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Abstract The main result is that the ellipticity and the Fredholm property of a �DO acting on Sobolev
spaces in the Weyl-Hörmander calculus are equivalent when the Hörmander metric is geodesically
temperate and its associated Planck function vanishes at infinity. The proof is essentially related to
the following result that we prove for geodesically temperate Hörmander metrics: If λ �→ aλ ∈ S (1,g) is a
CN , 0 ≤ N ≤ ∞, map such that each aw

λ is invertible on L2, then the mapping λ �→ bλ ∈ S (1,g), where bw
λ

is the inverse of aw
λ , is again of class CN . Additionally, assuming also the strong uncertainty principle

for the metric, we obtain a Fedosov-Hörmander formula for the index of an elliptic operator. At the very
end, we give an example to illustrate our main result.
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1. Introduction

The question of spectral invariance is of a significant importance in the theory of

pseudodifferential operators. Recall that a pseudodifferential calculus is said to be

spectrally invariant if for every �DO with 0 order symbol (consequently, continuous
on L2) that is invertible on L2 its inverse is again a �DO with a 0 order symbol.

This property has been proved by several authors for various global (and local) calculi

including the Shubin calculus, the SG (scattering) calculus, the Beals-Fefferman calculus,
etc. (see [5, 14, 16, 26, 25, 34]). In their seminal paper [9], Bony and Chemin (see also

[10]) generalised these results by proving the spectral invariance for the Weyl-Hörmander

calculus [22, 23] when the Hörmander metric satisfies the so-called geodesic temperance

(see [9, 27]). In the first part of this article (Section 3) we slightly improve the proof of [27,
Lemma 2.6.25, p. 155], also given in [9], related to the norm estimate of a composition of
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operators changing the right-hand side of the estimate. Subsequently, we avail ourselves of
these results to prove the following fact, which sheds more light on the spectral invariance

of the Weyl-Hörmander calculus: the process of taking inverses in S (1,g) preserves the

regularity. To be more precise, if λ �→ aλ is a CN -mapping with values in S (1,g) such
that aw

λ is invertible on L2, then the mapping λ �→ bλ, where bw
λ is the inverse of aw

λ ,

is also of class CN , 0 ≤ N ≤ ∞. In fact, we prove this result for matrix-valued symbols.

In the second part of the article (Section 4), we investigate the Fredholm properties of

�DOs with symbols in the Weyl-Hörmander classes when acting between the Sobolev
spaces naturally associated to them. The main result is that the Fredholm property

of a �DO can be characterised by the ellipticity of the symbol; that is, a �DO is a

Fredholm operator between appropriate Sobolev spaces if and only if its symbol is elliptic
(see [7, 30, 25, 26] for similar types of results concerning special instances of the Weyl-

Hörmander calculus). This result heavily relies on the vanishing at infinity of the Planck

function associated to the Hörmander metric as well as on the main result of Section 3,
which, in turn, depends on the spectral invariance and the geodesic temperance of the

metric. As a consequence of the proof of the main result, we derive that elliptic operators

always have parametrices when the Hörmander metric is geodesically temperate and its

associated Planck function vanishes at infinity. For geodesically temperate metrics, to
the best of our knowledge, this is an improvement over already existing results because it

does not require the strong uncertainty principle (which is the condition usually imposed

for the construction of parametrices).
If the metric satisfies the strong uncertainty principle, then the Fedosov-Hörmander

integral formula (see [18, 17, 19, 22]) expresses the index of an elliptic operator with

symbol a ∈ S (1,g) as the integral of the form tr(a−1da). As a consequence of this result,
in the final part of Section 4, we prove the same holds true for elliptic operators with

symbols in S (M ,g) for any admissible weight M . Of course, this agrees with the Atiyah-

Singer index theorem [1, Theorem 2.12] (cf. [22, p. 422] and [18, p. 320]).

Finally, in Section 5, as an illustrative example, we consider the operator

−�+〈x 〉−2s, 0 < s < 1.

This is not an elliptic operator in any of the ‘classical’ calculi (like the Shubin calculus,

the SG calculus and the Beals-Fefferman calculus; see Lemma 5.2 and the comments after

it), but it is elliptic in the Weyl-Hörmander calculus when one chooses an appropriate
metric. Consequently, we can apply the results of the article to describe its Fredholm

property.

2. Preliminaries

Let V be an n-dimensional real vector space with V ′ being its dual. The 2n-dimensional

vector space W = V ×V ′ is symplectic with the symplectic form [(x,ξ),(y,η)] = 〈ξ,y〉−
〈η,x 〉. We will always denote the points in W with capital letters X ,Y ,Z, . . .. Let X �→ gX
be a Borel measurable symmetric covariant 2-tensor field on W that is positive definite

at every point. We will always denote the corresponding positive-definite quadratic form

at X ∈ W by the same symbol gX ; that is, gX (T ) = gX (T,T ), T ∈ TXW . Denoting by
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QX the corresponding linear map W → W ′ and by σ : W → W ′ the linear map induced
by the symplectic form, one defines the symplectic dual of QX by Qσ

X = σ ∗Q−1
X σ . The

corresponding symmetric covariant 2-tensor field X �→ gσ
X is again Borel measurable and

positive definite at every point and can be given by gσ
X (T ) = supS∈W \{0}[T,S ]2/gX (S ).

We say that X �→ gX is a Hörmander metric (i.e., an admissible metric in the terminology

of [8, 27]) if the following three conditions are satisfied:

(i) (slow variation) there exist C ≥ 1 and r > 0 such that

gX (X −Y ) ≤ r2 ⇒ C−1gY (T ) ≤ gX (T ) ≤ CgY (T ), ∀X ,Y ,T ∈ W ;
(ii) (temperance) there exist C ≥ 1 and N ∈ N such that

(gX (T )/gY (T ))±1 ≤ C (1+ gσ
X (X −Y ))N , ∀X ,Y ,T ∈ W ;

(iii) (the uncertainty principle) gX (T ) ≤ gσ
X (T ), ∀X ,T ∈ W .

We point out that in [12, 33] X �→ gX is called feasible if it satisfies only (i) and (iii) and
strongly feasible if it satisfies (i), (ii) and (iii). We call C , r and N the structure constants

of g . We say that g is symplectic if g = gσ . Denote λg(X ) = infT∈W \{0}(gσ
X (T )/gX (T ))1/2;

it is Borel measurable and λg(X ) ≥ 1, ∀X ∈ W . Given Y ∈ W and r > 0, denote UY ,r =
{X ∈ W |gY (X −Y ) ≤ r2} and define

δr (X ,Y ) = 1+ gσ
X ∧ gσ

Y (UX ,r −UY ,r ), X ,Y ∈ W ,

where gσ
X ∧gσ

Y denotes the harmonic mean of the positive-definite quadratic forms gσ
X and

gσ
Y . The function (X ,Y ) �→ δr (X ,Y ) is Borel measurable on W ×W and when r ≤ r ′,
where r ′ depends only on the structure constants of g , the function δr enjoys very useful
properties (see [27, Section 2.2.6] for the complete account).

A positive Borel measurable function M on W is said to be g-admissible if there are

C ≥ 1, r > 0 and N ∈ N such that

gX (X −Y ) ≤ r2 ⇒ C−1M (Y ) ≤ M (X ) ≤ CM (Y );
(M (X )/M (Y ))±1 ≤ C (1+ gσ

X (X −Y ))N , ∀X ,Y ∈ W .

We denote by g#
X the geometric mean of gX and gσ

X ; that is, g#
X = √

gX · gσ
X = √

gσ
X · gX (cf.

[27, Definition 4.4.26, p. 341]). Then, X �→ g#
X is a symplectic Hörmander metric called

the symplectic intermediate of g ; every g-admissible weight is also g#-admissible (see [33,

Theorem 5.6]; see also [27, Proposition 2.2.20, p. 78]). Furthermore, gX ≤ g#
X ≤ gσ

X .
For any Banach space E with norm ‖ ·‖E , we denote by Lb(E ) = Lb(E,E ) the Banach

space of all continuous operators on E equipped with the operator norm ‖·‖Lb (E ) induced

by ‖ · ‖E . When E is finite-dimensional, we drop the index b and employ the notations
L(E ) and ‖ · ‖L(E ) instead of Lb(E ) and ‖ · ‖Lb (E ), respectively.

Given a g-admissible weight M , the space of symbols S (M ,g) is defined as the space

of all a ∈ C∞(W ) for which

‖a‖(k)

S (M ,g) = sup
l≤k

sup
X∈W

T1,...,Tl∈W \{0}

|a(l)(X ;T1, . . . ,Tl )|
M (X )

∏l
j=1 gX (Tj )1/2

< ∞, ∀k ∈ N. (2.1)
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1366 S. Pilipović and B. Prangoski

With this system of seminorms, S (M ,g) becomes a Fréchet space. One can always
regularise the metric making it smooth (hence Riemannian) without changing the notion

of g-admissibility of a weight and the space S (M ,g). The same can be done for any g-
admissible weight (see [22], [27, Remark 2.2.8, p. 71]). In fact, given any g-admissible
weight M , there exists a smooth g-admissible weight M̃ ∈ S (M ,g) and C > 0 such that

M (X ) ≤ CM̃ (X ), ∀X ∈ W . The definition of S (M ,g) can be naturally extended to

matrix-valued symbols. Namely, let Ṽ be a finite-dimensional complex Banach space

with norm ‖ · ‖Ṽ and denote by ‖ · ‖L(Ṽ ) the induced norm on L(Ṽ ). One defines

the space of L(Ṽ )-valued symbols S (M ,g;L(Ṽ )) as the space of all a ∈ C∞(W ;L(Ṽ ))

for which ‖a‖(k)

S (M ,g;L(Ṽ ))
< ∞ where the latter norms are defined as in (2.1) with

‖a(l)(X ;T1, . . . ,Tl )‖L(Ṽ ) in place of |a(l)(X ;T1, . . . ,Tl )|. Then, S (M ,g;L(Ṽ )) = S (M ,g)⊗
L(Ṽ ) is a Fréchet space (the topology on the tensor product is π = ε because L(Ṽ ) is

finite-dimensional).

For any a ∈ S(W ) (or a ∈ S(W ;L(Ṽ ))), the Weyl quantisation aw is the operator

awϕ(x )

= 1
(2π)n

∫
V ′

∫
V

ei〈x−y,ξ〉a((x +y)/2,ξ)ϕ(y)dydξ, ϕ ∈ S(V ) (respectivelyϕ ∈ S(V ;Ṽ )),

where dy is a left–right Haar measure on V with dξ being its dual measure defined on V ′
so that the Fourier inversion formula holds with the standard constants. Consequently,

aw as well as the product measure dydξ on W are unambiguously defined; aw extends
to a continuous operator from S ′(V ) into S(V ) (respectively from S ′(V ;Ṽ ) = S ′(V )⊗ Ṽ
into S(V ;Ṽ ) = S(V )⊗ Ṽ ; again, π = ε). The definition of the Weyl quantisation extends

to symbols in S ′(W ) (respectively S ′(W ;L(Ṽ ))) and in this case aw : S(V ) → S ′(V )

(respectively aw :S(V ;Ṽ ) →S ′(V ;Ṽ )) is continuous. When a ∈ S (M ,g) (respectively a ∈
S (M ,g;L(Ṽ ))) for a g-admissible weight M , then aw is continuous as an operator on S(V )

(respectively on S(V ;Ṽ )) and uniquely extends to an operator on S ′(V ) (respectively
on S ′(V ;Ṽ ); cf. [22]). Furthermore, if a,b ∈ S(W ) (respectively a,b ∈ S(W ;L(Ṽ ))), then

awbw = (a#b)w , where a#b ∈ S(W ) (respectively a#b ∈ S(W ;L(Ṽ ))) is given by

a#b(X ) = 1
π2n

∫
W×W

e−2i[X−Y1,X−Y2]a(Y1)b(Y2)dY1dY2.

