
Theory and Practice of Logic Programming 1 (3): 283–301, May 2001.

Printed in the United Kingdom c© 2001 Cambridge University Press

283

Multi-threading and message communication in
Qu-Prolog

KEITH CLARK

Department of Computing, Imperial College, London, UK

(e-mail: klc@doc.ic.ac.uk)

PETER J. ROBINSON, RICHARD HAGEN

Software Verification Research Centre, The University of Queensland, Australia

(e-mail: pjr@csee.uq.edu.au)

Abstract

This paper presents the multi-threading and internet message communication capabilities of

Qu-Prolog. Message addresses are symbolic and the communications package provides high-

level support that completely hides details of IP addresses and port numbers as well as the

underlying TCP/IP transport layer. The combination of the multi-threads and the high level

inter-thread message communications provide simple, powerful support for implementing

internet distributed intelligent applications.

KEYWORDS: logic programming, multi-threading, high-level communication, Qu-Prolog,

ICM

1 Introduction

Qu-Prolog (Robinson, 1997; Hagen et al., 1999) is an extension of Prolog designed

primarily as an implementation and tactic language for interactive theorem provers,

particularly those that carry out schematic proofs. Qu-Prolog has built-in support

for the kinds of data structures typically encountered in theorem proving activities

such as object variables, substitutions and quantified terms. Qu-Prolog is the imple-

mentation language of the Ergo theorem prover (Becht et al., 1996), which has seen

substantial use in development of verified software, both directly (Fidge et al., 1995)

and indirectly through prototyping a program refinement tool (Carrington et al.,

1996).

As part of our ongoing efforts to scale up our formal development tools, we

are interested in developing multi-user versions of these tools. In particular, we are

interested in implementing a multi-threaded, multi-user version of Ergo where a

collection of people and automated theorem provers can work together to produce

a proof.

As a preliminary step to this, we have augmented Qu-Prolog to support multi-

threading and high-level inter-thread communication between Qu-Prolog threads

running anywhere on the internet. An initial case study on multi-threaded theorem

proving is described in Cook et al. (1999).

https://doi.org/10.1017/S147106840100120X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840100120X

284 K. Clark et al.

This paper reports on these new features of Qu-Prolog. Our main aim in designing

the thread mechanism is to provide simple and powerful methods for programming

distributed Prolog-based agent applications. Some simple examples of using our

approach for DAI applications are given in Clark et al. (1998).

Apart from the ability to give symbolic names to threads and the management of

messages, the implementation of threads is similar to that of other multi-threaded

Prologs, such as BinProlog (Tarau, 1997) and SICStus MT (Eskilson and Carlsson,

1998). The novelty of the Qu-Prolog approach to threads is the high level inter-

thread message-based communication which transparently communicates messages

independently of location. Inter-thread communication uses the API of McCabe’s

InterAgent Communications Model (ICM) (McCabe, 1999). This means that Qu-

Prolog applications can transparently link with other applications that use the ICM

such as April (McCabe and Clark, 1995) applications.

Qu-Prolog inter-thread communication borrows ideas from both Erlang (Arm-

strong et al., 1993) and April. Threads in Qu-Prolog behave as communicating

processes which have a single message buffer of unread messages. They will suspend

if they want to read a message and the buffer is empty, and will then resume as

soon as a message, communicated from another thread or application, is added to

the buffer.

The organization of the paper is as follows. In Section 2 we briefly describe Qu-

Prolog threads. In Section 3 we present the high-level inter-thread communication of

Qu-Prolog and in Section 4 we discuss its implementation. Sections 5 and 6 illustrate

the use of threads and high-level communication by presenting an implementation

of the Linda model for interprocess communication and an implementation of

distributed query processing in which each Prolog query server can process many

queries simultaneously. In Section 7 we compare Qu-Prolog with SICStus-MT,

BinProlog, CIAO, Mozart-Oz, Erlang and April.

2 Threads

Qu-Prolog is implemented as an extended WAM emulated in C++. Thread execution

is controlled by a scheduler that is responsible for time-slicing threads, managing

blocking of I/O and ICM message and signal handling.

In the implementation the threads within a single Qu-Prolog process share the

static code area and the asserted and recorded databases. On the other hand, threads

carry out independent Qu-Prolog computations and so, for example, have separate

heaps, stacks and trails.

The Qu-Prolog thread library contains predicates for creating and deleting threads,

symbolically naming threads, and for controlling thread execution. The sizes of the

WAM data areas for each thread can be set at creation time so that the size of each

individual thread can be tailored to its intended use.

The predicates

thread_fork_anonymous(-ThreadID, +Goal, +Sizes)

thread_fork(-ThreadID, +Name, +Goal, +Sizes)

https://doi.org/10.1017/S147106840100120X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840100120X

Multi-threading and message communication in Qu-Prolog 285

create a new thread and execute Goal within the thread. When the goal finishes

executing (by success or failure) the thread terminates. The sizes of the various data

areas, such as the heap, is specified in the Sizes data structure. If this argument is

missing, the default sizes are used. ThreadID is the ID of the created thread, and in

the second predicate, Name is the symbolic name given to the thread.

