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The effects of the A + B → C chemical reaction on miscible viscous fingering in a radial
source flow are analysed using linear stability theory and numerical simulations. This
flow and transport problem is described by a system of nonlinear partial differential
equations consisting of Darcy’s law for an incompressible fluid coupled with nonlinear
advection–diffusion–reaction equations. For an infinitely large Péclet number (Pe), the
linear stability equations are solved using spectral analysis. Further, the numerical shooting
method is used to solve the linearized equations for various values of Pe including the
limit Pe → ∞. In the linear analysis, we aim to capture various critical parameters for
the instability using the concept of asymptotic instability, i.e. in the limit τ → ∞, where
τ represents the dimensionless time. We restrict our analysis to the asymptotic limit
Da∗ (= Daτ) → ∞ and compare the results with the non-reactive case (Da = 0) for
which Da∗ = 0, where Da is the Damköhler number. In the latter case, the dynamics
is controlled by the dimensionless parameter RPhys = −(RA − βRB). In the former case,
for a fixed value of RPhys, the dynamics is determined by the dimensionless parameter
RChem = −(RC − RB − RA). Here, β is the ratio of reactants’ initial concentration and
RA, RB and RC are the log-viscosity ratios. We perform numerical simulations of the
coupled nonlinear partial differential equations for large values of Da. The critical values
RPhys,c and RChem,c for instability decrease with Pe and they exhibit power laws in Pe.
In the asymptotic limit of infinitely large Pe they exhibit a power-law dependence on Pe
(RChem,c ∼ Pe−1/2 as Pe → ∞) in both the linear and nonlinear regimes.
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1. Introduction

Flow and transport in porous media occur in a wide variety of situations such as
in oil industries (Homsy 1987), carbon dioxide sequestration (Huppert & Neufeld
2014), contamination transport in subsurface aquifers (Welty, Kane & Kauffman 2003),
lithium-ion batteries (Chung et al. 2014), hydrogeology (Cardenas et al. 2019) and biofilms
(Davit et al. 2013), to name a few. When a less viscous fluid displaces a more viscous one in
porous media, this unfavourable viscosity variation makes the system unstable and causes
the displacing fluid to channel through the displaced one (Saffman & Taylor 1958). This
instability, which is known as viscous fingering (VF), is a fundamental fluid mechanics
problem which has important practical applications such as in secondary oil recovery
(Homsy 1987), chromatography separation (Rana et al. 2019) and geothermal reservoir
reinjection (Mcdowell, Zarrouk & Clarke 2016), to name a few. The first experimental
study that reported this instability during the displacement of two miscible fluids in a
porous medium was performed by Hill (1952). Several theoretical, computational and
experimental studies have followed this seminal work to improve our understanding of
the mechanism of VF and its controllability (Sharma et al. 2020).

The miscible VF occurring in the displacement driven by radial source flows has
attracted many researchers due to the large number of laboratory experiments that are
performed in radial Hele-Shaw cells as well as the important aspect of spatially dependent
base velocity unlike the constant base velocity in rectilinear flow (e.g. Paterson 1981; Tan
& Homsy 1987; Yortsos 1987; Sharma et al. 2020, and references therein). The effects of
three-dimensional disturbances, velocity-induced dispersion and concentration-dependent
diffusion were studied by solving the stability problems using both a linear stability
theory and direct numerical simulations (Riaz & Meiburg 2003a,b; Riaz, Pankiewitz &
Meiburg 2004). Pritchard (2004) revisited the radial fingering problem by considering
double-diffusive effects due to heat and mass transfer and investigated the properties of
each front contributing to the tendency of the flow instability by expanding the temperature
and concentration disturbances as series of orthogonal functions. Linear stability analysis
(LSA) and numerical simulations of VF during reinjection in geothermal reservoirs
revealed that the key parameters governing the onset of VF instability and the finger
structures are the Péclet number, the log-viscosity ratio and the permeability heterogeneity
(Mcdowell et al. 2016). However, the effects of chemical reactions on the onset and the
growth of the VF were not considered.

The effects of chemical reactions on VF instability have attracted the interest of several
researchers (see De Wit (2016, 2020) for recent reviews). Experiments revealed that
viscosity changing chemical reactions (Nagatsu et al. 2007) and precipitation reactions
(Nagatsu et al. 2014) can induce VF in a radial Hele-Shaw cell. In precipitation reaction
systems that produced metallic carbonate precipitations (e.g. CaCO3, BaCO3), the ratio
of the reactants’ concentration (i.e. the initial concentrations of the carbonate and the
metallic ions), the species of the metallic ions and the injection flux played important
roles in the pattern formation (Schuszter, Brau & De Wit 2016a,b; Schuszter & De Wit
2016). Experiments also revealed that the flow pattern controlled the morphology of
barium carbonate (BaCO3) precipitate particles (Schuszter & De Wit 2016). Very recent
experiments captured that the interactions between chemical reactions and hydrodynamic
instabilities controlled the morphology of the product and induced new dynamics
phenomena (Balog et al. 2019; Escala et al. 2019).

Nonlinear numerical simulations of rectilinear displacements of A + B → C chemical
reaction fronts captured various types of VF motions depending on different combinations

917 A25-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

25
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.257


Unstable miscible displacements in radial flow

of physicochemical parameters (Gérard & De Wit 2009; Nagatsu & De Wit 2011;
Nagatsu et al. 2014). Miscible displacements of reactive fronts in radial flow are
scarcely explored theoretically. For example, a theoretical analysis of the properties of
reaction–diffusion–advection fronts in the context of an A + B → C reactive miscible
interface subjected to a passive radial advection (Brau, Schuszter & De Wit 2017) was
followed by asymptotic solutions of this miscible reaction–diffusion–advection interface
(Trevelyan & Walker 2018).

Recently, theoretical analyses discussed the effects of radial flow with chemical reaction
on the solution thickness and dynamics of the reactive front without fingering instability
(Brau & De Wit 2020; Tóth et al. 2020).

One of the first numerical studies exploring the effects of the reaction rate and the
injection flux on the patterns of VF instability in a radial source flow of an A + B → C
reactive miscible interface was recently presented by Sharma et al. (2019). They showed
that when the two reactant fluids have the same viscosity, either the inner region or
the outer region of the reaction front became unstable when the reaction produced a
more or less viscous product. These clearly indicate that the theoretical and numerical
studies exploring the effects of chemical reactions on miscible VF in radial flows are very
limited and better understandings of the experimental observations await. Specifically,
a systematic analysis for understanding the effects of both the hydrodynamics as well
as chemistry that incorporates the effects of viscosity mismatch between the reactants
remains unexplored.

In the present study, the effects of chemical reaction on the onset of VF during
miscible displacement due to the radial source flow in a homogeneous porous medium
were analysed with a linear stability theory based on the normal modes analysis and
the results are compared with nonlinear simulations (NLS). The stability equations were
formulated in a similarity domain and they are solved numerically and also analytically for
some specific cases. We asked: How does the physical hydrodynamics in the form of the
viscosity ratios of the two reactants, RA and RB, influence the reaction-induced fingering
dynamics?

We restrict our stability analysis for the limiting case of Daτ → ∞, where Da is the
Damköhler number and τ is the dimensionless time. They are defined in § 2.1.

Based on the results of the LSA, we extended the numerical work of Sharma et al. (2019)
by considering such physical hydrodynamics effects on the instability patterns. We found
that both the LSA and NLS predicted that the critical parameters for instability decay with
Péclet number following power-law relations. A novel finding of our current study in this
limiting case is that the instability of the system can be explained in the parameter space
of two new mobility ratios, RPhys = −(RA − βRB) and RChem = −(RC − RB − RA). Here,
RC is the viscosity ratio associated with the product and β is the initial concentration ratio
of reactant species A and B.

The organization of the paper is as follows. In § 2, the governing equations of the full
nonlinear problem and the equations of the base state are presented. An analytic solution of
the base-state concentration profiles are not attainable for arbitrary values of Da. However,
a closed-form expression in terms of linear combinations of one of the reactants and
the product concentration is presented with respect to a similarity variable. Further, we
present analytic expressions for the base-state concentration profiles of all three species
in the limits of no reaction and Daτ → ∞ for arbitrary values of Péclet number (Pe).
In the asymptotic limit Pe � 1, these base-state profiles are further simplified and are
shown graphically. The linearized perturbation equations are derived for performing the
LSA in § 3 and their numerical solutions are discussed therein, followed by NLS in § 4.
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Figure 1. Schematic diagram of a reactive system A + B → C considered here.

Further the linear stability results are compared with the NLS in § 5 along with conclusions
and implications for future research.