The bilinear map # uniquely extends to a weakly continuous bilinear map S (M1,g) ×
S (M2,g) → S (M1M2,g) (in the sense of [22, Theorem 4.2]) and it is also continuous when
these spaces are equipped with the Fréchet topologies described above. This holds equally

well in the L(Ṽ )-valued case (see [22]).

Given Y ∈ W and r > 0, denote UY ,r = {X ∈ W |gY (X −Y ) ≤ r2}. We say that a ∈
C∞(W ) is gY -confined in UY ,r (see [9, 27]) if

‖a‖(k)

gY ,UY ,r
= sup

l≤k
sup
X∈W

T1,...,Tl∈W \{0}

|a(l)(X ;T1, . . . ,Tl )|(1+ gσ
Y (X −UY ,r ))

k/2∏l
j=1 gX (Tj )1/2

< ∞, ∀k ∈ N.

We will use the same notations even when a is L(Ṽ )-valued (of course, instead of the

absolute value one employs ‖ · ‖L(Ṽ ) in the above definition); from the context, it will
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always be clear whether we are considering scalar or L(Ṽ )-valued symbols. For fixed Y
and r , the set of gY -confined symbols in UY ,r coincides with S(W ) (respectively with

S(W ;L(Ṽ ))). A family S(W ) � ϕY , Y ∈ W , (respectively S(W ;L(Ṽ )) � ϕY , Y ∈ W )

is said to be uniformly gY -confined in UY ,r if supY ∈W ‖ϕY ‖(k)

gY ,UY ,r
< ∞, ∀k ∈ N. There

is r0 > 0 that depends only on the structure constants of g such that for each r ≤ r0
there is a smooth uniformly gY -confined family in UY ,r, Y �→ ϕY , W → S(W ), such

that suppϕY ⊆ UY ,r , ϕY ≥ 0 and∫
W

ϕY (X )|gY |1/2dY = 1, ∀X ∈ W , (2.2)

where |gY | = detgY computed in (any) basis of W comprised of a basis of V and the

corresponding dual basis of V ′ (see [27, Theorem 2.2.7, p. 70]); notice that |gY |1/2dY
is the volume density induced by g . Let aj ∈ S (Mj ,g) (respectively aj ∈ S (Mj ,g;L(Ṽ ))),

j = 1,2, and aj,Y = ajϕY , Y ∈ W . Then

a1#a2(X ) =
∫
W×W

a1,Y1#a2,Y2(X )|gY1 |1/2|gY2 |1/2dY1dY2, ∀X ∈ W

(cf. the proof of [27, Theorem 2.3.7, p. 91]). Furthermore, given a ∈ S (M ,g) (respectively

a ∈ S (M ,g;L(Ṽ ))), and denoting as before aY = aϕY , we have

awu =
∫
W

aw
Y u|gY |1/2dY , u ∈ S(V ) (respectivelyu ∈ S(V ;Ṽ )),

where the equality holds if we interpret the integral in Bochner sense as well as pointwise.
Furthermore, for ϕY , Y ∈ W (as above) and any r ′ > r, there exist two strongly Borel

measurable uniformly gY -confined families in UY ,r ′ , Y �→ ψY , Y �→ θY , W → S(W ),

such that ϕY = ψY #θY , Y ∈ W (see [27, Theorem 2.3.15, p. 98]). The Sobolev space
H (M ,g), with a g-admissible weight M , is the space of all u ∈ S ′(V ) such that∫

W
M (Y )2‖θw

Y u‖2
L2(V )

|gY |1/2dY < ∞. (2.3)

It is a Hilbert space with inner product

(u,v)H (M ,g) =
∫
W

M (Y )2(θw
Y u,θw

Y v)L2(V )|gY |1/2dY (2.4)

and its definition and topology do not depend on the choice of the partition of unity ϕY ,

Y ∈ W , and the families ψY , θY , Y ∈ W . The space S(V ) is continuously and densely

included in H (M ,g) and the latter is continuously and densely included in S ′(V ). If

a ∈ S (M ′,g), aw restricts to a continuous operator from H (M ,g) into H (M /M ′,g). In
particular, if M1/M2 is bounded from below, then H (M1,g) is continuously (and densely)

included in H (M2,g). Furthermore, H (1,g) is just L2(V ). (We refer to [27, Section 2.6]

and [9] for the proofs of these properties of the Sobolev spaces H (M ,g).) The definition
of H (M ,g;Ṽ ) is similar: u ∈ S ′(V ;Ṽ ) is in H (M ,g;Ṽ ) if (2.3) is finite with ‖θw

Y u‖L2(V )

replaced by ‖(θY I )wu‖L2(V ;Ṽ ), where I : Ṽ → Ṽ is the identity operator. It is a Banach

space because it is topologically isomorphic to H (M ,g)⊗Ṽ . Fixing an inner product on Ṽ
naturally induces an inner product on L2(V ;Ṽ ), which, in turn, induces an inner product
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on H (M ,g;Ṽ ) (similarly as in (2.4)) and the latter becomes a Hilbert space. Moreover,

the above isomorphism verifies that all facts we mentioned for the scalar-valued case

remain true in the vector-valued case as well.

For any A ∈ L(S(V ),S ′(V )) and any linear form L on W , we denote by adLw · A
the commutator of Lw and A; that is, adLw ·A = LwA−ALw ∈ L(S(V ),S ′(V )). When

LX = [T,X ], for some T ∈ W , it will be convenient to identify the linear form L with T .

If a ∈ S (M ,g), the following seminorms are always finite for all uniformly gY -confined in
UY ,r families φY , Y ∈ W ,

‖aw‖(k)

op(M ,g) = sup
Y ∈W

sup
l≤k

gY (L1)≤1,...,gY (Ll )≤1

M (Y )−1‖adLw
1 . . . adLw

l ·φw
Y aw‖L(L2) < ∞, ∀k ∈ N,

where LjX = [Tj ,X ] and, as mentioned above, we identified Lj with Tj . In fact, a result

of Bony and Chemin [9, Theorem 5.5] (see also [27, Theorem 2.6.12, p. 145]) proves

that the converse is also true. Namely, if A ∈ L(S(V ),S ′(V )) is such that for all families
φY , Y ∈ W , that are uniformly gY -confined in UY ,r , adLw

1 . . . adLw
k ·φw

Y A ∈ L(L2(V )),

∀Y ∈ W , ∀k ∈ N, and the seminorms ‖A‖(k)

op(M ,g) are finite for all k ∈ N, then A = aw , for

some a ∈ S (M ,g). In fact, with ϕY , ψY , θY , Y ∈ W , as before, one needs to check this
only for the uniformly confined family θY , Y ∈ W , and

∀k ∈ N, ∃C > 0, ∃l ∈ N, ‖a‖(k)

S (M ,g) ≤ C‖aw‖(l)
op(M ,g),

with ‖aw‖(l)
op(M ,g) defined via θY , Y ∈ W . The facts presented above for the scalar case

hold equally well in the vector-valued case with φw
Y and adLw replaced by (φY I )w and

ad(LI )w , respectively. In fact, the validity of these results is a direct consequence of the

topological isomorphism S (M ,g;L(Ṽ )) ∼= S (M ,g)⊗L(Ṽ ).
On a couple of occasions we will impose the following additional assumption on g ; we

will always emphasise when we assume it. We say the Hörmander metric g is geodesically

temperate if there exist C ≥ 1 and N ∈ N such that

gX (T ) ≤ CgY (T )(1+d(X ,Y ))N , ∀X ,Y ,T ∈ W , (2.5)

where d(·,·) stands for the geodesic distance on W induced by g#. A number of metrics

that correspond to different calculi are geodesically temperate: the Sm
ρ,δ-calculus, the

semi-classical, the Shubin calculus (see [9, Example 7.3], [27, Lemmas 2.6.22 and 2.6.23,
p. 154]). In fact, [8, Theorem 5 (i)] proves that if the positive Borel measurable functions

ϕ and � on R
2n are such that

gx,ξ = ϕ(x,ξ)−2|dx |2 +�(x,ξ)−2|dξ |2

is a Hörmander metric, then g satisfies (2.5) with d(·,·) standing for the geodesic distance
induced by gσ . Applying this result to g#

x,ξ = �ϕ−1|dx |2+ϕ�−1|dξ |2, we conclude that the
latter is geodesically temperate. As g = ϕ−1�−1g#, [27, Lemma 2.6.22, p. 154] verifies
that g is also geodesically temperate (ϕ� ≥ 1 because g is a Hörmander metric). In

particular, the geodesic temperance is valid for the Beals-Fefferman calculus [2, 3, 4] (cf.

[22, Example 3]) as well as the Nicola-Rodino calculus [29].
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3. Inverse smoothness in S (1,g;L(Ṽ ))

The result of Bony and Chemin [9, Theorem 7.6] (see also [27, Theorem 2.6.27, p. 158])

verifies that the Weyl-Hörmander calculus is spectrally invariant provided the Hörmander

metric g is geodesically temperate. That is, given a ∈ S (1,g) such that aw is invertible
on L2(V ), its inverse is a pseudodifferential operator with symbol in S (1,g) (i.e., the

operators with symbols in S (1,g) form a �∗-algebra in the C ∗-algebra Lb(L2(V )); cf.

[20, 30] and the notation there). In this section, we prove that this process of taking

inverses preserves the regularity in the following sense. If λ �→ aλ is of class CN , 0 ≤ N ≤ ∞,
with values in S (1,g;L(Ṽ )) such that aw

λ is invertible in Lb(L2(V ;Ṽ )), then the mapping

λ �→ bλ, where bw
λ is the inverse of aw

λ , is also of class CN .

Before we state and prove this result, we need the following technical results. They
have the same form as [27, Lemma 2.6.25, p. 155] and [27, Lemma 2.6.26, p. 156] (see

also [9, Lemmas 7.4 and 7.5]) but, as we noted in the introduction, for the first one, the

right-hand side of the estimate in our article has a precise form. Moreover, the second
lemma is a slightly more general variant of the corresponding second cited lemma.

Lemma 3.1. Let g be a Hörmander metric. Then ∀N0 ≥ 0, ∃C0 > 0, ∃k0 ∈ N, ∀N1 ≥
0, ∃C1 > 0, ∃k1 ∈ N, ∀ν ∈ Z+, ∀J ⊆ {0, . . . ,ν − 1}, J �= ∅, ∀c0, . . . ,cν ∈ S(W ;L(Ṽ )),

∀Y0, . . . ,Yν ∈ W it holds that

‖cw
0 . . . cw

ν ‖Lb (L2(V ;Ṽ ))

≤ C ν−|J |
0 C 1+|J |

1 ‖c0‖(k1)

gY0,UY0,r
‖cν‖(k1)

gYν ,UYν,r

(
max
j∈K ′ ‖cj ‖

(k0)

gYj ,UYj ,r

)ν−|J∪{0,ν−1}|

·
(

max
j∈K

‖cj ‖(k1)

gYj ,UYj ,r

)|(J∪{0})\{ν−1}| ν−1∏
j=0

δr (Yj ,Yj+1)
−N0

∏
j∈J

δr (Yj ,Yj+1)
−N1,

with K = (J ∪ (J +1))\{0,ν} and K ′ = (N∩ [1,ν −1])\(J ∩ (J +1)).

