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Abstract Given a compact n-dimensional immersed Riemannian manifold Mn in some Euclidean space
we prove that if the Hausdorff dimension of the singular set of the Gauss map is small, then Mn is
homeomorphic to the sphere Sn.

Also, we define a concept of finite geometrical type and prove that finite geometrical type hypersurfaces
with a small set of points of zero Gauss–Kronecker curvature are topologically the sphere minus a finite
number of points. A characterization of the 2n-catenoid is obtained.
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1. Introduction

Let f : Mn → Nm be a C1 map. We denote by

rank(f) := min
p∈M

rank(Dpf).

If n = dimM = dimN = m, let C := {p ∈ M : det Dpf = 0} be the set of critical
points of f and let S := f(C) be the set of critical values of f .

Now, let Mn be a compact, connected, boundaryless, n-dimensional manifold. Denote
by Hs the s-dimensional Hausdorff measure and by dimH(A) the Hausdorff dimension
of A ⊂ Mn. For definitions see Section 2 below. Let x be an immersion x : Mn → Rn+1.
In this case, let G : Mn → Sn be the Gauss map associated with x, C the critical points
of G and S the critical values of G. We denote by dimH(x) := dimH(S). By Moreira’s
improvement of the Morse–Sard theorem (see [8]), since G is a smooth map, we have
that dimH(S) � n − 1.

In other words, if

Imm = {x : M → Rn+1 : x is an immersion},
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then supx∈Imm dimH(x) � n − 1. Clearly, this supremum could be equal to n−1, as some
immersions of Sn in Rn+1 show (e.g. immersions with ‘cylindrical pieces’). Our interest
here is the number inf dimH(x). Before we discuss this, we introduce some definitions.

Definition 1.1. Given an immersion x : Mn → Rn+1 we define rank(x) := rank(G),
where G is the Gauss map for x.

Definition 1.2. We denote by R(k) the set R(k) = {x ∈ Imm : rank(x) � k}. Define
by αk(M) the numbers:

αk(M) = inf
x∈R(k)

dimH(x), k = 0, . . . , n.

If R(k) = ∅ we define αk(M) = n − 1.

Now, we are in position to state our first result.

Theorem A. If Mn is a compact manifold with n � 3 such that αk(Mn) < k − [ 12n],
for some integer k, then Mn is homeomorphic to Sn ([r] is the integer part of r).

The proof of this theorem in the cases n = 3 and n � 4 are quite different. For higher
dimensions, we can use the generalized Poincaré conjecture (Smale and Freedman) to
obtain that the given manifold is a sphere. Since the Poincaré conjecture is not available in
three dimensions, the proof, in this case, is a little bit different. We use a characterization
theorem due to Bing to compensate the loss of Poincaré conjecture, as commented before.

To prove this theorem in the case n = 3, we proceed as follows.

(i) By a theorem of Bing (see [2]), we just need to prove that every piecewise smooth
simple curve γ in M3 lies in a topological cube R of M3.

(ii) In order to prove it, we shall show that it is enough to prove for γ ⊂ M − G−1(S)
and that G : M − G−1(S) → S3 − S is a diffeomorphism.

(iii) Finally, we produce a cube R̃ ⊃ G(γ) in S3 − S and we obtain R pulling back this
cube by G.

Observe that, by [3], in three dimensions there are always Euclidean codimension 1
immersions. In particular, it is reasonable to consider the following consequence of
Theorem A.

Corollary 1.3. The following statement is equivalent to the Poincaré conjecture.

Simply connected 3-manifolds admit Euclidean codimension 1 immersions
with rank at least 2 and Hausdorff dimension of the singular set for their
Gauss map less than 1.

Our motivation behind proving this theorem are results by do Carmo and Elbert [4]
and Barbosa, Fukuoka and Mercuri [1]. Roughly speaking, they obtain topological results
about certain manifolds provided they admit special codimension 1 immersions. These
results motivate the question: how does the space of immersions (extrinsic information)
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influence the topology of M (intrinsic information)? Theorems A and B below are a par-
tial answer to this question. The proofs of the theorems depend on the concept of Haus-
dorff dimension. Essentially, Hausdorff dimension is a fractal dimension that measures
how ‘small’ a given set is with respect to usual ‘regular’ sets (e.g. smooth submanifolds,
that always have integer Hausdorff dimension).

In Section 6 of this paper we obtain the following generalizations of Theorems A and B.