2. Mathematical model

We consider flow of incompressible, Newtonian fluids in a two-dimensional porous
medium initially filled with a fluid having a species B dissolved in it and having a
concentration CB0. We inject a solution of the same solvent fluid and a solute A of
concentration CA0 radially from a source at r = 0 with a constant flux Q as shown in
figure 1. An irreversible second-order chemical reaction occurs between the two chemical
species A and B, and produces another species C:

A + B
kr−→ C, (2.1)

where kr is the rate of the chemical reaction.
The governing equations for the conservation of mass and the conservation of

momentum, and the advection–diffusion–reaction mass balance equations for the species
are (De Wit 2016; Sharma et al. 2019)

∇ · U = 0, (2.2a)

∇P = −μ
K

U, (2.2b)

∂CA

∂t
+ U · ∇CA = DA∇2CA − krCACB, (2.2c)

∂CB

∂t
+ U · ∇CB = DB∇2CB − krCACB, (2.2d)

∂CC

∂t
+ U · ∇CC = DC∇2CC + krCACB, (2.2e)
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where U = (U,V) is the velocity vector, μ the viscosity, K the permeability, P the
pressure, Ci the concentration of chemical species i and Di the diffusion coefficient of
the chemical species i (i = A, B and C).

2.1. Non-dimensionalization
For a radial flow, the equations of motion are best described in polar (r, θ) coordinates.
We render the above system of equations dimensionless with the following scaling:

τ = t
2πK/Q

, (u, v) = (U,V)

Q/2π
√

K
, (2.3a,b)

(a, b, c) = (CA,CB,CC)

CA0
, p = P

μ̄Q/2πK
, μ = μ̃

μ̄
, (2.4a–c)

where
√

K is chosen as the characteristic length scale, such that r 	→ r/
√

K. Here, μ̄ is the
viscosity of the common solvent. Using these, the dimensionless equations can be written
as

1
r
∂

∂r
(ru)+ 1

r
∂v

∂θ
= 0, (2.5a)

∂p
∂r

= −μu, (2.5b)

1
r
∂p
∂θ

= −μv, (2.5c)

∂a
∂τ

+ 1
r
∂(rua)
∂r

+ 1
r
∂(va)
∂θ

= 1
Pe

[
1
r
∂

∂r

(
r
∂a
∂r

)
+ 1

r2
∂2a
∂θ2

]
− Daab, (2.5d)

∂b
∂τ

+ 1
r
∂(rub)
∂r

+ 1
r
∂(vb)
∂θ

= 1
Pe

[
1
r
∂

∂r

(
r
∂b
∂r

)
+ 1

r2
∂2b
∂θ2

]
− Daab, (2.5e)

∂c
∂τ

+ 1
r
∂(ruc)
∂r

+ 1
r
∂(vc)
∂θ

= 1
Pe

[
1
r
∂

∂r

(
r
∂c
∂r

)
+ 1

r2
∂2c
∂θ2

]
+ Daab. (2.5f )

The dimensionless parameters appearing in (2.5) are the Péclet number Pe and the
Damköhler number Da, which are defined as (Riaz & Meiburg 2003a,b; Trevelyan &
Walker 2018)

Pe = Q
2πDA

and Da = 2πkrCA0K
Q

. (2.6a,b)

The Péclet number represents the ratio of the advective transfer rate to the diffusive
one, and the Damköhler number represents the ratio of the mass transfer time scale to
the reaction time scale. To complete the above model, the viscosity variation with the
concentration is assumed to follow an Arrhenius relation:

μ(a, b, c) = exp(RAa + RBb + RCc), (2.7)

where RA, RB and RC are the log-viscosity ratios defined as

RA = ln
(
μ(1, 0, 0)
μ(0, 0, 0)

)
, RB = ln

(
μ(0, 1, 0)
μ(0, 0, 0)

)
, RC = ln

(
μ(0, 0, 1)
μ(0, 0, 0)

)
. (2.8a–c)

To focus on the effects of the chemical reaction only, Sharma et al. (2019) assumed RA =
RB = 0, and therefore the physical hydrodynamic effects remained unexplored.
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Note that the physicochemical effects on the viscosity profiles for the limiting cases of
RA = 0 and β = 1 are identical to those shown by Hejazi et al. (2010).

2.2. Base state
The above equations admit the following base-state axisymmetric solutions. The base-state
velocity field is (u0, v0) = (1/r, 0), whereas the base concentrations are governed by (Brau
et al. 2017; Trevelyan & Walker 2018)

∂a0

∂τ
+
(

1 − 1
Pe

)
1
r
∂a0

∂r
= 1

Pe
∂2a0

∂r2 − Daa0b0, (2.9a)

∂b0

∂τ
+
(

1 − 1
Pe

)
1
r
∂b0

∂r
= 1

Pe
∂2b0

∂r2 − Daa0b0, (2.9b)

∂c0

∂τ
+
(

1 − 1
Pe

)
1
r
∂c0

∂r
= 1

Pe
∂2c0

∂r2 + Daa0b0, (2.9c)

under the following conditions:

a0 − 1 = b0 = c0 = 0 at r = 0,
a0 = b0 − β = c0 = 0 as r → ∞,

}
∀ τ > 0, (2.10a)

a0 = b0 − β = c0 = 0 at τ = 0, ∀ r. (2.10b)

Here, β = CB0/CA0 is the ratio of the reactants’ initial concentration. Defining (see
Appendix A for details)

φ0 = a0 − b0 + β

1 + β
= a0 + c0, (2.11)

the system of (2.9) can be reduced to the following single equation:

∂φ0

∂τ
+
(

1 − 1
Pe

)
1
r
∂φ0

∂r
= 1

Pe
∂2φ0

∂r2 . (2.12)

Further, the proper initial and boundary conditions are

φ0(r, 0) = 0, φ0(0, τ ) = 1 and φ0(∞, τ ) = 0. (2.13a–c)

Therefore, the complete base-state concentration for both the reactants and product
can be obtained as follows. (i) Solve the initial boundary value problem consisting
of a linear advection–diffusion equation and Dirichlet conditions, given by (2.12) and
(2.13a–c). (ii) Find the base-state concentration for one of the three species A,B
and C. (iii) Subsequently, using the relations from (2.11) one can obtain the base-state
concentration of the remaining two species. We will see in §§ 2.2.1 and 2.2.2 that for
the limiting cases of Da = 0 and Da∗ (= Daτ) → ∞, we have to solve only one initial
boundary value problem for the unknown φ0. For Da∗ < ∞, one needs to solve two initial
boundary value problems – one for the variable φ0 and the other for one of the three species
A,B and C – which is beyond the scope of this paper. Using the identity from (2.11), we
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obtain
βa0 + b0 + (1 + β)c0 = β, (2.14)

relating the base-state concentration of the species A, B and C. The gradient of the
base-state log-viscosity is

∂ lnμ0

∂r
= (RA − βRB)

∂φ0

∂r
+ (RC − RB − RA)

∂c0

∂r
. (2.15)

We introduce a similarity transformation (r, τ ) 	→ (ξ, τ ), where the similarity variable
is defined as ξ = r2Pe/(4τ). Under this transformation, the steady state of φ0 satisfies

ξ
d2φ0

dξ2 +
(
ξ − Pe

2
+ 1

)
dφ0

dξ
= 0, (2.16)

and yields the following similarity solution:

φ0(ξ) = Γ (Pe/2, ξ)
Γ (Pe/2)

= γ (Pe/2, ξ). (2.17)

Here, Γ (α, x) = ∫∞
x tα−1e−tdt is the upper incomplete gamma function, Γ (α) is the

gamma function and γ (α, x) is the regularized upper incomplete gamma function.
Combining (2.11) and (2.17), we obtain (Brau et al. 2017)

a0 − b0 = −β + (1 + β)γ (Pe/2, ξ). (2.18)

It is to be noted that the displacing front (ξ = Pe/2) is different from the reaction front
(ξR), which can be obtained by setting a0 − b0 = 0 in (2.18) and solving for ξ yielding

γ (Pe/2, ξR) = β

1 + β
. (2.19)

Note that (2.16) is similar to (41) of Tan & Homsy (1987) barring that Pe/2 in the former
is replaced by Pe in the latter. Since we write the base-state concentration of the species
in terms of φ0(ξ) and our LSA is performed in terms of the similarity variable ξ , we will
see in § 3 that the stiff nature of the stability equations becomes a problem for large Pe as
explained by Tan & Homsy (1987). Therefore, following Tan & Homsy (1987) we present
our LSA for three different cases of Pe: (i) general values of Pe up to O(10), (ii) moderate
Pe (Pe � 1) and (iii) asymptotically large Pe (Pe → ∞).

For Pe � 1, (2.17) reduces to

φ0(ζ ) = 1
2 erfc(ζ )+ O(Pe−1/2), (2.20)

where ζ = (ξ − Pe/2)/
√

Pe and hence ζ = 0 is the displacing front. For Pe � 20, (2.20)
approximates (2.17) quite well (Tan & Homsy 1987; Kim 2012). The reaction front ζR, at
which we have a0(ζR) = b0(ζR), can be approximated as

ζR = erfc−1
(

2β
1 + β

)
. (2.21)

The physical and chemical fronts, i.e. the displacing and the reaction fronts, coincide if
and only if β = 1.
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2.2.1. Non-reactive case (Da = 0)
In the non-reactive case (Da = 0), no product is formed (c0 = 0) and we have Da∗ = 0.
Therefore, from (2.11) and (2.15) we obtain

(a0, b0) = (φ0, β(1 − φ0)), (2.22a)

∂ lnμ0

∂r
= (RA − βRB)

∂φ0

∂r
. (2.22b)

Because in this limit the chemical reaction plays no role in the viscosity distribution, we
define RPhys = −(RA − βRB), and this limit of Da∗ will be used to analyse the case of
non-reactive displacements (Kim 2012).