Remark 3.2. In the previous lemma, K = ∅ implies |(J ∪ {0})\{ν − 1}| = 0 and in this

case we set

(
max
j∈K

‖cj ‖(k1)

gYj ,UYj ,r

)|(J∪{0})\{ν−1}|
= 1.

Similarly, K ′ = ∅ implies ν −|J ∪{0,ν −1}| = 0 and in this case we set

(
max
j∈K ′ ‖cj ‖

(k0)

gYj ,UYj ,r

)ν−|J∪{0,ν−1}|
= 1.
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Proof. Applying the same technique as in the proof of [9, Lemma 7.4] (see also the proof

of [27, Lemma 2.6.25, p. 155]) we infer1

‖cw
0 . . . cw

ν ‖2
Lb (L2(V ;Ṽ ))

≤ C 2ν−2|J |
0 C 2+2|J |

1

(
‖c0‖(k1)

gY0,UY0,r

)2 (
‖cν‖(k1)

gYν ,UYν,r

)2

·
⎛
⎝ ∏

j∈J\{0}
‖cj ‖(k1)

gYj ,UYj ,r

⎞
⎠

⎛
⎝ ∏

j∈(J+1)\{ν}
‖cj ‖(k1)

gYj ,UYj ,r

⎞
⎠

⎛
⎜⎜⎝

ν−1∏
j=1
j �∈J

‖cj ‖(k0)

gYj ,UYj ,r

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ν−1∏
j=1

j �∈J+1

‖cj ‖(k0)

gYj ,UYj ,r

⎞
⎟⎟⎠

·
⎛
⎝ν−1∏

j=0

δr (Yj ,Yj+1)
−2N0

⎞
⎠

⎛
⎝∏

j∈J

δr (Yj ,Yj+1)
−2N1

⎞
⎠, (3.1)

with C0 and k0 ≥ 2n + 1 depending only on N0 and C1 ≥ C0 and k1 ≥ k0 depending on

N0 + N1. Now, one can deduce the claim of the lemma by considering the four cases,

whether 0 or ν − 1 belongs to J or not. We illustrate the main ideas for the case when
0 �∈ J and ν − 1 �∈ J . Because J �= ∅, it follows that ν ≥ 3. Denote s = min{j | j ∈ J },
t = max{j | j ∈ J }. Clearly 1 ≤ s ≤ t ≤ ν − 2; K,K ′ �= ∅; t + 1 �∈ J ; s �∈ J + 1. Denote c̃ =
maxj∈K ‖cj ‖(k1)

gYj ,UYj ,r ,
˜̃c = maxj∈K ′ ‖cj ‖(k0)

gYj ,UYj ,r . The products in (3.1) are equal to

⎛
⎝ ∏

j∈J\{0}
‖cj ‖(k1)

gYj ,UYj ,r

⎞
⎠

⎛
⎝ ∏

j∈(J+1)\{ν}
‖cj ‖(k1)

gYj ,UYj ,r

⎞
⎠

⎛
⎜⎜⎝

ν−1∏
j=1

j �=t+1, j �∈J

‖cj ‖(k0)

gYj ,UYj ,r

⎞
⎟⎟⎠

·

⎛
⎜⎜⎝

ν−1∏
j=1

j �=s, j �∈J+1

‖cj ‖(k0)

gYj ,UYj ,r

⎞
⎟⎟⎠‖ct+1‖(k0)

gYt+1,UYt+1,r‖cs‖(k0)

gYs ,UYs ,r

≤ c̃2|J | ˜̃c2(ν−|J |−2)‖ct+1‖(k0)

gYt+1,UYt+1,r‖cs‖(k0)

gYs ,UYs ,r .

Because t +1,s ∈ K and k0 ≤ k1, we infer ‖cs‖(k0)

gYs ,UYs ,r ≤ c̃, ‖ct+1‖(k0)

gYt+1,UYt+1,r ≤ c̃ and

the above is bounded by c̃2(|J |+1) ˜̃c2(ν−|J |−2). Because |J |+1 = |(J ∪{0})\{ν −1}| and ν −
|J |−2 = ν −|J ∪{0,ν −1}|, we deduce the claim of the lemma.

The following is a slight generalisation of [9, Lemma 7.5] (cf. [27, Lemma 2.6.26,

p. 156]).

Lemma 3.3. Let g be a geodesically temperate symplectic Hörmander metric. There exist

C0 > 0 and k0 ∈ Z+ that depend only on the structure constants of g, and for all k ∈ N

there exist C1,N1 > 0, k1 ∈ Z+ such that for ν ∈ Z+ and a1, . . . ,aν ∈ S (1,g;L(Ṽ )) it holds

1Here and throughout the article we use the principle of vacuous (empty) product; that is,∏0
j=1 rj = 1.
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that

‖aw
1 . . . aw

ν ‖(k)

op(1,g) ≤ C1(ν +1)N1

(
C0 max

j=1,...,ν
‖aj ‖(k0)

S (1,g;L(Ṽ ))

)ν−4k(
C1 max

j=1,...,ν
‖aj ‖(k1)

S (1,g;L(Ṽ ))

)4k

.

Proof. Let ϕY ∈ S(W ), Y ∈ W , be the decomposition of unity given in [27, Theorem

2.2.7, p. 70]; that is, Y �→ ϕY , W → S(W ), is a smooth family of nonnegative functions

such that suppϕY ⊆ UY ,r and (2.2) holds true. Denote aj,Y = ϕY aj , j = 1, . . . ,ν. Set
a0,Y = θY I and aν+1,Y = ϕY I , with I : Ṽ → Ṽ being the identity operator. Let k ∈ Z+.
Fix Y0 ∈ W and let Lj (X ) = [Tj ,X ], with gY0(Tj ) = 1, j = 1, . . . ,k . Employing the same

technique as in the proof of [27, Lemma 2.6.26, p. 156] (see also the proof of [9, Lemma
7.5]), we deduce that ‖ad(L1I )w . . . ad(Lk I )w ·(θY0I )waw

1 . . . aw
ν ‖Lb (L2(V ;Ṽ )) is bounded by

a sum of (ν +2)k terms ω̃k of the form

ω̃k =
∫
W ν+1

‖bw
0 . . . bw

ν+1‖Lb (L2(V ;Ṽ ))|gY1 |1/2 . . . |gYν+1 |1/2dY1 . . . dYν+1, (3.2)

where bj = (
∏

α∈Ej
∂Tα )aj,Yj and Ej , j = 0, . . . ,ν +1, are disjoint possibly empty subsets

of {1, . . . ,k}.2 Let J = {j ∈ N|Ej �= ∅}. Clearly, |J | ≤ ∑
j |Ej | ≤ k . Similarly as in the

proof of [27, Lemma 2.6.26, p. 156], we define cj = bj = aj,Yj for j �∈ J and cj =
bj (

∏
α∈Ej

gYj (Tα)−1/2) for j ∈ J . Employing the geodesic temperance of g(= g#), in an
analogous fashion, as in the proof of the quoted result, we infer

gYj (Tα) ≤ C (ν +1)N−1
j−1∑
l=0

δr (Yl,Yl+1)
N2

, j = 1, . . . ,ν +1, α = 1, . . . ,k,

where C and N depend only on the structure constants of g and the constants in (2.5).

If J\{0} �= ∅, we infer

‖bw
0 . . . bw

ν+1‖Lb (L2(V ;Ṽ )) ≤ C k (ν +1)(N−1)k‖cw
0 . . . cw

ν+1‖L(L2
b (V ;Ṽ ))

·
∏

j∈J\{0}

(j−1∑
l=0

δr (Yl,Yl+1)
N2

)|Ej |

= C k (ν +1)(N−1)k‖cw
0 . . . cw

ν+1‖L(L2
b (V ;Ṽ ))

∑
μ

Fμ, (3.3)

where the very last sum has at most (ν +1)k terms and each Fμ (0 ≤ μ ≤ (ν +1)k ) is of

the form

Fμ =
ν∏

j=0

δr (Yj ,Yj+1)
mj,μN2

with mj,μ ∈N satisfying
∑ν

j=0 mj,μ ≤ ∑
j∈J |Ej | ≤ k . If J = {0} (i.e., only E0 is nonempty),

then (3.3) remains true if the sum over μ has only one term Fμ = 1; that is, mj,μ = 0,

2We employ the convention
∏

s∈∅ Bs = Id.
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j = 0, . . . ,ν. For each μ, let Jμ = {j ∈ N|mj,μ �= 0}; clearly, |Jμ| ≤ ∑
j mj,μ ≤ k . Define

F̃μ = Fμ

∏
j∈((J∪{ν})\{ν+1})∪((J−1)∩N)

j �∈Jμ

δr (Yj ,Yj+1)
N2 =

ν∏
j=0

δr (Yj ,Yj+1)
m̃j,μN2

.

Then,
∑ν

j=0 m̃j,μ ≤ 3k +1. Let J̃μ = {j ∈ N|m̃j,μ �= 0}. Then, |J̃μ| ≤ 3k +1, ν ∈ J̃μ and

‖bw
0 . . . bw

ν+1‖L(L2(V ;Ṽ )) ≤ C k (ν +1)(N−1)k
∑

μ

‖cw
0 . . . cw

ν+1‖L(L2(V ;Ṽ ))F̃μ; (3.4)

J\{0,ν +1} ⊆ J̃μ ∩ (J̃μ +1). (3.5)

For each μ we apply Lemma 3.1 with N0 ≥ 0 such that supY ∈W
∫
W δr (Y ,Z )−N0 |gZ |1/2dZ <

∞, N1 = kN 2 and J̃μ ⊆ {0, . . . ,ν} (with ν +1 in place of ν) to obtain

‖cw
0 . . . cw

ν+1‖L(L2(V ;Ṽ )) ≤ C ν+1−|J̃μ|
0 C 1+|J̃μ|

1 ‖c0‖(k1)

gY0,UY0,r
‖cν+1‖(k1)

gYν+1,UYν+1,r

·
(

max
j∈K̃ ′

μ

‖cj ‖(k0)

gYj ,UYj ,r

)ν+1−|J̃μ∪{0,ν}| (
max
j∈K̃μ

‖cj ‖(k1)

gYj ,UYj ,r

)|(J̃μ∪{0})\{ν}|

·
ν∏

j=0

δr (Yj ,Yj+1)
−N0

∏
j∈J̃μ

δr (Yj ,Yj+1)
−kN2

,

where K̃μ = (J̃μ ∪ (J̃μ +1))\{0,ν +1} �= ∅ (because ν ∈ J̃μ) and K̃ ′
μ = (N∩ [1,ν])\(J̃μ ∩ (J̃μ +

1)); of course, we may assume k0 ≤ k1. Notice that K̃ ′
μ = ∅ if and only if J̃μ = {0, . . . ,ν}.