Definition 1.4. Let M̄n be a compact (oriented) manifold and p1, . . . , pk ∈ M̄n. Let
M = M̄n − {p1, . . . , pk}. An immersion x : Mn → Rn+1 is of finite geometrical type (in
a weaker sense than that of [1]) if Mn is complete in the induced metric, the Gauss map
G : Mn → Sn extends continuously to a function Ḡ : M̄n → Sn and the set G−1(S) has
Hn−1(G−1(S)) = 0 (this last condition occurs if rank(x) � k and Hk−1(S) = 0).

The conditions in the previous definition are satisfied by complete hypersurfaces with
finite total curvature whose Gauss–Kronecker curvature Hn = k1 · · · kn does not change
sign and vanishes in a small set, as shown by [4]. Recall that a hypersurface x : Mn →
Rn+1 has total finite curvature if

∫
M

|A|n dM < ∞, |A| = (
∑

i k2
i )1/2, ki are the principal

curvatures. With these observations, one has the following theorem.

Theorem B. If x : Mn → Rn+1 is a hypersurface with finite geometrical type and
Hk−[n/2](S) = 0, rank(x) � k. Then Mn is topologically a sphere minus a finite number
of points, i.e. M̄n � Sn. In particular, this result holds for complete hypersurfaces with
finite total curvature and Hk−[n/2](S) = 0, rank(x) � k.

For even dimensions, we follow [1] and improve Theorem B. In particular, we obtain
the following characterization of 2n-catenoids, as the unique minimal hypersurfaces of
finite geometrical type.

Theorem C. Let x : M2n → R2n+1, n � 2, be an immersion of finite geometrical type
with Hk−n(S) = 0, rank(x) � k. Then M2n is topologically a sphere minus two points.
If M2n is minimal, M2n is a 2n-catenoid.

2. Notation and statements

Let Mn be a smooth manifold. Before stating the proofs of the statements we fix some
notation and collect some (useful) standard propositions about Hausdorff dimension (and
limit capacity, another fractal dimension). For the proofs of these propositions we refer
to [5].

Let X be a compact metric space and A ⊂ X. We define the s-dimensional Hausdorff
measure of A by

Hs(A) := lim
ε→0

inf
{∑

i

(diamUi)s : A ⊂
⋃

Ui, Ui is open and diamUi � ε, ∀i ∈ N

}
.

The Hausdorff dimension of A is

dimH(A) := sup{d � 0 : Hd(A) = ∞} = inf{d � 0 : Hd(A) = 0}.

A remarkable fact is that Hn coincides with Lebesgue measure for a smooth manifold Mn.
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A related notion are the lower and upper limit capacity (sometimes called box counting
dimension) defined by

dimB(A) := lim inf
ε→0

log n(A, ε)/(− log ε),

dimB(A) := lim sup
ε→0

log n(A, ε)/(− log ε),

where n(A, ε) is the minimum number of ε-balls that cover A. If d(A) = dimB(A) =
dimB(A), we say that the limit capacity of A is dimB(A) = d(A).

These fractal dimensions satisfy the properties expected for ‘natural’ notions of dimen-
sions. For instance, dimH(A) = m if A is a smooth m-submanifold.

Proposition 2.1. The properties listed below hold.

(i) dimH(E) � dimH(F ) if E ⊂ F .

(ii) dimH(E ∪ F ) = max{dimH(E), dimH(F )}.

(iii) If f is a Lipschitz map with Lipschitz constant C, then Hs(f(E)) � C · Hs(E). As
a consequence, dimH(f(E)) � dimH E.

(iv) If f is a bi-Lipschitz map (e.g. a diffeomorphism), dimH(f(E)) = dimH(E).

(v) dimH(A) � dimB(A).

Analogous properties hold for lower and upper limit capacity. If E is countable,
dimH(E) = 0 (although we may have dimB(E) > 0).

When we are dealing with product spaces, the relationship between Hausdorff dimen-
sion and limit capacity are the product formulae that follow.

Proposition 2.2. dimH(E) + dimH(F ) � dimH(E × F ) � dimH(E) + dimB(F ). More-
over, c · Hs(E) · Ht(F ) � Hs+t(E × F ) � C · Hs(E), where c depends only on s and t, C

depends only on s and dimB(F ).

Before starting the necessary lemmas to prove the central results, we observe that it
follows from the above discussion that if M and N are diffeomorphic n-manifolds then
αk(M) = αk(N). This proves the following lemma.

Lemma 2.3. The numbers

αk(M) = inf
x∈R(k)

dimH(x), for k = 0, . . . , n,

are smooth invariants of M .

