, acceleration, torque profiles of the right robot,
respectively.

represent the rotational and translational tracking error, respectively. As can be seen, the converted tra-
jectories track the end-effectors trajectories well with the maximal tracking error less than 1.6 × 10−4

for the left robot and 1.2 × 10−4 for the right robot, respectively. In addition, Fig. 8(b) and Fig. 8(f) show
the Dual-MVN-INTM scheme guarantee the joint velocity to approach zero at the end of the motion.

Moreover, the final joint velocities and tracking errors with different α used in Dual-MVN-INTM
scheme are reported in Tables I and II. As shown in Table I, the joint velocities at the end of the motion
are very close to zero (10−3rad/s) , which is preferable in applications. Furthermore, the tracking errors
shown in Table II are quite small (10−4m), which illustrates that the proposed scheme can track the end-
eff ector trajectory precisely. Fig. 10 shows the joint energy cost τ T M−1τ synthesized with different
α. As can be seen, when Dual-MVN-INTM scheme (α ∈ (0, 1)) is utilized, the joint energy costs of
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Table I. Final joint velocities (10−3rad/s) with different α used in Dual-MVN-INTM scheme.

α = 0.2 α = 0.4 α = 0.6 α= 0.8

Joint i | ˙θLi| | ˙θRi| | ˙θLi| | ˙θRi| | ˙θLi| | ˙θRi| | ˙θLi| | ˙θRi|
1 1.7926 3.6012 1.7120 5.7863 1.6907 7.0431 1.6804 6.5792
2 2.0229 4.2831 1.9263 0.0055 1.9007 1.1433 1.8882 2.3610
3 0.9320 2.1295 0.9850 2.6069 1.0013 2.3609 1.0086 2.5640
4 0.3465 0.3756 0.2658 0.3784 0.2390 0.0101 0.2256 0.0097
5 7.0609 4.1255 6.9349 1.7653 6.9037 2.8513 6.8866 4.2597
6 0.7554 4.2417 0.5759 8.2184 0.5188 8.0878 0.4907 7.4185
7 4.9721 1.5156 4.8864 3.2828 4.8651 4.5451 4.8533 5.2748

Table II. Tracking errors (10−4m) with different α used in Dual-MVN-INTM scheme.

α eLr eLp eRr eRp

0.2 3.2024 2.3534 5.5947 3.6064
0.4 2.1469 1.5410 3.0256 2.5840
0.6 1.6620 1.4012 1.1335 2.2215
0.8 2.1985 1.8310 2.9417 1.1137

both robots are much smaller than that of INTM scheme (α= 0). As mentioned before, the Dual-MVN-
INTM scheme is solved by a simplified dual network in this paper, and the scaling parameter of the
network is ε = 3 × 105, which leads to a very fast convergence of the dual network and the equilibrium
point is reached in less than 5 × 10−6s. In summary, the comparison results verify the effectiveness,
accuracy, and high efficiency of the proposed Dual-MVN-INTM scheme used for dual-redundant-robot
cooperatively tracking the end-effector trajectories in bimanual operation tasks.

6.4. Planning results and comparing

In this section, we display and analyze the planning results for three tasks. As illustrated in Section 3,
the key of solving the global motion planning of CKC systems is connecting the closed-chain motions
through regrasping motions. Therefore, for comparing the performance of the proposed planner and the
IK-switch planner in [11], contrast experiments are conducted by sending the same planning query of
three tasks to two planners. Each planner runs 50 times to solve one task, and we set the allowed total
number of regrasping moves for two robots as 6, considering the complexity of the tasks and quality of
planned trajectory. Note that since the planner in [11] is designed for nonredundant robots, we replace
the IKfast solver with our Dual-MVN-INTM solver for a fair comparison.

Table III reports the comparisons between our planner and the IK-switch planner for all three tasks in
terms of the averages of planning success rate, planning time, and number of required regrasping moves.

From the results in Table III, we can see that 1) with flexible grasp-switch and IK-switch connections,
our planner achieves much better success rates than IK-switch planner (95%/75%). 2) Regrasping moves
are essential for the success of global planning and also take most of the total planning time. IK-switch
planner solely depends on regrasping moves between different IKs of a same grasping pose, which
undoubtedly increases the computation time for finding a valid regrasping configuration and also the
number of required regrasping moves. While in our planner, the regrasping moves have much more
options, thus it is easier for our planner to find a valid regrasping configuration. As a result, our planer
is 1.78 × (7.89 s/14.05 s) faster than IK-switch planner with 56% (3/4.7) less regrasping moves needed.
3) The planning success rate and required time are task-dependent, involving robots, objects, and the
start and goal configurations. Fig. 11, Fig. 12, and Fig. 13 display the snapshots of composite motions
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Table III. Results of three manipulation tasks using two planners.