By construction, there exists C ′ ≥ 1, which depends only on the structure constants of

g , such that ‖cj ‖(l)
gYj ,UYj ,r ≤ C ′k‖aj,Yj ‖(l+k)

gYj ,UYj ,r , for all l ∈ N, j = 1, . . . ,ν. Furthermore,

if j ∈ K̃ ′
μ, then (3.5) implies cj = aj,Yj . Finally, notice that the seminorms of c0 and cν+1

depend only on the structure constants of g (recall a0,Y0 = θY0I , aν+1,Y = ϕY I ). Plugging
these estimates in (3.4), we infer (because ν ∈ J̃μ)

‖bw
0 . . . bw

ν+1‖L(L2(V ;Ṽ )) ≤ C ′
1(ν +1)(N−1)k

ν∏
j=0

δr (Yj ,Yj+1)
−N0

·
∑

μ

(
C ′

0 max
j=1...,ν

‖aj‖(k0)

S (1,g;L(Ṽ ))

)ν+1−|J̃μ∪{0}| (
C ′

1 max
j=1,...,ν

‖aj ‖(k1+k)

S (1,g;L(Ṽ ))

)|J̃μ∪{0}|−1

, (3.6)

with C ′
0 depending only on the structure constants of g and C ′

1 independent of ν and

a1, . . . ,aν . As |J̃μ ∪{0}| ≤ 3k +2 ≤ 4k +1, we deduce

(
C ′

0 max
j=1...,ν

‖aj ‖(k0)

S (1,g;L(Ṽ ))

)ν+1−|J̃μ∪{0}| (
C ′

1 max
j=1,...,ν

‖aj‖(k1+k)

S (1,g;L(Ṽ ))

)|J̃μ∪{0}|−1

≤
(
C ′

0 max
j=1...,ν

‖aj‖(k0)

S (1,g;L(Ṽ ))

)ν−4k (
C ′

1 max
j=1,...,ν

‖aj‖(k1+k)

S (1,g;L(Ṽ ))

)4k

.
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Having in mind the latter and the fact that the sum over μ has at most (ν +1)k terms, we

can employ the estimate (3.6) in (3.2) to conclude the claim of the lemma; the estimates

for ‖(θY0I )waw
1 . . . aw

ν ‖Lb (L2(V ;Ṽ )) (when k = 0) can be obtained in an analogous fashion

as for the case when k ∈ Z+.

The following remarks will prove useful throughout the rest of the article; we will

frequently tacitly apply them.

Remark 3.4. If Ej , j = 1,2, are two locally compact Hausdorff topological spaces and

fj : Ej → S(W ;L(Ṽ )), j = 1,2, are continuous mappings, then the mapping

(λ,μ) �→ f1(λ)#f2(μ), E1 ×E2 → S(W ;L(Ṽ )), (3.7)

is continuous. This is a direct consequence of [27, Corollary 2.3.3, p. 85]. Consequently,

if E1 = E2 = E , the mapping λ �→ f1(λ)#f2(λ), E → S(W ;L(Ṽ )), is continuous.

If Ej , j = 1,2, are as above and fj : Ej → S (Mj ,g;L(Ṽ )), j = 1,2, are continuous
mappings where M1 and M2 are admissible weights for g , then [27, Theorem 2.3.7, p. 91]

verifies that the mapping

(λ,μ) �→ f1(λ)#f2(μ), E1 ×E2 → S (M1M2,g;L(Ṽ )) (3.8)

is continuous. Again, if E1 = E2 = E , this implies that the mapping λ �→ f1(λ)#f2(λ),

E → S (M1M2,g;L(Ṽ )), is also continuous.

Remark 3.5. If Ej , j = 1,2, are two smooth manifolds without boundary (we always

assume the smooth manifolds are second-countable and thus paracompact) and fj : Ej →
S(W ;L(Ṽ )), j = 1,2, are of class CN , 0 ≤ N ≤ ∞, then so is the map (3.7). This can be
easily derived from [27, Corollary 2.3.3, p. 85]; in fact, because the problem is local in

nature, it is enough to prove it when E1 and E2 are Euclidean spaces. If Xj is a smooth

vector field on Ej and fj is smooth, j = 1,2, then

X1 ×X2(f1(λ)#f2(μ)) = X1f1(λ)#f2(μ)+ f1(λ)#X2f2(μ) (3.9)

(of course, X1f1(λ) and X2f2(μ) are smooth maps into S(W ;L(Ṽ ))). Consequently, if

E1 = E2 = E , the mapping λ �→ f1(λ)#f2(λ), E → S(W ;L(Ṽ )), is smooth and the smooth

vector fields on E are derivations of the algebra C∞(E ;S(W ;L(Ṽ ))) (with the associative
product #). If fj , j = 1,2, are of class CN , N ≥ 1, and X a smooth vector field on E , we

still have

X (f1(λ)#f2(λ)) = X f1(λ)#f2(λ)+ f1(λ)#X f2(λ). (3.10)

If E1 and E2 are as above and fj : Ej → S (Mj ,g;L(Ṽ )), j = 1,2, are of class CN , 0 ≤
N ≤ ∞, where Mj , j = 1,2, are admissible weights for g , then the mapping (3.8) is also

of class CN (by [27, Theorem 2.3.7, p. 91]). When fj , j = 1,2, are smooth, (3.9) holds

true. In particular, if E1 = E2 = E and M1 = M2 = 1, the smooth vector fields on E are
derivations of the unital algebra C∞(E ;S (1,g;L(Ṽ ))) (with the associative product #).

Furthermore, if f1 and f2 are of class CN , N ≥ 1, and X is a smooth vector field on E ,

then (3.10) remains valid.
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The main result of the section is the following.

Theorem 3.6. Assume that g is a geodesically temperate Hörmander metric. Let E be a

Hausdorff topological space and f : E → S (1,g;L(Ṽ )) be a continuous mapping. If for each

λ ∈ E , f(λ)w is an invertible operator on L2(V ;Ṽ ), then there exists a unique continuous
mapping f̃ : E → S (1,g;L(Ṽ )) such that

f̃(λ)#f(λ) = f(λ)#f̃(λ) = I , ∀λ ∈ E . (3.11)

If E is a smooth manifold without boundary and f : E → S (1,g;L(Ṽ )) is of class CN ,

0 ≤ N ≤ ∞, then f̃ : E → S (1,g;L(Ṽ )) is also of class CN .

Proof. The existence of f̃ : E → S (1,g;L(Ṽ )) that satisfies (3.11) is a direct consequence

of [27, Theorem 2.6.27, p. 158]3 and the uniqueness easily follows from the fact that

S (1,g;L(Ṽ )) is a unital associative algebra. We need to prove the continuity and the fact
that f̃ is of class CN , respectively. Throughout the proof, we fix an inner product on Ṽ
and denote by ‖ · ‖Ṽ and ‖ · ‖L(Ṽ ) the induced norms.

Once its existence has been established, the continuity of f̃ follows from general
facts concerning Fréchet algebras. The set of invertible elements of the Banach algebra

Lb(L2(V ;Ṽ )) is open and thus its inverse image under the continuous mapping a �→ aw ,

S (1,g;L(Ṽ )) → Lb(L2(V ;Ṽ )), is open in S (1,g;L(Ṽ )) and it coincides with the set of
invertible elements of S (1,g;L(Ṽ )) because of spectral invariance [27, Theorem 2.6.27,

p. 158]. Hence, [35, Chapter 7, Proposition 2, p. 113] implies that the inversion on this

set (equipped with the topology induced by S (1,g;L(Ṽ ))) is continuous, which implies
that f̃ is continuous. However, we will give a direct proof of the continuity of f̃ in the

case E is a locally compact Hausdorff topological space without invoking [35, Chapter 7,

Proposition 2, p. 113] by extending the arguments employed in the proof of [27, Theorem

2.6.27, p. 158].
Assume first that g is symplectic; thus, g = g# = gσ . Let E be a locally compact

Hausdorff topological space and let r : E → S (1,g;L(Ṽ )) be a continuous mapping

such that ‖r(λ)w‖Lb (L2(V ;Ṽ )) < 1, ∀λ ∈ E . Then (Id− r(λ)w )−1 = Id+∑∞
m=1(r(λ)w )m as

operators on L2(V ;Ṽ ). Fix λ0 ∈ E and a compact neighbourhood K of λ0. There exists

0 < ε < 1 such that supλ∈K ‖r(λ)w‖Lb (L2(V ;Ṽ )) ≤ ε, and for every k ∈N there exists C̃k ≥ 1
such that supλ∈K ‖r(λ)‖(k)

S (1,g;L(Ṽ ))
≤ C̃k . Now, by employing Lemma 3.3 in an analogous

way as in the first part of the proof of [27, Theorem 2.6.27, p. 158] one deduces that

for each k ∈ N there exists 0 < εk < 1 and C̃ ′
k ≥ 1 such that supλ∈K ‖r(λ)#m‖(k)

S (1,g;L(Ṽ ))
≤

C̃ ′
kεm

k . Thus, I +∑∞
m=1 r(λ)#m converges to a continuous function R : E → S (1,g;L(Ṽ ))

such that R(λ)w is the inverse of Id− r(λ)w in L2(V ;Ṽ ). A direct inspection also yields

(I − r(λ))#R(λ) = R(λ)#(I − r(λ)) = I , for all λ ∈ E .

Let f be as in the statement of the theorem. We continue to assume that g is symplectic.
Fix λ0 ∈ E . Let K be a compact neighbourhood of λ0. Because (f(λ)w )∗f(λ)w is positive

invertible on L2(V ;Ṽ ), f is continuous and K compact, it follows that there exists C > 0

3This result is given only for the scalar-valued case, but one can easily verify that the same
proof works in the vector-valued case as well.
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and for each λ ∈ K there exists 0 < cλ ≤ C such that

cλ‖u‖2
L2(V ;Ṽ )

≤ ((f(λ)w )∗f(λ)wu,u) ≤ C‖u‖2
L2(V ;Ṽ )

, ∀u ∈ L2(V ;Ṽ ), ∀λ ∈ K .

Define r(λ) = I −C−1f(λ)∗#f(λ) and, thus, r(λ)w = Id−C−1(f(λ)w )∗f(λ)w . The mapping

r : K → S (1,g;L(Ṽ )) is continuous and ‖r(λ)w‖Lb (L2(V ;Ṽ )) < 1, ∀λ ∈ K . As K is compact,
we infer supλ∈K ‖r(λ)w‖Lb (L2(V ;Ṽ )) < 1. The first part now implies that there exists a

continuous mapping RK : K → S (1,g;L(Ṽ )) such that

RK (λ)#f(λ)∗#f(λ) = I = f(λ)∗#f(λ)#RK (λ), ∀λ ∈ K . (3.12)

Similarly, there exists a continuous mapping R̃K : K → S (1,g;L(Ṽ )) such that

R̃K (λ)#f(λ)#f(λ)∗ = I = f(λ)#f(λ)∗#R̃K (λ), ∀λ ∈ K . (3.13)

Now, (3.12) and (3.13) imply that RK (λ)#f(λ)∗ = f(λ)∗#R̃K (λ), ∀λ ∈ K . Thus, by
defining f̃K (λ) = RK (λ)#f(λ)∗, we deduce that f̃K : K → S (1,g;L(Ṽ )) is continuous and

satisfies the conclusion of the theorem on K . Covering E by compact neighbourhoods

and noticing that, when K ∩K ′ �= ∅,
f̃K (λ) = f̃K (λ)#f(λ)#f̃K ′(λ) = f̃K ′(λ), ∀λ ∈ K ∩K ′,

we conclude the proof of the first part of the theorem when g is symplectic.
Assume now that g is a general geodesically temperate Hörmander metric. Then g# is

also a Hörmander metric by [27, Proposition 2.2.20, p. 78], g# is geodesically temperate

(cf. [27, Remark 2.6.21, p. 153]) and every admissible weight for g is also admissible

for g#. Let E be a locally compact Hausdorff topological space. Because S (1,g;L(Ṽ )) is
continuously included in S (1,g#;L(Ṽ )), the first part of the proof verifies the existence of

a continuous mapping f̃ :E →S (1,g#;L(Ṽ )) such that (3.11) holds. We need to prove that

f̃ is well-defined and continuous as a mapping into S (1,g;L(Ṽ )). Let k ∈Z+. Given S ∈ W
and Tj ∈ W , j = 1, . . . ,k , satisfying gS (Tj ) = 1, define M

