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Abstract

In earlier work, the first named author generalized the construction of Darmon-style
L-invariants to cuspidal automorphic representations of semisimple groups of higher
rank, which are cohomological with respect to the trivial coefficient system and
Steinberg at a fixed prime. In this paper, assuming that the Archimedean component
of the group has discrete series we show that these automorphic L-invariants can be
computed in terms of derivatives of Hecke eigenvalues in p-adic families. Our proof is
novel even in the case of modular forms, which was established by Bertolini, Darmon
and Iovita. The main new technical ingredient is the Koszul resolution of locally ana-
lytic principal series representations by Kohlhaase and Schraen. As an application of our
results we settle a conjecture of Spieß: we show that automorphic L-invariants of Hilbert
modular forms of parallel weight 2 are independent of the sign character used to define
them. Moreover, we show that they are invariant under Jacquet–Langlands transfer and,
in fact, equal to the Fontaine–Mazur L-invariant of the associated Galois representation.
Under mild assumptions, we also prove the equality of automorphic and Fontaine–Mazur
L-invariants for representations of definite unitary groups of arbitrary rank. Finally, we
study the case of Bianchi modular forms to show how our methods, given precise results
on eigenvarieties, can also work in the absence of discrete series representations.

Introduction

Let f =
∑∞

n=1 anqn be a normalized newform of weight 2 and level Γ0(M) such that M = pN
with p prime, p � N and ap = 1. Inspired by Teitelbaum’s work (cf. [Tei90]) on L-invariants for
automorphic forms on definite quaternion groups, Darmon in [Dar01] constructed the automor-
phic L-invariant L(f)± of f , depending a priori on a choice of sign at infinity. Let ap(k) be the
Up-eigenvalue of the p-adic family passing through f . In [BDI10] Bertolini, Darmon and Iovita
(see also [Das05]) prove the following formula:

L±(f) = −2
dap

dk

∣∣∣∣
k=2

. (0.1)

In particular, the automorphic L-invariant is independent of the sign at infinity. They also prove
a similar formula for Orton’s L-invariant (cf. [Ort04]) in higher weight. Moreover, if f admits a

Received 25 June 2020, accepted in final form 11 October 2021, published online 25 April 2022.
2020 Mathematics Subject Classification 11F55 (primary), 11F33, 11F70, 11F75, 11F80 (secondary).
Keywords: automorphic forms, Galois representations, L-invariants, p-adic families.

While working on this paper the first named author was visiting McGill University, supported by Deutsche
Forschungsgemeinschaft, and he would like to thank these institutions. The second named author was partly
funded by FRQNT grant 2019-NC-254031 and NSERC grant RGPIN-2018-04392. In addition, the authors would
like to thank Henri Darmon, Michael Lipnowski, Vytautas Pas̆kūnas and Chris Williams for several intense and
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Jacquet–Langlands transfer JL(f) to a definite quaternion group, which is split at p, they show
the analogous formula

LT (JL(f)) = −2
dap

dk

∣∣∣∣
k=2

for Teitelbaum’s L-invariant, thus proving that automorphic L-invariants are preserved under
Jacquet–Langlands transfers. This result was extended to Jacquet–Langlands transfers to
indefinite quaternion groups over the rationals, which are split at p, by Dasgupta and
Greenberg [DG12], Longo, Rotger and Vigni [LRV12] and Seveso [Sev13].

Over the last few years the construction of automorphic L-invariants was generalized to
various settings, e.g. to Hilbert modular cusp forms of parallel weight 2 by Spieß (see [Spi14])
and to Bianchi modular cusp forms of even weight by Barrera and Williams (see [BW19]). These
generalizations have been defined as automorphic L-invariants appear naturally in many context,
from proving exceptional zero conjecture formulae to constructing and studying Stark–Heegner
points.

Most recently, the first named author defined automorphic L-invariants for certain cuspidal
automorphic representations of higher rank semi-simple groups over a number field F , which are
split at a fixed prime p of F (see [Geh21]). The most crucial assumptions on the representation
π are that it is cohomological with respect to the trivial coefficient system and that the local
factor πp of π at p is the Steinberg representation. Our main aim is to prove the analogue of
equation (0.1) for these L-invariants. Previous works used explicit computations with cocycles
and it seems unlikely that one can generalize these to higher rank groups; instead, we give a
new, more conceptual approach, which is novel even in the already known cases.

In § 1 we recall the definition of automorphic L-invariants. Just as in the case of modular
forms these L-invariants depend on a choice of sign character at infinity. They also depend on
a choice of degree of cohomology, in which the representation occurs. For this introduction, we
suppress it because we are mostly interested in the case that there is only one interesting degree.
Given a simple root i of the group and a sign character ε the space of L-invariants

Li(π, p)ε ⊂ Homct(F ∗
p , E)

is a subspace of codimension at least one. Here E denotes a large enough p-adic field. If strong
multiplicity one holds, its codimension is exactly one. Whether a character of F ∗

p belongs to
the space of L-invariants is decided by certain maps between cohomology groups of p-arithmetic
subgroups with values in duals of (locally analytic) generalized Steinberg representations. These
maps are induced by cup products with one-extensions of the smooth generalized Steinberg rep-
resentation corresponding to the simple root i with the locally analytic Steinberg representations
(see § 1.1 for a description of these extensions due to Ding, cf. [Din19]).

As a first step, in § 2.2 we show that one can replace generalized Steinberg representations
by locally analytic principal series representations and the extension classes by infinitesimal
deformations of these principal series. As a consequence, we prove an automorphic analogue
of the Colmez–Greenberg–Stevens formula (see Proposition 2.4). Let us remind ourselves that
the Colmez–Greenberg–Stevens formula (see, for example, Theorem 3.4 of [Din19]) states that
one can compute Fontaine–Mazur L-invariants of Galois representations by deforming them in
p-adic families. Our analogue states that one can compute automorphic L-invariants from the
cohomology of p-arithmetic groups with values in duals of big principal series representations,
i.e. parabolic inductions of characters with values in units of affinoid algebras.

Thus, we reduce the problem to producing classes in these big cohomology groups. Here is
where we need to impose further restrictions. First, we assume that the group under consideration
is adjoint. Under this assumption Kohlhaase and Schraen constructed a Koszul resolution of
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locally analytic principal series representations (cf. [KS12]), which we recall in § 3.1. Using that
resolution we can lift overconvergent cohomology classes which are common eigenvectors for all
Up-operators to big cohomology classes. Second, in order to have a nice enough theory of families
of overconvergent cohomology classes (in the spirit of [AS08]) we consider only groups whose
Archimedean component fulfils the Harish-Chandra condition. This implies that the automorphic
representation we study only shows up in the middle degree cohomology of the associated locally
symmetric space. We further assume that the map from the eigenvariety to the weight space W
is étale at the point corresponding to the automorphic representation π. Étaleness is implied by
a suitable strong multiplicity one assumption and, thus, holds for example for Hilbert modular
forms. Under these hypotheses we can show that we can lift the cohomology class corresponding
to π to a big cohomology class valued in functions on an open affinoid neighbourhood of the
trivial character in weight space (see Theorem 3.12). This allows us give the generalization of
(0.1) in Theorem 3.16. In particular, we see that automorphic L-invariants are codimension one
subspaces under our étaleness assumption.

As a first application, in § 4.1 we prove a conjecture of Spieß (cf. [Spi14, Conjecture 6.4]):
we show that the L-invariants of Hilbert modular forms of parallel weight 2 are independent
of the sign character used to define them. We further show that in this situation automorphic
L-invariants are invariant under Jacquet–Langlands transfers to quaternion groups which are
split at p. In fact, we show that all these L-invariants agree with the Fontaine–Mazur L-invariant
of the associated Galois representation.1 In particular, one can remove the assumptions in the
main theorem of [Spi14] (see Theorem 6.10(b) there). Furthermore, the equality of automorphic
and Fontaine–Mazur L-invariants makes the construction of Stark–Heegner points for modular
elliptic curves over totally real fields unconditional. Similarly, we prove the equality of automor-
phic and Fontaine–Mazur L-invariants for definite unitary groups under mild assumptions in
§ 4.2, i.e. we give an alternative proof of the main result of [Din19] for our global situation.

We end the paper by considering the easiest case of a group that does not fulfil the Harish-
Chandra condition, i.e. we study Bianchi modular forms. As we cannot deform the automorphic
representation over the whole weight space, in general one cannot compute the L-invariant
completely in terms of derivatives of Hecke-eigenvalues. But at least in case the Bianchi forms
is the base change of a modular form, we overcome this problem; we show that the L-invariants
of the base change equal the L-invariant of the modular form.

The assumption that the coefficient system is trivial is not necessary for the arguments of this
article. However, the construction of automorphic L-invariants relies on the existence of a well-
behaved lattice in the Steinberg representation, which is not known for twists of the Steinberg
by an algebraic representation in general. In case the existence of such a lattice is known, e.g. if
G is a form of PGL2 by a result of Vignéras (see [Vig08]), one can easily generalize our results
to arbitrary weights and non-critical slopes.

Notation
If X and Y are topological spaces, we write C(X, Y ) for the set of continuous functions from X
to Y . All rings are assumed to be commutative and unital. The group of invertible elements of
a ring R will be denoted by R∗. If M is an R-module we denote the qth exterior power of M
by Λq

RM . If R is a ring and G a group, we denote the group ring of G over R by R[G]. Given
topological groups H and G we write Homct(H, G) for the space of continuous homomorphism
from H to G. Let χ : G→ R∗ be a character. We write R[χ] for the G-representation, which

1 The same result has been obtained by Spieß by different methods; see [Spi20].
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underlying R-module is R itself and on which G acts via the character χ. The trivial character
of G will be denoted by 1G. Let H be an open subgroup of a locally profinite group G and M an
R-linear representation M of H. The compact induction c-indG

H M of M from H to G is the space
of all functions f : G→M which have finite support modulo H and satisfy f(gh) = h−1.f(g) for
all h ∈ H, g ∈ G.