In particular, if n = 3 we also have that αk are topological invariants. It is a con-
sequence of a theorem due to Moise [7], which states that if M and N are homeomor-
phic 3-manifolds then they are diffeomorphic. Then, the following conjecture arises from
Theorem A.
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Conjecture 2.4. If M3 is simply connected, then

α2(M3) = inf
x∈R(2)

dimH(x) < 1.

Cohen’s theorem [3] says that there are immersions of compact n-manifolds Mn in
R2n−α(n) where α(n) is the number of 1s in the binary expansion of n. This implies,
for the case n = 3, that we always have that Imm 
= ∅. In particular, the implicit
hypothesis of existence of codimension 1 immersions in Theorem A is not too restrictive
and our conjecture is reasonable. We point out that Conjecture 2.4 is true if the Poincaré
conjecture holds and, in this case, supx∈Imm rank(x) = 3 and infx∈R(k) dimH(x) = 0, for
all 0 � k � 3. A corollary of Theorem A and this observation is the following corollary.

Corollary 2.5. The Poincaré conjecture is equivalent to Conjecture 2.4.

From this, a natural approach to Conjecture 2.4 is a deformation and desingularization
argument for metrics given by pull-back of immersions in Imm. We observe that Moreira’s
theorem give us α2(M3) � 2. This motivates the following question, which is a kind of
step toward the Poincaré conjecture. However, this question is of independent interest,
since it can be true even if the Poincaré conjecture is false.

Question 2.6. For simply connected 3-manifolds, is it true that α2(M3) < 2?

3. Some lemmas

In this section, we prove some useful facts on the way to establishing Theorems A and B.
The first one relates the Hausdorff dimension of subsets of smooth manifolds and rank
of smooth maps.

Proposition 3.1. Let f : Mm → Nn be a C1-map and A ⊂ N . Then dimH f−1(A) �
dimH(A) + n − rank(f).

Proof. The computation of Hausdorff dimension is a local problem. So, we can consider
p ∈ f−1(S), coordinate neighbourhoods p ∈ U , f(p) ∈ V fixed and f = (f1, . . . , fn) : U →
V . Making a change of coordinates (which does not change Hausdorff dimensions), we
can suppose that f̃ = (f1, . . . , fr) is a submersion, where r = rank(f). By the local form
of submersions, there is a diffeomorphism ϕ such that f̃ ◦ ϕ(y1, . . . , ym) = (y1, . . . , yr).
This implies that

f ◦ ϕ(y1, . . . , ym) = (y1, . . . , yr, g(ϕ(y1, . . . , ym))).

Then, if π denotes the projection in the r first variables, x ∈ f−1(S) ⇒ πϕ−1(x) ∈ π(S),
i.e. f−1(S) ⊂ ϕ(π(S) × Rn−r). By properties of Hausdorff dimension (see Section 2), we
have

dimH f−1(S) � dimH(π(S) × Rn−r) � dimH π(S) + dimB(Rn−r) � dimH(S) + n − r.

This concludes the proof. �
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The second proposition relates Hausdorff dimension with topological results.

Proposition 3.2. Let n � 2 and let F be a closed subset of an n-dimensional connected
(not necessarily compact) manifold Mn. If the Hausdorff dimension of F is strictly less
than n − 1 then Mn − F is connected. If Mn = Rn or Mn = Sn, F is compact and the
Hausdorff dimension of F is strictly less than n − k − 1 then Mn − F is k-connected
(i.e. its homotopy groups πi vanish for i � k).

Proof. First, let x, y ∈ Mn − F and U1, . . . , Uk be coordinate neighbourhoods of Mn,
with x ∈ U1, y ∈ Uk and Uj ∩Uj+1 
= ∅ for j = 1, . . . , k−1. Choose points xj ∈ Uj ∩Uj+1

for each j. Clearly, it suffices to find a path in Uj joining xj to xj+1 that is disjoint form
F . So assume x and y are in a ball U of Rn.

F is closed so there are neighbourhoods N(x), N(y) of x and y, disjoint from F . Let D

be a compact (n − 1) disc whose centre is on the midpoint of the segment J joining x to
y and choose D orthogonal to J . Assume N(x), N(y) chosen small enough so that they
are disjoint from D. Consider the truncated double cone C over D. The radial projection
π (from x and y) to D gives a Lipschitz map π : C → D. Since dimH(π(C ∩F )) < n− 1,
there is a point ỹ ∈ D − π(F ). Then the segments joining x to ỹ and y to ỹ are disjoint
from F .