Typically, the main or initial thread of an application is in charge of forking

threads. If this is an ‘intelligent’ server application this initial thread is usually

programmed as a top level tail recursive or repeat/fail loop that responds to messages

sent to it from any number of client applications. We shall give an example of this

later. For some of these ‘queries’ the main thread may fork one or more new threads

to process the ‘query’ or to engage in a conversation with the client. The client, in

turn, can fork a thread for each conversation. This enables peer to peer, or agent to

agent application programming, rather than just client/server programming.

The predicates

thread_forbid

thread_resume

are used to allow a thread to take control so that it can, for example, perform

an atomic operation like an assert on the shared dynamic clauses. thread_forbid

prevents other threads from having a time-slice and thread_resume resumes time-

slicing.

Apart from being able to symbolically name threads, the implementation of

threads is similar to that of other multi-threaded Prologs and will not be discussed

further in this paper, except where it relates to communication.

3 Inter-thread communications

In this section we give a user-level view of inter-thread communication and symbolic

addressing in Qu-Prolog. By inter-thread communication we mean communication

between any two threads whether they are in the same Qu-Prolog process or different

Qu-Prolog processes, even on different machines.

Throughout this section we concentrate on the higher-level communication sup-

port in Qu-Prolog. We consider two layers: the basic support for inter-thread

communication; and a very-high-level layer built on the basic support. Qu-Prolog

also supports low-level communications via sockets but this is reasonably standard

and is therefore not discussed in this paper. The socket level primitives can be used

for communicating with pre-existing Internet services, such as HTTP or FTP servers.

From a user perspective, the higher-level communication support treats commu-

nication between threads in a uniform way – all messages to a thread, irrespective

of the sources of the messages, are added to the end of the thread’s single message

buffer.

Each message that appears in a thread’s message buffer has three components:

the actual message; the sender address; and the reply-to address. Generally, the

reply-to address is the same as the sender address (the default) but the sender can

set the reply-to address when, for example, the message is forwarded.

https://doi.org/10.1017/S147106840100120X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840100120X

286 K. Clark et al.

Each thread address also has three components: the identity of the thread; the

identity of the Qu-Prolog process that contains the thread; and the identity of the

machine running the Qu-Prolog process1.

For threads, the identity is either an integer representing the thread ID given to

the thread at creation time or its symbolic name given to it when it was created or

by the use of the predicate thread_set_symbol/1.

The identity of a process is a symbolic name given to the process when it is started

at the operating system level. The machine identity is typically the IP address, but

can also be any of its internet symbolic names.

3.1 Basic inter-thread communication

The basic communication layer provides support for constructing address data

structures, for sending messages and for accessing the message buffer.

The most general message send predicate is

ipc_send(+Message, +ToAddress, +ReplyAddress, +Options)

where Message is a Prolog term that is the message, ToAddress is an address data

structure representing the message destination, ReplyAddress is an address data

structure representing the reply-to address, and Options is a list of flags that control

how the message term is represented as a string of characters.

The option flags are remember_names and encode. One important requirement

of Qu-Prolog is to support interaction with symbolic data. This is achieved by being

able to associate variable names with variables. Qu-Prolog has variants of the read

and write predicates that remember variable names that are input and generate

names for unnamed variables on output. An important consequence of this is that if

a variable is read in whose name is the same as an existing variable, then the input

variable will become the existing variable.

This feature is extended to messages. If the remember_names option is set then

any unnamed variables in the message are given names. This option, in combination

with the equivalent option for receiving messages, provides a variable connection

across threads, and thereby supports processing of schematic data across threads. In

particular, if one thread T1 sends a sequence of messages to the same destination

thread T2, some or all of which contain the same internal variable X1 of T1, this

will be given the same name N in all the messages in which it occurs. T2 will map

each occurrence of N, in the different messages, into the same internal variable X2

of T2. This allows incremental transmission of queries between threads.

The encode option determines if efficient Prolog term compression is to be used

or if the term is to be sent in ‘raw’ string form. For Qu-Prolog-to-Qu-Prolog

communication, the encoded form is much more efficient both for writing and

reading. If, however, a message is being sent to a non-Qu-Prolog process then the

raw string form is usually more appropriate.

1 Strictly speaking, this is the identity of the host running the ICM communications server with which
the Qu-Prolog process is registered. This is usually the machine on which the Qu-Prolog process is
running, but need not be. See Section 4.

https://doi.org/10.1017/S147106840100120X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840100120X

Multi-threading and message communication in Qu-Prolog 287

There are three predicates for accessing the message buffer. They are (in their

most general forms)

ipc_recv(?Message, ?FromAddress, ?ReplyAddress, +Options)

ipc_peek(?Message, -Reference, ?FromAddress, ?ReplyAddress, +Options)

ipc_commit(+Reference)

ipc_recv reads the first message in the buffer and unifies the message and its

address data structures with the corresponding supplied arguments. It fails if the

unification with this first message fails. So, usually all the arguments of the call are

unbound variables.

ipc_peek searches the message buffer (from the beginning) for a message that

unifies with the supplied message and address arguments, returning Reference as

a reference to the matching message in the buffer (really a pointer to the message

buffer). On backtracking it will try to find another match.

ipc_commit is used to remove a message from the message buffer. Typically,

ipc_peek and ipc_commit are used in combination to search for a particular

message and then remove it.