The setup
We fix an algebraic number field F . In addition, we fix a finite place p of F lying above the
rational prime p and choose embeddings

Qp ←↩ Q ↪→ C.

If v is a place of F , we denote by Fv the completion of F at v. If v is a finite place, we let Ov

denote the valuation ring of Fv and ordv the additive valuation such that ordv(�) = 1 for any
local uniformizer � ∈ Ov.

Let A be the adele ring of F , i.e. the restricted product over all completions Fv of F . We
write A∞ (respectively, Ap,∞) for the restricted product over all completions of F at finite places
(respectively, finite places different from p). More generally, if S is a finite set of places of F we
denote by AS the restricted product of all completions Fv with v /∈ S.

If H is an algebraic group over F and v is a place of F , we write Hv = H(Fv). We put
H∞ =

∏
v|∞ Hv.

Throughout the article we fix a connected, adjoint, semi-simple algebraic group G over F .
We assume that the base change GFp of G to Fp is split. Let K∞ ⊆ G∞ denote a fixed maximal
compact subgroup. The integers δ and q are defined via

δ = rkG∞ − rkK∞
and

2q + δ = dimG∞ − dimK∞.

Finally, we fix a cuspidal automorphic representation π = ⊗vπv of G(A) with the following
properties:

(i) π is cohomological with respect to the trivial coefficient system;
(ii) π is tempered at ∞; and
(iii) πp is the (smooth) Steinberg representation St∞Gp

(C) of Gp.

We denote by Qπ ⊆ Q a fixed finite extension of Q over which π∞ has a model (see Theorem C
of [Jan18] for the existence of such an extension).

Hypothesis (SMO). We assume that the following strong multiplicity one hypothesis on π
holds. If π′ is an automorphic representation of G such that:

(i) π′
v
∼= πv for all finite places v 
= p;

(ii) π′
p has an Iwahori-invariant vector; and

(iii) π′∞ has non-vanishing (g, K◦∞)-cohomology;

then π is cuspidal, π′
p
∼= πp and π∞ is tempered.

It is known that this holds for cuspidal representations of GLn by work of Jacquet and
Shalika [JS81b, JS81a] and Piateski-Shapiro [Pia79] and thus, in particular, for representations
of G = PGLn.

For general groups strong multiplicity one fails, see, for example, [HP83]. Hence, it is harder to
find explicit results about representations π for which the hypothesis SMO holds, but nevertheless
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it is expected that SMO should hold in many cases; for example, for generic representation of
GSp4 [Sou87]. The same strategy of [Sou87] could apply as long as we have an injective transfer
from (a subclass of) representations of G to representation of GLn, e.g. tempered representations
of unitary groups that at each prime are not endoscopic.

1. Automorphic L-invariants

In the following, we briefly sketch the construction of automorphic L-invariants. For more details,
see [Geh21].

1.1 Extensions
In this section we recall the computation of certain Ext1-groups of (locally analytic) generalized
Steinberg representations due to Ding (see [Din19]). We fix a finite extension E of Qp. If V
and W are admissible locally Qp-analytic E-representations of Gp, we write Ext1an(V, W ) for the
group of locally analytic extensions of V by W .

Given an algebraic subgroup H ⊆ GFp , we denote the group of Fp-valued points of H also
by H. We fix a Borel subgroup B of the split group GFp and a maximal split torus T ⊆ B and
denote by Δ the associated basis of simple roots. For a subset I ⊆ Δ we let PI ⊇ B be the
corresponding parabolic containing B.

Suppose M is a smooth representation of PI over a ring R; we define its smooth induction
to Gp as

i∞PI
(M) = {f : Gp→M locally constant | f(pg) = p.f(g) ∀p ∈ PI , g ∈ Gp}.

The generalized R-valued (smooth) Steinberg representation associated with I ⊆ Δ is given by
the quotient

v∞PI
(R) = i∞PI

(R)
/ ∑

I⊂J⊂Δ,I �=J

i∞PJ
(R).

Likewise, if V is a locally Qp-analytic E-representation of PI , we define its locally analytic
induction to Gp as the space of functions

IanPI
(V ) = {f : Gp→ τ locally Qp-analytic | f(pg) = p.f(g) ∀p ∈ PI , g ∈ Gp}.

We define the locally analytic generalized Steinberg representation with respect to I as the
quotient

Van
PI

(E) = IanPI
(E)

/ ∑
I⊂J⊂Δ,I �=J

IanPJ
(E).

We put St∞Gp
(R) = v∞B (R) and StanGp

(E) = Van
B (E). Similarly, replacing locally analyticity with

continuity we define the continuous Steinberg representation StctGp
(E) and, more generally,

Vct
PI

(E). It is easy to see that Vct
PI

(E) is the universal unitary completion of both v∞PI
(E) and

Van
PI

(E).
Let i ∈ Δ be a simple root and λ ∈ Homct(B, E) a continuous homomorphism. Note that

λ is automatically locally analytic and is trivial on the unipotent radical of B. Thus, it can
be identified with a character on T . We write τλ for the two-dimensional representation of B
given by

τλ(b) =
(

1 λ(b)
0 1

)
. (1.1)
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By the exactness of the parabolic induction functor for locally analytic extensions (see [Koh11,
Proposition 5.1 and Remark 5.4]) we have a short exact sequence of the form

0 −→ IanB (E) −→ IanB (τλ) −→ IanB (E) −→ 0.

We write

Êan(λ) ∈ Ext1an(I
an
B (E), IanB (E)) (1.2)

for the associated extension class. Further, we define the class

Ẽan
i (λ) ∈ Ext1an(i

∞
Pi

(E), IanB (E)) (1.3)

as the pullback of this extension along i∞Pi
(E)→ IanB (E). Finally, taking pushforward along

IanB (E)→ StanGp
(E) yields the extension class

Ean
i (λ) ∈ Ext1an(i

∞
Pi

(E), StanGp
). (1.4)

By an easy calculation we see that the map

Homct(B, E) −→ Ext1an(i
∞
Pi

(E), StanGp
(E)), λ 
−→ Ean

i (λ)

defines a homomorphism. The inclusion B ↪→ Pi induces an injection

Homct(Pi, E) −→ Homct(B, E).

The quotient can be identified with the space Homct(F ∗
p , E) via the map

Homct(F ∗
p , E) −→ Homct(B, E)/ Homct(Pi, E), λ 
−→ λ ◦ i. (1.5)

Alternatively, let i∨ denote the coroot associated with i. Then, the kernel of the map

Homct(B, E) −→ Homct(F ∗
p , E), λ 
−→ λi = λ ◦ i∨ (1.6)

is equal to Homct(Pi, E) and, hence, the map induces an isomorphism

Homct(B, E)/ Homct(Pi, E) −→ Homct(F ∗
p , E),

which is the inverse of the isomorphism above up to multiplication by two.

Theorem 1.1 (Ding). The following hold.

(i) The map Homct(B, E)→ Ext1an(i
∞
Pi

(E), StanGp
(E)), λ 
→ Ean

i (λ) is surjective with kernel

Homct(Pi, E) ⊆ Homct(B, E).
(ii) The canonical map Ext1an(v

∞
Pi

(E), StanGp
(E))→ Ext1an(i

∞
Pi

(E), StanGp
(E)) is an isomorphism.

(iii) The induced map Homct(F ∗
p , E) −→ Ext1an(v

∞
Pi

(E), StanGp
(E)), λ 
→ Ean

i (λ ◦ i) is an iso-
morphism.

Proof. The third claim is a direct consequence of the first two. For the proof of the first two claims
in the case G = PGLn, see § 2.2 of [Din19]. The general case is proven in § 2.4 of [Geh21]. �

1.2 Flawless lattices
We recall the notion of flawless smooth representations over a ring R.

Definition 1.2. A smooth R-representation M of Gp is called flawless if:

(i) M is projective as an R-module; and
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(ii) there exists a finite length exact resolution

0 −→ Cm −→ · · · −→ C0 −→M −→ 0

of M by smooth R-representations Ci of Gp, where each Ci is a finite direct sum of modules
of the form

c-indGp

Kp
(L)

with Kp ⊆ Gp a compact, open subgroup and L a smooth representation of Kp that is
finitely generated projective over R.

The following is our main example.

Theorem 1.3 (Borel–Serre). The Steinberg representation St∞Gp
(R) is flawless for every ring R.

Proof. It is enough to prove that St∞Gp
(Z) is flawless. By [BS76, Theorem 5.6], St∞Gp

(Z) can be
identified with the cohomology with compact supports of the Bruhat–Tits building of Gp. Thus,
its simplicial complex gives a flawless resolution of St∞Gp

(Z). �

1.3 Cohomology of p-arithmetic groups
Let A be a Qp-affinoid algebra in the sense of Tate. Given a compact, open subgroup Kp ⊆
G(Ap,∞), an A[Gp]-module V and an A[G(F )]-module W , which is free and of finite rank over
A, we define CA(Kp, V ; W ) as the space of all A-linear maps Φ: G(Ap,∞)/Kp× V →W . The
A-module CE(Kp, V ; W ) carries a natural G(F )-action given by

(γ.Φ)(g, v) = γ.(Φ(γ−1g, γ−1.v)).