Second, if F is a compact subset of Mn = Rn, dimH F < n−k−1, let [Γ ] ∈ πi(Rn−F )
be a homotopy class for i � k. Choose a smooth representative Γ ∈ [Γ ]. Define f :
Γ × F → Sn−1, f(x, y) := (y − x)/‖y − x‖. We will consider in Γ × F the sum norm,
i.e. if p, q ∈ Γ × F , p = (x, y), q = (z, w), then ‖p − q‖ := ‖x − z‖ + ‖y − w‖. For this
choice of norm we have

‖f(p) − f(q)‖ =
1

‖y − x‖‖z − w‖‖{(y − x)‖z − w‖ + ‖y − x‖(z − w)}‖ ⇒

‖f(p) − f(q)‖ � ‖(y − x)‖z − w‖ − ‖z − w‖(w − z)‖
‖y − x‖‖z − w‖

+
‖‖z − w‖(w − z) − ‖y − x‖(w − z)‖

‖y − x‖‖z − w‖ ⇒

‖f(p) − f(q)‖ � 1
‖y − x‖{‖(z − x) + (y − w)‖}

+
1

‖y − x‖ |{‖(z − w)‖ − ‖(y − x)‖}| ⇒

‖f(p) − f(q)‖ � 2C‖p − q‖,

where C = 1/d(Γ, F ). We have d(Γ, F ) > 0 since these are compact disjoint sets. This
computation shows that f is Lipschitz.

Then, we have (Proposition 2.1 and 2.2)

dimH f(Γ × F ) � dimH(Γ × F ) � dimB(Γ ) + dimH(F )

< i + n − k − 1 � n − 1 ⇒ ∃v /∈ f(Γ × F ).
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Now, F is compact implies that there is a real N such that F ⊂ BN (0). Then, making
a translation of Γ in the direction v, we can put, using this translation as homotopy, Γ

outside BN and the translated Γ remain disjoint from F . Since Rn − BN is n-connected
(for n � 3), πi(Rn − F ) = 0. This concludes the proof. �

Remark 3.3. We remark that the hypothesis F is closed in the previous proposition
is necessary. For example, take F = Qn, Mn = Rn. We have dimH(F ) = 0 (F is a
countable set) but Mn − F is not connected.

We can think of Proposition 3.2 as a weak type of transversality. In fact, if F is
a compact (n − 2)-submanifold of Mn then M − F is connected and if F is a com-
pact (n − 3)-submanifold of Rn (or Sn) then Rn − F is simply connected. This follows
from basic transversality. However, our previous proposition does not assume regularity
of F , but allows us to conclude the same results. It is natural these results are true
because Hausdorff dimension translates the fact that F is, in some sense, ‘smaller’ than
an (n − 1)-submanifold N which has optimal dimension in order to disconnect Mn.

For later use, we generalize the first part of Proposition 3.2 as follows.

Lemma 3.4. Suppose that Γ ∈ πi(Mn) is Lipschitz (e.g. if i = 1 and Γ is a piecewise
smooth curve) and let K ⊂ Mn be compact, dimH K < n − i. Then there are diffeo-
morphisms h of M , arbitrarily close to the identity map, such that h(Γ ) ∩ K = ∅. In
particular, if [Γ ] ∈ πi(Mn), K ⊂ Mn a compact set, dimH(K) < n− i, there is a smooth
representative Γ ∈ [Γ ] such that Γ ∩ K = ∅, i.e. Γ ∈ πi(Mn − K).

Proof. First, consider a parametrized neighbourhood φ : U → B3(0) ⊂ Rn and suppose
that Γ lies in V̄1, where V1 = φ−1(B1(0)). Let K1 = φ(K) ⊂ Rn and Γ1 = φ(Γ ) ⊂ Rn.
Consider the map

F : Γ1 × K1 → Rn defined by F (x, y) = x − y.

Observe that, since Γ is Lipschitz and φ is a diffeomorphism, dimBΓ = dimBΓ1 � i. This
implies that dimH(F (Γ1 × K1)) < n, since dimH(K) < n − i. This implies, in particular,
that Rn − F (Γ1 × K1) is an open and dense subset, since K is compact. Then, we may
choose a vector v ∈ Rn − F (Γ1 × K1) arbitrarily close to 0 such that (Γ1 + v) ⊂ B2(0).
Since, v ∈ Rn − F (Γ1 × K1) we have that (Γ1 + v) ∩ K1 = ∅.