For both ipc_recv and ipc_peek, if no (matching) message is found then the

behaviour of the call is determined by the timeout flag in the options list. If the flag

is set to block then the call is delayed until another message arrives (the default).

If the flag is poll then the call fails immediately. Otherwise, if the flag is an integer

n then the call will suspend for up to n seconds. If no message arrives in that time

then the call fails.

The other possible option is remember_names. If this is set then a connection

will be made between named variables in the message and corresponding named

variables in the thread, which typically were variables of previous messages received

using this option. If the option is not set then no connection is made between

variables in the message and variables of the thread. This provides ‘separation of

variables’.

The encode option is not required because this information is part of the incoming

message and is used to determine if decoding is required.

3.2 High-level inter-thread communication

The higher level layer provides application writers with a powerful yet simple

interface to the basic inter-thread communications layer. Again, there are two parts

to this layer: management of addresses, and communication.

In this layer full addresses take the form

ThreadName:ApplicationName@HostName.

As with email communication, the global name can be shortened for local com-

munications. Just ThreadName:ApplicationName can be used for a communication

to a thread running on the same machine, and just ThreadName can be used to

send to another thread running within the same Qu-Prolog application. Thus, an

https://doi.org/10.1017/S147106840100120X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840100120X

288 K. Clark et al.

ApplicationName is a thread name domain and a HostName is an application name

domain.

The special addresses self and creator respectively refer to the thread itself, and

the thread that forked it, providing there is such a thread. For a top level thread,

creator denotes the thread.

These addresses are used in this layer for sending messages and for pattern

matching against addresses in incoming messages.

The predicates

Message ->> Address

Message ->> Address reply_to ReplyAddress

are used to send messages. So, for example,

connect ->> main_thread:server_process

sends the connect symbol as a message to the thread with name main_thread in

the Qu-Prolog application server_process on the local machine.

connect ->> main_thread:server_process reply_to creator

sends the same message but also sets its associated reply-to address to the creator

of the message sender. Further examples of uses of communication using this layer

are given later.

Each of the predicates

Message <<- Address

Message <<- Address reply_to ReplyAddress

reads the first message from the message buffer and unifies it with the supplied

arguments. The call suspends if there are no messages in the buffer. It fails if the

first message does not unify with the supplied arguments.

Each of the predicates

Message <<= Address

Message <<= Address reply_to ReplyAddress

searches the message buffer looking for a message that unifies with the supplied

arguments. If one is found, that message is removed, otherwise the call suspends

until another message arrives. It continues, checking each newly arrived message,

until one does unify.

The most powerful form of message receive is the message choice call which has

the form

message_choice (

MsgGuard1 -> CallConj1

;

MsgGuard2 -> CallConj2

.

.

MsgGuardn -> CallConjn)

https://doi.org/10.1017/S147106840100120X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840100120X

Multi-threading and message communication in Qu-Prolog 289

where each MsgGuardi has the form

MsgPtn <<- S reply_to R :: Test

in which the reply to R and :: Test are optional. This will scan the message buffer

of the thread testing each message against the sequence of alternative message guards

in turn. When a message is found which matches the MsgPtn <<- S reply to R of

any one of the message guards, and the associated Test call succeeds, the message

is removed from the buffer and the corresponding CallConj is executed. The Test

call can be an arbitrary Prolog call that typically tests variable values generated by

the unification of the message with the message pattern

MsgPtn << S reply_to R

As with the single message search operator <<=, the message choice call will

suspend if the end of the message buffer is reached and will be automatically

resumed when a new message is added. However, in this case we can set a limit on

the time for which the message choice call and the thread that executes it should

suspend. We do this by including

timeout(T) -> TimeOutCall

as a last alternative of the message choice call. This will limit to T seconds the time

that the call suspends, after the search for an acceptable message has reached the

end of the buffer. When the time limit is reached the message choice call executes

TimeOutCall.

In the current implementation of the higher-level message communication op-

erators, the communication options of the lower level communications predicates

they invoke are set to do encoding and to remember variable names. It is, however,

straightforward to modify or extend the definitions if other behaviours are required.

All the high level communications primitives are implemented as a library of Prolog

programs that use the base level primitives.

3.3 Local inter-thread communication using the dynamic database

The only way that threads running in different Qu-Prolog applications can communi-

cate is via messages. However, Qu-Prolog threads running within a single Qu-Prolog

application can also communicate using the dynamic database. When a thread ex-

ecutes an assert or record this is added to the data area accessible by all the

local threads. An asserted clause can later be accessed by another local thread using

clause or retract. By executing these calls as arguments to a special thread wait

meta-call predicate, we can make the accessing call suspend (rather than fail) until a

matching clause is asserted by another local thread. So threads within an application

can synchronise either via explicit message passing or by blocking accesses to the

shared dynamic memory. We shall use this second form of synchronisation for local

threads in our Linda server example.

https://doi.org/10.1017/S147106840100120X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840100120X

290 K. Clark et al.

4 Communications: Implementation

Our original implementation of communications was based on ideas from April

and included a name server that kept track of symbolic names, and local caches of

mappings between symbolic address and low-level (TCP/IP) addresses.