2.2.2. Case of Da∗ → ∞
For the limiting cases of Da∗ → ∞, such as CaCO3 and BaCO3 precipitation systems
considered in Schuszter & De Wit (2016), the two reactants do not coexist, i.e. a0(ξ �
ξR) = 0 and b0(ξ < ξR) = 0. Therefore, the base concentration fields and the gradient of
the log-viscosity can be obtained as

(a0, b0, c0) =
{
((1 + β)φ0 − β, 0, β(1 − φ0)) for ξ � ξR,

(0, β − (1 + β)φ0, φ0) for ξ > ξR,
(2.23a)

∂ lnμ0

∂r
=

⎧⎪⎨
⎪⎩

−(RPhys − βRChem)
∂φ0

∂r
for ξ � ξR,

−(RPhys + RChem)
∂φ0

∂r
for ξ > ξR,

(2.23b)

where RChem = −(RC − RB − RA).
The base concentration profiles given in (2.20) and (2.23a) are plotted in figure 2 with

respect to the transformed self-similar variable ζ for β < 1, β = 1 and β > 1. This figure
depicts, as expected by the construction of the new variable ζ , that the displacing front,
ζ = 0, is universal with respect to β. It also confirms that the reaction front depends on
β and it is different from the displacing front for β /= 1. When the reactant species A
and B have the same initial concentration (β = 1), the reaction front is the same as the
displacing front and the product concentration becomes symmetric about this front (see
figure 2b). On the other hand, when one of the reactant species is more concentrated
than the other (i.e. β > 1 or β < 1), their diffusive fluxes are different, which results in
an asymmetry behaviour of the displacing front. For β /= 1, the reaction front and hence
greater amount of product are situated in the region that is rich in the less concentrated
species. Figures 2(a) and 2(c) depict that the reaction front is situated in the B-rich
and A-rich regions, respectively, for β < 1 and β > 1. Depending upon these base-state
concentration profiles, the VF instability can occur when the less viscous reactant A pushes
the more viscous product C, or less viscous product C displaces the more viscous reactant
B, or both. In the following sections, we present LSA as well as NLS for understanding
these reactive VF instability cases.

Since ∂φ0/∂r is always negative regardless of Da∗, (2.23b) suggests that the instabilities
of the inner and the outer interfaces of the product depend on the sign of RPhys − βRChem
and RPhys + RChem, respectively. In short, we expect inward and outward fingers at the
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Figure 2. Base-state concentrations a0(ζ ), b0(ζ ) and c0(ζ ) along with φ0(ζ ) are plotted in the limiting case
of Da∗ → ∞ for different values of β < 1, β = 1 and β > 1: (a) β = 0.5, (b) β = 1 and (c) β = 1.5.

inner and outer interfaces of the product when the inequalities

RChem < RPhys/β, (2.24a)

RChem > −RPhys (2.24b)

are satisfied, respectively. These stability conditions are equivalent to RC > RA(1 + β)/β

and RC < RB(1 + β), respectively. Note that both the inequalities hold simultaneously
only when RPhys > 0. In such cases, both the inward and outward fingers may appear when
−RPhys < RChem < RPhys/β, or equivalently, RA(1 + β)/β < RC < RB(1 + β).

3. Linear stability analysis

3.1. Stability equations
Under the LSA, we introduce infinitesimal disturbances around the base-state solutions,
such that u = u0 + u1, v = v0 + v1, p = p0 + p1, a = a0 + a1, b = b0 + b1, c = c0 + c1,
where the subscripts ‘0’ and ‘1’ correspond to the base state and the disturbance quantities,
respectively. The resulting perturbed equations are

1
r
∂

∂r
(ru1)+ 1

r
∂v1

∂θ
= 0, (3.1a)

∂p1

∂r
= −μ0u1 − 1

r

[(
∂μ

∂a

)
(a0,b0,c0)

a1 +
(
∂μ

∂b

)
(a0,b0,c0)

b1 +
(
∂μ

∂c

)
(a0,b0,c0)

c1

]
,

(3.1b)

1
r
∂p1

∂θ
= −μ0v1, (3.1c)

∂a1

∂τ
+ 1

r
∂a1

∂r
+ ∂a0

∂r
u1 = 1

Pe

[
1
r
∂

∂r

(
r
∂a1

∂r

)
+ 1

r2
∂2a1

∂θ2

]
− Da(a0b1 + a1b0), (3.1d)

∂b1

∂τ
+ 1

r
∂b1

∂r
+ ∂b0

∂r
u1 = 1

Pe

[
1
r
∂

∂r

(
r
∂b1

∂r

)
+ 1

r2
∂2b1

∂θ2

]
− Da(a0b1 + a1b0), (3.1e)

∂c1

∂τ
+ 1

r
∂c1

∂r
+ ∂c0

∂r
u1 = 1

Pe

[
1
r
∂

∂r

(
r
∂c1

∂r

)
+ 1

r2
∂2c1

∂θ2

]
+ Da(a0b1 + a1b0). (3.1f )
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The corresponding boundary conditions are

ru1 → 0, a1 → 0, b1 → 0 and c1 → 0 as r → 0, (3.2a)

u1 → 0, a1 → 0, b1 → 0 and c1 → 0 as r → ∞. (3.2b)

Eliminating pressure and the azimuthal velocity component, the linear stability equations
(3.1a)–(3.1c) reduce to

∂2ψ1

∂r2 +
(

1
r

+ RA
∂a0

∂r
+ RB

∂b0

∂r
+ RC

∂c0

∂r

)
∂ψ1

∂r
+ 1

r2
∂2ψ1

∂θ2

= − 1
r2
∂2

∂θ2 (RAa1 + RBb1 + RCc1), (3.3)

where ψ1 = ru1. In the spirit of φ0 defined in (2.11), we define

φ1 = a1 − b1

1 + β
= a1 + c1 = −b1 + c1

β
, (3.4)

such that (3.1d)–(3.1f ) can be reduced to a single advection–diffusion equation:

∂φ1

∂τ
+ 1

r
∂φ1

∂r
+ ∂φ0

∂r
u1 = 1

Pe

[
1
r
∂

∂r

(
r
∂φ1

∂r

)
+ 1

r2
∂2φ1

∂θ2

]
. (3.5)

The proper boundary conditions associated with (3.3) and (3.5) are

ψ1 = φ1 = 0 at r = 0, (3.6a)

ψ1 → 0 and φ1 → 0 as r → ∞. (3.6b)

From (3.4), we get the following auxiliary relation:

βa1 + b1 + (1 + β)c1 = 0. (3.7)

Using the similarity transformation introduced in § 2, (r, τ ) 	→ (ξ, τ ), where the
similarity variable is defined as ξ = Pe(r2/4τ), (3.3) and (3.5) are transformed into

∂

∂ξ

(
ξ
∂ψ1

∂ξ

)
+
(

RA
∂a0

∂ξ
+ RB

∂b0

∂ξ
+ RC

∂c0

∂ξ

)
ξ
∂ψ1

∂ξ
+ 1

4ξ
∂2ψ1

∂θ2

= − 1
4ξ

∂2

∂θ2 (RAa1 + RBb1 + RCc1), (3.8a)

τ
∂φ1

∂τ
= Lξφ1 + 1

4ξ
∂2φ1

∂θ2 − 1
2

Pe
dφ0

dξ
ψ1, (3.8b)

respectively. Here, the differential operator Lξ is defined as

Lξ = ∂

∂ξ

(
ξ
∂

∂ξ

)
+
(
ξ − Pe

2

)
∂

∂ξ
. (3.9)

For the limiting case of Pe � 1, (3.8) become

∂2ψ∗
1

∂ζ 2 +
(

RA
∂a0

∂ζ
+ RB

∂b0

∂ζ
+ RC

∂c0

∂ζ

)
∂ψ∗

1
∂ζ

+ 1
Pe
∂2ψ∗

1
∂θ2

= − 1
Pe

∂2

∂θ2 (R
∗
Aa1 + R∗

Bb1 + R∗
Cc1)+ O(Pe−1/2), (3.10a)

2τ
∂φ1

∂τ
= Lζ φ1 + 1

Pe
∂2φ1

∂θ2 − dφ0

dζ
ψ∗

1 + O(Pe−1/2), (3.10b)
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Unstable miscible displacements in radial flow

where

Lζ = ∂2

∂ζ 2 + 2ζ
∂

∂ζ
(3.11)

and ψ∗
1 = ψ1

√
Pe, R∗

A = RA
√

Pe, R∗
B = RB

√
Pe and R∗

C = RC
√

Pe.
In the remainder of this section, we discuss linear stability in the limit Da∗ → ∞ (see

Appendix B for the non-reactive case, i.e. Da∗ = 0). In this limit, both the advection and
the diffusion terms remain significant in (3.1d)–(3.1f ), provided

a0b1 + a1b0 = 0. (3.12)
Recall that for Da∗ → ∞, we have a0(ξ � ξR) = 0 and b0(ξ < ξR) = 0. Combining
this with (3.12), we obtain a1(ξ � ξR) = 0 and b1(ξ < ξR) = 0. Hence, using (3.4), the
concentration disturbance fields can be obtained as