To construct h we consider a bump function β : Rn → [0, 1], such that β(x) = 1 if
x ∈ B1(0) and β(x) = 0 for every x ∈ Rn − B2(0). It is easy to see that h defined by

h(y) = y if x ∈ M − U and h(y) = φ−1(β(φ(y))v + φ(y)),

is a diffeomorphism that satisfies h(Γ ) ∩ K = ∅, since (Γ1 + v) ∩ K1 = ∅.
In the general case, we proceed as follows: first, considering a finite number of

parametrized neighbourhoods φi : Ui → B3(0), i ∈ {1, . . . , n}, and Vi = φ−1
i (B1(0))

covering Γ , by the previous case, there exists h1 arbitrarily close to the identity such that
h1(Γ ) ⊂

⋃n
i=1Vi and such that h1(Γ ∩ V̄1) ∩ K = ∅. Observe that, d(h1(Γ ∩ V̄1), K) >

ε1 > 0, since h1(Γ ∩ V̄1) is a compact set.
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The next step is to repeat the previous argument considering h2 arbitrarily close to the
identity, such that h2(h1(Γ ) ∩ V2) ∩ K = ∅ and h2(h1(Γ )) ⊂

⋃n
i=1 Vi. If d(h2, id) < 1

2ε1
then h2(h1(Γ ) ∩ V1) ∩ K = ∅. Repeating this argument by induction, we obtain that
h = hn ◦ · · · ◦ h1 is a diffeomorphism such that h(Γ ) ∩ K = ∅. This concludes the
proof. �

4. Proof of Theorem A in the case n = 3

Before giving a proof for Theorem A, we mention a lemma due to Bing [2].

Lemma 4.1 (Bing). A compact, connected, 3-manifold M is topologically S3 if and
only if each piecewise smooth simple closed curve in M lies in a topological cube in M .

A modern proof of this lemma can be found in [9]. In modern language, Bing’s proof
shows that the hypothesis above implies there is a Heegaard splitting of M into two balls.
This implies M is a sphere.

In fact, Bing’s theorem is not stated in [2,9] as above. But the lemma holds. Actually,
to prove that M is homeomorphic to S3, Bing uses only that, if a triangulation of M is
fixed, every simple polyhedral closed curve lies in a topological cube. Observe that poly-
hedral curves are piecewise smooth curves, if we choose a smooth triangulation (smooth
manifolds always admit smooth triangulation (see [11, p. 194] and also [12, p. 124]).

Proof of Theorem A in the case n = 3. If α2(M) < 1, there is an immersion
x : M3 → R4 such that rank(x) � 2, dimH(x) < 1. Let G be the Gauss map associated
with x. By Propositions 3.2 and 3.1, since dimH(S) < 1, M−G−1(S), S3−S are connected
manifolds. Consider G : M −G−1(S) → S3 −S. This is a proper map between connected
manifolds whose Jacobian never vanishes. So it is a surjective covering map (see [13]).
Since, moreover, S3 − S is simply connected (by Proposition 3.2), G : M − G−1(S) →
S3 − S is a diffeomorphism. To prove that M3 is homeomorphic to S3, it is necessary
and sufficient that every piecewise smooth simple closed curve γ ⊂ M3 is contained in a
topological cube Q ⊂ M3 (by Lemma 4.1).

In order to prove that every piecewise smooth curve γ lies in a topological cube, observe
that we may suppose that γ ∩ K = ∅ (here K = G−1(S)). Indeed, by Lemma 3.4 there
exists a diffeomorphism h of M such that h(γ)∩K = ∅. Then, if h(γ) lies in a topological
cube R, γ lies in the topological cube h−1(R), thus we can, in fact, make this assumption.

Now, since γ ⊂ M − K and M − K is diffeomorphic to S3 − S, we may consider γ ⊂
R3 −S, S a compact subset of R3 with Hausdorff dimension less than 1 via identification
by the diffeomorphism G and stereographic projection. In this case, we can follow the
proof of Proposition 3.2 to conclude that f : γ × S → S2, f(x, y) = (x − y)/‖x − y‖
is Lipschitz. Because dimB γ � 1 dimH S < 1 (here we are using that γ is piecewise
smooth), we obtain a direction v ∈ S2 such that F :=

