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Abstract

A 3D numerical study of the turbulent phase of the evolution of Rayleigh–Taylor instability~RTI! was undertaken using
the MAH-3 code. A criterion and a technique have been developed that can be used for diagnostics in computational
experiments studying flow transition to self-similar turbulence. It has been found that a criterion of the flow transition
to the self-similar turbulence is Kolmogorov’s self-similar distribution of the turbulent kinetic energy together with the
square law of mixing zone extension. The technique is based on the analysis of the evolution of the dimensionless power
spectrum of specific kinetic energy. Three phases of nonlinear mixing are found: “relict chaos”, “formation of classical
energy spectrum” and “spectrum degradation.” Determination of a proportionality factor for a square law within the time
range incorporating inertial interval gives the value ofa ' 0.07.

1. INTRODUCTION

An interface between two fluids of different densities is un-
stable and behaves as a RTI if it is affected by acceleration
directed from a light fluid to a heavy one. This is true when
fluid with the densityr2 is above fluid with the densityr1 ,
r2 in a gravitational field with acceleration?g. A square law
was proposed in Anuchinaet al. ~1978! to describe exten-
sion of a turbulent mixing zone after achieving a self-similar
phase in the formL 5 f ~ r20r1!{t 2. Numerous experimental
and numerical studies of turbulent mixing~Anuchina & Ogi-
bina, 1982; Kucherenkoet al., 1988; Read, 1984; Youngs,
1984, 1989, 1991, 1992! are devoted to the square law ver-
ification and assessment off ~ r20r1!.

Yu.A. Kucherenko, K.I. Read, and D.L.Youngs conducted
experiments for the substances with various density differ-
ences and the experiments showed that the depth of “bub-
ble” penetration could be described with the dependenceLb5
a{A{g{t 2, whereA is an Atwood number and the constant
a ' 0.06. Usually a sufficient condition for treating a flow
as self-similar turbulent is the realization of the square law
for mixing zone extension and spatial-temporal similarity of
the averaged density profiles within some time interval. How-
ever, to qualify turbulent mixing as self-similar it is neces-
sary to consider the internal features of the flow based on

spectral presentation of hydrodynamic fields. This means
that in addition to determining spatial-temporal similarity of
flow functionals it is necessary to verify whether there exists
an inertial interval of wave numbersk within which the
Kolmogorov–Obukhov law~Obukhov, 1941a, 1941b; Kol-
mogorov, 1941! of turbulent kinetic energy distribution
E~k! ' k2503 is valid.

Turbulence energy spectrum distribution was used in,
for instance, Dalzielet al. ~1997!; Sin’kova et al. ~1997!;
Anuchinaet al. ~1997! to analyze the results of numerical
simulation of gravity turbulent mixing.

A criterion of determining self-similar turbulent phase of
flow can be stated:

• presence of self-similar inertial mechanism of transfer-
ring energy of velocity field pulsation at the intermedi-
ate range of wave numbers;

• spatial-temporal similarity of a representative enough
set of flow functionals.

2. NUMERICAL METHOD AND
ITS CAPABILITIES

MAH-3 code is intended to calculate nonstationary 3D hy-
drodynamic flows of multicomponent media with strongly
distorted interface. The code exploits a numerical method
based on papers Hirtet al.~1974!; Pracht~1975!; Anuchina
et al. ~1992!.
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The method is based on splitting calculations into La-
grangian and Eulerian phases. Numerical integration zone is
considered as a set of physical or computational regions.
Each region is a topological parallelepiped. Region bound-
aries may be either interface surfaces including the selected
Lagrangian surfaces or outer problem boundaries: free
boundaries, rigid walls, continuous Eulerian boundaries or
boundaries with specified pressure.

Two methods are used to describe the interfaces:

• Regular: when the interface is described as a coordi-
nate surface of the mesh;

• Irregular: when the interface is described with an un-
structured mesh of markers and mixed cells.