Regrasp Success Global planning Regrasp planning Total
Tasks Planners count rate time/s time/s time/s

Task 1 Our planner 4 0.96 2.54 10.17 12.71
IK-switch planner 5 0.74 4.23 15.46 19.69

Task 2 Our planner 2 0.93 1.65 6.36 8.01
IK-switch planner 4 0.69 2.81 12.42 15.23

Task 3 Our planner 3 0.95 2.32 7.15 9.47
IK-switch planner 5 0.82 3.94 14.27 18.21

Figure 9. Tracking errors of dual Panda synthesized by Dual-MVN-INTM scheme (α= 0.6). (a) . The
tracking error of the left robot. (b). The tracking error of the right robot.

Figure 10. Energy costs τ T M−1τ profiles of dual Panda synthesized by Dual-MVN-INTM scheme with
different α. (a). The energy cost profiles of the left robot. (b) The energy cost profiles of the right robot.

of Task 1, Task 2, and Task 3 that planned by our planner, where our planner is able to plan smooth
composite trajectories for different robots and objects that include closed-chain motions and Grasp-
switch or IK-switch moves, which demonstrates the great effectiveness and applicability of the proposed
framework.

6.5. Real-world robot experiment

In order to further verify the effective of our method in real world, we conduct the robot experiment using
two real 7 DoF Jaco2 robots to complete Task 3. The experiment setup is shown in Fig. 13, and the start
and goal configurations are shown in Fig. 2(c) − (d). Note that the rigid contact between the book shelf
and grippers should be considered. Even though the tracking error of our Dual-MVN-INTM scheme is
very small as shown in Table II, the discrepancies of the simulation model and robot location errors could
cause damages to the object and robots. Therefore, we past a syntactic foam on each fingertip to enhance
the passive compliance and the grasping stability, as shown in Fig. 14. Such measure ensures that the
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Figure 11. Snapshots of planned composite motion for Task 1 with Panda robots. (a, b, d, e, h−k,
m, n): Closed-chain motions. (c, l): Grasp-switch motions. (f, g): IK-switch motions.

Figure 12. Snapshots of planned composite motion for Task 2 with Panda robots. (a−d, f−i, k−n):
Closed- chain motions. (e): IK-switch motion. (j): Grasp-switch motion.

Figure 13. Snapshots of planned composite motion for Task 3 with Jaco2 robots. (a−e, e−g, j−l):
Closed- chain motions. (d, i): IK-switch motions. (h): Grasp-switch motion.

Figure 14. Hardware system setup.
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Figure 15. Snapshots of Jaco2 robots completing Task 3 in real world. (a−c, e−i, k, l): Closed-chain
motions. (d): Grasp-switch motion. (j): IK-switch motion.

experiment can carry out with an allowable pose error. We first send the plan query to our planner and
use the hardware system to implement the planned composite trajectory. As shown in Fig. 15, our system
executes the planned trajectory smoothly and completes the task successfully, which further demonstrate
that our method is effective to solve the complex closed-chain manipulation task in real world.

7. Conclusion

In this paper, a global-level motion planner is proposed for the closed-chain systems consisting of two
redundant robots, by flexibly choosing IK-switch or Grasp-switch regrasping moves to bridge the discon-
nected constrained components, the proposed planner can efficiently solve the plan queries for complex
bimanual operation tasks that are unsolvable for the local planners. To address the redundancy res-
olution problem for the dual-redundant robots, a QP-based Dual-MVN-INTM optimizing scheme is
proposed and integrated in the planning process. For computational efficiency, the two QPs for two
robots are unified into a single QP and solved by a simplified DNN. Such integration yields smooth
motions that respect the joint physical limits, and the zero final velocities at the end of motion are
guaranteed. Simulations and experiments on three difficult closed-chain manipulation tasks using two
Franka Emika Robots and two Kinova Jaco2 robots verified the effectiveness and efficiency of the pro-
pose method. The current main limitation of our method is that the plan query is solved by the planner
first and then executed by the robots. In the future work, we will further improve the planning speed
and success rate and extend our method to online planning. Also, the introduction of other sensors,
such as cameras and force sensors, is considered to improve the control performance of the robots when
completing different tasks.
Declaration of Competing Interest. The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.
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