⋃
t∈R

(Lt(γ)) is disjoint from
S, where Lt(p) := p + t · v. By compactness of γ it is easy to see that F is a closed
subset of Rn. This implies that 3ε = d(F, S) > 0. Consider Fε = {x : d(x, F ) � ε}
and Sε = {x : d(x, S) � ε}. By definition of ε > 0, Fε ∩ Sε = ∅, then we can choose
ϕ : R3 → R a smooth function such that ϕ|Fε = 1, ϕ|Sε = 0. Consider the vector field
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X(p) = ϕ(p) · v and let Xt, t ∈ R, be the X-flow. We have Xt(p) = p + tv ∀p ∈ γ and
Xt(p) = p ∀p ∈ S, for any t ∈ R. Choosing N real such that S ⊂ BN (0) and T such
that t � T ⇒ Lt(γ) ∩ BN (0) = ∅, we obtain a global homeomorphism Xt which sends γ

outside BN (0) and keep fixed S, ∀t � T .
Observe that Xt(γ) is contained in the interior of a topological cube Q ⊂ R3 − BN (0).

Then, observing that Xt is a diffeomorphism and that Xt(x) = x for every x ∈ S and
t ∈ R, we have that γ ⊂ X−t(Q) ⊂ R3 − S, ∀t � T . This concludes the proof. �

5. Proof of Theorem A in the case n � 4

We start this section with the statement of the generalized Poincaré conjecture.

Theorem 5.1. A compact simply connected homological sphere Mn is homeomorphic
to Sn, if n � 4 (diffeomorphic for n = 5, 6).

The proof of the generalized Poincaré conjecture is due to Smale [10] for n � 5 and
to Freedman [6] for n = 4. This theorem makes the proof of the Theorem B a little bit
easier than the proof of Theorem A.

Proof of Theorem A in the case n � 4. If k = n, there is nothing to prove.
Indeed, in this case, G : Mn → Sn is a diffeomorphism, by definition. Hence, we suppose
k � n− 1; αk(M) < k − [ 12n]. Then, there is an immersion x : Mn → Rn+1, rank(x) � k,
dimH(x) < k − [ 12n]. The hypothesis implies that M − G−1(S) is connected, Sn − S

is simply connected and G is a proper map whose Jacobian never vanishes. By [13],
G is a surjective, covering map. So, we conclude that G : M − G−1(S) → Sn − S is
a diffeomorphism. But Sn − S is (n − 1 − k + [12n])-connected, by Proposition 3.2. In
particular, because k � n − 1, Sn − S is [ 12n]-connected and so, using the diffeomorphism
G, M − K is [ 12n]-connected, where K = G−1(S). It is sufficient to prove that Mn is
a simply connected homological sphere, by Theorem 5.1. By Lemma 3.4, M − K is
[ 12n]-connected and dimH(K) < n − [ 12n] (by Proposition3.2) implies that M itself is
[ 12n]-connected. It is known that Hi(M) = L(Hi(M)) ⊕ T (Hi−1(M)), L and T denote
the free part and the torsion part of the group. By Poincaré duality, Hn−i(M) � Hi(M).
The fact that M is [ 12n]-connected and the other facts give us Hi(M) = 0, for 0 < i < n.
This concludes the proof. �

6. Proof of Theorems B and C

In this section we make some comments on extensions of Theorem A. Although these
extensions are quite easy, they were omitted so far to make the presentation of the paper
more clear. Now, we are going to improve our previous results. First, all preceding argu-
ments work with the assumption that Hk−[n/2](S) = 0 and rank(x) � k in Theorems A
and B (where Hs is the s-dimensional Hausdorff measure). We prefer to consider the
hypothesis as its stands in these theorems because it is more interesting to define the
invariants αk(M). The reason this ‘new’ hypothesis works is that our proofs, essentially,
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depend on the existence of special directions v ∈ Sn−1. But these directions exist if the
singular sets have Hausdorff measure 0. Secondly, M need not be compact. It is sufficient
that M is of finite geometric type (here our definition of finite geometrical type is a little
bit different [1]). We will make more precise these comments in the proof of Theorem B
below, after recalling the following definition.

Definition 6.1. Let M̄n be a compact (oriented) manifold and q1, . . . , qk ∈ M̄n. Let
Mn = M̄n − {q1, . . . , qk}. An immersion x : Mn → Rn+1 is of finite geometrical type if
Mn is complete in the induced metric, the Gauss map G : Mn → Sn extends continu-
ously to a function Ḡ : M̄n → Sn, and the set G−1(S) has Hn−1(G−1(S)) = 0 (this last
condition occurs if rank(x) � k and dimH(x) < k − 1, or, more generally, if rank(x) � k

and Hk−1(S) = 0).