Suppose V is a topological A-module equipped with a continuous A-linear Gp-action we put
Cct

A (Kp, V ; W ) = C(G(Ap,∞)/Kp, Homct
A(V, W )). Here W is endowed with its canonical topology

as a finitely generated free A-module.
Let E be a finite extension of Qp with ring of integers OE . Suppose that V is a smooth

E-representation of Gp that admits a flawless Gp-stable OE-lattice M . As M is finitely generated
as an OE [Gp]-module, the completion of V with respect to M is the universal unitary completion
V un of V . The following automatic continuity statement holds (see [Geh21, Proposition 3.11]).

Proposition 1.4. Suppose that V is a smooth E-representation of Gp that admits a flawless
Gp-stable OE-lattice M . Then the canonical map

Hd(G(F ), Cct
E (Kp, V un; E(ε))) −→ Hd(G(F ), CE(Kp, V ; E(ε)))

is an isomorphism for every character ε : π0(G∞)→ {±1}, every compact, open subgroup Kp ⊆
G(Ap,∞) and every degree d � 0.

This proposition combined with Theorem 1.3 implies the following.

Corollary 1.5. The canonical map

Hd(G(F ), Cct
E (Kp, StctGp

(E); E(ε))) −→ Hd(G(F ), CE(Kp, St∞Gp
(E); E(ε)))

is an isomorphism.

For a compact, open subset Kp ⊆ Gp and a character ε : π0(G∞)→ {±1} we put

Hd(XKp×Kp , W )ε = Hd(G(F ), CE(Kp, E[Gp/Kp]; W (ε))).

If the level Kp×Kp is neat, this group is naturally isomorphic to (the epsilon component of)
the singular cohomology with coefficients in W of the locally symmetric space of level Kp×Kp
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associated with G. More generally, let V be a topological A-module, which is locally convex as a
Qp-vector space, with a continuous A-linear Kp-action. We consider c-indGp

Kp
V with the locally

convex inductive limit topology. This is a continuous A-module with a continuous Gp-action.
We put

Hd(XKp×Kp , Homct
A(V, W ))ε = Hd(G(F ), Cct

A (Kp, c-indGp

Kp
V ; W (ε))).

Again, this space can be identified with the cohomology of the corresponding locally symmetric
space with values in the sheaf associated with Homct

A(V, A).

1.4 Automorphic L-invariants
For the remainder of the article we fix a finite extension E of Qp that contains Qπ and a compact,
open subgroup Kp =

∏
v�p∞ Kv ⊆ G(Ap,∞) such that (πp,∞)Kp 
= 0. We may assume that Kv is

hyperspecial for every finite place v such that πv is spherical.
As v∞PI

(E) = v∞I (Z)⊗ E we have a canonical isomorphism

CZ(Kp, v∞PI
(Z); W ) ∼= CE(Kp, v∞PI

(E); W )

for any E-vector space W . Hence, we abbreviate this space by C(Kp, v∞PI
; W ) (and similarly for

St∞Gp
in place of v∞PI

).
Let Ip ⊆ Gp be an Iwahori subgroup. By Frobenius reciprocity the choice of an Iwahori-fixed

vector yields a Gp-equivariant homomorphism

c-indGp

Ip
E −→ St∞Gp

, (1.7)

which, in turn, induces a Hecke-equivariant map

ev(d) : Hd(G(F ), C(Kp, St∞Gp
; E(ε))) −→ Hd(XKp×Ip , E)ε. (1.8)

Let
T = T(Kp× Ip)E = Cc(Kp× Ip\G(A∞)/Kp× Ip, E)

be the E-valued Hecke algebra of level Kp× Ip. By abuse of notation, we denote the model of
π∞ over E also by π∞. If V is a T-module, we put

V [π] =
∑

f

im(f)

where we sum over all T-homomorphisms f : (π∞)Kp×Ip → V. Similarly, we define

Tp = T(Kp)E = Cc(Kp\G(Ap,∞)/Kp, E)

to be the Hecke algebra away from p and, given a Tp-module V , we put

V [πp] =
∑

f

im(f)

where we sum over all Tp-homomorphisms f : (πp,∞)Kp → V.
For the proof of the following proposition that crucially relies on the hypothesis (SMO) we

refer to [Geh21, Proposition 3.6].

Proposition 1.6. The map ev(d) induces an isomorphism

Hd(G(F ), C(Kp, St∞Gp
; E(ε)))[πp]

∼=−→ Hd(XKp×Ip , E)ε[π].

on isotypic components. There exists an integer mπ � 0 such that

dimE Hd(XKp×Ip , E)ε[π] = mπ · dim(π∞)Kp×Ip ·
(

δ

d− q

)
∀d � 0

for each sign character ε.
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By Corollary 1.5, we have a canonical isomorphism

Hd(G(F ), C(Kp, St∞Gp
; E(ε))) ∼= Hd(G(F ), Cct

E (Kp, StctGp
; E(ε))).

Composing with the homomorphism coming from dualizing the continuous inclusion StanGp
↪→

StctGp
yields the map

Hd(G(F ), C(Kp, St∞Gp
; E(ε))) −→ Hd(G(F ), Cct

E (Kp, StanGp
; E(ε)))

in cohomology. Thus, for every i ∈ Δ we get a well-defined cup-product pairing

Hd(G(F ), C(Kp, St∞Gp
; E(ε)))× Ext1an(v

∞
Pi

(E), StanGp
(E))

−→ Hd+1(G(F ), C(Kp, v∞Pi
; E(ε))),

which commutes with the action of the Hecke algebra Tp. By Theorem 1.1 we have a canoni-
cal isomorphism Homct(F ∗

p , E) ∼= Ext1an(v
∞
Pi

(E), StanGp
(E)). Hence, taking cup product with the

extension Ean
i (λ ◦ i) associated with a homomorphism λ ∈ Homct(F ∗

p , E) in (1.4) yields a map

c
(d)
i (λ)ε : Hd(G(F ), C(Kp, St∞Gp

; E(ε)))[πp] −→ Hd+1(G(F ), C(Kp, v∞Pi
; E(ε)))[πp]

on πp,∞-isotypic parts.

Definition 1.7. Given a character ε : π0(G∞)→ {±1}, an integer d ∈ Z with 0 � d � δ and a
root i ∈ Δ we define

L(d)
i (π, p)ε ⊆ Homct(F ∗

p , E)

as the kernel of the map λ 
→ c
(q+d)
i (λ)ε.

Alternatively, we can consider cup products with extensions associated with homomorphisms
λ : B → E and define the L-invariant as a subspace of

Homct(B, E)/ Homct(Pi, E).

This subspace is mapped to the L-invariant defined above via the map (1.6) induced by the
coroot i∨ associated with i.

Proposition 1.8. For all sign characters ε, every degree d ∈ [0, δ] ∩ Z and every root i ∈ Δ the
L-invariant

L(d)
i (π, p)ε ⊆ Homct(F ∗

p , E)

is a subspace of codimension at least one, which does not contain the space of smooth
homomorphisms.

Suppose mπ = 1. Then, in the extremal cases d = 0 and d = δ the codimension is exactly
one.

Proof. This is Proposition 3.14 of [Geh21]. �
Remark 1.9. Let logp : E∗ → E denote the branch of the p-adic logarithm such that logp(p) = 0.

Let us assume that E contains the images of all embeddings σ : Fp→ Qp. We put logp,σ =
logp ◦σ : F ∗

p → E. The set
{ordp} ∪ {logp,σ | σ : Fp→ E}

is a basis of Homct(F ∗
p , E). Suppose L ⊆ Homct(F ∗

p , E) is a subspace of codimension one that
does not contain ordp. Then for each embedding σ there exists a unique element Lσ ∈ E such
that logp,σ −Lσ ordp ∈ L and these elements clearly form a basis of L.
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2. L-invariants and big principal series

By the Colmez–Greenberg–Stevens formula (see [Din19, Theorem 3.4]) one can calculate
Fontaine–Mazur L-invariants of certain local Galois representations by deforming them (or rather
the attached (ϕ, Γ)-modules) in rigid analytic families. The goal of this section is to prove an
automorphic version of that formula.

This implies that L-invariants can be related to the existence of cohomology classes with
values in (duals of) families of principal series.

2.1 Linear algebra over the dual numbers
Let R be a ring and R[ε] = R[X]/X2 the ring of dual numbers over R. Let M be an R[ε]-module.
We define several maps on dual spaces associated with M . First, multiplication with ε induces
the map μ : M/εM → εM ↪→M . We denote by

μ∗
ε : HomR(M, R) −→ HomR(M/εM, R)

its R-dual. Second, reducing modulo ε yields the map

red: HomR[ε](M, R[ε]) −→ HomR(M/εM, R).

Finally, the map add: R[ε]→ R, a + bε 
→ a + b induces the map

add∗ : HomR[ε](M, R[ε]) −→ HomR(M, R).

The following easy computation is left to the reader.

Lemma 2.1. The maps μ∗
ε, red and add are functorial in M and the following equality holds:

red = μ∗
ε ◦ add∗ .

2.2 Infinitesimal deformations of principal series
Let T ⊆ B ⊂ GFp be the maximal torus respectively the Borel subgroup chosen in § 1.1. The
map

τ : Homct(B, E) −→ Homct(B, E[ε]∗), λ 
−→ [x 
→ 1 + λ(x)ε]

defines an injective group homomorphism. Its image is the set of all continuous characters χ : B →
E[ε]∗ such that χ ≡ 1 mod ε. The underlying E-representation of τ(λ) is the two-dimensional
representation τλ defined in (1.1). Thus, we can view IanB (τλ) = IanB (τ(λ)) as an E[ε]-representation
of Gp. Reducing modulo ε induces the map

redd,ε
λ : Hd(G(F ), Cct

E[ε](K
p, IanB (τλ); E[ε](ε))) −→ Hd(G(F ), Cct

E (Kp, IanB (E); E(ε)))

in cohomology.
Let i∨ be the coroot associated with i. Given a character λ : B → E we put λi = λ ◦ i∨.