At the same time Frank McCabe was developing the InterAgent Communications

Model (ICM). This model was developed from April and the newer versions of April

use this model for communications.

Recently, we replaced our communications support with the ICM API. We did

this for a number of reasons. Firstly, it allowed us to concentrate more on Qu-

Prolog specific development rather than on communications development. Secondly,

the ICM is more robust than our original implementation with respect to processes

dying. Thirdly, the ICM has good support for such things as ‘mobile computing’ and

lastly, it allows Qu-Prolog to communicate with other applications, such as April

applications, that use the ICM API. We also found that it was very straightforward

to add the ICM API to the Tk interpreter, thereby making it easy to write GUI’s

that interact with applications using message passing. It is then simple to produce a

system that has multiple Qu-Prolog applications interacting with multiple GUI’s.

The ICM can be divided into two parts: the ICM communication servers that

route messages from one process that uses the ICM API to another such process;

and the ICM API that provides functions for connecting to and disconnecting from

an ICM communication server and for sending and receiving messages.

In order to use the ICM for communication, at least one ICM communication

server needs to be running on the network. Typically, for a wide area network there

will be one communication server per machine, but for a local area network there

might be a single ICM communication server running on a designated machine.

However, for simplicity of presentation, in the rest of the paper we shall assume that

there is a communication server running on each machine on which the Qu-Prolog

application running.

An application that wants to use the ICM registers its name with one of the ICM

communication servers, typically the local communication server. The ICM (if there

is one) then takes responsibility for routing messages to and from this process.

ICM addresses are similar to the Qu-Prolog addresses described earlier. The basic

ICM address consists of a home, a name and a target. The home is the name of a

machine running an ICM communication server, the name is the name of a process

registered with this communication server, and the target is a field that is not used

directly by the ICM, but is intended for use by the application. For Qu-Prolog the

target is used as the thread name (or ID).

When a named Qu-Prolog process is launched, the process registers its name with

the ICM communication server running on the same host (the default). This opens

two TCP connections, one for outgoing messages, one for incoming messages. It then

forks a POSIX thread for processing the incoming messages from the communication

server and begins execution of the initial Qu-Prolog thread. The incoming message

handling thread consists of a loop that waits for a message from the communication

server, decodes the message, and adds the message to the message buffer of the local

thread identified by the target field of the address.

https://doi.org/10.1017/S147106840100120X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840100120X

Multi-threading and message communication in Qu-Prolog 291

The way outgoing message are handled depends on the recipient’s address. If the

recipient is a thread with the same Qu-Prolog process then the message is simply

copied to the recipient’s message buffer. Otherwise, the message is dispatched using

functions from the ICM API to the local communication server for routing to the

target thread of some other Qu-Prolog process. If the other Qu-Prolog process is

running on the same host, only the local ICM communication server is involved.

It looks up the name in its list of registered processes, and sends the message via

the TCP connection that was opened when the process registered. If the Qu-Prolog

process is on another host, the local communication server dispatches the message

to the communication server running on that host, which is identified in the full

thread address. To do this, it may open a temporary TCP connection. The target

communication server then forwards it to the identified Qu-Prolog process, which,

in turn, puts it into the thread’s message buffer. All this middleware is invisible to

the Qu-Prolog application programmer.

The ICM system has considerable functionality for robust inter-host communi-

cation. For example, if the target Qu-Prolog process is a registered process but is

temporarily down, its communication server will hold any messages for any of its

threads until the process resumes, and re-connects with the communication server.

It addition, for hosts that may be temporarily disconnected from the network, such

as a laptop computer, we can designate a proxy communication server that is on

a host permanently on the network. All messages for the communication server on

the laptop will then be automatically re-routed to the proxy server when the laptop

is disconnected. On re-connection, they will be automatically downloaded to the

laptop communication server, for forwarding to its local processes and their threads.

Again, this is invisible to the Qu-Prolog application programmer.

5 The Linda model

In this section we illustrate some of the multi-threading and high-level communica-

tion features of Qu-Prolog by presenting an implementation of the Linda model for

inter-process communication (Carriero and Gelernter, 1989). Note, however, that

Qu-Prolog’s primary form of communication is via message passing, not through

the use of the Linda model or other forms of communication using blackboards.

In the Linda model processes communicate by adding and removing data tuples

to and from a shared tuple data space. They can suspend, waiting for a tuple that

matches a certain pattern.

Each communication process can execute the following operations on the tuple

space.

• out(Tuple) – Add Tuple to the tuple space.

• in(Tuple) – Remove Tuple from the tuple space (block until match found).

• rd(Tuple) – Lookup Tuple in the tuple space (block until match found).

• inp(Tuple) – Remove Tuple from the tuple space (fail if match not found).

• rdp(Tuple) – Lookup Tuple in the tuple space (fail if match not found).