Tl1,...,Tlm
S (X ) = ∏m

j=1 gX (Tlj )
1/2,

X ∈ W . One easily verifies that M
Tl1,...,Tlm
S , {l1, . . . ,lm} ⊆ {1, . . . ,k}, are admissible weights

for g and g# with uniform structure constants for g and g# (cf. the proof of [27,

Theorem 2.6.27, p. 158]); of course, the structure constants depend on k . Notice that

∂Tl1
. . . ∂Tlm

f(λ) ∈ S (M
Tl1,...,Tlm
S ,g#;L(Ṽ )), ∀λ ∈ E . Moreover,

‖∂Tl1
. . . ∂Tlm

f(λ)‖(q)

S (M
Tl1 ,...,Tlm
S ,g#;L(Ṽ ))

≤ ‖f(λ)‖(q+m)

S (1,g;L(Ṽ ))
, ∀q ∈ N, λ ∈ E . (3.14)

Applying ∂T1 to the identity (3.11), we infer ∂T1 f̃(λ)#f(λ)+ f̃(λ)#∂T1 f(λ) = 0 and thus
∂T1 f̃(λ) = −f̃(λ)#∂T1 f(λ)#f̃(λ). By induction, one can verify that ∂T1 . . . ∂Tk f̃(λ) is a finite

sum of terms of the form

±f (1)
λ #. . .#f (s)

λ , (3.15)

where each f (j )
λ is either f̃ (λ) or ∂Tl1

. . . ∂Tlm
f(λ) and s ≤ 2k + 1; furthermore, each ∂Tj ,

j = 1. . . ,k , appears exactly once in (3.15). Fix λ0 ∈ E and a compact neighbourhood K
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of λ0. Then ∂T1 . . . ∂Tk f̃ (λ)− ∂T1 . . . ∂Tk f̃ (λ0) is a finite sum of terms of the form

±
(
f (1)
λ #. . .#f (s)

λ − f (1)
λ0

#. . .#f (s)
λ0

)
(3.16)

with f (j )
λ and f (j )

λ0
as above and s ≤ 2k +1. The quantity (3.16) is equal to

±
s∑

j=1

f (1)
λ0

#. . .#f (j−1)

λ0
#(f (j )

λ − f (j )
λ0

)#f (j+1)

λ #. . .#f (s)
λ .

We take the norm ‖ · ‖(0)

S (M
T1,...,Tk
S ,g#;L(Ṽ ))

of the above sum. Because of [27, Theorem

2.3.7, p. 91], there exist p ∈ Z+ and C > 0 independent of S and Tj (because M
Tl1,...,Tlm
S

have uniform structure constants with respect to g# and s ≤ 2k +1) such that this norm
is dominated by

C
s∑

j=1

(j−1∏
l=1

‖f (l)
λ0

‖(p)

S (M̃l ,g#;L(Ṽ ))

)
‖f (j )

λ − f (j )
λ0

‖(p)

S (M̃j ,g#;L(Ṽ ))

⎛
⎝ s∏

l=j+1

‖f (l)
λ ‖(p)

S (M̃l ,g#;L(Ṽ ))

⎞
⎠,

(3.17)

where M̃j , j = 1, . . . ,s, are given as follows: when f (j )
λ = f̃(λ) then M̃j (X ) = 1, ∀X ∈ W ,

and when f (j )
λ = ∂Tl1

. . . ∂Tlm
f(λ) then M̃j (X ) = M

Tl1,...,Tlm
S (X ), ∀X ∈ W . Because f̃ and

f are continuous with values in S (1,g#;L(Ṽ )) and S (1,g;L(Ṽ )), respectively, and K
is compact, it follows that (3.17) tends to 0 as λ → λ0 uniformly in S ∈ W , Tj ∈ W ,

j = 1, . . . ,k , satisfying gS (Tj ) = 1 (cf. (3.14)). Thus,

sup
S∈W

T1,...,Tk∈W , gS (Tj )=1

‖∂T1 . . . ∂Tk f̃(λ)(S )− ∂T1 . . . ∂Tk f̃(λ0)(S )‖L(Ṽ ) → 0, as λ → λ0. (3.18)

In an analogous fashion, one also deduces

sup
S∈W

T1,...,Tk∈W , gS (Tj )=1

‖∂T1 . . . ∂Tk f̃(λ)(S )‖L(Ṽ ) < ∞, ∀λ ∈ K .

Consequently f̃(K ) ⊆ S (1,g,L(Ṽ )) and (3.18) implies f̃ is continuous at λ0 as an

S (1,g;L(Ṽ ))-valued mapping.
Assume now that E is a smooth p-dimensional manifold with f being of class CN ,

1 ≤ N ≤ ∞. The above verifies that f̃ : E → S (1,g;L(Ṽ )) is continuous. In order to

prove f̃ is of class CN as an S (1,g;L(Ṽ ))-valued mapping, let λ0 ∈ E and let K be a

regular compact set (i.e., K = intK ) containing λ0 in its interior and K is contained in a
coordinate neighbourhood U of λ0 with local coordinates (λ1, . . . ,λp). The maps

f̃j : U → S (1,g;L(Ṽ )), f̃j (λ) = −f̃ (λ)#∂λj f(λ)#f̃(λ), j = 1, . . . ,p,
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are well defined and continuous. We will prove that

|λ−λ0|−1

⎛
⎝f̃(λ)− f̃(λ0)−

p∑
j=1

(λj −λ
j
0)f̃j (λ0)

⎞
⎠ → 0, as λ → λ0, in S (1,g;L(Ṽ )). (3.19)

Notice that

f̃ (λ)− f̃(λ0)−
p∑

j=1

(λj −λ
j
0)f̃j (λ0)

= −f̃ (λ)#

⎛
⎝f(λ)− f(λ0)−

p∑
j=1

(λj −λ
j
0)∂λj f(λ0)

⎞
⎠#f̃(λ0)

−
p∑

j=1

(λj −λ
j
0)(f̃(λ)− f̃(λ0))#∂λj f(λ0)#f̃(λ0).

Thus, by [27, Theorem 2.3.7, p. 91], for each k ∈ Z+ there exists k ′ ∈ Z+ and C ′ > 0 such
that

|λ−λ0|−1

∥∥∥∥∥∥f̃(λ)− f̃(λ0)−
p∑

j=1

(λj −λ
j
0)f̃j (λ0)

∥∥∥∥∥∥
(k)

S (1,g;L(Ṽ ))

≤ C ′

|λ−λ0|

∥∥∥∥∥∥f(λ)− f(λ0)−
p∑

j=1

(λj −λ
j
0)∂λj f(λ0)

∥∥∥∥∥∥
(k ′)

S (1,g;L(Ṽ ))

· ‖f̃(λ)‖(k ′)
S (1,g;L(Ṽ ))

‖f̃ (λ0)‖(k ′)
S (1,g;L(Ṽ ))

+C ′‖f̃ (λ)− f̃(λ0)‖(k ′)
S (1,g;L(Ṽ ))

‖f̃ (λ0)‖(k ′)
S (1,g;L(Ṽ ))

p∑
j=1

‖∂λj f(λ0)‖(k ′)
S (1,g;L(Ṽ ))

.

As f̃ : E → S (1,g;L(Ṽ )) is continuous and f : E → S (1,g;L(Ṽ )) is of class CN , we

deduce the validity of (3.19). Because λ0 ∈ intK is arbitrary, we conclude that f̃ is C1

as an S (1,g;L(Ṽ ))-valued mapping whose partial derivatives are f̃j (recall that these are

continuous S (1,g;L(Ṽ ))-valued mappings). In the same way one proves that f̃ is Ck , for

every k ∈ Z+, k ≤ N ; that is, it is of class CN on intK and, as K is arbitrary, it is of class
CN on E as an S (1,g;L(Ṽ ))-valued mapping.

As a consequence of this theorem, we have the following result.

Corollary 3.7. Assume that g is a geodesically temperate Hörmander metric and M
and M1 are g-admissible weights. Let E be a Hausdorff topological space and f : E →
S (M ,g;L(Ṽ )) be a continuous mapping. If for each λ ∈ E , f(λ)w restricts to an invertible
operator from H (M1,g;Ṽ ) onto H (M1/M ,g;Ṽ ), then there exists a unique continuous

mapping f̃ : E → S (1/M ,g;L(Ṽ )) such that

f̃(λ)#f(λ) = f(λ)#f̃(λ) = I , ∀λ ∈ E .
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If E is a smooth manifold without boundary and f : E → S (M ,g;L(Ṽ )) is of class CN ,

0 ≤ N ≤ ∞, then f̃ : E → S (1/M ,g;L(Ṽ )) is also of class CN .

Proof. By [27, Corollary 2.6.16, p. 150], we can find a1 ∈ S (1/M1,g), b1 ∈ S (M1,g),

a ∈ S (M1/M ,g), b ∈ S (M /M1,g) such that b1#a1 = 1 = a1#b1 and b#a = 1 = a#b. If f
is of class CN , 0 ≤ N ≤ ∞, the mapping

f1(λ) = (aI )#f(λ)#(a1I ), E → S (1,g,L(Ṽ )),

is also of class CN , and it satisfies the assumptions of Theorem 3.6. Hence, there exists

f̃1 : E → S (1,g,L(Ṽ )) of class CN such that f̃1(λ)#f1(λ) = I = f1(λ)#f̃1(λ). Then f̃(λ) =
(a1I )#f̃1(λ)#(aI ), E �→ S (1/M ,g;L(Ṽ )), is the sought-after mapping. The proof of the
uniqueness is easy and we omit it.

4. Ellipticity and the Fredholm property

The relationship between the class of pseudodifferential operators that are Fredholm

between appropriate Sobolev spaces and those that are elliptic is the subject of this
section. We will prove the equivalence of these two properties provided the metric is

geodesically temperate and its associate function λg tends to infinity at infinity.

We start with the following simple but useful result.

Lemma 4.1. Let g be a Hörmander metric and M1, M2 and M g-admissible weights. If

MM2/M1 vanishes at infinity, then for any a ∈ S (M ,g;L(Ṽ )), aw restricts to a compact
operator from H (M1,g;Ṽ ) into H (M2,g;Ṽ ).

Proof. By [27, Corollary 2.6.16, p. 150], we can choose aj ∈ S (Mj ,g), ãj ∈ S (1/Mj ,g)

satisfying aj#ãj = 1 = ãj#aj , j = 1,2. Then, aw = (ã2I )w ((a2I )#a#(ã1I ))w (a1I )w .

Because (a2I )#a#(ã1I ) ∈ S (MM2/M1,g;L(Ṽ )) and MM2/M1 vanishes at infinity, [22,

Theorem 5.5] yields that ((a2I )#a#(ã1I ))w is compact on L2(V ;Ṽ ) and the result of
the lemma follows.

The ellipticity is defined in a usual way.

Definition 4.2. Let g be a Hörmander metric and M a g-admissible weight. We say

that a ∈ S (M ,g;L(Ṽ )) is S (M ,g;L(Ṽ ))-elliptic if there exist a compact neighbourhood
of the origin K ⊆ W and C > 0 such that |deta(X )| ≥ CM (X )dimṼ , for all X ∈ W \K .

Remark 4.3. Of course, in the scalar-valued case, this definition reduces to the familiar
one when working in the frequently used calculi (the Shubin calculus, the SG calculus,

etc.; cf. [29, 31]); see also [11] for the notion of hypoellipticity in the scalar-valued setting

of the Weyl-Hörmander calculus.