Lemma 2.2. Let λ : B → E be a continuous character. If the isotypic component

H q+d(G(F ), Cct
E (Kp, IanB (E); E(ε)))[πp]

is contained in the image of redq+d,ε
λ , then the homomorphism λi belongs to L(d)

i (π, p)ε.

Proof. The inclusion IanB (E) ↪→ IanB (τλ) induces the map

Hq+d(G(F ), Cct
E (Kp, IanB (τλ); E(ε))) −→ Hq+d(G(F ), Cct

E (Kp, IanB (E); E(ε)))

in cohomology. Its image is the kernel of the cup product with the extension class Êan(λ) defined
in (1.2).

418

https://doi.org/10.1112/S0010437X2200731X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2200731X


Big principal series, p-adic families and L-invariants

Thus, by Lemma 2.1 our assumption implies that the π-isotypic component
Hq+d(G(F ), Cct

E (Kp, IanB (E); E(ε)))[πp] is contained in the kernel of the cup product with Êan(λ).
We have the following commutative diagram.

Hq+d+1(G(F ), Cct
E (Kp, IanB (E); E(ε)))Hq+d(G(F ), Cct

E (Kp, IanB (E); E(ε)))

Hq+d(G(F ), Cct
E (Kp, IanB (E); E(ε))) Hq+d+1(G(F ), CE(Kp, i∞Pi

(E); E(ε)))

Hq+d(G(F ), Cct
E (Kp, StctGp

(E); E(ε))) Hq+d+1(G(F ), CE(Kp, v∞Pi
(E); E(ε)))

=

∪Ẽan
i (λ)

∪Ean
i (λ)

∪Êan(λ)

The claim now follows from the first part of the next lemma and a simple diagram chase. �
Lemma 2.3. Let J ⊆ Δ be a subset.

(i) The canonical map

Hd(G(F ), CE(Kp, v∞PJ
(E); E(ε)))[πp] −→ Hd(G(F ), CE(Kp, i∞PJ

(E); E(ε)))[πp]

is injective for all d.
(ii) It is an isomorphism in degree d = q + |J |.
Proof. The Jordan–Hölder decomposition of i∞PJ

(E) consists of all generalized Steinberg rep-
resentations v∞PI

(E) with J ⊆ I, each occurring with multiplicity one. Thus, the second claim
follows from [Geh21, Proposition 3.9].

Via the well-known resolution (see, for example, [Orl05, Proposition 11])

0→ i∞PΔ
(E)→

⊕
I⊆J⊆Δ
|Δ\I|=1

i∞PI
(E)→ · · · →

⊕
J⊆I⊆Δ
|I\J |=1

i∞PI
(E)→ i∞PJ

(E) −→ v∞PJ
(E)→ 0

one can reduce the first claim to the following statement: Let EJ,I be any smooth extension of
v∞PJ

(E) by v∞PI
(E), where J ⊆ I ⊆ Δ with |I| = |J |+ 1. Then the map

Hd(G(F ), CE(Kp, v∞PJ
(E); E(ε)))[πp] −→ Hd(G(F ), CE(Kp, EJ,I ; E(ε)))[πp]

is injective for all d. Equivalently, it is enough to show that the cup product

Hd(G(F ), CE(Kp, v∞PI
(E); E(ε)))[πp]

∪EJ,I−−−→ Hd+1(G(F ), CE(Kp, v∞PJ
(E); E(ε)))[πp]

is the zero map for all d. Let EI,J be the unique up to scalar non-split smooth extension of v∞PI
(E)

by v∞PJ
(E). By [Geh21, Corollary 3.8], the cup product

Hd+1(G(F ), CE(Kp, v∞PJ
(E); E(ε)))[πp]

∪EI,J−−−→ Hd+2(G(F ), CE(Kp, v∞PI
(E); E(ε)))[πp]

is an isomorphism. Therefore, it is enough to prove that taking the cup product with EJ,I ∪ EI,J

induces the zero map on H•(G(F ), CE(Kp, v∞PI
(E); E(ε)))[πp]. This is true because EJ,I ∪ EI,J is

a smooth 2-extension of v∞PI
(E) by itself and the space of all such extensions is zero by [Orl05,

Theorem 1]. �

2.3 The automorphic Colmez–Greenberg–Stevens formula
Let A be an E-affinoid algebra and χ : B → A∗ a locally analytic character. The parabolic
induction IanB (χ) is naturally an A[Gp]-module. Given an ideal m ⊆ A we let χm : B → (A/m)∗,
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x 
−→ χ(x) mod m denote the reduction of χ modulo m. Similar to Proposition 2.2.1 of [Han17],
one can prove that

Homct
A(IanB (χ), A)⊗A A/m ∼= Homct

A/m(IanB (χm), A/m).

Let m ∈ Spm A be an E-rational point such that χm = 1Gp. Thus, the reduction map induces
the maps

redd,ε
χ : Hd(G(F ), Cct

A (Kp, IanB (χ); A(ε))) −→ Hd(G(F ), Cct
E (Kp, IanB (E); E(ε)))

in cohomology.
Let i∨ be the coroot associated with i. We put χi = χ ◦ i∨ ∈ Hom(F ∗

p , A). Suppose
v : Spec E[ε]→ Spm A is an element of the tangent space of SpmA at m. The pullback χi,v of χi

along v is of the form χi,v = 1 + (∂/∂v)χi · ε for a unique homomorphism (∂/∂v)χi : F ∗
p → E.

Lemma 2.2 immediately implies the following.

Proposition 2.4. Suppose that the image of redq+d,ε
χ contains the πp,∞-isotypic component of

Hq+d(G(F ), Cct
E (Kp, IanB (E); E(ε))). Then the homomorphism (∂/∂v)χi belongs to L(d)

i (π, p)ε for
every element v of the tangent space of Spm A at m.

3. Overconvergent cohomology

After giving a brief overview on Kohlhaase and Schraen’s Koszul resolution of locally analytic
principal series (see [KS12]) we recall the control theorem relating overconvergent cohomology to
classical cohomology as proven by Ash–Stevens, Urban and Hansen (see [AS08, Urb11, Han17]).
Combining the two results allows us to construct classes in the cohomology of (duals of) principal
series. If G∞ fulfils the Harish-Chandra condition, i.e. if δ = 0, we can lift the construction to
families of principal series. This implies our main theorem.

3.1 Koszul complexes
In [KS12], Kohlhaase and Schraen construct a resolution of locally analytic principal series
representations via a Koszul complex. We recall their construction in a slightly more general
setup: instead of restricting to p-adic fields as coefficient rings we allow affinoid algebras. The
proofs of [KS12] carry over verbatim to this more general framework.

Let us fix some notation: we denote the Borel opposite of B ⊆ GFp by B̄. Let N̄ ⊆ B̄ be its
unipotent radical. The chosen torus T ⊆ B ⊆ GFp determines an apartment in the Bruhat–Tits
building of Gp. We chose a chamber C of that apartment and a special vertex v of C as in
§ 3.5. of [Car79]. The stabilizer Gp,0 ⊆ Gp of v is a maximal compact subgroup of Gp and the
stabilizer Ip ⊆ Gp,0 of C is an Iwahori subgroup. Let G0 be the Bruhat–Tits group scheme over
Op associated with Gp,0. We define

In
p = ker(Ip −→ G0(Op/pn)).

The open normal subgroups In
p ⊆ Ip form a system of neighbourhoods of the identity in Ip. The

subgroup T0 = T ∩Gp,0 is maximal compact subgroup of T .
Let X∗(T ) (respectively, X∗(T )) denote the group of Fp-rational characters (respectively,

cocharacters) of T . The natural pairing

〈·, ·〉 : X∗(T )×X∗(T ) −→ Z

is a perfect pairing. There is a natural isomorphism T/T0
∼= X∗(T ) characterized by

〈χ, t〉 = ordp(χ(t)).

420

https://doi.org/10.1112/S0010437X2200731X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2200731X


Big principal series, p-adic families and L-invariants

We denote by Φ+ the set of positive roots with respect to B and put

T− = {t ∈ T | ordp(α(t)) � 0 ∀α ∈ Φ+}.
Let A be a Qp-affinoid algebra. Restricting to T0 gives a bijection between locally analytic

characters χ : B ∩ Ip→ A∗ and locally analytic characters χ : T0 → A∗. Given such a character
χ we write

Aχ = {f : Ip −→ A locally analytic | f(bk) = χ(b)f(k) ∀b ∈ B ∩ Ip, k ∈ Ip}
for the locally analytic induction of χ to Ip. It is naturally an A[Ip]-module. Restricting a function
f ∈ Aχ to the intersection Ip ∩ N̄ induces an isomorphism of Aχ with the space of all locally
analytic functions from Ip ∩ N̄ to A. There exists a minimal integer nχ � 1 such that χ restricted
to B ∩ I

nχ
p is rigid analytic. For any n � nχ we define the A[Ip]-submodule

An
χ = {f ∈ Aχ | f is rigid analytic on any coset in Ip/In

p }.
For later purposes, we define the dual spaces

Dn
χ = Homct

A(An
χ, A).

By Frobenius reciprocity we can identify EndA[Gp ](c-indGp

Ip
(An

χ)) with the space of all functions
Ψ: Gp→ EndA(An

χ) such that:

(i) Ψ is Ip-biequivariant, i.e. Ψ(k1gk2) = k1Ψ(g)k2 for all k1, k2 ∈ Ip, g ∈ Gp; and
(ii) for every f ∈ An

χ the function Gp→ An
χ, g 
→ Ψ(g)(f) is compactly supported.