2.1. Regular method

A mesh cell is a trilinear imaging of a cube on 3D physical
space when the cell vertexes are the images of cube ver-
texes. Different equations for each phase are derived through
approximation of conservation laws formulated for a con-
trol volume, that is, the scheme is divergent with respect to
mass, momentum and total energy. Integration is performed
in two stages. Lagrangian equations are solved at the first
stage. The second stage includes convectional flows be-
tween the cells if the specified law of mesh movement is not
a Lagrangian one. Lagrangian stage calculations can be done
using either explicit or implicit schemes. Algorithm of solv-
ing implicit difference equations is an iterative Newton–
Jacobi process. Values obtained from the explicit scheme
are used as initial approximation. The process converges at
any time step.

An explicit scheme is used to approximate the con-
vectional flows at the Eulerian stage. Two options are
implemented:

• first-order-accuracy approximation using “up-wind” dif-
ferences~Scheme 1!;

• Lax–Wendroff second-order-accuracy approximation
~Scheme 2!.

Each computational or physical region uses its own hex-
ahedral mesh, which is arbitrary but coordinated at the La-
grangian interface surfaces.

2.2. Irregular method of calculating
the contact surfaces

Based on a multi-component one-velocity model, strongly
distorted interface between substances has been described.
Transition to describing the interface surface with the mixed
cells occurs when strong distortions appear and it is no lon-
ger possible to calculate the contact surface as a coordinate
mesh surface. In this case the contact surface does not co-
incide with coordinate surface and can intersect arbitrarily
Eulerian mesh forming the mixed cells, which contain sev-
eral different substances. These cells introduce nonregular-

ity in the numerical algorithm at both Lagrangian and
Eulerian stages. Conditions of thermodynamic equilibrium
of the components and continuity of the velocity vector at
the interface are used to calculate the mixture.

Peculiarity of mixed cell calculations at the Lagrangian
stage consists in determination of mixture pressure, which
in the general case is iterative. Otherwise these cells are cal-
culated as homogeneous ones. Nonregularity at the Eulerian
stage considerably complicates the algorithm of calculation
of convectional flows. In the vicinity of the mixed cells,
convectional flows are calculated with due account of direc-
tion of medium flow and composition of substances in the
cells. To study interface evolution thoroughly, an unstruc-
tured mesh of markers can be used which consists of trian-
gles and is not associated with the integration zone mesh.
The appropriate mesh of markers for the interface is main-
tained by controlling density of the markers, adding new
markers and remapping, if necessary. Since the irregular
method is time-consuming, the code embeds the option of
rebuilding the mesh and calculating the flows once per sev-
eral Lagrangian steps rather than at each step. Based ona
priori information about the processes in the specific prob-
lem, it is possible to combine Lagrangian~explicit and
implicit! and Eulerian calculations, and apply regular or
irregular method of describing contact surfaces at different
periods of time. This approach allows us to select an optimal
way of obtaining the required accuracy.

3. PROBLEM SETUP

In the 3D area~x, y, z! bounded on six sides with rigid walls
there are two layers of nonviscous, incompressible and non-
heat-conducting substances of different density affected by
gravitational field. Gravitational acceleration?g acts in the
negative direction of axisz, from a heavy substance to a
light one. Initial conditions are as follows:L 5 Lx 5 Ly 5
Lz 5 15 cm are the system dimensions,z0 5 0.5Lz is an
initial position of the interface,g520.03435 cm0mc2, r15
1.0 g0cm3, r2 5 2.9 g0cm3 are densities of the lower and
upper layers, respectively. The initial data presented were
taken from Youngs~1992!.