(a1, b1, c1) =
{
((1 + β)φ1, 0,−βφ1) for 0 � ξ � ξR

(0,−(1 + β)φ1, φ1) for ξ > ξR.
(3.13)

In this limit, (3.8a) becomes

∂

∂ξ

(
ξ
∂ψ1

∂ξ

)
− (RPhys − βRChem)

dφ0

dξ
ξ
∂ψ1

∂ξ
+ 1

4ξ
∂2ψ1

∂θ2

= (RPhys − βRChem)
1

4ξ
∂2φ1

∂θ2 for ξ � ξR, (3.14a)

∂

∂ξ

(
ξ
∂ψ1

∂ξ

)
− (RPhys + RChem)

dφ0

dξ
ξ
∂ψ1

∂ξ
+ 1

4ξ
∂2ψ1

∂θ2

= (RPhys + RChem)
1

4ξ
∂2φ1

∂θ2 for ξ > ξR. (3.14b)

Similarly, (3.10a) becomes

∂2ψ∗
1

∂ζ 2 − (RPhys − βRChem)
dφ0

dζ
∂ψ∗

1
∂ζ

+ 1
Pe
∂2ψ∗

1
∂θ2

= (R∗
Phys − βR∗

Chem)
1
Pe
∂2φ1

∂θ2 + O(Pe−1/2) for ζ � ζR, (3.15a)

∂2ψ∗
1

∂ζ 2 − (RPhys + RChem)
dφ0

dζ
∂ψ∗

1
∂ζ

+ 1
Pe
∂2ψ∗

1
∂θ2

= (R∗
Phys + R∗

Chem)
1
Pe
∂2φ1

∂θ2 + O(Pe−1/2) for ζ > ζR. (3.15b)

Here, R∗
Phys = RPhys

√
Pe and R∗

Chem = RChem
√

Pe. The corresponding boundary
conditions associated with (3.8b) (or (B2) for Da∗ = 0) and (3.14) are

ψ1 = φ1 = 0 at ξ = 0, (3.16a)

ψ1 → 0 and φ1 → 0 as ξ → ∞, (3.16b)

whereas the boundary conditions associated with (3.10b) (or (B3) for Da∗ = 0) and (3.15)
are

ψ∗
1 = 0 and φ1 = 0 at ζ = −

√
Pe/2, (3.17a)

ψ∗
1 → 0 and φ1 → 0 as ζ → ∞. (3.17b)
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3.2. Normal mode analysis
Since the coefficients of (3.8b) (or (B2) for Da∗ = 0) and (3.14) are independent of τ and
θ , under the normal mode analysis (Tan & Homsy 1987), the perturbation quantities φ1
and ψ1 are expressed as

φ1(ξ, θ, τ ) = Φ(ξ)einθ τ σ , (3.18a)

ψ1(ξ, θ, τ ) = Ψ (ξ)einθ τ σ , (3.18b)

where n is the azimuthal wavenumber and growth exponent σ is defined as τ(∂φ1/∂τ) =
σφ1. Using this normal mode decomposition, (3.8b) becomes

σΦ = LξΦ − n2

4ξ
Φ − 1

2
Pe

dφ0

dξ
Ψ, (3.19)

associated with the equation for the velocity disturbance field:

d
dξ

(
ξ

dΨ
dξ

)
− (RPhys − βRChem)

dφ0

dξ
ξ

dΨ1

dξ
− n2

4ξ
Ψ

= −(RPhys − βRChem)
n2

4ξ
Φ for ξ � ξR, (3.20a)

d
dξ

(
ξ

dΨ
dξ

)
− (RPhys + RChem)

dφ0

dξ
ξ

dΨ1

dξ
− n2

4ξ
Ψ

= −(RPhys + RChem)
n2

4ξ
Φ for ξ > ξR. (3.20b)

The boundary conditions corresponding to (3.19)–(3.20) are

Ψ → 0 and Φ → 0, as ξ → ±∞. (3.21)

Similarly, for Pe � 1, we can apply normal mode analysis as discussed below. Since the
coefficients of the stability (3.10b), (B3) and (3.15) are independent of τ and θ , the normal
mode decomposition of ψ∗

1 reads

ψ∗
1 (ζ, θ, τ ) = �∗(ζ )einθ τ σ , (3.22)

where Ψ (ξ) and �∗(ζ ) satisfy �∗ = Ψ
√

Pe. Using this normal mode decomposition for
ψ∗

1 , along with that for φ1 given in (3.18a), the stability equations become

σΦ = 1
2

(
Lζ − n2

Pe

)
Φ − 1

2
dφ0

dζ
�∗, (3.23)

associated with

d2�∗

dζ 2 − (RPhys − βRChem)
dφ0

dζ
d�∗

dζ
− n2

Pe
�∗ = −n2

Pe
(R∗

Phys − βR∗
Chem)Φ for ζ � ζR,

(3.24a)

d2�∗

dζ 2 − (RPhys + RChem)
dφ0

dζ
d�∗

dζ
− n2

Pe
�∗ = −n2

Pe
(R∗

Phys + R∗
Chem)Φ for ζ > ζR.

(3.24b)
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Unstable miscible displacements in radial flow

The boundary conditions corresponding to (3.23)–(3.24) are

�∗ → 0 and Φ → 0, as ζ → ±∞. (3.25)

As mentioned in the introduction, contrary to its rectilinear counterpart, theoretical and
numerical studies exploring the effects of chemical reactions for miscible VF in radial
flows await understanding. In a rectilinear flow, the onset time of instability is captured
in terms of frozen time-dependent growth rate using a quasi-steady-state approximation
(Hejazi et al. 2010). It is widely accepted that a quasi-steady-state approximation has its
own limitation in the linear stability theory (Kim & Choi 2011) and the same can be
overcome by performing the stability analysis in a suitably defined similarity domain (Ben,
Demekhin & Chang 2002). In the present study, we have used a similarity transformation
and have focused on capturing the critical parameters for the instability using asymptotic
instability criterion (τ → ∞) as follows. From (3.18a) and (3.18b), it is clear that the
perturbations decay to zero as τ → ∞ when σ < 0; whereas they grows to infinity as
τ → ∞ when σ > 0. A system is said to be asymptotically stable in the former case,
and asymptotically unstable in the latter case (Drazin & Reid 2004; Chandrasekhar
2013). Therefore, the critical parameters corresponding to the linear stability theory
are computed for Da∗(= Daτ) → ∞. We demarcate the parameter space as stable and
unstable corresponding to which σ < 0 and σ > 0, respectively. The boundary between
these two regions indicates the critical parameters for the onset of instability. Furthermore,
a radial flow is significantly different from a rectilinear flow and the LSAs in these two
configurations have some critical differences (Tan & Homsy 1987). For brevity, we do not
present any direct comparison between rectilinear and radial flows.

3.2.1. Shooting method
In general, in order to integrate the stability (3.19)–(3.20), a trial value of the eigenvalue σ
and that of dΨ/dξ , Θ and dΘ/dξ at ξ = ξR are assumed properly for given values of R, n
and Pe (Kim 2018). Since the boundary conditions (3.16) are all homogeneous, the value of
Ψ at ξ = ξR can be assigned arbitrarily. This procedure is based on the shooting method in
which the boundary value problem is transformed into the initial value problem. The initial
value problem is integrated numerically using the fourth-order Runge–Kutta method.
Numerical shooting is done on both sides of the reaction front, ξ = ξR, i.e. 0 � ξ � ξR and
ξR � ξ < ∞, such that the boundary conditions (3.16) are satisfied respectively in these
two regions. On the right of the injection front, we enforce the boundary conditions (3.16b)
to satisfy on a fictitious outer boundary. We use Newton–Raphson iteration to iteratively
correct the trial values of σ , dΨ/dξ , Θ and dΘ/dξ at ξ = ξR until the linear stability
equations satisfy the boundary conditions (3.16) within a relative tolerance of 10−10. Then
by increasing the fictitious outer boundary step by step, the above integration is repeated.
Finally, the value of σ is decided through extrapolation.