Let t be an element of T− and f ∈ An
χ. The function Ip→ A, u 
→ f(tut−1) defines an element

of An
χ.

Lemma 3.1. For every element t ∈ T− there exists a unique Ip-biequivariant function Ψt : Gp→
EndA(An

χ) such that:

(i) supp(Ψt) = Ipt
−1Ip; and

(ii) Ψt(t−1)(f)(u) = f(tut−1) for any f ∈ An
χ and u ∈ Ip ∩ N̄ .

Proof. This is a minor generalization of [KS12, Lemma 2.2]. �

For t ∈ T− we denote by Ut the endomorphism of c-indGp

Ip
(An

χ) corresponding to Ψt. The
following is a straightforward generalization of [KS12, Lemma 2.3].

Lemma 3.2. We have UtUt̃ = Utt̃ for all t, t̃ ∈ T−.

Now let us fix a character χ : T → A∗ and let χ0 be its restriction to T0. Given an open
subset C ⊆ Gp, which is stable under multiplication with B from the left, we denote by

IanB (χ)(C) ⊆ IanB (χ)

the subset of all functions with support in C. Restricting functions to Ip gives an Ip-equivariant
A-linear isomorphism

IanB (χ)(BIp)
∼=−→ Aχ0 .

Thus, by Frobenius reciprocity its inverse induces a Gp-equivariant A-linear map

augχ : c-indGp

Ip
(An

χ0
) −→ c-indGp

Ip
(Aχ0) −→ IanB (χ) (3.1)

for any integer n � nχ0 .
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As the group GFp is adjoint, there exist elements ti ∈ T−, i ∈ Δ, such that

ti ∈
⋂

j∈Δ\{i}
ker(j)

and

ordp(i(ti)) = −1.

The element ti is uniquely determined by the value i(ti)−1 ∈ F ∗
p , which is a uniformizer. Every

element t ∈ T can uniquely be written as t = t0
∏

i∈Δ tni
i with t ∈ T0 and integers ni ∈ Z. Let us

fix a choice of ti, i ∈ Δ, and put

yi = Uti − χ(ti).

Proposition 3.3. The Gp-equivariant A-linear map augχ is surjective with kernel
∑

i∈Δ im(yi).

Proof. The same proof as for [KS12, Proposition 2.4] works here. �

By Lemma 3.1 the Gp-representation c-indGp

Ip
(An

χ0
) is a module over the polynomial algebra

A[Xi | i ∈ Δ], where Xi acts through the operator Ti. The Koszul complex of c-indGp

Ip
(An

χ0
) with

respect to the endomorphisms (yi)i∈Δ is the complex Λ•
A(AΔ)⊗ c-indGp

Ip
(Aχ0) with boundary

maps

dk(ei1 ∧ · · · ∧ eik ⊗ f) =
k∑

l=1

(−1)l+1ei1 ∧ · · · ∧ êil ∧ · · · ∧ eik ⊗ yil(f). (3.2)

The following is the main technical theorem of Kohlhaase–Schraen (cf. [KS12, Theorem 2.5])
generalized to affinoid coefficient rings.

Theorem 3.4 (Kohlhaase–Schraen). For any n � nχ0 the augmented Koszul complex

Λ•
A(AΔ)⊗A c-indGp

Ip
(An

χ0
) −→ IanB (χ) −→ 0

with boundary maps (3.2) and augmentation map (3.1) is exact.

Remark 3.5. All of the results above remain valid if one replaces An
χ0

by Aχ0 .

Example 3.6. Suppose Gp = PGLn(Fp), T is the torus of diagonal matrices and B is the Borel
subgroup of upper triangular matrices. The simple roots of T with respect to B are given by

i(diag(x1, . . . , xn)) = xix
−1
i+1

for 1 � i � d− 1. For each simple root 1 � i � d− 1, we might choose for ti the image of the
diagonal matrix

diag(1, . . . , 1, π, . . . , π),

where π is a uniformizer and exactly the first i entries are equal to one. For the Iwahori subgroup
Ip, we may choose the image in Gp of all matrices in GLn(Op), which are upper triangular
modulo p. Then In

p consists of all matrices in Ip which are congruent to the identity modulo pn.

There is also a smooth variant of the above result, which is probably well-known. As we
could not find a reference in the literature, we give a proof of said variant in the following.

Let Ω be field of characteristic zero. With the same formula as before, we can define commut-
ing Hecke operators Ut ∈ EndGp (c-indGp

Ip
(E)) for t ∈ T−. Let 1 : T0 → Ω× denote the constant
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character on T0. In case Ω = E we can identify E with the subspace of constant functions in An
1

and the induced embedding

c-indGp

Ip
(E) ↪→ c-indGp

Ip
(An

1) (3.3)

is equivariant with respect to the operators Ut, t ∈ T−.
The operators Ut ∈ EndGp (c-indGp

Ip
(Ω)) are invertible. Moreover, by the Bernstein decompo-

sition the map

Ω[X±1
i |i ∈ Δ] −→ EndGp (c-indGp

Ip
(Ω)), Xi 
−→ Uti

is injective and EndGp (c-indGp

Ip
(Ω)) is a free module of finite rank (and, therefore, flat) over

Ω[X±1
i |i ∈ Δ] (see, for example, [Ree92] for more details). As c-indGp

Ip
(Ω) is a flat module over

its endomorphism algebra by a theorem of Borel (see [Bor76, Theorem 4.10]), it is thus also flat
as a Ω[X±1

i |i ∈ Δ]-module.
Therefore, for any choice of elements ai ∈ Ω× the Koszul complex

Λ•
Ω(ΩΔ)⊗Ω c-indGp

Ip
(Ω)

associated with the regular sequence yi = Uti − ai, i ∈ Δ, is a resolution of the Gp-representation

Ma = coker
(⊕

i∈Δ

c-indGp

Ip
(Ω)

(yi)i∈Δ−−−−→ c-indGp

Ip
(Ω)

)
.

Let χa : T → Ω∗ be the unique smooth unramified character such that χa(ti) = ai. As before,
we extend χa to a character of B. Let φ ∈ i∞B (χa) be the unique element such that:

(i) φ is invariant under Ip;
(ii) the support of φ is BIp; and
(iii) φ(1) = 1.

Note that in case χa = 1 is the trivial character the image of φ under the quotient map
i∞B (Ω) � St∞(Ω) is non-zero and, thus, generates the space of Iwahori invariants of the Steinberg
representation.

By Frobenius reciprocity φ induces a Gp-equivariant homomorphism

c-indGp

Ip
Ω −→ i∞B (χa). (3.4)

One can argue as in the proof of [Oll14, Proposition 4.4] that the map (3.4) induces an
isomorphism

Ma −→ i∞B (χa).

In conclusion, we see that the augmented Koszul complex

Λ•
A(AΔ)⊗A c-indGp

Ip
(Ω) −→ i∞B (χa) −→ 0 (3.5)

is exact.

3.2 Overconvergent cohomology
We show that the result from the previous section together with the theory of overconvergent
cohomology allows us to construct cohomology classes with values in duals of locally analytic
representations.

Before sticking to the case which is most relevant for our applications let us consider
the general case: let A be a Qp-affinoid algebra and χ : T → A a locally analytic character.
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Denote by χ0 its restriction to T0 and fix elements ti ∈ T−, i ∈ Δ, as before. For n � nχ0 the
continuous dual of the augmentation map (3.1) of the previous section yields the map

aug∗χ : Hd(G(F ), Cct
E (Kp, IanB (χ); A(ε))) −→ Hd(XKp×Ip ,Dn

χ0
)ε

for every sign character ε and every integer d � 0. We denote the operator induced by Uti , i ∈ Δ,
on the right-hand side also by Uti and similar for Ut̃. Then, Proposition 3.3 implies the following.

Corollary 3.7. We have

im(aug∗χ) ⊆
⋂
i∈Δ

ker(Uti − χ(ti)).

For the remainder of the section we study the case of the trivial character 1 = 1T : T → E∗

of T with values in the units of the p-adic field E. We denote its restriction to T0 also by 1. Let
n � 1 be any integer. The map (3.3) induces a homomorphism

Hd(XKp×Ip ,Dn
1)ε −→ Hd(XKp×Ip , E)ε (3.6)

in cohomology, that is, equivariant with respect to the commuting actions of the Hecke algebra
Tp and the operators Ut, t ∈ T−.

In the following, we study the finite slope parts of the above cohomology groups (see, for
example, [Han17, § 2.3], for definitions and notation).

Theorem 3.8 (Ash–Stevens, Urban and Hansen). Let t̃ =
∏

i∈Δ ti.

(i) The space Hd(XKp×Ip ,Dn
1)ε admits a slope decomposition with respect to Ut̃ and every

rational number h.
(ii) If h is small enough with respect to t̃ and the trivial character 1 (see, for example, the first

formula on page 1690 of [Urb11] or equation (21) of [AS08]), then the map

Hd(XKp×Ip ,Dn
1)ε,�h −→ Hd(XKp×Ip , E)ε,�h.

is an isomorphism. In particular, this is an isomorphism for h = 0.