Fluid incompressibility was simulated by setting an iso-
thermal equation of statep 5 c2{r with rather large values
of c2,c1

25 102, c2
25 c1

2~ r10r2!. At the initial moment of time,
density and pressure distribution corresponds to hydrostatic
equilibrium. A small-scale random perturbation of the inter-
face with the amplitudea0 5 0.01 was introduced. The ini-
tial perturbation contained the whole range of harmonics
specified by the difference mesh resolution. The runs con-
sidered are follows:

Cc1:Dx 5 Dy 5 Dz5 0.25, Scheme 1;

Cc2:Dx 5 Dy 5 Dz5 0.25, Scheme 2;

Bb2: Dx 5 Dy 5 Dz5 0.125, Scheme 2.
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4. PROCESSING OF THE RESULTS

4.1. Width of the turbulent mixing zone

To compare the calculated data with the square law, depth of
light-to-heavy penetrationLb is determined as a function of
S5 A{g{t 2. An upper boundary of the mixing zone is de-
fined as a value for which the volume concentration of the
light substance averaged over directionsx, y equals 5%.

4.2. Spectral properties of the velocity field

Spectral properties of the velocity field are obtained under
the following assumptions: Assume, that?u 5 ~u,v,w! is a
velocity vector with the componentsu,v,w alongx, y, andz
axes, respectively. In this setup it is valid to treatu as odd
periodic in directionxand even periodic in directionsy, z; as
odd periodic in directiony and even periodic in directions
x, z; andw, as odd periodic in directionz, and even periodic
in directionsx, y with a period of 2L. Then valid is exact
spectral expansion of discrete velocity field:
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i 5 0, . . . ,N1; j 5 0, . . . ,N2; k 5 0, . . . ,N3. ~1!

Here,N1, N2, N3 are numbers of mesh nodes in directionsx,
y, andz, respectively,~i, j, k! is index of a node.

The above representation leads to obvious extension of
the discrete velocity field?uijk to a continuous?u~x, y, z! one,
and for this purpose it is sufficient to considerxijk , yijk , zijk as
continuous arguments. Therefore, when building spectral
functionals, the velocity field is considered to be a function
of continuous arguments.

4.2.1 Velocity field correlation averaged over sphere
and Taylor micro-scale
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,
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{ ?u~x 1 j, y 1 h, z1 z! dx dy dz—velocity field
correlation,
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B ?u~r sinc cosw, r sinc sinw, r cosc!

3 sinc dw dc—velocity field correlation averaged
over sphere,

b 5
b ?u~r !

b ?u~0!
—averaged over sphere correlation function

of the velocity field.

, 5 Taylor scale equal to the length of a segment cut
on the abscissa axis by a parabola which has a
second-order tangency with the correlation
function graph in its top.

4.2.2 Power spectrum of turbulent specific kinetic energy

q 5!~pm0L!2 1 ~pn0L!2 1 ~pp0L!2 is wave vector mod-
ulus,m5 0, . . . ,N1; n5 0, . . . ,N2; p5 0, . . . ,N3; m2 1 n2 1

p2 Þ 0.qmax5!~pN10L!2 1 ~pN20L!2 1 ~pN30L!2 is a max-
imal value of the wave vector modulus. The region~0,qmax!
is uniformly split intoN intervals,q1 is a center of the 1th
interval, 15 1, . . . ,N, Dq is the length of the interval. The
introduced mesh is used for building turbulent specific ki-
netic energy power spectrum.
EE~q1! is a partial sum divided byDqof the series terms for

E5 0.5b ?u~0!, terms corresponding to the wave vectors fall-
ing into the 1th interval by modulus. Transition to dimen-

Fig. 1. A typical 3D raster pattern of the density field obtained by 3D nu-
merical simulation of the evolution of Rayleigh–Taylor instability.
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sionless dependencies is performed according to the formulas
below:

k~n1! 5 EE~q1!0,E is dimensionless power spectrum of tur-
bulent specific kinetic energy,n1 5 ,{q1 is dimensionless
frequency, where, is the Taylor scale.