3.2.2. Spectral analysis
Following Pritchard (2004) and Kim (2012), here we obtain an analytic solution for
the limiting case of Pe → ∞, RPhys � 1 and RChem � 1, but finite R∗

Phys = RPhys
√

Pe

and R∗
Chem = RChem

√
Pe. Under the Sturm–Liouville theory (Al-Gwaiz 2008), Φ can be

expressed as

Φ(ζ) =
∞∑

i=0

Aiαiφi(ζ ), (3.26)
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where φi(ζ ) are the eigenfunctions of the Sturm–Liouville equation,

Lζ φi = −2λiφi. (3.27)

The solutions of the above equation are weighted ith Hermite polynomials:

φi(ζ ) = e−ζ 2
Hi(ζ ) and i = (λi − 1) = 0, 1, 2, . . . (3.28)

Here, the normalization factors αi are

αi = (
√

π2iG(i + 1))−1/2, i = (λi − 1) = 0, 1, 2, . . . (3.29)

Combining (B5) (or equations (3.24)) with (3.26), it can be shown that �∗(ζ ) follows a
series expansion with the same coefficients as Φ(ζ), and the former can be expressed as

�∗(ζ ) =
∞∑

i=0

Aiαiψi(ζ ), (3.30)

where ψi can be obtained by solving (RPhys,RChem � 1)

d2ψ−
i

dζ 2 − k2ψ−
i = −k2(R∗

Phys − βR∗
Chem)e

−ζ 2
Hi(ζ ) for ζ � ζR, (3.31a)

d2ψ+
i

dζ 2 − k2ψ+
i = −k2(R∗

Phys + R∗
Chem)e

−ζ 2
Hi(ζ ) for ζ > ζR, (3.31b)

such that

ψi =
{
ψ−

i , ζ � ζR

ψ+
i , ζ > ζR

and (3.32a)

lim
ζ→ζR+

ψ+
i = ψ−

i (ζR). (3.32b)

Here, k = n/
√

Pe is the scaled wavenumber. We analytically solve the second-order
ordinary differential equation (C5) (or (3.31)) associated with the following boundary
conditions: ψi → 0 as ζ → ±∞. The solutions are summarized in Appendix C.
Substituting the above solutions into (3.23), we obtain an eigenvalue problem:

σa = Ba, (3.33)

where

Bmn = −1
2
(2λm + k2)δmn + 1

2
√

π
Cmn, m, n = 0, 1, 2, . . . , (3.34a)

Cmn =
∫ ∞

−∞
αmαnφm(ζ )ψn(ζ )dζ, m, n = 0, 1, 2, . . . , (3.34b)

a = [A0,A1,A2, . . .]T . (3.34c)

The growth rate of the perturbed quantities is bounded from above by the largest
eigenvalues of B, i.e.

σ = max {eig(B)} . (3.35)

Furthermore, we apply the numerical shooting method, discussed in § 3.2.1, to solve
(3.23)–(3.24) and the corresponding boundary conditions (3.25).
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Unstable miscible displacements in radial flow
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Figure 3. Neutral stability curves obtained using spectral analysis (7-term and 9-term approximations) and
numerical shooting method for R∗

Phys = 0, Pe → ∞, Da∗ → ∞, (a) β = 1/2, (b) β = 1 and (c) β = 2. The
region above (below) each curve corresponds to the region of instability (stability). The values of |R∗

Chem|
and k corresponding to the lowest point of the curve representing the numerical shooting method denote the
critical values for the instability. These are denoted by |R∗

Chem,c| and kc and are shown by horizontal and vertical
dashed-dotted lines, respectively.

3.3. Critical conditions for linear instability
The critical conditions for the linearly unstable modes are determined by analysing the
neutral stability curves. For example, the critical values of R∗

Chem and k (i.e. R∗
Chem,c and

kc) are obtained from the neutral curves plotted in the R∗
Chem–k plane. For the limiting case

of Pe → ∞, the neutral stability curves obtained by solving (3.23)–(3.25) using both the
spectral analysis and the numerical shooting method are plotted in figure 3. This figure
depicts that the critical value |R∗

Chem,c| decreases as β increases (e.g. |R∗
Chem,c| = 45.48,

30.70 and 21.93 for β = 1/2, 1 and 2, respectively), but the critical wavenumber kc does
not change significantly with β and remains near 1.30. Recalling R∗

Chem = RChem
√

Pe
and k = n/

√
Pe, we approximate for β = 1, RChem = 30.70/Pe1/2 and nc = 1.30Pe1/2

as Pe → ∞. Figure 3 also reveals that the numerical shooting method is in very good
agreement with the spectral solutions.

Next, we analyse the effects of β on the the critical values R∗
Chem,c in terms of R∗

Phys
as shown in figure 4. This figure reveals that R∗

Chem,c has non-trivial dependences on β
and R∗

Phys. First, we discuss when the initial concentrations of both the reactants are the
same, i.e. β = 1. For β = 1, we have ζR = 0. In this case, if R∗

Chem has a negative value,
we denote the eigenfunctions as ψi,n and hence (3.31) can be reduced to

d2ψ−
i,n

dζ 2 − k2ψ−
i,n = −k2

(
R∗

Phys − ∣∣R∗
Chem

∣∣) e−ζ 2
Hi(ζ ) for ζ � 0, (3.36a)

d2ψ+
i,n

dζ 2 − k2ψ+
i,n = −k2

(
R∗

Phys + ∣∣R∗
Chem

∣∣) e−ζ 2
Hi(ζ ) for ζ > 0. (3.36b)

Similarly, for positive values of R∗
Chem we denote the eigenfunctions asψi,p and from (3.31)

one can obtain

d2ψ−
i,p

dζ 2 − k2ψ−
i,p = −k2

(
R∗

Phys + ∣∣R∗
Chem

∣∣) e−ζ 2
Hi(ζ ) for ζ � 0, (3.37a)

d2ψ+
i,p

dζ 2 − k2ψ+
i,p = −k2

(
R∗

Phys − ∣∣R∗
Chem

∣∣) e−ζ 2
Hi(ζ ) for ζ > 0. (3.37b)
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Figure 4. Variation of the critical parameter R∗
Chem,c with R∗

Phys obtained from spectral analysis for Da∗ → ∞,
Pe → ∞ and different values of β. For β = 1, positive and negative R∗

Chem,c are identical. For β /= 1, positive
and negative R∗

Chem,c are not only different, but also have a non-trivial dependence on the sign of R∗
Phys.

For the odd-mode instabilities, i.e. Hi(−ζ ) = −Hi(ζ ), ψ−
i,n = −ψ+

i,p, ψ−
i,p = −ψ+

i,n (see
Appendix D for further details), and therefore Cmn of the negative R∗

Chem and the positive
R∗

Chem have opposite sign. In this case the stability condition is strongly dependent on the
sign of R∗

Chem. Kim (2014) reported that the even modes are more unstable than the odd
modes. For the even-mode instabilities, i.e. Hi(−η) = Hi(η), ψ+

i,n = ψ−
i,p and ψ−

i,n = ψ+
i,p,

and therefore Cmn of the negative R∗
Chem and the positive R∗

Chem cases are the same. In other
words, for the limiting case of β = 1, the critical conditions are independent of the sign of
R∗

Chem, as shown in figure 4.
The amount of product generated is proportional to β. Therefore, irrespective of the

signs of RPhys and RChem, the displacements become more unstable as β increases. On
the contrary, for fixed values of β, the fingering dynamics exhibits more non-trivial
dependencies on RPhys and RChem. As expected, the dynamics is strongly dependent on the
signs of both of these dimensionless parameters. First, we consider the case for which the
physical front is neutrally stable, i.e. RPhys = 0. Therefore, using the inequalities (2.24),
it is easy to observe that the outward and the inward fingers are formed for RChem > 0
and RChem < 0, respectively. It is observed that the critical values R∗

Chem,c for different
RPhys have the same absolute values. However, for the stable (RPhys < 0) and unstable
(RPhys > 0) physical fronts, the scenario is complex. For example, in the latter case, for
−RPhys < RChem < RPhys/β, both the inward and outward fingering are simultaneously
susceptible. With β increasing, the upper limit of this interval diminishes to zero and
hence the length of this interval decreases. Contrary to that, in the former case, a stable
displacement is expected for RPhys/β < RChem < −RPhys. Clearly, the effects of β on
the critical parameter R∗

Chem,c are significantly different when RPhys changes sign (see
figure 4). In summary, we observe that for the case of β < 1, the positive RChem systems are
more unstable than the negative RChem ones for RPhys < 0, and vice versa for RPhys > 0.
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Figure 5. Linear stability results obtained for purely chemical systems (RPhys = 0) with β = 1 and Da∗ → ∞
by solving (3.20) and (3.24) (for Pe � 1) using the numerical shooting method. Dependence of the critical
parameters (a) RChem,c and (b) nc on Pe. The straight lines correspond to the asymptotic behaviour of these
critical parameters in the limit of Pe → ∞ obtained from the spectral analysis discussed in § 3.2.2.

This trend is reversed for the case of β > 1. Figure 4 implies that RChem,c is a complex
function of β, RPhys and Pe.

Similarly, the critical values of RChem and n (i.e. RChem,c and nc) are obtained for (i)
small and moderate values of Pe and (ii) Pe � 1 from the numerical shooting solutions
of (3.19)–(3.21) and (3.23)–(3.25), respectively. Figure 5(a) depicts the variation of this
critical parameter with Pe for small and moderate Pe as well as Pe � 1. It is observed
that for small and moderate Pe (i.e. Pe � 40), the critical values for the finger formation
in the outward-directing fingering system (RChem > 0) attain smaller values compared to
those corresponding to the inward-directing fingering system (RChem < 0). This result
is in qualitative agreement with NLS (cf. figures 8 and 9 of Sharma et al. (2019)).
Corresponding to these critical values RChem,c, we also plot the critical wavenumber nc in
figure 5(b). This figure also depicts that for Pe � 1, RChem,c are visually indistinguishable
corresponding to the positive and the negative values of RChem, and they follow power-law
behaviour RChem,c ∼ Pe−1/2 obtained in the Pe → ∞ asymptotic limit. Again for
Pe � 1, the critical wavenumbers follow the power-law relation obtained in the Pe → ∞
asymptotic limit, i.e. nc ∼ Pe1/2 as Pe � 1.