Proof. For the first claim see § 2.3 of [Han17] and for the second see [Han17, Theorem 3.2.5].
The third claim is [Urb11, Proposition 4.3.10]. Note that in all cases the authors consider all
primes lying above p at once. The same proofs work in our partial p-adic setup. �

Composing the dual of the augmentation map

aug∗1 : Hd(G(F ), Cct
E (Kp, IanB (E); E(ε))) −→ Hd(XKp×Ip ,Dn

1)ε (3.7)

with the map (3.6) yields the map

Hd(G(F ), Cct
E (Kp, IanB (E); E(ε))) −→ Hd(XKp×Ip , E)ε. (3.8)

As the diagram

c-indGp

Ip
E

St∞Gp
(E)

IanB (E)

StctGp
(E)

c-indGp

Ip
An

1

(3.3) aug1

(1.7)
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is commutative up to multiplication with a non-zero constant, which comes from the choice of a
Iwahori-fixed vector in (1.7), so is the induced diagram in cohomology as follows.

Hd(G(F ), Cct
E (Kp, IanB (E); E(ε)))

Hd(G(F ), Cct
E (Kp, StctGp

(E); E(ε)))

Hd(XKp×Ip , E)ε

Hd(G(F ), Cct
E (Kp, St∞Gp

(E); E(ε)))

(3.8)

∼=
ev(d)

Proposition 3.9. Let ai ∈ E×, i ∈ Δ, be elements with p-adic valuation equal to 0 and
χa : T → E× the unique smooth unramified character such that χa(ti) = ai. The natural inclusion
i∞B (χa) ↪→ IanB (χa) induces an isomorphism

Hd(G(F ), Cct
E (Kp, IanB (χa); E(ε)))

∼=−→ Hd(G(F ), CE(Kp, i∞B (χa); E(ε)))

for all d � 0. In particular, the map (3.8) induces an isomorphism

Hq(G(F ), Cct
E (Kp, IanB (E); E(ε)))[πp]

∼=−→ Hq(XKp×Ip , E)ε[π]

on π-isotypic components in degree q.

Proof. The second claim is a direct consequence of the first claim and Lemma 2.3.
Given an Ip-representation M we denote by CoindGp

Ip
M the coinduction of M to Gp,

i.e. the module of all functions f : Gp→M such that f(kg) = kf(g) for all k ∈ Ip, g ∈ Gp.
By taking continuous duals the Koszul complex of Theorem 3.4 with yi = Uti − ai yields a
quasi-isomorphism

Homct
E (IanB (χa), E)

∼=−→ Λ•
E(EΔ)⊗E CoindGp

Ip
(Dn

1)

of complexes. Note that taking continuous duals in this case is exact by the Hahn–Banach
theorem. Similarly by the smooth Koszul resolution (3.5) we have a quasi-isomorphism

HomE(i∞B (χa), E)
∼=−→ Λ•

E(EΔ)⊗E CoindGp

Ip
(E)

and the canonical diagram

Homct
E (IanB (χa), E) Λ•

E(EΔ)⊗E CoindGp

Ip
(Dn

1)

HomE(i∞B (χa), E) Λ•
E(EΔ)⊗E CoindGp

Ip
(E)

is commutative.
From the associated spectral sequences for double complex, we deduce that it is enough to

prove that the map of complexes

Λ•
E(EΔ)⊗E Hd(XKp×Ip ,Dn

1) −→ Λ•
E(EΔ)⊗E Hd(XKp×Ip , E) (3.9)

is a quasi-isomorphism for all d � 0. The modules on the left-hand side admit a slope decom-
position for Ut̃ by Theorem 3.8(i), whereas the modules on the right-hand side admit a slope
decomposition because they are finite-dimensional E-vector spaces.

As the operators yi commute with Ut̃ they respect the slope decomposition on both sides
(see [Urb11, Lemma 2.3.2]). On the slope less than or equal to zero part the map (3.9) is even
an isomorphism of complexes by Theorem 3.8(ii).
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Thus, we are reduced to proving that

Λ•
E(EΔ)⊗E Hd(XKp×Ip ,Dn

1)>h −→ Λ•
E(EΔ)⊗E Hd(XKp×Ip , E)>h

is a quasi-isomorphism for all d � 0.
In fact, both sides are acyclic: standard properties of Koszul complexes imply that the oper-

ators yi act as multiplication by zero on the cohomology of the complexes. By the definition
of a slope decomposition the operator Ut̃ −

∏
i∈Δ ai acts via isomorphisms on both complexes

and, thus, on their cohomology. However, because Ut̃ −
∏

i∈Δ ai lies in the ideal generated by
the operators yi, it also acts via multiplication by zero, which proves the claim. �
Remark 3.10. In order to keep the article short and avoid unnecessary notation, we decided to
stick to the special case above. However, Proposition 3.9 also holds in a much more general
situation, e.g. one can allow arbitrary coefficient systems and arbitrary non-critical principal
series representations, given that the slope is small enough with respect to t̃.

3.3 Overconvergent families
Let W be the weight space of T , i.e. it is the rigid space over E such that for every E-affinoid
algebra A its A-points are given by

W(A) = Homct(T, A∗).

It is smaller than the usual weight space as we only consider characters of the torus in GFp . For
any open affinoid U ⊂ W and we let χU be the corresponding universal weight. As in § 3.1 we
define the space of n-analytic functions and distributions An

χU and Dn
χU for n� 0.

We suppose now that the group G∞ has discrete series or, equivalently, that δ = 0 (see
[Kna01, Theorem 12.20] for the equivalence of these two properties). Thus, by Proposition 1.6,
the representation π∞ appears only in the middle degree cohomology Hq(XKp×Ip , E). Hence, we
put Li(π, p)ε = L(q)

i (π, p)ε.
Let Tp

sph ⊆ Tp be the spherical Hecke algebra of level Kp× Ip over E, i.e. the commutative
Hecke algebra generated by all Hecke operators at finite places v such that Kv is hyperspecial.
We define Tsph to be the commutative algebra generated by Tsph and all Ut-operators for t ∈ T−.
Let mπ ⊆ Tsph (respectively, m

p
π ⊆ Tp

sph) the maximal ideal associated with π. We assume the
following weak non-Eisenstein assumption on the maximal ideal mπ throughout this section.

Hypothesis (NE). We have

Hd(XKp×Ip , E)mπ = 0

unless d = q.

Example 3.11. If the group G is definite, the hypothesis is automatically true. By strong multi-
plicity one and the Jacquet–Langlands correspondence, it is also true for inner forms of PGL2

over totally real number fields.

Let U be an open affinoid of W and define OU ,1 to be the rigid localization of OW(U) at the
weight 1 (which is the cohomological weight of π), i.e.

OU ,1 = lim−→
1∈U ′⊂U

OW(U ′).

The following theorem is instrumental in calculating L-invariants.
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Theorem 3.12. After localization at the ideal mπ of Tsph and restricting to a small enough
open affinoid U containing 1, the canonical reduction map

Hq(XKp×Ip ,Dn
χU )ε

mπ
→ Hq(XKp×Ip , E)ε

mπ

is surjective. Moreover, Hq(XKp×Ip ,Dn
χU )ε

mπ
is a free OU ,1-module of rank equal to the dimension

of Hq(XKp×Ip , E)ε
mπ

.

In addition, we have Hd(XKp×Ip ,Dn
χU )ε

mπ
= 0 for all d 
= q.

Proof. The case of PGL2 over a totally real field is proven in detail in [BDJ21, Theorem 2.14].
The main ingredient in their proof is the vanishing of the cohomology outside middle degree.
Thus, the same proof works in our more general setup. �
Definition 3.13. We say that mπ is p-étale (with respect to ε) if every Hecke operator h ∈ Tsph

acts on Hq(XKp×Ip ,Dn
χU )ε

mπ
as multiplication by an element αh ∈ O∗

U ,1.

Theorem 3.12 immediately implies the following.

Corollary 3.14. Assume that dimE Hq(XKp×Ip , E)ε
mπ

= 1. Then mπ is p-étale.

Example 3.15. Suppose G is an inner form of PGL2 over a totally real number field. Then the
above corollary together with strong multiplicity one implies that mπ is p-étale.

Let ti ∈ T−, i ∈ Δ, be a choice of elements as in § 3.1. Suppose mπ is p-étale (with respect
to ε) with associated eigenvalues αUti

∈ O∗
U ,1, i ∈ Δ. By possibly shrinking U , we may assume

that αUti
∈ O∗

U . Every element t ∈ T can be written uniquely as a product t = t0
∏

i∈Δ tni
i with

t0 ∈ T0, ni ∈ Z. Hence, there exists a unique character χα : T → O∗
U such that

χα|T0
= χU

and

χα(ti) = αUti
.

Theorem 3.16. Suppose that mπ is p-étale (with respect to ε) with associated character
χα : T → O∗

U . Then for every tangent vector v of U at 1 we have:

∂

∂v
χα,i ∈ Li(π, p)ε

where χα,i denotes the composition χα ◦ i∨. Moreover, the subspace Li(π, p)ε ⊆ Homct(F ∗
p , E)

has codimension one.

Proof. Let m1 ⊆ OU be the maximal ideal corresponding to the trivial character. We put A =
OU/m2

1 and χ0 = χU mod m2
1. Let us write χ̃α = χα mod m2

1 : T → A. Using Theorem 3.12 and
arguments with Koszul complexes as in the proof of Proposition 3.9 one shows that the image
of the map

Hq(G(F ), Cct
A (Kp, IanB (χ̃α); A(ε)))mp

π
−→ Hq(XKp×Ip , E)ε

mp
π

is the intersection of the kernels of the homomorphisms Uti − 1. Therefore, the first claim follows
from Proposition 2.4.

We may assume that E is large enough. We explain how to choose appropriate tangent vectors
so that Li(π, p)ε contains elements of the form logp,σ −Lσ ordp for every embedding σ : Fp→ E.
This will show that the L-invariant has codimension at most one.