5. RESULTS OF CALCULATIONS

Typical 3D view of the density field obtained by 3D numer-
ical simulation of the evolution of RTI is given in Figure 1.
Figure 2 presents the results of run Cc2 processing. Fig-
ure 2a gives a plot of light-to-heavy penetration depthver-
sus S.It is easy to notice that the slopea of the curve varies.
Therefore, it is necessary to select a time interval to be used
for determininga. This should be the time interval, which
best fits the today’s understanding of self-similar turbu-
lence. For this purpose, analyze the power spectrum of tur-
bulent specific kinetic energy.

According toA. Kolmogorov’s hypothesis, in self-similar
turbulence case the wave number scale consists of three char-
acteristic intervals: energy interval where major fraction of

pulsation energy is concentrated; inertial interval where en-
ergy is transferred to the large wave numbers of the spec-
trum; and dissipation interval where most of turbulent energy
is dissipated. If energy and dissipation intervals do not
overlap considerably, inertial interval must be between the
frequencies corresponding to the maximal energy and dis-
sipation~Monin & Yaglom, 1967!.

Nine frames in Figure 2b illustrate dynamics of turbulent
specific kinetic energy power spectrum as a function of di-
mensionless timet 5 t{!Ag0L. In terms of spectrum, the
flow development can be described as follows:

• Relict chaos: Inertia and dissipation have not yet fin-
ished selection of perturbations from the initial spec-
trum with respect to frequency, energy is transferred in
spectrum in both directions: from large to small fre-
quencies and from small to large frequencies;

• formation ofClassical energy spectrum: spectrum plot
becomes of typical asymmetrical “cap”-like shape;

• Spectrum degradation: energy spectrum changes qual-
itatively and quantitatively. In this case, changes occur
due to additional scale in short-wave spectrum.

Fig. 2. Results of the Cc2 run with second-order accuracy for 603 mesh.~a! Bubble penetrationLb ~cm! versus S5 Agt2 ~cm!. The
solid line is the best fit straight line to the mesh data.~b! Dynamics of the turbulent energy power spectrum. Each frame shows
dimensionless turbulent energy power spectrumkappa versusdimensionless frequencyny, wheretau is dimensionless time.~c! Tur-
bulent energy power spectrum compared to the “five third” law in logarithmic scale. The solid line with the slope2503 is Kolmog-
orov’s distribution of turbulent kinetic energy.kappa, nyandtauare the same as in~b!. ~d! “Inertial interval” of turbulent energy power
spectrum obtained by averaging over three time momentstau51.20, 1.27, 1.34 and presented in logarithmic scale. The solid line is the
same line as plotted in~c!. kappaandny are the same as in~b!.
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It can be stated that frames witht50.7–0.9 correspond to
the first phase; witht51.2–1.5—to the second and witht5
1.7–2.0—to the third. Boundaries between three above phases
are rather conventional, but qualitatively correct. The slope
of the curveLb versus Swas determined from five calculated
second-phase points corresponding tot 5 1.1–1.3. In Fig-
ure 2a, a line with the obtained slopea 5 0.064 is shown. It
is obvious from the figure that the slope would be less if
calculated from the third-phase points. Figure 2c presents in
logarithmic scale the spectra of turbulent specific kinetic
energy fort 5 1.20, 1.27, 1.34 in comparison with the line
corresponding to the “five-thirds” law. On the whole it can
be stated that self-similarity takes place within “inertial in-
terval”. Profiles at this interval coincide better than at other
intervals. The slope determined at the “inertial interval” from
the spectrum averaged over three time moments is equal to
21.59 that differs by 5% from the theoretical value of2503
~Fig. 2d!.