4. Nonlinear simulations

In § 3, we noted that RPhys and RChem are the two important parameters controlling
fingering instabilities. Although LSA indicates asymptotic instability for infinitesimal
perturbations, to explore the nonlinearities of fingering instability numerical simulations
of the full nonlinear problem are essential. Equations (2.5) are solved in the Cartesian
coordinate system using COMSOL Multiphysics (COMSOL 2019).

It is worth mentioning that COMSOL Multiphysics has been much used in fluid
dynamics research over the last decade (Campana & Carvalho 2014; Nejati, Dietzel &
Hardt 2015; Nama, Huang & Costanzo 2017; Lerisson et al. 2020). COMSOL Multiphysics
can be used as a high-level programming environment to create one’s own implementation
of problems in question as there may not exist any commercial module in COMSOL
to solve such problems (Nama et al. 2017). Similarly in this study, we have also used
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Figure 6. Effects of the domain boundary on concentration distribution of the product C at τ = 1 for
Pe = 3000, Da = 100, β = 1, RPhys = 0 (RA = RB = 0), and RChem(= −RC) = −7 (a) and RChem(= −RC)

= 7 (b).

COMSOL as a high-level programming environment. COMSOL has also been used
recently to understand various physical aspects of miscible VF problems using the
‘two-phase Darcy law’ module of fluid flow interface (Sharma, Pramanik & Mishra
2016, 2017; Kumar & Mishra 2019). Although this module works well for understanding
classical miscible VF problems, it cannot be used to include chemical reactions in a
very convenient manner. Therefore, we adopt a different model formalism and model
the fluid flow using the ‘Darcy’s law module’, which is coupled with the ‘transport of
dilute species module’ for the transport of the reactants A and B and the product C.
The former describes a single-phase incompressible fluid dynamics in a porous medium,
while the latter considers an advection–diffusion–reaction equation for a scalar species.
These coupled nonlinear partial differential equations are solved in an annular region
Ω = {(x, y) : rin �

√
x2 + y2 � rout}, where rout is the outer radius of the annulus and rin

is the inner radius of the annulus. We impose the following initial and boundary conditions:

a(x, y, τ = 0) = c(x, y, τ = 0) = 0, b(x, y, τ = 0) = β in Ω, (4.1a)

a(x, y, τ ) = 1, b(x, y, τ ) = c(x, y, τ ) = 0,−u · n = Q

2π
√

x2 + y2
on ∂Ωin, (4.1b)

p(x, y, τ ) = 0,n · (Pe−1∇ci) = 0(i = A,B,C) on ∂Ωout, (4.1c)

where n is the outward normal unit vector, and ∂Ωin := {(x, y) :
√

x2 + y2 = rin},
∂Ωout := {(x, y) :

√
x2 + y2 = rout}, such that ∂Ω = ∂Ωin ∪ ∂Ωout forms the boundary

of the computational domain.
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Figure 7. Temporal evolution of the concentration distribution of the product C for Da = 100, Pe = 3000,
β = 1,RA = RB = 0, and RC = 7 (a) and RC = −7 (b).
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Figure 8. Effects of Péclet number Pe on the concentration distribution of the product C at τ = 1 for
Da = 100, β = 1,RA = RB = 0, and RC = 7 (a) and RC = −7 (b).

In order to make our numerical solutions independent of the size of the computational
domain, we performed the numerical simulations for different domain sizes and found that
for rin = 0.075, fingering patterns are independent of the outer radius rout when rout � 1.
This choice of the inner and the outer radii of the annulus is independent of the sign of
RChem (see figure 6). For further validation of the numerical computations we reproduced
figure 3 of Sharma et al. (2019).

We used first- or second-order, variable step size, backward differentiation formulae.
At each time step, the system of nonlinear algebraic equations is linearized employing
the Newton method, and the resulting linearized system is solved by the PARDISO direct
solver which is fast, robust and multi-core capable. We used a scaled absolute tolerance
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factor of 5 × 10−2 for the concentration and 1 for the pressure, and a relative tolerance of
10−4.

A good qualitative agreement is observed using a free triangular mesh with the
maximum and the minimum element sizes 10−2 and 5 × 10−4, respectively (see figure 7).
Further refinement of the finite element meshes does not change the fingering patterns
significantly. Therefore, all the numerical simulations reported in this paper are performed
in an annular domain with rin = 0.075, rout > 1 and maximum and minimum element
sizes 10−2 and 5 × 10−4, respectively. Further details of grid independence tests are given
in Appendix E. We also successfully reproduced the effects of Pe on miscible fingering
with pure chemical reaction, namely stronger instabilities for larger Pe (see figure 8). This
is again in qualitative agreement with existing results (Sharma et al. 2019).

We notice that for sufficiently fast chemical reactions (Da ∼ O(10)), the onset of
fingering and the magnitude of the critical parameter RChem,c for fingering are independent
of the direction (inward versus outward) of the fingering. Sharma et al. (2019) observed
similar effects of Da and reported that for Da � 80, instability solely depends on the
magnitude of the log-viscosity ratio RC but not its sign. Therefore, throughout this paper,
we choose Da = 100 in our NLS and that allows us to compare the NLS results with the
linear stability results, which are obtained in the asymptotic limit Da∗ → ∞.

For simplicity, we restrict our analysis to RB = 0. Therefore, our NLS results can be
explained in terms of the two original dimensionless parameters RA and RC. However, for
a qualitative comparison between the NLS and LSA, we present our results in terms of
the newly constructed dimensionless parameters RPhys and RChem. It is to be noted that
the results presented here are qualitatively independent of choosing the combinations of
RA,RB,RC for obtaining RPhys and RChem. A quantitative analysis of the effects of these
parameters on the fingering dynamics will be the topic of future research.

4.1. Effects of RChem and RPhys on fingering dynamics
In reactive systems, the effects of Da and Pe are well understood (Sharma et al. 2019). Very
recently, it has been reported experimentally that a pH-sensitive clock reaction can induce
VF even in a physically stable system, i.e. for RPhys < 0 (Escala et al. 2019). Furthermore,
the importance of the injection flow rate, the reactant species, the reactant concentrations,
etc., on the pattern formation in precipitation reactions was experimentally captured
(Schuszter & De Wit 2016; Schuszter et al. 2016b). When converted into our dimensionless
formulation, these physicochemical effects correspond to the dimensionless parameters
Pe, Da, RPhys, RChem and β. Therefore, in order to explain such experimental findings
numerically, we performed simulations and found that RPhys and RChem are important
parameters along with the reactants’ concentration ratio β in such reactive systems (see
figure 9). For both positive and negative RChem and all values of β, the displacement
becomes more unstable as RPhys increases and we experience a transition from physically
stable systems (RPhys < 0) to physically unstable systems (RPhys > 0) through physically
neutral systems (RPhys = 0). For the physically stable and neutral systems, fingering at the
inner and the outer sides of the product ring respectively for RChem < 0 and RChem > 0
distorts only one side of this ring, while the other side remains almost circular. However,
for RPhys > 0, the combined effects of physically and chemically unstable scenarios result
in more complex fingering patterns and hence distort the product ring on both sides.
Further, irrespective of the signs of RPhys and RChem we observe, the higher the value
of β, the stronger is the instability. These results are in qualitative agreement with the
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Figure 9. Concentration of product C at τ = 1 for Pe = 3000, Da = 100, β < 1, β = 1, β > 1, and different
values of RPhys = −(RA − βRB) with positive and negative RChem = −(RC − RB − RA). (a) For RChem =
−7, we choose (RA,RB,RC) = (2, 0, 9), (0, 0, 7) and (−2, 0, 5) for RPhys = −2, RPhys = 0 and RPhys = 2,
respectively. (b) For RChem = 7, we choose (RA,RB,RC) = (2, 0,−5), (0, 0,−7) and (−2, 0,−9) for RPhys =
−2, RPhys = 0 and RPhys = 2, respectively.

predictions of the LSA and the physical mechanisms responsible for these effects are in
line with those explained in § 3.3. In summary, the present NLS are helpful in explaining
the complex precipitation pattern found experimentally (Nagatsu et al. 2014; Schuszter
et al. 2016a,b; Schuszter & De Wit 2016).

4.2. Effects of β on fingering dynamics
We define the interfacial length of the product as

I(τ ) =
∫∫

Ω

|∇c| dΩ. (4.2)

Figure 10 shows the interfacial length for Da = 100, Pe = 3000, β = 0.5, 1, 1.5 and
different pairs of RPhys and RChem. Figures 10(a) and 10(c) depict the cases of RChem =
7 and RChem = −7 for the physically unstable displacement (RPhys = 2), whereas in
figures 10(b) and 10(d) we show the cases of RChem = 7 and RChem = −7 for the physically
stable displacement (RPhys = −2). The maiden deviation of I(τ ) corresponding to the
non-zero RPhys and RChem from the respective reference curve (RPhys = 0 and RChem = 0)
denotes the onset of instability. For a fixed pair of RPhys and RChem, it is observed that
not only is the interfacial length larger for a larger β, flow is more unstable and hence the
instability sets in earlier for larger β. For RPhys = 2, the onset of instability corresponding
to RChem = 7 and −7 is almost identical for all three values of β considered. Here
RPhys = −2, RChem = ±7 and β = 0.5 correspond to stable displacements, which are also
observed in figure 9. Whereas for RPhys = −2 and β = 1, 1.5, the onset of outward fingers
(RChem = 7) is earlier than that of inward fingers (RChem = −7), which is also consistent
with figure 9.
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Figure 10. Evolution of interfacial length for β = 0.5, 1 and 1.5, Da∗ = 100, Pe = 3000, and (a) RPhys = 2,
RChem = 7, (b) RPhys = −2, RChem = 7, (c) RPhys = 2, RChem = −7 and (d) RPhys = −2, RChem = −7. The
dash-dotted lines represent the corresponding stable displacement for RPhys = 0, RChem = 0. The maiden
deviation of each continuous line from the corresponding dash-dotted line denotes the onset of instability
for the respective values of β.