Remark 4.4. When a ∈ S (M ,g;L(Ṽ )), we always have deta ∈ S (M dimṼ ,g). Thus,
for a given a ∈ S (M ,g;L(Ṽ )), the S (M ,g;L(Ṽ ))-ellipticity of a is equivalent to the

S (M dimṼ ,g)-ellipticity of deta.
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Remark 4.5. There exists c′
0 ≥ 1 that depends only on dim Ṽ and ‖ · ‖Ṽ such that

for any invertible A : Ṽ → Ṽ we have 1/‖A‖L(Ṽ ) ≤ ‖A−1‖L(Ṽ ) ≤ c ′
0‖A‖dimṼ−1

L(Ṽ )
/|detA|.

Consequently, for a ∈ S (M ,g;L(Ṽ )) the S (M ,g;L(Ṽ ))-ellipticity of a is equivalent to the

following: There exists a compact neighbourhood of the origin K ⊆ W and C > 0 such

that a(X ) is invertible on W \K and ‖a(X )−1‖L(Ṽ ) ≤ C /M (X ), ∀X ∈ W \K .

Theorem 4.6. Let g be a Hörmander metric satisfying λg → ∞ and M be a g-admissible
weight. If a ∈ S (M ,g;L(Ṽ )) is elliptic, then for any g-admissible weight M1, aw restricts

to a Fredholm operator from H (M1,g;Ṽ ) into H (M1/M ,g;Ṽ ) and its index is independent

of M1.

Proof. Let ã = a−1 away from the origin and modified on a sufficiently large compact
neighbourhood of the origin so as to be a well-defined element of S (1/M ,g;L(Ṽ )).

Then ã#a − I ∈ S (1/λg,g;L(Ṽ )) and Lemma 4.1 verifies that ãwaw − Id is a compact

operator on H (M1,g;Ṽ ). Similarly, aw ãw − Id is a compact operator on H (M1/M ,g;Ṽ ).

Consequently, aw : H (M1,g;Ṽ ) → H (M1/M ,g;Ṽ ) is Fredholm. To prove that the index
is independent of M1, let M2 be another g-admissible weight and denote by Aj the

restriction of aw to H (Mj ,g;Ṽ ) → H (Mj /M ,g;Ṽ ), j = 1,2. Because of [27, Corollary

2.6.16, p. 150], we can choose b1 ∈ S (M1/M2,g) and b2 ∈ S (M2/M1,g) such that
b1#b2 = 1 = b2#b1. Consequently, the restrictions B1 and B2 of (b1I )w and (b2I )w

to H (M1,g;Ṽ ) → H (M2,g;Ṽ ) and H (M2/M ,g;Ṽ ) → H (M1/M ,g;Ṽ ), respectively, are

isomorphisms. Because (b2I )#a#(b1I )− a ∈ S (M /λg,g;L(Ṽ )) and λg → ∞ at infinity,
Lemma 4.1 implies that B2A2B1 − A1 : H (M1,g;Ṽ ) → H (M1/M ,g;Ṽ ) is compact.

Consequently, indA2 = indB2A2B1 = indA1.

Remark 4.7. When working in the ‘classical’ pseudodifferential calculi, if there exists
C,δ > 0 such that λg(X ) ≥ C (1 + g0(X ))δ, ∀X ∈ W (i.e., if the metric satisfies the

strong uncertainty principle), then given an elliptic a ∈ S (M ,g) one can construct a

parametrix of a (see [6, 28]; see also [13, 21]) and derive from that the index of
aw |H (M1,g) : H (M1,g) → H (M1/M ,g) does not depend on M1; in fact, one can derive the

stronger result that the dimensions of the kernel and cokernel are independent of M1 (cf.

[29, Section 1.6]). The significance of the above result is that the index is independent

of M1 even when only requiring λg → ∞; however, we cannot say anything about the
invariance of the dimensions of the kernel and cokernel. As we will see at the end of this

section, if one additionally assumes that g is geodesically temperate, then the invariance

of the dimensions of the kernel and cokernel will follow.

Our next goal is to prove a converse result to that of Theorem 4.6. Namely, if aw

restricts to a Fredholm operator between Sobolev spaces, then it is elliptic. The proof relies

on Theorem 3.6 and, consequently, on the spectral invariance of the Weyl-Hörmander

calculus and the geodesic temperance of g . We first prove this result for symbols in
S (1,g;L(Ṽ )) and derive the general case from the latter.

Before we proceed, we need the following result whose proof is the same as for [30,

Lemma 2.7] and thus we omit it.

https://doi.org/10.1017/S1474748020000584 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000584


1380 S. Pilipović and B. Prangoski

Lemma 4.8. Let g be a Hörmander metric and a ∈ S (1,g;L(Ṽ )) be such that A =
aw

|L2(V ;Ṽ ) has finite-dimensional range. Then, there exist ϕj ∈ S(V ;Ṽ ′), ψj ∈ S(V ;Ṽ ),

j = 1, . . . ,m, such that Af = ∑m
j=1〈f ,ϕj 〉ψj , f ∈ L2(V ;Ṽ ). Consequently, the kernel of A

is in S(V ;Ṽ ′)⊗S(V ;Ṽ ) and, thus, a ∈ S(W ;L(Ṽ )).

Theorem 4.9. Let g be a geodesically temperate Hörmander metric satisfying λg → ∞.

If a ∈ S (1,g;L(Ṽ )) is such that aw restricts to a Fredholm operator on L2(V ;Ṽ ) then a
is elliptic.

Proof. Throughout the proof, we fix an inner product on Ṽ and denote by ‖ · ‖Ṽ and

‖ · ‖L(Ṽ ) the induced norms. Denote A = aw
|L2(V ;Ṽ ). Because A is Fredholm, 0 is an

isolated point of the spectrum of the positive operator A∗A (see [15, Lemma 7.2]). Let �

be a circle about the origin in C with radius r ≤ 1 that contains no other point of the

spectrum of A∗A except possibly 0 and define

B = 1
2π i

∫
�

(λId−A∗A)−1dλ.

Then B is an orthogonal projection and [32, Section 5.10, Theorems 10.2 and 10.1, p.
330] imply that the range of B is kerA∗A = kerA; that is, B is an orthogonal projection

onto kerA (this trivially holds if kerA = {0}). Set ãλ = λI −a∗#a ∈ S (1,g;L(Ṽ )), λ ∈ �.

The mapping λ �→ ãλ, � → S (1,g;L(Ṽ )), is continuous (and in fact smooth) and ãw
λ is

invertible on L2(V ;Ṽ ). Theorem 3.6 yields the existence of a continuous (and in fact

smooth) mapping λ �→ b̃λ, � → S (1,g;L(Ṽ )), such that b̃λ#ãλ = I = ãλ#b̃λ, λ ∈ �. Define

b(X ) = 1
2π i

∫
�

b̃λ(X )dλ = r
2π

∫ 2π

0
b̃reit (X )eitdt, X ∈ W .

Clearly b ∈ C∞(W ;L(Ṽ )) and, since λ �→ b̃λ is continuous and � is compact, one easily

derives that b ∈ S (1,g;L(Ṽ )). For each m ∈ Z+, define

c̃m,t = b̃re2πij /m e2πij /m, when 2π(j −1)/m ≤ t < 2π j /m, j = 1, . . . ,m.

Clearly cm,t ∈ S (1,g;L(Ṽ )). Furthermore,

bm = r
2π

∫ 2π

0
cm,tdt = r

2π

m∑
j=1

b̃re2πij /m e2πij /m · 2π

m
∈ S (1,g;L(Ṽ )).

Now

‖bw − bw
m‖Lb (L2(V ;Ṽ )) ≤ C‖b − bm‖(k)

S (1,g;L(Ṽ ))

≤ C
2π

m∑
j=1

∫ 2πj /m

2π(j−1)/m
‖b̃reit eit − b̃re2πij /m e2πij /m‖(k)

S (1,g;L(Ṽ ))
dt .

The right-hand side tends to 0 as m → ∞ because t �→ b̃reit eit , [0,2π ] → S (1,g;L(Ṽ )),
is uniformly continuous. Consequently, bw

m → bw in Lb(L2(V ;Ṽ )). On the other hand,

cw
m,t → b̃w

reit eit , as m → ∞, pointwise in Lb(L2(V ;Ṽ )), so the dominated convergence

theorem implies bw
m →B in Lb(L2(V ;Ṽ )). We conclude bw

|L2(V ;Ṽ ) =B . As the range of B

https://doi.org/10.1017/S1474748020000584 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000584


Equivalence of ellipticity and the fredholm property in the Weyl-Hörmander calculus 1381

is the finite-dimensional space kerA, we can apply Lemma 4.8 to deduce b ∈ S(W ;L(Ṽ )).

One easily verifies that B +A∗A is invertible on L2(V ;Ṽ ) and, consequently, there exists

c ∈ S (1,g;L(Ṽ )) such that cw
|L2(V ;Ṽ ) = (B +A∗A)−1. We infer c#(b +a∗#a) = I , which

yields

c#a∗#a = I − c#b. (4.1)

Because c#b ∈ S(W ;L(Ṽ )) and c#a∗#a −ca∗a ∈ S (1/λg,g;L(Ṽ )), we deduce ca∗a −I ∈
S (1/λg,g;L(Ṽ )). As 1/λg vanishes at infinity, the continuity of the determinant on L(Ṽ )4

implies

|detc(X )||deta(X )|2 = |det(c(X )a∗(X )a(X )− I + I )| ≥ 1/2,

for all X outside of a compact neighbourhood of the origin. Because c ∈ S (1,g;L(Ṽ )),

the claim in the theorem follows.

The main result of the section is the following one.

Theorem 4.10. Let g be a geodesically temperate Hörmander metric satisfying λg → ∞
and M and M1 two g-admissible weights. If a ∈ S (M ,g;L(Ṽ )) is such that aw restricts

to a Fredholm operator from H (M1,g;Ṽ ) into H (M1/M ,g;Ṽ ), then a is elliptic.

Proof. Take an elliptic b ∈ S (1/M1,g) and an elliptic c ∈ S (M1/M ,g). Then ã =
(cI )#a#(bI ) ∈ S (1,g;L(Ṽ )) and ãw = (cI )waw (bI )w is a Fredholm operator on L2(V ;Ṽ )

(cf. Theorem 4.6). By Theorem 4.9, |det ã(X )| ≥ 1/C and ‖ã(X )−1‖L(Ṽ ) ≤ C for all X
outside of a compact neighbourhood of the origin K ⊆ W (cf. Remark 4.5). Because

f = ã − (cI )a(bI ) ∈ S (1/λg,g;L(Ṽ )), we have

|det(cI )a(bI )(X )| = |det ã(X )||det(I − ã(X )−1f (X ))|, ∀X ∈ W \K .

As 1/λg vanishes at infinity the claim of the theorem follows.

As a consequence of the proof of Theorem 4.9, we derive that the geodesic temperance of

g implies that elliptic operators always have parametrices if one merely requires λg → ∞.
To the best of our knowledge, in the literature the construction of parametrices is always

done under the assumption of the strong uncertainty principle (see the references cited

in Remark 4.7). In addition to being of an independent interest, this strengthens the

conclusion of Theorem 4.6 because it yields the invariance of dimensions of both the
kernel and cokernel of an elliptic operator and not just its index.