Figure 3b illustrates dynamics of turbulent specific ki-
netic energy power spectrum in the run Bb2 fort 5 0.4–1.3.
Unlike run Cc2, formation of “classical energy spectrum”
starts earlier and has both a longer duration and more sta-
tionary profiles. Time momentst 5 1.1–1.3 can be referred
to it. Figure 3a shows depthLb of light-to-heavy penetration
versus S.Slopea 5 0.074 is calculated from five points
corresponding tot 5 1.1–1.3. A line with this slope is plot-
ted in Figure 3a. In Figure 3c spectra of turbulent specific
kinetic energy are plotted fort 5 1.20, 1.27, 1.34 in com-
parison to the “five thirds” law. It can be stated, in this run
the “inertial interval” is displayed more and Kolmogorov’s
self-similarity factor determined within the “inertial inter-
val” from the spectrum averaged over three time moments is
equal to21.62 that coincides with the theoretical value to
the accuracy of 3%~Fig. 3d!.

The run Cc1 is performed under first-order-accuracy
scheme, the number of points in each direction being two

Fig. 3. Results of the Bb2 run with second-order accuracy for 1203 mesh.~a! Bubble penetrationLb ~cm! versus S5 Agt2 ~cm!. The
solid line is the best fit straight line to the mesh data.~b! Dynamics of the turbulent energy power spectrum. Each frame shows
dimensionless turbulent energy power spectrumkappa versusdimensionless frequencyny, wheretau is dimensionless time.~c! Tur-
bulent energy power spectrum compared to the “five-third” law in logarithmic scale. The solid line with the slope2503 is Kolmog-
orov’s distribution of turbulent kinetic energy.kappa, nyandtauare the same as in~b!. ~d! “Inertial interval” of turbulent energy power
spectrum obtained by averaging over three time momentstau51.20, 1.27, 1.34 and presented in logarithmic scale. The solid line is the
same line as plotted in~c!. kappaandny are the same as in~b!.
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times less than in the run Bb2. Hence, due to larger overlap-
ping of the energy and dissipation intervals than in the runs
Cc2 and Bb2, “classical energy spectrum” phase is practi-
cally absent. This is demonstrated in Figure 4 where spectra
of specific turbulent energy are plotted and fort 5 1.6, 1.7,
and 1.9 spectra are compared in log scale to “five-thirds”
law. The presented spectra are degraded, delta-like plots are
typical of them, and almost all energy is concentrated within
a small frequency range corresponding to hydrodynamic
scale. Factora 5 0.058 was obtained from five points cor-
responding tot 5 1.6–1.9.

6. CONCLUSIONS

1. Analysis of dynamics of turbulent specific kinetic en-
ergy power spectrum has shown that there are three

phases of turbulent mixing: “relict chaos”, “classical
energy spectrum”, and “spectrum degradation”.

2. In calculations energy and dissipation ranges can over-
lap significantly due to a small number of points and
excessive dissipation of the difference scheme. This
leads to an absent phase of formation and existence
of the classical spectrum of turbulent kinetic energy.
Without energy spectrum control, determination of
slope a might give information irrelevant to self-
similar turbulence.

3. Slope calculation within the time interval correspond-
ing at some extent to existence of inertial interval has
given the value ofa ' 0.07, smaller values ofa
correspond to the phase of degraded spectrum when
extension of the mixing zone depends mostly on large-
scale perturbations of energy spectrum.

Fig. 4. Results of the Cc1 run with first-order accuracy for 603 mesh.~a! Bubble penetrationLb ~cm! versus S5 Agt2 ~cm!. The solid
line is the best fit straight line to the mesh data.~b! Dynamics of the turbulent energy power spectrum. Each frame shows dimensionless
turbulent energy power spectrumkappa versusdimensionless frequencyny, wheretau is dimensionless time.~c! Turbulent energy
power spectrum compared to the “five third” law in logarithmic scale. The solid line with the slope2503 is Kolmogorov’s distribution
of turbulent kinetic energy.kappa, nyandtauare the same as in~b!. ~d! “Inertial interval” of turbulent energy power spectrum obtained
by averaging over three time momentstau51.6, 1.7, 1.9 and presented in logarithmic scale. The solid line is the same line as plotted
in ~c!. kappaandny are the same as in~b!.
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