5. Discussion and conclusions

The effects of chemical reaction on the onset and growth of the VF instability in a
Hele-Shaw cell or in a homogeneous porous medium are analysed theoretically and
numerically. The problem discussed in this paper offers rich parameter spaces spanned
by several dimensionless parameters (β, RA, RB, RC, Da and Pe).

We restrict the LSA to the asymptotic limit Da∗ → ∞. Linear stability analysis based
on the numerical shooting method as well as spectral analysis suggested that the important
parameters for the onset of VF instability are the Péclet number Pe, the Damkhöler number
Da, the reactants’ concentration ratio β and the log-viscosity parameters attributed to
the physical and chemical effects, RPhys and RChem, respectively. Furthermore, the effects
of these parameters on the growth of the VF pattern were studied through NLS. In the
present NLS, we identified shielding, tip-splitting and coalescence mechanisms, which
are commonly found in experiments. In addition, we clearly showed that the physical
parameters β and RPhys make the fingering pattern more complex. These findings give
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Figure 11. Dependence of the critical parameter (a) RPhys,c on Pe for the non-reactive system (Da = 0) and
(b) |RChem,c| on Pe for pure reactive systems (RPhys = 0) with β = 1. In the reactive cases, LSA is performed
for Da∗ → ∞; NLS are performed with Da = 100. For the reactive cases, the straight lines correspond to
∼ Pe−0.50.

important information for understanding experimental studies such as the precipitation
pattern in confined geometries.

In the non-reactive cases (i.e. Da = 0), we compute the critical values of RPhys (i.e.
RPhys,c) for different Pe from NLS and compare them with the corresponding values
obtained from LSAs (see figure 11a). It is observed that corresponding to both LSA and
NLS, RPhys,c decreases as Pe increases. Furthermore, this figure also depicts that for Pe ∼
O(102), RPhys,c obtained from the linear analysis (numerical shooting method) approaches
Pe → ∞ asymptotic behaviour (spectral analysis); namely RPhys,c ∼ Pe−0.5 as Pe → ∞.
We fitted the numerically computed critical values for the entire range of Pe explored using
a least-squares fit to a power law and we obtained RPhys,c ∝ Pe−0.53. Note that the Pe → ∞
asymptotic results were originally reported by Kim (2012). However, to make the current
paper self-explanatory, we reproduced these results in terms of the notations used in this
paper and compare them with the NLS. Interestingly, for Pe ∼ O(102), RPhys,c obtained
from NLS also follows the same power-law behaviour barring a different pre-factor. Again,
a least-squares fit of the numerically computed critical parameter to a power law in Pe
gives a slightly different exponent: RPhys,c ∝ Pe−0.56. This exponent is in agreement with
a recent computational study that reported that the critical mobility ratio followed a power
law in Pe with an exponent −0.55 (Sharma et al. 2020). The differences between the
two power-law relations corresponding to LSA and NLS are attributed to the fact that the
critical parameter RPhys,c in these two cases is calculated differently. In LSA, we defined
RPhys,c as the minimum value of RPhys for which at least one mode of the infinitesimal
disturbances became unstable. Whereas, in NLS, RPhys,c is defined to be the smallest RPhys
for which interfacial length indicates fingering instability.

Next, we explore the dependence of the critical parameter RChem,c on β. In the
asymptotic limits Pe → ∞ and Da∗ → ∞, the absolute values of RChem,c obtained from
linear analysis for positive and negative RChem are identical (see figure 4 in § 3.3).
Therefore in these limits, we compute RChem,c only for positive RChem and these are plotted
for 0.3 � β � 3 and RPhys = 0 in figure 12. A least-squares fit depicts that |RChem,c|
decays with β as |RChem,c| ∼ β−0.50 as Pe → ∞, Da∗ → ∞. However, for NLS there is no
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Figure 12. Dependence of the critical parameter RChem,c on β captured from LSA for Pe → ∞ and
Da∗ → ∞, as well as NLS for fixed Pe = 3000 and Da = 100. For both LSA and NLS, we choose RPhys = 0.

evidence that RChem,c is identical for both positive and negative values of RChem. Therefore
for NLS, we compute |RChem,c| with Pe = 3000, Da = 100 and both positive and negative
values of RChem. Least-squares fitting of the computed data yields: (i) for RChem > 0,
|RChem,c| ∼ β−0.54 and (ii) for RChem < 0, |RChem,c| ∼ β−0.57. The power-law behaviour
of |RChem,c| in both linear and nonlinear regimes indicates qualitative agreement between
the LSA and NLS results. The measured difference between the power-law exponents of
LSA and NLS can be attributed to the different methods chosen to calculate the critical
parameters in LSA and NLS as explained earlier. These observations led to our following
analysis. We suitably rescaled |RChem,c| with β for different values of β and explored the
dependencies of the rescaled critical parameters on Pe.

We computed |RChem,c| as a function of Pe for both positive and negative RChem and
different values of β from both LSA and NLS. As expected, |RChem,c| decreases as Pe
increases. Similar to RPhys,c, we obtain |RChem,c| ∼ Pe−0.5 as Pe → ∞ and the pre-factors
of these power-law relations are different for LSA and NLS. Furthermore, they depend
on RPhys and β. Figure 11(b) depicts the variations of |RChem,c| with Pe for RPhys = 0 and
β = 1. However, when these critical values obtained from NLS are fitted for the entire
range of Pe explored, we obtain a different power-law relation. It is observed that rescaled
critical values |RChem,c|

√
β collapse on a power law: |RChem,c|

√
β ∼ Pe−0.50 (LSA; see

figure 13) and |RChem,c|
√
β ∼ Pe−0.55±0.01 (NLS; see figure 14).

In summary, we observed that larger values of β and Pe lead to stronger fingering
motions. Although for small and moderate Pe positive and negative RChem exhibit slightly
different critical values, for Pe � 100, the critical values corresponding to the positive and
negative RChem are visually indistinguishable. Further quantitative analyses of different
dimensionless parameter effects on the fingering motions await understanding and they
are beyond the scope of this paper.

Finally, we note that the dynamics observed in this study can be explained in terms of the
two mobility ratios RPhys and RChem only in the limiting cases of Da∗ = 0 and Da∗ → ∞.
(Actually, for Da∗ = 0, it is only RPhys that is required to explain the dynamics.) In LSA,
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Figure 13. Dependence of the critical parameter |RChem,c| on Pe, calculated for Da∗ → ∞ from LSA for
different values of β = 0.5 (circle), 1.0 (down-pointing triangle), 1.5 (square), 2.0 (up-pointing triangle). Open
symbols correspond to positive RChem,c, while filled symbols correspond to negative RChem,c. The inset shows
the collapse of the data on a single master curve that follows a power law: |RChem,c| ∼ Pe−0.50.

this is evident from (3.14) and (B2). However, for finite but non-zero Da∗, we may need
to specify RA, RB and RC. Our NLS are carried out for Da = 100 and it is verified that the
qualitative features of the observed fingering dynamics are independent of the choice of
Da when Da is further increased. Therefore, our NLS are consistent with the Da∗ → ∞
limit. For Da ∼ O(10), which is beyond the scope of this paper, one must explore how the
values of RA, RB and RC affect the fingering dynamics, and further explore whether the
same values of RPhys and RChem obtained from different combinations of RA, RB and RC
and β can result in different fingering dynamics. The effects of Da on fingering dynamics
in both the linear and nonlinear regimes are the topic of our ongoing research and will be
reported elsewhere.
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Figure 14. Dependence of the critical parameter |RChem,c| on Pe, calculated for Da = 100 from NLS for
different values of β = 0.5 (circle), 1.0 (down-pointing triangle), 1.5 (square), 2.0 (up-pointing triangle). Open
symbols correspond to positive RChem,c, while filled symbols correspond to negative RChem,c. The inset shows
the collapse of the data on a single master curve that follows a power law: |RChem,c| ∼ Pe−0.55±0.01.