For simplicity, we have chosen not to deal with the Linda eval operation. This

https://doi.org/10.1017/S147106840100120X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840100120X

292 K. Clark et al.

main(_) :-

thread_set_symbol(main_linda_thread),

linda_loop.

linda_loop :-

repeat,

connect <<= FromAddr,

thread_fork_anonymous(_, linda_thread(FromAddr)),

fail.

linda_thread(A) :-

connected ->> A, thread_loop(A).

thread_loop(A) :-

repeat,

message_choice (% only from its client, A.

out(T) <<- A -> assert(T), inserted ->> A

;

in(T) <<- A -> thread_wait(retract(T)), ok(T) ->> A

;

rd(T) <<- A -> thread_wait(clause(T, _)), ok(T) ->> A

;

inp(T) <<- A -> (retract(T) -> ok(T) ->> A ; fail ->> A)

;

rdp(T) <<- A -> (clause(T, _) -> ok(T) ->> A ; fail ->> A)

),

fail.

Fig. 1. The Linda server.

could be implemented using, for example, a variant of distributed querying given

later.

Figure 1 presents an implementation of a Linda tuple server that uses the dynamic

database of a Qu-Prolog process, called linda server when launched, to store

the tuple space. Each tuple of the tuple space becomes a fact in the dynamic

database which is shared across all threads within the linda server process. Each

thread can therefore access, assert and retract any of these facts. The initial thread

of this application, the one started when the application is launched, is called

main linda thread. Each process that wants to access the tuple space must first

register with the linda server by sending a connect message to

main linda thread:linda server@hostname.

The server process is launched using the -A linda_server switch which names

the process. On startup, the initial server thread names itself and then enters a loop

waiting for connect messages from a client process. It ignores all other messages.

On receipt of a connect message the process forks a thread to deal with the client.

The created thread sends a connected acknowledgement to the client, which also

serves to identify the thread to the client (as the sender of the acknowledgement),

and then enters a loop to process client requests. The thread will suspend waiting

for the client’s requests. It processes them by appropriate operations on the dynamic

https://doi.org/10.1017/S147106840100120X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840100120X

Multi-threading and message communication in Qu-Prolog 293

remember_linda_thread_address(A) :-

my_id(ID), assert(linda_th_addr(ID,A)).

get_linda_thread_address(A) :-

my_id(ID), linda_th_addr(ID,A).

linda_connect :-

connect >> main_linda_thread : linda_server @ linda_machine,

connected <<= A,

remember_linda_thread_address(A).

linda_disconnect :-

thread_tid(TID),

retract(linda_th_addr(TID,A)),

disconnect ->> A.

linda_out(T) :-

get_linda_address(A), out(T) ->> A, inserted <<= A.

linda_in(T) :-

get_linda_address(A), in(T) ->> A, ok(T) <<= A.

linda_rd(T) :-

get_linda_address(A), rd(T) ->> A, ok(T) <<= A.

linda_inp(T) :-

get_linda_address(A), inp(T) ->> A, M <<= A, M = ok(T).

linda_rdp(T) :-

get_linda_address(A), rdp(T) ->> A, M <<= A, M = ok(T).

Fig. 2. Linda client support.

database. The multi-threading of Qu-Prolog allows a very simple and elegant imple-

mentation of the Linda model. The client processes of the tuple space manager can

be distributed over the Internet.

The predicate thread_wait/1 causes the thread to block until the supplied tuple

term T gets asserted. Note that by using one thread per client, only those threads

that should block do so and the server can continue to process commands from

(non-blocked) clients.

The code in Figure 2 provides a library of predicates for use by a Linda client

implemented in Qu-Prolog. For this example we assume linda_machine is the

machine on which a Linda server is running.

Each Linda client communicates with a Linda thread created specifically to

handle this client. Each client therefore needs to keep track of the address of its

Linda thread. We have chosen to do this by asserting the address together with the

client thread identifier. The client thread identifier is included to avoid confusion

when several Linda clients are running in one Qu-Prolog process and therefore

sharing the dynamic database.

Note, in particular, the use of symbolic names to identify the destination in the

connect message send, and the use by the client of the the identity of the sender of

the connected reply it receives as the identity of its server thread.

The blocking behaviour of the operations is achieved on the client’s side by

message blocking and on the server’s side by the use of thread_wait/1. The clients

https://doi.org/10.1017/S147106840100120X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840100120X

294 K. Clark et al.

need not be Qu-Prolog threads. Using the ICM API they could, for example, be C

or April processes using Qu-Prolog as the Linda tuple space handler.

6 Distributed querying

We have seen that it is straightforward to have messages sent between Qu-Prolog

threads running in Qu-Prolog applications anywhere on the internet. Let us consider

an application in which we have several Qu-Prologs running, one per host, each of

which has its own ‘deductive database’ of Prolog rules. Imagine a query interface

that allows a user to enter a query on any host to any one of these query servers,

which may be on another host. Imagine the interface allows the querier to request

that either all the answers be returned, in one reply, or that the answers should be

returned one at a time, on demand.

To handle the query requests, each remote query can have a main thread that

accepts either an all of(C) message – a request to the server to produce all solutions

of the query C - or a stream of(C) message – a request to produce the answers one

at a time. It handles the former by using findall to construct the reply. It handles

the latter by forking a temporary thread to interact with the user, who can request

the answers one at a time, or terminate the query thread at any stage. Forking a

temporary thread allows the main query thread to deal with other queries, from the

same or other users of the distributed information system.

The top level of the query server is similar to the Linda server and is presented in

Figure 3. When launched with a -A query_server switch, the query server’s main

thread starts executing and names itself query_thread . A client can then interact

with the server by sending a query to query_thread:query_server@machine.