Theorem 4.11. Let g be a geodesically temperate Hörmander metric satisfying
λg → ∞ and M a g-admissible weight. If a ∈ S (M ,g;L(Ṽ )) is elliptic, then there are

r1,r2 ∈ S(W ,L(Ṽ )) and elliptic ã1,ã2 ∈ S (1/M ,g;L(Ṽ )) such that ã1#a = I + r1 and

a#ã2 = I + r2 and consequently aw is globally regular. Furthermore, rw
1 (S ′(V ;Ṽ )) and

rw
2 (S ′(V ;Ṽ )) are finite-dimensional subspaces of S(V ;Ṽ ).

4That is, there exists ε > 0 that depends only on dimṼ and ‖ ·‖Ṽ such that |det(I +P)| ≥ 1/2
for all P ∈ L(Ṽ ) satisfying ‖P‖L(Ṽ )

≤ ε.
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In particular, keraw is a finite-dimensional subspace of S(V ;Ṽ ) and for any

g-admissible weight M1, ker(aw
|H (M1,g;Ṽ )) = keraw .

Proof. To prove the existence of ã1 and r1, assume first M = 1; that is, a ∈ S (1,g;L(Ṽ ))

is elliptic. Then A = aw
|L2(V ;Ṽ ) is a Fredholm operator on L2(V ;Ṽ ) by Theorem 4.6

and we can repeat the proof of Theorem 4.9 verbatim to conclude the existence of b ∈
S(W ;L(Ṽ )) and an elliptic c ∈ S (1,g;L(Ṽ )) such that B = bw

|L2(V ;Ṽ ) : L2(V ;Ṽ ) →
L2(V ;Ṽ ) is an orthogonal projection on the finite-dimensional subspace kerA ⊆ L2(V ;Ṽ )

and the equality (4.1) holds. Then ã1 = c#a∗ ∈ S (1,g;L(Ṽ )) is elliptic. Set r1 = −c#b ∈
S(W ;L(Ṽ )). Lemma 4.8 implies

kerA = bw (L2(V ;Ṽ )) = bw (S ′(V ;Ṽ )) ⊆ S(V ;Ṽ )

and, consequently, rw
1 (S ′(V ;Ṽ )) is a finite-dimensional subspace of S(V ;Ṽ ).

When a ∈ S (M ,g;L(Ṽ )) is elliptic for general M , pick a1 ∈ S (1/M ,g) and a2 ∈ S (M ,g)

such that a2#a1 = 1 = a1#a2 and apply the above to the elliptic symbol (a1I )#a ∈
S (1,g;L(Ṽ )).
To prove the existence of ã2 and r2, similarly as above, it suffices to consider the case

when M = 1. But then one can apply an analogous construction as in the proof of Theorem

4.9 to the elliptic symbol a∗ ∈ S (1,g;L(Ṽ )).

Remark 4.12. With g , M and a as in Theorem 4.11, in view of Theorem 4.6, we can also

conclude that the dimensions of the cokernels of the Fredholm operators aw
|H (M1,g;Ṽ ) :

H (M1,g;Ṽ ) → H (M1/M ,g;Ṽ ) are the same for any g-admissible weight M1.

4.1. The Fedosov-Hörmander integral formula for the index

If the Hörmander metric g satisfies the strong uncertainty principle – that is, there are
C,δ > 0 such that λg(X ) ≥ C (1 + g0(X ))δ, ∀X ∈ W , and a ∈ S (1,g;L(Ṽ )) is elliptic –

then indaw can be given by the Fedosov-Hörmander integral formula [22, Theorem 7.3]

(see also [17, 19]). As a consequence of this result, we derive that the same is true if
a is an elliptic symbol in S (M ,g;L(Ṽ )). Before we state the result, we fix the notion.

Let F be a smooth manifold without boundary. A regular domain in F is a properly

embedded codimension 0 submanifold with boundary. If D is a regular domain in F , then

the topological boundary and interior of D coincide to its respective manifold boundary
and interior (see [24, Proposition 5.46, p. 120]).

Proposition 4.13. Assume that the Hörmander metric g satisfies the strong uncertainty

principle and let a be an elliptic symbol in S (M ,g;L(Ṽ )) for some g-admissible weight

M . Let D be any compact regular domain in W that contains in its interior the set where
a is not invertible. Then

indaw = − (n −1)!
(2n −1)!(2π i)n

∫
∂D

tr(a−1da)2n−1. (4.2)

The orientation of D is the one induced by W , where the latter has the orientation induced

by the symplectic form.
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Remark 4.14. If we fix a basis for V and take the dual basis for V ′, the orientation on
W is given by the nonvanishing 2n-form dξ1 ∧dx 1 ∧. . . ∧dξn ∧dxn .

Proof. Because D is a compact regular domain in W , there exists a smooth exhausting

function f : W → R (i.e., a smooth f such that each sublevel set f −1(−∞,c], c ∈ R, is

compact) such that f −1(−∞,s] = D and s is a regular value of f ; see [24, Theorem 5.48, p.
121]. Then, f −1(−∞,s) = intD and f −1(s) = ∂D ; of course, without loss of generality, we

can assume s > 1. Fix an inner product on W and denote by | · | the Euclidean distance

induced by it. For each r > 0, denote by Br the open ball with centre at the origin and

radius r . There exists r1 > 1 such that D ⊆ Br1 . Let r > r1 be arbitrary but fixed. Take
χ ∈ D(W ) such that 0 ≤ χ ≤ 1, suppχ ∈ Br and χ = 1 on Br1 . Set

f1(X ) = χ(X )f (X )+ s̃(1−χ(X ))|X |, with s̃ = max{f (X )|X ∈ Br } > s.

Clearly, f1 ∈ C∞(W ), f −1
1 (s) = ∂D , f −1

1 (s̃r) = ∂Br , f −1
1 ([s, s̃r ]) = Br\ intD and s and s̃r

are regular values of f1. Consequently, Br\ intD is a compact regular domain in W (see
[24, Proposition 5.47, p. 121]) with ∂(Br\ intD) = ∂D ∪∂Br . Notice that d((a−1da)2n−1)

is a finite sum of forms of the type ±(a−1da)2n . Thus,

d tr(a−1da)2n−1 = trd((a−1da)2n−1) = k tr(a−1da)2n,

for some k ∈ Z. But tr(a−1da)2n = 0 because moving a factor a−1da from the end to

the beginning produces a minus sign (the trace is invariant under cyclic permutations).
Consequently, Stokes’ formula applied on the manifold Br\ intD gives∫

∂Br

tr(a−1da)2n−1 −
∫

∂D
tr(a−1da)2n−1 = 0,

where the orientations on ∂Br and ∂D are the ones induced by Br and D respectively

(and the latter have the symplectic orientations given by W ). Notice that the orientation

induced by Br\ intD on ∂D is the opposite one. The validity of this follows from the
fact that the smooth vector field grad f1 = (df1)� defined by any Riemannian metric on

W (for example, the Euclidean metric) is outward pointing on ∂D when viewed as the

boundary of D but inward pointing when viewed as part of the boundary of Br\ intD .

Consequently, it is enough to prove (4.2) with Br in place of D .
Take a positive elliptic symbol b̃ ∈ S (1/M ,g). Let ψ ∈ D(W ) be such that 0 ≤ ψ ≤ 1,

suppψ ⊆ Br+2 and ψ = 1 on Br+1. Define b = ψ + (1 − ψ)b̃. Then, b ∈ S (1/M ,g) is a

positive elliptic symbol; in fact, b = 1 on Br+1 and b = b̃ on W \Br+2. Furthermore, (bI )a
is an elliptic symbol in S (1,g;L(Ṽ )). We claim that ind(bI )w = 0. To see this, we first

note that (bI )w is formally self-adjoint. Denote by B the operator

(bI )w |H (1/M ,g;Ṽ ) : H (1/M ,g;Ṽ ) → L2(V ;Ṽ ).

Then tB : L2(V ;Ṽ ′)(= L2(V ;Ṽ )′) → H (1/M ,g;Ṽ )′ is continuous, ker tB is isomorphic

to cokerB (this holds in general) and tBu = (bI ′)w ū, ∀u ∈ L2(V ;Ṽ ′), with I ′ the identity
operator on Ṽ ′. Thus, ker tB = {u ∈L2(V ;Ṽ ′)|(bI ′)w ū = 0}. The latter space is isomorphic

to

ker((bI )w |L2(V ;Ṽ )) = {u ∈ L2(V ;Ṽ )|(bI )wu = 0}.
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Because g satisfies the strong uncertainty principle, there exists k ∈ Z+ such that

C−1λg(X )−k ≤ M (X ) ≤ Cλg(X )k, ∀X ∈ W .

As 1/b ∈ S (M ,g) (see the proof of [27, Lemma 2.2.22, p. 80]), (I − (b−1I )#(bI ))#k ∈
S (1/λk

g,g;L(Ṽ )). If u ∈ ker((bI )w |L2(V ;Ṽ )), then

u = (Id−(b−1I )w (bI )w )ku ∈ H (λk
g,g;Ṽ ) ⊆ H (1/M ,g;Ṽ )

and, consequently, u ∈ kerB . Analogously, u ∈ kerB implies u ∈ ker((bI )w |L2(V ;Ṽ )). We
conclude that ind(bI )w = 0.
Now, indaw = ind((bI )#a)w = ind((bI )a)w , where the second equality follows from the

fact that ((bI )#a)w −((bI )a)w is compact because (bI )#a −(bI )a ∈ S (1/λg,g;L(Ṽ )) and
λg → ∞ (see Lemma 4.1). For the operator ((bI )a)w we can apply the Fedosov-Hörmander

formula [22, Theorem 7.3] to obtain

indaw = ind((bI )a)w = − (n −1)!
(2n −1)!(2π i)n

∫
∂Br

tr(((bI )a)−1d((bI )a))2n−1.

Because b = 1 on a neighbourhood of ∂Br , we infer ((bI )a)−1d((bI )a) = a−1da on ∂Br .

This completes the proof.

5. Example

In this section we give an example of an operator that is not elliptic in any of the

‘classical’ calculi, but it is elliptic in the Weyl-Hörmander calculus for an appropriate

metric. Consequently, the results from the previous section will imply that it is a Fredholm

operator between the appropriate Sobolev spaces associated to the calculus. The operator
we consider is

−�+〈x 〉−2s, 0 < s < 1.

Remark 5.1. The left symbol of the operator a(x,ξ) = |ξ |2 +〈x 〉−2s is equal to its Weyl

symbol (and, in fact, is equal to the τ -symbol for any τ ∈ R). This follows from the fact

that the Weyl symbol is given by J−1/2a, where J−1/2 = e− i
2Dx ·Dξ ; one easily verifies that

J−1/2a = a.

Lemma 5.2. The symbol a(x,ξ) = |ξ |2 +〈x 〉−2s of the operator −�+〈x 〉−2s , 0 < s < 1,
is not elliptic in any symbol class generated by a Hörmander metric g of the form gx,ξ =
ϕ(x,ξ)−2|dx |2 +�(x,ξ)−2|dξ |2 if � is bounded from below; that is, if �(x,ξ) ≥ c, for all
x,ξ ∈ R

n .

Proof. Assume that a is elliptic for some Hörmander metric g of this form. Then, there
exist R ≥ 1 and C ≥ 1 such that

2|ξ1| = |∂ξ1a(x,ξ)| ≤ C |a(x,ξ)|/�(x,ξ) ≤ c−1C (|ξ |2 +〈x 〉−2s), if |x |2 +|ξ |2 ≥ R2.