Appendix A

Adding (2.9a) and (2.9c), and subtracting (2.9b) from (2.9a) we obtain

∂

∂τ
(a0 + c0)+

(
1 − 1

Pe

)
1
r
∂

∂r
(a0 + c0) = 1

Pe
∂2

∂r2 (a0 + c0), (A1a)

∂

∂τ
(a0 − b0)+

(
1 − 1

Pe

)
1
r
∂

∂r
(a0 − b0) = 1

Pe
∂2

∂r2 (a0 − b0), (A1b)

respectively. The associated boundary and initial conditions obtained from (2.10) are

a0 − b0 = 1, a0 + c0 = 1, at r = 0, τ > 0, (A2a)

a0 − b0 = −β, a0 + c0 = 0, at r → ∞, τ > 0, (A2b)

a0 − b0 = −β, a0 + c0 = 0, at τ = 0, ∀ r. (A2c)

Define a new variable φ0 as follows:

φ0 = a0 − b0 + β

1 + β
≡ a0 + c0. (A3)
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Unstable miscible displacements in radial flow

Then, φ0 satisfies the following initial boundary value problem:

∂φ0

∂τ
+
(

1 − 1
Pe

)
1
r
∂φ0

∂r
= 1

Pe
∂2φ0

∂r2 , (A4a)

φ0(r, 0) = 0, φ0(0, τ ) = 1 and φ0(∞, τ ) = 0. (A4b)

Appendix B. Linear stability analysis for the non-reactive case

For the non-reactive case, i.e. Da∗ = 0, in which c1(ξ, τ ) = 0, (3.4) and (3.7) give

(a1, b1) = (φ1,−βφ1). (B1)

Therefore, the stability equation (3.8a) reads

∂

∂ξ

(
ξ
∂ψ1

∂ξ

)
− RPhys

dφ0

dξ
ξ
∂ψ1

∂ξ
+ 1

4ξ
∂2ψ1

∂θ2 = RPhys

4ξ
∂2φ1

∂θ2 , (B2)

whereas (3.10a) reduces to

∂2ψ∗
1

∂ζ 2 − RPhys
dφ0

dζ
∂ψ∗

1
∂ζ

+ 1
Pe
∂2ψ∗

1
∂θ2 = +

R∗
Phys

Pe
∂2φ1

∂θ2 + O(Pe−1/2) Pe → ∞. (B3)

Applying the normal mode decompositions discussed in § 3.2, these equations further
simplify to

d
dξ

(
ξ

dΨ
dξ

)
− RPhys

dφ0

dξ
ξ

dΨ
dξ

− n2

4ξ
Ψ = −RPhys

n2

4ξ
Φ (B4)

and (
d2

dζ 2 − RPhys
dφ0

dζ
d

dζ
− n2

Pe

)
�∗ = −R∗

Phys
n2

Pe
Φ Pe → ∞, (B5)

respectively.

Appendix C. Analytic solutions of the spectral analysis equations

Solving (3.31a) and (3.31b), the following recurrence relation can be obtained:

ψ−
i (k, ζ ) = k2

[
ψ−

i−2(k, ζ )− (R∗
Phys − βR∗

Chem)φi−2(ζ )
]

+ k
2
(1 + β)R∗

Chemek(ζ−ζR)(φn−1(ζR)− kφn−2(ζR)), (C1)

with

ψ−
0 (k, ζ ) = k

4
√

πek2/4
[
(R∗

Phys − βR∗
Chem)

{
ekζ erfc

(
ζ + k

2

)
+ e−kζ erfc

(
−ζ + k

2

)}

+ (1 + β)R∗
Chemekζ erfc

(
ζR + k

2

)]
, ζ � ζR, (C2a)

ψ−
1 (k, ζ ) = −k

2
ek2/4

[
(R∗

Phys − βR∗
Chem)

k
2
√

π

{
ekζ erfc

(
ζ + k

2

)
+e−kζ erfc

(
−ζ+ k

2

)}

− (1 + β)R∗
Chemekζ

{
e−(ζR+k/2)2 − k

2
√

πerfc
(
ζR + k

2

)}]
, ζ � ζR,

(C2b)
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and

ψ+
n (k, ζ ) = k2

[
ψ+

n−2(k, ζ )− (R∗
Phys + R∗

Chem)φn−2(ζ )
]

+ k
2
(1 + β)R∗

Cheme−k(ζ−ζR)(φn−1(ζR)+ kφn−2(ζR)), (C3)

with

ψ+
0 (k, ζ ) = k

4
√

πek2/4
[
(R∗

Phys + R∗
Chem)

{
ekζ erfc

(
ζ + k

2

)
+ e−kζ erfc

(
−ζ + k

2

)}

− (1 + β)R∗
Cheme−kζ erfc

(
−ζR + k

2

)]
, ζ � ζR, (C4a)

ψ+
1 (k, ζ ) = −k

2
ek2/4

[
(R∗

Phys + R∗
Chem)

k
2
√

π

{
ekζ erfc

(
ζ+ k

2

)
−e−kζ erfc

(
−ζ + k

2

)}

− (1 + β)R∗
Cheme−kζ

{
e−(−ζR+k/2)2 − k

2
√

πerfc
(

−ζR + k
2

)}]
, ζ � ζR. (C4b)

For the non-reactive system (Da∗ = 0), spectral analysis requires one to solve (B5) for
the limiting cases of Pe → ∞, RPhys � 1, but finite R∗

Phys. In this limit, this equation
reduces to

d2ψi

dζ 2 − k2ψ−
i = −R∗

Physk
2e−ζ 2

Hi(ζ ). (C5)

Solving this, we obtain the following relation:

ψi(k, ζ ) = k2[ψi−2(k, ζ )− R∗
Physφi−2(ζ )], (C6)

with

ψ0(ζ, k) = √
π

k
4

ek2/4R∗
Phys

[
ekζ erfc

(
ζ + k

2

)
+ e−kζ erfc

(
−ζ + k

2

)]
, (C7a)

ψ1(ζ, k) = k
4

ek2/4R∗
Phys

[
ekζ

{
2e−(ζ+k/2)2 − k

√
πerfc

(
ζ + k

2

)}

−e−kζ
{

2e−(−ζ+k/2)2 − k
√

πerfc
(

−ζ + k
2

)}]
. (C7b)

Appendix D

Using the map ζ 	→ −ζ , (3.36b) and (3.37b) take the forms

d2ψ+
i,n

dζ 2 − k2ψ+
i,n = −k2

(
R∗

Phys + ∣∣R∗
Chem

∣∣) e−ζ 2
Hi(−ζ ) for ζ < 0, (D1a)

d2ψ+
i,p

dζ 2 − k2ψ+
i,p = −k2

(
R∗

Phys − ∣∣R∗
Chem

∣∣) e−ζ 2
Hi(−ζ ) for ζ < 0, (D1b)
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Coarser Coarse Fine Finer

Figure 15. Concentration fields of the product C for the parameters Pe = 3000,Da = 100,RA = RB = 0.
In the upper panel, RC = 7, τ = 10; in the lower panel, RC = −7, τ = 5. The variable time step backward
differentiation formula was employed and relative tolerance was set to 10−4.

Rel. Tol. = 10–3 10–4 10–5

Figure 16. Concentration fields of the product C for the parameters Pe = 3000,Da = 100,RA = RB = 0. In
the upper panel, RC = 7, τ = 10; in the lower panel, RC = −7, τ = 5. The number of elements used in these
simulations is 375 484.

respectively. For Hi(−ζ ) = −Hi(ζ ) (D1a) and (D1b) become

d2(−ψ+
i,n)

dζ 2 − k2(−ψ+
i,n) = −k2

(
R∗

Phys + ∣∣R∗
Chem

∣∣) e−ζ 2
Hi(ζ ) for ζ < 0, (D2a)

d2(−ψ+
i,p)

dζ 2 − k2(−ψ+
i,p) = −k2

(
R∗

Phys − ∣∣R∗
Chem

∣∣) e−ζ 2
Hi(ζ ) for ζ < 0, (D2b)
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Spatial resolution Number of elements Maximum element size Minimum element size

Coarser 96 646 2.0 × 10−2 1 × 10−3

Coarse 170 130 1.5 × 10−2 5 × 10−4

Fine 375 484 1.0 × 10−2 5 × 10−4

Finer 663 008 7.5 × 10−3 5 × 10−4

Table 1. Detailed explanation of mesh structures employed for the case of
Pe = 3000,Da = 100,RA = RB = 0 and RC = 7.

Relative tolerance Initial time step maximum time step

10−3 2.0894 × 10−5 1.8420 × 10−2

10−4 2.1279 × 10−6 9.5192 × 10−3

10−5 2.1292 × 10−7 3.1013 × 10−3

Table 2. Time steps used in the case of Pe = 3000,Da = 100,RA = RB = 0 and RC = 7. The number of
element used is 375 484 (fine).

which are identical to (3.37a) and (3.36a), respectively, for −ψ+
i,n = ψ−

i,p and −ψ+
i,p =

ψ−
i,n. Similarly for Hi(−ζ ) = Hi(ζ ), we can show that ψ+

i,n = ψ−
i,p and ψ+

i,p = ψ−
i,n.

Appendix E. Further details of COMSOL simulations

The snapshots of the concentration field at τ = 10 (for RC = 7) and τ = 5 (for RC =
−7) corresponding to different spatiotemporal resolutions as well as different relative
tolerances are plotted in figures 15 and 16. These show that there are no significant
qualitative changes in the observed nonlinear dynamics and pattern formation. Therefore,
we fixed the spatial resolution corresponding to ‘fine’ mesh and the relative tolerance to
10−4 in all the simulations throughout this paper. Table 1 and Table 2 show the data related
to the grid independence studies carried out for a reference case in this paper.
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