Note that an all of message is handled by executing a findall within the main

query thread. However, the stream of message causes a new thread to be started,

executing the call ans gen(Call,R) where Call is the query and R is the thread

to which answers will be sent – the client. Notice that this time the identity of

the forked query thread is sent to the client in a query thread is message from

the main thread. Alternatively, as in the Linda program, we could have made the

temporary query thread identify itself to the client with an initial message. The

client will now interact with this temporary thread. Notice that the server identifies

the client as the reply_to of the received query, rather than the sender of the

query. This allows queries to be forwarded to a query server on behalf of another

thread. Such forwarding might be used by broker Qu-Prolog applications acting as

intermediaries in the distributed information system.

The ans gen program finds the first solution instance of Call, sends it to the

client R, and then waits for a next or finish message to arrive from R to see if it

should find another solution or not. If, when it has received a next message, there

are no more solutions, it signals this by replying with the message fail. A client

can also send a finish message, to prematurely terminate the search for solutions.

Figure 4 presents an interface to a client program interface to any of the query

servers via two meta-call predicates ? and ??. A call of the form C?QS sends an

https://doi.org/10.1017/S147106840100120X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840100120X

Multi-threading and message communication in Qu-Prolog 295

main(_) :-

thread_set_symbol(query_thread),

query_loop.

query_loop :-

repeat,

message_choice (

all_of(Call) <<- _ reply_to R -> findall(Call,Call,L),

answer_list(L) ->> R

;

stream_of(Call) <<- _ reply_to R ->

thread_fork_anonymous(I,ans_gen(Call,R)),

query_thread_is(I) ->> R

),

fail.

ans_gen(Call,R):-

call(Call),

answer_instance(Call) ->> R, % send answer to client R

message_choice (

next <<- R -> fail % fail back to get next answer

;

finish <<- R -> thread_exit). % terminate on finish

ans_gen(Call,R) :-

fail ->> R, % when no more answers send fail to client

thread_exit. % and terminate

Fig. 3. A query server.

all of(C) message to the query server QS, waits for the list of solutions from the

server, and then uses member to locally backtrack over the solutions as required.

A call of the form C??QS sends a stream of(C) message to QS, waits for the

thread ID and the first answer, and then uses deal with ans to process the reply

and to manage any subsequent backtracking.

The above meta calls can be used in user queries and in clauses in the databases

of each query server. So a user query to one server can result in a chain of remote

queries being sent over the network of query servers. The initial query server thus

serves as an interface to the entire network.

There is a slight problem with the above implementation of remote querying. If a

query or clause executes a cut (!) after a C??QS call, but before all the solutions have

been requested and returned, the temporary thread created by QS will not be exited,

and will be left as an orphan. A slight elaboration of the query server program and

the ?? program will ensure that such orphan threads are all sent a finish message,

providing the distributed query evaluation is started with a top level user query to

one of the servers. We will not give the code, but we will explain the idea.

The user interface program, and each query server thread (even a temporary

thread), remembers the identities of all the remote query threads started as a result

of a ?? call it executes. A thread T forgets the identity of one of these remote

query threads QTh if QTh indicates its termination by sending T a fail message.

https://doi.org/10.1017/S147106840100120X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840100120X

296 K. Clark et al.

Call?Q_S:-

all_of(Call) ->> Q_S,

answer_list(L) <<= Q_S,

member(Call,L).

Call??Q_S :-

stream_of(Call) ->> Q_S, % send stream_of query to Q_S

query_thread_is(QTh) <<= Q_S, % wait for id of new thread

Ans <<= QTh, % wait for first answer from this thread

deal_with_ans(Ans,Call,QTh).

deal_with_ans(fail,_,QTh) :- % answer is fail message

!, fail. % no (more) answers

deal_with_ans(answer_instance(C),C,_).

deal_with_ans(answer_instance(_),C,QTh):-

next ->> QTh, % request next ans for remote C call

Ans <<= QTh,

deal_with_ans(Ans,C,QTh).

Fig. 4. Query server client support.

The remembering and forgetting can be done by having the ?? program assert a

remote thread(T,QTh) fact when it gets the query thread is(QTh) message, and

having deal with ans retract the fact on receipt of the fail message from QTh,

indicating its normal termination.

We now modify the query_loop program so that it executes a call to:

kill_orphans :-

my_id(ID),

forall(retract(remote_thread(ID, QTh)),finish >> QTh).

after it has found and returned all the solutions to an all of query request. This

will cause all remote query threads started during its execution to be terminated.

In addition, we modify the program for ans gen so that it calls kill orphans just

before it executes a thread exit, both on normal termination (after it has returned

all its answers) and on receipt of a finish message (premature termination). The

latter, which is a propagation of finish messages, implements distributed garbage

collection of query threads started when a finish is sent either by the user interface

program, or when any query thread has found all the solutions to its query.

A finish will be sent by the user interface if the user indicated one at a

time answers causing the query to be dispatched as a stream of request, and

the user indicates they want no more answers before all the answers have been

returned (equivalent to a top level !). The user interface initiates distributed garbage

collection of what would be orphan threads by sending a finish message to the

temporary query thread handling its stream of request. On receipt of the finish,

this thread will, in turn, execute kill orphans and so send finish messages to

any remote threads it started, that have not yet terminated. They, in turn, will

execute kill orphans, effectively forwarding the finish message to their orphan

https://doi.org/10.1017/S147106840100120X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840100120X

Multi-threading and message communication in Qu-Prolog 297

threads. Eventually, all orphaned query threads started by the user query, directly

or indirectly, will be terminated.