Let E〈kσ〉 be the ring of power series in the kσ and let O∗
p,1 denote the free part of O∗

p. By
smoothness of the weight space, we can embed O∗

U in E〈kσ〉 and the structural morphism of
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E[[O∗
p,1]] into O∗

U can be described via the map

O∗
p � 〈u〉 
→

∏
σ

σ(u)kσ .

We can, hence, identify χα,i with a map from F ∗
p to O∗

U . For all n ∈ Z and u ∈ O∗
p,1 we have

χα,i(πnu) = αn
Uti

∏
σ

σ(u)kσ .

Note that
d

dkσ′
(σ(u)kσ) = δσ,σ′ logp(σ(u))σ(u)kσ ,

where

δσ,σ′ =

{
1 if σ = σ′

0 otherwise.

Take for v the direction where only kσ varies, derive χα,i along v, and evaluate at kσ′ = 0 for all
σ′ (corresponding to the weight 1) to obtain

∂

∂v
χα,i(πnu) =

d

dkσ
αUti

(1) ordp(πn) + αUti
(1) logp(σ(u)).

By the Steinberg hypothesis, αUti
(1) is not vanishing and we are done.

By Proposition 1.8, the L-invariant has codimension at least one and, hence, the second
claim follows. �

4. Applications

4.1 Hilbert modular forms
We want to study the case of inner forms of PGL2, which are split at p, over a totally real
number field F in detail. As there is only one simple root we drop it from the notation. If G is
equal to PGL2, one can attach 2[F :Q] a priori different L-invariants L(π, p)ε to π; in this case,
a conjecture of Spieß (cf. [Spi14, Conjecture 6.4]) states that the definition does not depend
on ε, i.e.

L(π, p)ε = L(π, p)ε′

for all choices of sign characters ε and ε′. In the same paper, Remark 6.6(b), Spieß also states
that ‘an interesting and difficult problem’ is to show that the L-invariant is invariant under
Jacquet–Langlands transfers. In this section, thanks to Theorem 3.16, we settle both Spieß’
conjecture and his question.

Moreover, let ρπ : Gal(Q/F )→ GL2(E) be the Galois representation associated with π (or
rather associated with the Jacquet–Langlands transfer JL(π) of π to PGL2), which exists by
work of Taylor (see [Tay89]). As π is p-ordinary, by Theorem 2 of [Wil88] we know that
the restriction ρπ,p : Gal(Qp/Fp) of ρπ to a decomposition group at p is ordinary. Moreover,
because πp is Steinberg, a result of Saito (see [Sai09]) implies that this restriction is a non-
split extension of the trivial character by the cyclotomic character. Therefore, it gives a class
〈ρπ,p〉 ∈ H1(Gal(Qp/Fp), E(1)), where E(1) denotes the Tate twist of E. The Fontaine–Mazur
L-invariant LFM(ρπ,p) of ρπ,p is the orthogonal complement of 〈ρπ,p〉 with respect to the local
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Tate pairing
H1(Gal(Qp/Fp), E(1))×H1(Gal(Qp/Fp), E) −→ E.

By local class field theory we have a canonical isomorphism

H1(Gal(Qp/Fp), E) ∼= Homct(F ∗
p , E)

and, thus, we consider LFM(ρπ,p) as a codimension-one subspace of Homct(F ∗
p , E). We show

that automorphic L-invariants equal the Fontaine–Mazur L-invariant of the associated Galois
representation.

Theorem 4.1. Suppose G is an inner form of PGL2 over a totally real number field F , which
is split at the prime p of F . Let π be a cuspidal automorphic representation of parallel weight 2
of G that is Steinberg at p.

(i) The automorphic L-invariant of π is independent of ε, i.e.

L(π, p)ε = L(π, p)ε′

for all choices of ε and ε′. We therefore put L(π, p) = L(π, p)ε for any choice of sign
character ε.

(ii) Let JL(π) be the Jacquet–Langlands transfer of π to PGL2. The equality

L(π, p) = L(JL(π), p)

holds.
(iii) Let ρπ the Galois representation associated with π. Then

L(π, p) = LFM(ρπ,p).

Proof. We actually prove that L(π, p)ε = LFM(ρπ,p) for every ε, which implies all other claims.
As mπ is p-étale (with respect to ε) we can deform the Hecke eigenvalues of π to a family over an
open affinoid subspace of weight space in the following sense: there exists an open affinoid U ⊆ W
containing the trivial character such that the eigenvalue αh of each Hecke operator h ∈ Tsph act-
ing on Hq(XKp×Ip ,Dn

χU )ε is an element of OW(U). As explained in [BDJ21, Theorem 2.14(ii)],
we may shrink U further such that the common eigenspace associated to the eigenvalues αh is a
free OW(U)-submodule of Hq(XKp×Ip ,Dn

χU )ε of rank equal to the dimension of Hq(XKp×Ip , E)ε
mπ

.
By shrinking U even further we may assume that αti ∈ OW(U)× has absolute value one for
each i ∈ Δ. Then, by the classicality of small slope overconvergent eigenforms, the specializa-
tion of these eigenvalues at a classical point λ ∈ U are the eigenvalues associated to a cuspidal
representation πλ of weight λ.

Note that the Galois representation ρπ is irreducible, as the Hilbert modular form associated
with π is cuspidal. Thus, by standard arguments (see, for example, Theorem B of [Che14]) there
exists (after possibly shrinking U again) a family of Galois representations ρπ,U over U passing
through ρπ, i.e. the specialization of ρπ,U at each classical point λ ∈ U is isomorphic to the Galois
representation attached to πλ. It follows from the results of Saito (see Theorem 1 of [Sai09]) that
for every classical point z ∈ U the restriction of the Galois representation ρπ,z to a decomposition
group is determined by the Up-eigenvalue. Moreover, the Weil–Deligne module of ρπ restricted
at the decomposition group at p is the Weil–Deligne module associated with the Steinberg
representation via the local Langlands correspondence. In particular, our representation (with
the filtration induced by the ordinarity of the Galois representation) is non-critical special, as
defined in § 3.1 of [Din19]; indeed we know that the corresponding (ϕ, Γ)-module is an extension
of special characters, so we just have to check whether the extensions are split or not. If one
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extension were split, then the Weil–Deligne representation would also be split, contradicting the
fact the monodromy for the Steinberg is maximal.

Comparing the Galois theoretic Colmez–Greenberg–Stevens formula (see [Din19,
Theorem 3.4]) with its automorphic counterpart of Theorem 3.16 yields the result. �
Remark 4.2. (i) In the Hilbert modular form case, the constructions simplify substantially
and, thus, one can check that our methods also work for higher weights assuming that the
representation is non-critical.

(ii) One can prove the first two claims of Theorem 4.1 without passing to the Galois side.
Namely, using methods as in § 5 of [Han17] one can show that the eigenvalue of the overconver-
gent p-adic family passing through π is independent of the sign character and stable under the
Jacquet–Langlands transfer. Thus, by Theorem 3.16, we can conclude the argument.

(iii) By definition, Fontaine–Mazur L-invariants are stable under restricting the Galois repre-
sentation to the absolute Galois group of finite extensions. Thus, we can deduce from Theorem 4.1
that automorphic L-invariants of Hilbert modular forms are stable under abelian base change
with respect to totally real extensions.

(iv) In the case of modular elliptic curves over totally real fields of class number one the
equality of automorphic and Fontaine–Mazur L-invariants was conjectured by Greenberg (see
[Gre09, Conjecture 2]). Theorem 4.1 thus implies that the construction of Stark–Heegner points
over totally real fields is unconditional (see [GMS15] for a detailed discussion of Stark–Heegner
points).

4.2 Unitary groups
Let F̃ be a CM field with totally real subfield F . We assume that the prime p of F is split in
F̃ . Let U be the unitary group attached to a positive definite hermitian space over F̃ and G
the associated adjoint group. By construction, Gp is isomorphic to PGLn(Fp). We can identify
the simple roots with respect to the upper triangular Borel with the set {1, . . . , n− 1}. Let π be
an automorphic representation of G such that π∞ = C and πp is the Steinberg representation of
PGLn(Fp). In this case the only sign character is the trivial character and, therefore, we drop it
from the notation.

By Shin’s appendix to [Gol14] the base change BC(π) of π to PGLn over F̃ exists and it is
Steinberg at both primes of F̃ lying above p. By the work of many people (see Theorem 2.1.1 of
[BGGT14] for a detailed discussion) we can attach a p-adic Galois representation

ρπ = ρBC(π) : Gal(Q/F̃ ) −→ GLn(E)

to BC(π). As we consider the trivial coefficient system the Steinberg representation is ordinary
(cf. [Ger19, Lemma 5.6]). Therefore, as shown in [Tho15, Theorem 2.4], one deduces from the
local–global compatibility theorem of Caraiani (see [Car14]) that the restriction ρπ,p of ρπ to
the decomposition group of a prime above p can be brought in the following form: it is upper
triangular and the ith diagonal entry is the (1− i)-power of the cyclotomic character.

Therefore, we have n− 1 canonical two-dimensional subquotients ρπ,p,i which are extensions
of E(−n + i) by E(−n + i + 1). We can consider the associated Fontaine–Mazur L-invariant
LFM

i (ρπ,p) = LFM(ρπ,π,i(n− i)). Recall that the Weil–Deligne representation associated with the
Steinberg has always maximal monodromy so the corresponding (ϕ, Γ)-module is non-critical
split à la Ding, see § 3.1 of [Din19]. Replacing the local–global compatibility results of Saito
by those of Caraiani (see [Car14]), we can apply Theorem 3.4 of [Din19] to the (ϕ, Γ)-module
associated with the Galois representation ρπ and then the same proof as that of Theorem 4.1
yields the following result.
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Theorem 4.3. Let F be a totally real number field and G the adjoint of a unitary group over
F compact at infinity and split at p. Let π be an automorphic representation of G such that
π∞ = C and πp is Steinberg. Suppose π satisfies (SMO), that we can choose the tame level Kp

such that mπ is p-étale and that the Galois representation ρπ attached to π is irreducible. Then
we have

LFM
i (ρπ) = Li(π, p)

for every i = 1, . . . , n− 1.