As pointed out in the introduction, the conditions in the previous definition are sat-
isfied, for example, by complete hypersurfaces with finite total curvature whose Gauss–
Kronecker curvature Hn = k1 · · · kn does not change sign and vanishes in a small set,
as shown by [4]. Recall that a hypersurface x : Mn → Rn+1 has total finite curvature
if

∫
M

|A|n dM < ∞, |A| = (
∑

i k2
i )1/2, ki are the principal curvatures. Thus, there are

examples satisfying the definition. With these observations, we now prove our Theo-
rem B.

Proof of Theorem B. To avoid unnecessary repetitions, we will only indicate the
principal modifications needed in the proofs of Theorems A and B by stating ‘new’
propositions, which are analogous to the previous ones, and making a few comments in
their proofs. The details are left to the reader.

Proposition 6.2 (Proposition 3.1′). Let f : Mm → Nn be a C1-map and A ⊂ N . If
Hs(A) = 0, then Hs+n−rank(f)(f−1(A)) = 0.

Proof. It suffices to show that for any p ∈ f−1(A), there is an open set U = U(p) � p

such that Hs+n−r(f−1(A) ∩ U) = 0. However, if U is chosen as in the proof of Propo-
sition 3.1, we have f−1(A) ∩ U ⊂ ϕ(π(A) × Rn−r), where ϕ is a diffeomorphism, r =
rank(f) and π is the projection in the first r variables. By Propositions 2.1 and 2.2,

Hs+n−r(f−1(A) ∩ U) � C1 · Hs+n−r(π(A) × Rn−r) � C1 · C2 · Hs(A) = 0,

where C1 depends only on ϕ and C2 depends only on (n−r). This finishes the proof. �

Proposition 6.3 (Proposition 3.2′). Let n � 3 and let F be a closed subset of Mn

such that Hn−1(F ) = 0, then M − F is connected. If Mn = Rn or Mn = Sn, F is
compact and Hn−k(F ) = 0, then Mn − F is k-connected.

Proof. As in Proposition 3.2, let x, y ∈ Mn − F and U1, . . . , Uk be coordinate neigh-
bourhoods of Mn, with x ∈ U1, y ∈ Uk and Uj ∩ Uj+1 
= ∅ for j = 1, . . . , k − 1. Choose
points xj ∈ Uj ∩ Uj+1 for each j. Clearly, it suffices to find a path in Uj joining xj to
xj+1 that is disjoint from F . So assume that x and y are in a ball U of Rn.
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F is closed so there are neighbourhoods N(x), N(y) of x and y, disjoint from F . Let D

be a compact (n − 1) disc whose centre is on the midpoint of the segment J joining x to
y and choose D orthogonal to J . Assume N(x), N(y) chosen small enough so that they
are disjoint from D. We consider again the truncated double cone C over D. The radial
projection π (from x and y) to D gives a Lipschitz map π : C → D. Since Hn−1(F ) = 0,
we have by Proposition 2.1 that Hn−1(π(F )) = 0. Thus, there is a point ỹ ∈ D − π(F )
and the segments joining x to ỹ and y to ỹ are disjoint from F .

Second, if [Γ ] ∈ πi(Rn−F ), i � k, is a homotopy class and Γ is a smooth representative,
define f : Γ ×F → Sn−1, f(x, y) = (x−y)/‖x−y‖. Following the proof of Proposition 3.2,
f is Lipschitz. Now, since Hn−k−1(F ) = 0, we have, by Proposition 2.2, Hn−1(Γ ×F ) = 0.
Thus, Proposition 2.1 implies Hn−1(f(Γ × F )) = 0. This concludes the proof. �

Lemma 6.4 (Lemma 3.4′). Suppose that Γ ∈ πi(Mn) is Lipschitz and K ⊂ Mn is
compact, Hn−i(K) = 0. Then there are diffeomorphisms h of M , arbitrarily close to the
identity map, such that h(Γ ) ∩ K = ∅.