The other case to consider is when all the answers to the user query have been

returned to the user interface program. Whether or not the user query was dispatched

as an all of or a stream of remote query, garbage collection of the orphan threads

will be started by the query thread that handled the query by it calling kill orphans

when all the answers have been returned to the user interface.

7 Comparisons

In this section we briefly compare communication in Qu-Prolog with that of SICStus-

MT, BinProlog, CIAO, Erlang, Mozart-Oz and April.

For messages between threads within the same Prolog process, SICStus-MT uses

much the same approach as Qu-Prolog – both have a single message buffer, which

they call a port, both are able to scan the buffer looking for message patterns,

and both suspend if no (matching) messages are found. The main differences are

that SICStus-MT does not use message buffers for communication between threads

in different SICStus-MT processes, and symbolic names are not used for threads.

To communicate between different Prolog processes TCP communication primitives

must be used.

The main method of high-level communication used by BinProlog is through the

use of Linda tuple spaces. Our implementation of the Linda model demonstrates that

it is easy to emulate the BinProlog style in Qu-Prolog. On the other hand, it would

also be easy to emulate the Qu-Prolog style of communication using BinProlog’s

tuple space. The symbolic addresses could be included as extra arguments to tuples

stored in the tuple space and this information could be used by threads looking for

messages meant for them.

If efficiency of communication is measured by the number of communications

needed to send a message from source to destination then a comparison can be

made between the two systems. Assuming, in the BinProlog system, one tuple space

is used then three communications are required: one to put the message in the tuple

space; one to ask the tuple space for a message; and one for the tuple space to send

the message. In Qu-Prolog the number required depends on the number of ICM

communication servers ‘between’ the sender and receiver. If the sender, receiver are

in Qu-Prolog process registed with the same ICM communciation server then two

communications are required, if they are registered with different commuication

servers then three communications are required. Note that when messages are sent

between threads in the same Qu-Prolog process then no communications are required

– term copying from the heap of the sender to the buffer of the receiver is used.

In the case of Qu-Prolog the other overheads of communication relate to the

message handling thread – ICM message decoding and copying to message buffers.

In BinProlog the main extra overheads seem to be related to the management of the

tuple space.

The CIAO system (Carro and Hermenegildo, 1999) uses of the dynamic Prolog

database for communicating between threads in the same process. Whereas Qu-

https://doi.org/10.1017/S147106840100120X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840100120X

298 K. Clark et al.

Prolog uses assert and retract to update the database and thread_wait to

suspend calls to the database, the CIAO system uses extensions of the normal

dynamic database access/update predicates that automatically suspend if a thread

tries to access a clause for a dynamic predicate declared as concurrent. The

concurrent predicates are the ones that are used for inter-thread communication.

This automatic suspension also applies to normal calls to a concurrent predicate,

even on backtracking. Thus, a thread will suspend when a call to a concurrent

predicate has ‘seen’ all the clauses for the predicate that have so far been asserted

by the other threads. This allows the dynamic database to be used to communicate

a stream of data between threads, as an incrementally asserted set of facts, with

automatic suspension of consuming threads that run ahead of the producers. In Qu-

Prolog we would normally achieve this by using message communication between

the consumers and a single intermediary thread that multicasts each data item to all

the consumers.

The CIAO inter-thread communication can be enhanced by the use of attributed

variables (Hemenegildo et al., 1995) to allow communication of variable bindings

between threads via the dynamic database. Attributes are terms that can be asso-

ciated with unbound variables. Whenever a variable with an attached attribute is

bound, a user defined program is automatically invoked that is passed the variables

current attribute values and the value to which it is bound. The attribute value(s)

can be used to uniquely identify the variable. The invoked user defined program

can then assert the attribute/value pair in the dynamic database, thereby making

the binding available to other threads. (Hemenegildo et al., 1995) shows how this

mechanism can be used to implement concurrent processes apparently communi-

cating via incrementally generated bindings for shared variables, when the only

communication is via the dynamic database.

We have not previously mentioned this, but variables in Qu-Prolog can have

delayed goals associated with them that are woken when the variable becomes

instantiated (even to another variable). Following (Hemenegildo et al., 1995), we

believe we might be able to use this mechanism and the remember_names feature of

Qu-Prolog to also implement ‘shared variable’ communication between Qu-Prolog

local threads.

Erlang is essentially a concurrent committed choice logic programming language

with a functional syntax. However, instead of communicating between the differ-

ent processes implicitly, via incrementally generated bindings of shared variables,

explicit communication via message send and receive operations are used. As with

Qu-Prolog, each Erlang process has a single message buffer, and messages are

read from the buffer using a disjunction of guarded commands, very like the Qu-

Prolog message_choice operator. In fact, Qu-Prolog’s message_choice operator is

modelled on the disjunctive message receive of Erlang. Erlang processes can only

communicate via messages, there is no shared database. In addition the language

has only pattern matching, not unification.