Remark 4.4. Something can be said also when F = Q and G = Sp2g. In this case the Galois
representations have been constructed by Scholze [Sch15] but local–global compatibility is not
known. Still, if one supposes that the 2g + 1-dimensional Galois representation Std(ρπ) associated
with π is semistable with maximal monodromy, then the Greenberg–Benois L(Std(ρπ))-invariant
has been calculated in [Ros15, Theorem 1.3].

In this case the root system of Sp2g can be identified with the set {1, . . . , g} via the
identification with the root system of GLg, which is embedded in Sp2g by

GLg −→ Sp2g, A 
−→
(

tA−1 0
0 A

)
,

and we see that the automorphic L-invariant L1(π, p) coincides with that of [Ros15].
The same calculation in § 4.2 of [Ros15] gives us that Li(π, p) is the Greenberg–Benois

L-invariant for Std(ρπ)(i− 1). (This case has not been treated in [Ros15] as the L-values are not
Deligne-critical, but Benois’ definition applies also in this case, see formula (96) in [Ben21].)

If Fp 
= Qp, then the comparison is more subtle, as there is only just one Greenberg–Benois
L-invariant per p-adic place, and from the Galois side one needs to consider Galois invariant
characters of F ∗

p .

5. Beyond discrete series: the Bianchi case

When G∞ does not fulfil the Harish-Chandra condition, the representation π contributes to
several degrees of cohomology of the associated locally symmetric space and the techniques used
in Theorem 3.12 break down.

There are two tools to tackle the problem: first, one can use Hansen’s Tor-spectral sequence
(see Theorem 3.3.1 of [Han17])

TorOW
i (Hq+i(XKp×Ip ,DχU )�h, E) =⇒ Hq(XKp×Ip ,DχΣ)�h,

where U ⊆ W is an open affinoid and Σ ⊆ U is Zariski-closed, to analyse the overconvergent
cohomology groups in question; second, one can use cases of Langlands functoriality in p-adic
families to reduce to groups, which fulfil the Harish-Chandra condition.

In good situations it should be possible to calculate at least one of the L-invariants L(d)
i (π, p)

for 0 � d � δ, using Proposition 2.4. The main difficulty is that, in general, most classes do not
lift to a big cohomology class as classes in Hq+1 give lifting obstructions. However, as soon as
one can show that at least a class lifts to a family in Hq+d (combined with some results on the
tangent directions in the eigenvariety) Proposition 2.4 lets us calculate L(d)

i (π, p). If Venkatesh’s
conjecture (stating that the π-isotypic component of the cohomology is generated by the minimal
degree cohomology as a module over the derived Hecke algebra) holds, then these L-invariants
L(d)

i (π, p), for varying d, are essentially all the same by the main result of [Geh19a].
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Using unpublished work of Hansen (see also [BW21]) we study the case of Bianchi modular
forms. We now fix F to be a quadratic imaginary field where p is unramified and π a cuspidal
representation of PGL2,F of parallel weight 2 such that πq is Steinberg for all primes q lying
above p. We put G = PGL2,F if p is inert and, if p is split, we define G to be the Weil restriction
ResF/Q PGL2,F . In the first case there is only one simple root and, thus, we drop it from the
notation. In the second case, the simple roots can be identified with the two primes above p. In
both cases, the only sign character is the trivial one and we shall drop it from the notation as
well. (The following theorem indicates that in the case of a split prime the partial eigenvarieties
we considered before may not be big enough. The case that p is split and π is only Steinberg
at one of the primes above p could be handled similarly but one would have to introduce new
notation. For the sake of brevity, we do not discuss it further.)

We recall some result on the eigenvariety for Bianchi modular forms due to Hansen and
Barrera–Williams (see [BW21, Lemma 4.4] and the proof of Theorem 4.5).

Theorem 5.1 (Hansen, Barrera–Williams). Let U ⊆ W be an open affinoid neighbourhood of
the trivial character.

(i) The system of eigenvalues associated with π appears in Hd(XKp×Ip ,DχU ) if and only if
d = 2.

(ii) There is at least one curve S ⊆ U passing through 1 such that

H1(XKp×Ip ,DχS )mπ 
= 0.

If such a curve S is smooth at 1, the space is free of rank one over OS,1 and the canonical
map

H1(XKp×Ip ,DχS )mπ −→ H1(XKp×Ip , E)mπ

is surjective.

The following proposition completes the picture by taking into account the cohomology in
degree two.

Proposition 5.2. For every curve S as in Theorem 5.1(ii) that is smooth at 1 we have

H2(XKp×Ip ,DχS )mπ 
= 0.

More precisely, the space is free of rank one over OS,1 and the canonical map

H2(XKp×Ip ,DχS )mπ ⊗OS(S) E −→ H2(XKp×Ip , E)mπ

is an isomorphism. Moreover, H2(XKp×Ip ,DχS )mπ and H1(XKp×Ip ,DχS )mπ are isomorphic as
modules over the Hecke algebra.

Proof. Let m be a generator of the maximal ideal of the localization. From the short exact
sequence

0→ DχS
×m−→ DχS → D1 −→ 0

we obtain a long exact sequence in cohomology
×m−−→ H1(XKp×Ip ,DχS )mπ −→ H1(XKp×Ip , E)mπ

0−→ H2(XKp×Ip ,DχS )mπ

×m−−→ H2(XKp×Ip ,DχS )mπ −→ H2(XKp×Ip , E)mπ −→ 0.

Here the second map is the zero map as the first map is surjective by the second part of
Theorem 5.1, and the last term is zero because the system of eigenvalues for π does not appear
in degrees greater by Theorem 5.1(i).
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We then get that multiplication by m is injective on H2(XKp×Ip ,DχS )mπ and, therefore, the
map

H2(XKp×Ip ,DχS )mπ ⊗OS,1
E −→ H2(XKp×Ip , E)mπ

is an isomorphism. By hypothesis, H2(XKp×Ip , E)mπ is one-dimensional. Therefore, the
OS,1-module H2(XKp×Ip ,DχS )mπ is cyclic by Nakayama’s Lemma. If it were torsion, then
multiplication by m would not be injective on it, which is a contradiction; so it is free.

Let r be a generator of the ideal ofOU ,1 corresponding to S. The modules H1(XKp×Ip ,DχS )mπ

and H2(XKp×Ip ,DχS )mπ are kernel and cokernel, respectively, of the multiplication by r map
on H2(XKp×Ip ,DχU )mπ . Multiplication by the appropriate power of r yields the sought-after
isomorphism. �

We would like to apply Theorem 3.16 to conclude that L-invariants are independent of
the cohomological degree. There are, however, several problems. First, it is not clear whether
one can find a curve S as in the theorem that is smooth at 1. Second, if one finds such a
curve, the automorphic Colmez–Greenberg–Stevens formula in the inert case only produces one
element in the intersection of L(0)(f, p) and L(1)(f, p). As these spaces are two-dimensional by
Proposition 1.8 this gives us no new information. In the split case the situation is better: one
can at least compute the L-invariant of one of the primes lying above p and, if the tangent space
of S at 1 is generic enough, one can compute both.

Corollary 5.3. Let F be an imaginary quadratic field unramified at p and let π be a cuspidal
Bianchi newform of parallel weight 2. Suppose that p splits in F as p = pp and f is Steinberg at
both, p and p. Then at least one of the equalities

L(0)(π, p) = L(1)(π, p)

or

L(0)(π, p) = L(1)(π, p)

holds.

Remark 5.4. It was shown in [Geh19a] that the theorem above would also follow from Venkatesh’s
conjectures on the action of derived Hecke algebras.

The situation simplifies substantially if π is the base change of a modular form f .

Theorem 5.5. Let F be an imaginary quadratic field unramified at p. Let f be a newform of
weight 2 that is Steinberg at p and BC(f) its base change to F . The following hold.

(i) If p = pp is split in F , then

L(0)(BC(f), p) = L(1)(BC(f), p) = L(0)(BC(f), p) = L(1)(BC(f), p) = L(f, p).

(ii) If p is inert, we have

L(0)(BC(f), p) ∩Homct(Q∗
p, E) = L(1)(BC(f), p) ∩Homct(Q∗

p, E) = L(f, p).

(iii) If p is inert, we have

L(0)(BC(f), p) = L(1)(BC(f), p).

Proof. In § 5 of [BW19] it is shown that one may take S ⊆ W to be the parallel weight curve (see
§ 5 of [BW19]), which is clearly smooth at 1. Using p-adic Langlands functoriality as explained
in [BW19], the first two claims follow by applying Theorem 3.16 (respectively, its analogue in
the Bianchi setting) for the modular form f and its base change to F . The last claim is a
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consequence of the second claim and the Galois invariance of automorphic L-invariants attached
to base change representations (see Lemma 3.1 of [Geh19b]). �
Remark 5.6. In the inert case the equality L(0)(BC(f), p) ∩Homct(Q∗

p, E) = L(f, p) was proven
in [Geh19b, Lemma 3.3], using Artin formalism for p-adic L-functions and the exceptional zero
formula. An analogous result for higher weight forms was proven by Barrera-Salazar and Williams
in [BW19, Proposition 10.2].

Our approach can be adapted to higher weights making the construction of Stark–Heegner
cycles of [VW21] unconditional in the base change case.
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