Proof. If Γ is Lipschitz and Γ lies in a parametrized neighbourhood, we can take
F : Γ × K → Rn, F (x, y) = x − y a Lipschitz function. Because Hn(Γ × K) = 0, then
Hn(F (Γ × K)) = 0. In the general case we proceed as in proof of Lemma 3.4. Take, by
compactness, a finite number of parametrized neighbourhoods and apply the previous
case. By finiteness of number of parametrized neighbourhoods and using that K is com-
pact, an induction argument achieves the desired diffeomorphisms h. This concludes the
proof. �

Returning to proof of Theorem B, observe that in Theorem A, we need Ḡ : M̄n −
Ḡ−1(S̃) → Sn − S̃ to be a diffeomorphism, where S̃ = S ∪ {Ḡ(qi) : i = 1, . . . , k}. This
remains true because

Hk−[n/2](S) = 0 (∗)

implies Sn − S̃ is (n − 1 − k + [ 12n])-connected. In fact, this is a consequence of (∗),
Proposition 6.3 and {pi : i = 1, . . . , k} is finite (pi := Ḡ(qi)). Moreover, rank(x) � k

imply, by Propositions 6.2 and 6.3, M̄ − G−1(S̃) is connected. Indeed, these propo-
sitions say that rank(x) � k ⇒ Hn−[n/2](G−1(S)) = 0 and Hn−1(G−1(S)) = 0 ⇒
M − G−1(S) is connected. However, if Ḡ−1(S̃) − (G−1(S) ∪ {qi : i = 1, . . . , k}) := A,
then, for all x ∈ A,

det DxG 
= 0. (∗∗)

In particular, since G(A) ⊂ {pi : i = 1, . . . , k}, (∗∗) implies dimH(A) = 0. Then,
Hn−[n/2](Ḡ−1(S̃)) = Hn−[n/2](G−1(S)) = 0. Thus, by [13], G is a surjective and cover-
ing map (because it is proper and its Jacobian never vanishes). In particular, by simple
connectivity, G is a diffeomorphism. At this point, using the previous lemma and propo-
sitions, it is sufficient to follow the proof of Theorem A, if n = 3, and the proof of
Theorem B, if n � 4, to obtain M̄n � Sn. This concludes the proof. �
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For even dimensions, we can follow [1] and improve Theorem B.

Theorem 6.5 (Theorem C). Let x : M2n → R2n+1, n � 2, be an immersion of finite
geometrical type with Hk−n(S) = 0, rank(x) � k. Then M2n is topologically a sphere
minus two points. If M2n is minimal, M2n is a 2n-catenoid.

For the sake of completeness we present an outline of the proof of Theorem C.

Outline of the proof of Theorem C. Barbosa, Fukuoka and Mercuri define to each
end p of M a geometric index I(p) that is related to the topology of M by the formula
(see Theorem 2.3 of [1]):

χ(M̄2n) =
k∑

i=1

(1 + I(pi)) + 2σm, (6.1)

where σ is the sign of the Gauss–Kronecker curvature and m is the degree of G : Mn →
Sn. Now, the hypothesis 2n > 2 implies (see [1]) I(pi) = 1, ∀i. Since we know, by
Theorem B, M̄2n is a sphere, we have 2 = 2k + 2σm. But, it is easy to see that m =
deg(G) = 1 because G is a diffeomorphism outside the singular set. Then, 2 = 2k+2σ ⇒
k = 2, σ = −1. In particular, M is a sphere minus two points.

If M is minimal, we will use the following theorem of Schoen.

The only minimal immersions, which are regular at infinity and have two
ends, are the catenoid and a pair of planes.

The regularity at infinity in our case holds if the ends are embedded. However, I(p) = 1
means exactly this. So, we can use this theorem in the case of minimal hypersurfaces of
finite geometric type. This concludes the outline of the proof. �

Remark 6.6. We can extend Theorem A in a different direction (without mention of
rank(x)). In fact, using only that G is Lipschitz, it suffices assume that Hn−[n/2](C) = 0
(C is the set of points where the Gauss–Kronecker curvature vanishes). This is essen-
tially the hypothesis of Barbosa, Fukuoka and Mercuri [1]. We prefer to state Theorems B
and C as before since the classical theorems concerning estimates for Hausdorff dimen-
sion (Morse–Sard, Moreira) deal only with the critical values S and, in particular, our
Corollary 2.5 will be more difficult if the hypothesis is changed to H1(C) = 0 for some
immersion x : M3 → R4 (although, in this assumption, we have no problems with
rank(x), i.e. this assumption has some advantages).

Remark 6.7. It would be interesting to know if there are examples of codimension 1
immersions with a singular set which are not in the situation of Barbosa–Fukuoka–
Mercuri and do Carmo–Elbert but instead satisfy our hypothesis. This question was
posed to the second author by Walcy Santos during the ‘Differential Geometry’ seminar
at IMPA. In fact, these immersions can be constructed with some extra work. Some
examples will be presented in another work to appear elsewhere.
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