Consequently, this inequality is true for all points (x (k),ξ (k)), where x (k)
1 = k , ξ

(k)
1 = 1/k s ,

x (k)
j = ξ

(k)
j = 0, j = 2, . . . ,n, k ≥ R, k ∈ Z+. But this implies that 2 ≤ c−1C (k−s + k s(1+

k2)−s), for all k ≥ R, which is a contradiction.
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The lemma implies that −�+〈x 〉−2s , 0 < s < 1, is not elliptic in any of the ‘classical’

calculi like the Shubin, the SG and the Beals-Fefferman calculus, because in each of these

calculi the weight � is always (as part of the assumptions) bounded from below. However,

the operator is elliptic in the Weyl-Hörmander calculus for an appropriate choice of the
metric.

Lemma 5.3. Let 0 < s < 1. The Riemannian metric gx,ξ = 〈x 〉−2|dx |2 +〈x 〉2s〈ξ 〉−2|dξ |2
is a geodesically temperate Hörmander metric and λg(x,ξ) = 〈x 〉1−s〈ξ 〉. Furthermore,
M (x,ξ) = 〈x 〉−2s +|ξ |2 is admissible for g.

Proof. The symplectic dual of g is gσ
x,ξ = 〈ξ 〉2〈x 〉−2s |dx |2 + 〈x 〉2|dξ |2. To prove that g

is slowly varying, it is enough to find 0 < r < 1 and C ≥ 1 such that for x,y,ξ,η ∈ R
n

satisfying |x −y | ≤ r〈x 〉 and |ξ −η| ≤ r〈ξ 〉〈x 〉−s it holds that

C−1 ≤ 〈y〉〈x 〉−1 ≤ C and C−1 ≤ 〈x 〉s〈ξ 〉−1〈y〉−s〈η〉 ≤ C . (5.1)

We claim that one can take any r ≤ min{1/4,1/21/s}. To see this, notice that 〈y〉2 ≤
1 + 2r2〈x 〉2 + 2|x |2 ≤ 4〈x 〉2. Similarly, 〈x 〉2 ≤ 2r2〈x 〉2 + 2〈y〉2 and, consequently, 〈x 〉2 ≤
(16/7)〈y〉2, which proves the first part of (5.1). Analogously, for the second part we infer

〈x 〉2s〈ξ 〉−2 ≤ (2r2〈x 〉2 +2〈y〉2)s〈ξ 〉−2 ≤ 2sr2s〈x 〉2s〈ξ 〉−2 +2s〈y〉2s〈ξ 〉−2,

which implies 〈x 〉2s〈ξ 〉−2 ≤ 4〈y〉2s〈ξ 〉−2. When |η| ≤ 2|ξ |, the right-hand side of the second

part of (5.1) easily follows. The validity of the latter is also trivial when 1 ≥ |η| ≥ 2|ξ |.
Assume |η| ≥ 2|ξ | and |η| ≥ 1. Then, |η− ξ | ≥ |η|− |ξ | ≥ |η|/2 and thus

〈η〉 ≤ √
2|η| ≤ 2

√
2|η− ξ | ≤ 2

√
2r〈ξ 〉〈x 〉−s ≤ 〈ξ 〉,

which together with the above implies the right-hand side of the second part of (5.1).

The proof of the left-hand side is similar and we omit it.

Next, we prove that g is temperate. We have to find C,N ≥ 1 such that(〈y〉2〈x 〉−2)±1 ≤ C
(
1+|x −y |2〈ξ 〉2〈x 〉−2s +|ξ −η|2〈x 〉2)N , (5.2)(〈x 〉2s〈ξ 〉−2〈y〉−2s〈η〉2)±1 ≤ C

(
1+|x −y |2〈ξ 〉2〈x 〉−2s +|ξ −η|2〈x 〉2)N , (5.3)

for all x,y,ξ,η ∈ R
n . Because 〈y〉2〈x 〉−2 ≤ 2+2|x −y |2〈x 〉−2, we immediately deduce the

validity of (5.2) for 〈y〉2〈x 〉−2. To prove it for 〈x 〉2〈y〉−2, we first infer 〈x 〉2〈y〉−2 ≤ 2 +
2|x − y |2〈y〉−2. This immediately implies the validity of (5.2) when |x | ≤ 2|y |. Assume

|x | ≥ 2|y |. Then, |x −y | ≥ |x |− |y | ≥ |x |/2, which implies 〈x 〉 ≤ 2〈x −y〉 and we estimate

as follows:

〈x −y〉 ≤ 2s/(1−s)〈x −y〉1+s/(1−s)〈x 〉−s/(1−s) ≤ 2s/(1−s)
(
1+|x −y |2〈x 〉−2s)1/(2−2s) .

Because 〈x 〉2〈y〉−2 ≤ 2+2|x −y |2 the validity of (5.2) follows. Next, we prove (5.3). As

〈x 〉2s〈ξ 〉−2 ≤ 2〈y〉2s〈η〉−2 (〈x 〉2〈y〉−2)s 〈ξ −η〉2,
(5.2) implies (5.3) when the exponent on the left hand side is 1. The proof when the

exponent is −1 is similar and we omit it.
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As λg(x,ξ) = 〈x 〉1−s〈ξ 〉 ≥ 1, we deduce g ≤ gσ . Consequently, g is a Hörmander metric.

The fact that g is geodesically temperate immediately follows from the observations given

at the very end of Section 2.

We turn our attention to the g-admissibility of M . Clearly, M is strictly positive. We
need to find 0 < r < 1 and C,N ≥ 1 such that(|x −y | ≤ r〈x 〉 and |ξ −η| ≤ r〈ξ 〉〈x 〉−s) ⇒ C−1 ≤ M (x,ξ)/M (y,η) ≤ C ; (5.4)

(M (x,ξ)/M (y,η))±1 ≤ C
(
1+|x −y |2〈ξ 〉2〈x 〉−2s +|ξ −η|2〈x 〉2)N , for allx,y,ξ,η ∈ R

n .
(5.5)

We claim that (5.4) holds true for any fixed r ≤ min{1/4,1/21/s}. To see this, notice that

M (x,ξ)/M (y,η) ≤ |ξ |2
|η|2 +〈y〉−2s +〈y〉2s〈x 〉−2s .

The term 〈y〉2s〈x 〉−2s is bounded because of (5.1). When |ξ | ≤ 2|η|, the first term is also

bounded. Assume |ξ | ≥ 2|η|. First notice that

|ξ |2
|η|2 +〈y〉−2s ≤ 2〈y〉2s |ξ −η|2

〈y〉2s |η|2 +1
+2 ≤ C1〈x 〉2s |ξ −η|2

〈y〉2s |η|2 +1
+2 ≤ C1r2〈ξ 〉2

〈y〉2s |η|2 +1
+2,

where the second inequality follows from the boundedness of 〈y〉〈x 〉−1. Because |ξ | ≥ 2|η|
implies |ξ −η| ≥ |ξ |/2, we deduce |ξ | ≤ 2r〈ξ 〉 ≤ 2r +2r |ξ |, which, in turn, implies |ξ | ≤ 1.
Consequently, the upper bound in (5.4) holds true. To prove the lower bound, arguing

as before, we deduce that it is enough to check that |η|2/(|ξ |2 +〈x 〉−2s) is bounded. This
follows from

|η|2
|ξ |2 +〈x 〉−2s ≤ 2〈x 〉2s |ξ −η|2

〈x 〉2s |ξ |2 +1
+2 ≤ 2r2〈ξ 〉2

|ξ |2 +1
+2 ≤ 3.

It remains to prove (5.5). In view of (5.2), it is enough to prove that both

|ξ |2/(|η|2 +〈y〉−2s) and |η|2/(|ξ |2 +〈x 〉−2s)

are bounded by the right-hand side of (5.5) for some C,N ≥ 1. We prove this only for the

first term; the second term can be treated similarly. We estimate as follows:

|ξ |2
|η|2 +〈y〉−2s ≤ 2〈y〉2s |ξ −η|2

〈y〉2s |η|2 +1
+2 ≤ 2s+1〈x −y〉2s |ξ −η|2

〈y〉2s |η|2 +1
+2s+1|ξ −η|2〈x 〉2 +2

≤ 4〈x −y〉2s |ξ −η|2 +4|ξ −η|2〈x 〉2 +2
≤ 2〈x −y〉4s〈x 〉−4s +2|ξ −η|4〈x 〉4s +4|ξ −η|2〈x 〉2 +2.

The very last term is bounded by the right-hand side of (5.5) for some C,N ≥ 1.

Proposition 5.4. The symbol a(x,ξ) = |ξ |2 +〈x 〉−2s of the operator −�+〈x 〉−2s , 0 <

s < 1, is elliptic in S (M ,g) with g and M as in Lemma 5.3.

Proof. As a = M , it is enough to verify a ∈ S (M ,g). The only nontrivial part is to prove

that the first derivatives with respect to ξ satisfy the appropriate bounds when |ξ | ≤ 1.
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This follows from

|∂ξj a(x,ξ)| ≤ 2|ξ |〈x 〉−s〈x 〉s ≤ (|ξ |2 +〈x 〉−2s)〈x 〉s ≤ √
2(|ξ |2 +〈x 〉−2s)〈x 〉s〈ξ 〉−1.

Now, Theorem 4.6 implies (as λg → ∞) that A = −� + 〈x 〉−2s , 0 < s < 1, is a

Fredholm operator between H (M1,g) and H (M1/M ,g) for any g-admissible weight M1
and M (x,ξ) = |ξ |2 +〈x 〉−2s . Moreover, its index is independent of M1. In fact, Proposition

4.13 gives indA = 0. This is trivial when n ≥ 2 and when n = 1 one can easily calculate the

integral on a circle with centre 0. Let ϕ ∈ ⋂∞
k=0 H (λk

g,g). For every α,β ∈N
n , x βξα belongs

to S (λ|α+β|/(1−s)
g ,g) and, thus, [27, Theorem 2.3.18, p. 100] verifies that the same holds for

J−1/2(x βξα) as well. Because x βDαϕ = (J−1/2(x βξα))wϕ ∈ L2(Rn), for all α,β ∈ N
n , one

has ϕ ∈ S(Rn). The closed graph theorem implies that S(Rn) is topologically isomorphic

to lim←−
k→∞

H (λk
g,g), where the linking mappings in the projective limit are the compact

inclusions H (λk+1
g ,g) → H (λk

g,g); because the strong dual of H (λk
g,g) is isomorphic to

H (λ−k
g ,g), we also have S ′(Rn) = lim−→

k→∞
H (λ−k

g ,g). Employing a similar technique as in

the second part of the proof of Proposition 4.13, we deduce that kerA ⊆ S(Rn). But,

(Aϕ,ϕ) > 0, ∀ϕ ∈ S(Rn)\{0}, which implies that A is injective on S ′(Rn). As indA = 0
we can immediately deduce that A restricts to an isomorphism from H (M1,g) onto

H (M1/M ,g) for any g-admissible weight M1. The latter implies that A restricts to a

topological isomorphism on S(Rn) as well. The above representation of S ′(Rn) yields

that A is also a topological isomorphism on S ′(Rn). Because g is geodesically temperate
(by Lemma 5.3), Corollary 3.7 (i.e., spectral invariance) implies that the inverse of A is

a pseudodifferential operator with symbol in S (1/M ,g).
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1388 S. Pilipović and B. Prangoski

[7] P. Boggiatto and E. Schrohe, Characterization, spectral invariance and the Fredholm
property of multi-quasi-elliptic operators, Rend. Sem. Mat. Univ. Politec. Torino 59(4)
(2001), 229–242.

[8] J. M. Bony, On the characterization of pseudodifferential operators (old and new), in
Studies in Phase Space Analysis with Applications to PDEs, pp. 21–34 (Birkhäuser, New
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