Mozart-Oz (Haridi et al., 1998) is essentially a concurrent constraint programming

language extended to support Prolog style query evaluation, objects, and communica-

tion over networks. The primary form of communication between Mozart processes,

https://doi.org/10.1017/S147106840100120X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840100120X

Multi-threading and message communication in Qu-Prolog 299

which must be explicitly launched, is via shared data stores that can hold any Mozart

value, including unbound variables. When a value V is posted to such a store, which

a process must do explicitly by calling a special system method with V as argument,

the store returns a ticket T uniquely identifying V in the local store. This is an ASCII

string that is an internet wide unique identity for V. (It includes the identity of the

host which holds the store as well as a store unique identity for V.) Any other Mozart

process, whether local or remote, can retrieve the value by calling another system

method with the ticket T as argument. In addition, if the posted value is an unbound

variable, any number of other processes can invoke another system method to set

a watch on the variable, again identifying the variable by its ticket. Then, when the

variable is bound, by the process that posted it to the store, or any other process

that has gained normal access to it using its ticket, all the watch processes will be

automatically sent its value. This gives a multi-cast mechanism via shared variables

placed in stores.

April is not a logic programming language, it is a higher-order (in the functional

programming sense) distributed symbolic language. However, it is similar to both

Erlang and Qu-Prolog in that each April process has a single message buffer from

which messages can be extracted using a disjunction of guarded message receives

containing message patterns. April and Qu-Prolog both use the ICM message

transport system. April messages must be completed ground terms but higher order

values, such as function and procedure closures, as well as objects (similar to Mozart

objects), can be sent in messages. Both Erlang and April influenced the design of

the inter-thread communication of Qu-Prolog.

8 Conclusion

In this paper we presented the multi-threading and message communication capa-

bilities of Qu-Prolog and outlined the implementation of message processing. The

high-level methods for sending and receiving messages were discussed and examples

of the implementations of the Linda model and a distributed query server system

were presented.

We have also implemented a concurrent OO extension of Qu-Prolog in which

objects are active and are each executing as separate threads. Each active object

acts rather like a query server, responding to calls on its clauses which are sent as

messages from other active objects. These clauses are the methods of the object.

They are given in class definitions that can use multiple inheritance to define the

method clauses of a given class. Predicate definitions within each class hierarchy are

disjoint, even if they use overlapping predicate names. This is implemented using

predicate renaming, invisible to the programmer. State for each active object can

be represented as property values stored in the record data base, or as clauses for

special dynamic predicates, declared as state predicates of the object’s class. Asserted

clauses for such dynamic predicates always include the identity of the object (thread)

that asserted them, so state clauses for the different objects of the same class, even

when running in the same Qu-Prolog, are distinguishable. This implicit indexing

of the dynamic clause of an object by its identity is invisible to the programmer.

https://doi.org/10.1017/S147106840100120X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840100120X

300 K. Clark et al.

Another key feature is a special system predicate, my_state/1, that allows all the

dynamic clauses and property values of an executing object O, capturing its current

state, to be reified as a list. This can then be sent in a message to an object server,

that can use it to launch an object with the same state on another machine. This

can be an object of the same class as O providing that the new machine has access

to the class definition for O, which could even be fetched from a code server. This

gives us object cloning, and allows us to program applications with mobile agents

implemented as active deductive objects that transport themselves in this way.

Our thesis is that the combination of multiple threads and high-level commu-

nication using symbolic addresses supported by Qu-Prolog provides application

writers with simple and powerful techniques for implementing a wide range of in-

telligent distributed systems, possibly opening up new application areas for logic

programming.

References

Armstrong, J., Virding, R. and Williams, M. (1993) Concurrent Programming in Erlang.

Prentice-Hall.

Becht, H., Bloesch, A., Nickson, R. and Utting, M. (1996) Ergo 4.1 Reference Manual. Tech-

nical Report No. 96-31, Software Verification Research Centre, University of Queensland.

Carriero, N. and Gelernter, D. (1989) Linda in context. Comm. ACM, 32(4), 444–458.

Carrington, D., Hayes, I., Nickson, R., Watson, G. and Welsh, J. (1996) A tool for developing

correct programs by refinement. Proc. BCS 7th Refinement Workshop, pp. 1–17. Bath, UK.

Electronic Workshops in Computing. Springer-Verlag.

Carro, M. and Hermenegildo, M. (1999) Concurrency in Prolog using threads and a shared

database. Proceedings of ICLP99, pp. 320–334. MIT Press.

Clark, K., Robinson, P. J. and Hagen, R. (1998) Programming Internet based DAI applications

in Qu-Prolog. In: C. Zhang and D. Lukose (eds.), Multi-agent Systems: Lecture Notes in

Artificial Intelligence 1544, pp. 137–151. Springer-Verlag.

Cook, P. and Robinson, P. J. (1999) Multi-threading in an interactive theorem prover. Technical

Report No. 99-01, Software Verification Research Centre, University of Queensland.

Eskilson, J. and Carlsson, M. (1998) SICStus MT – A multithreaded execution environment

for SICStus Prolog. In: C. Palamidessi, H. Glaser and K. Meinke (eds.), Principles of

Declarative Programming: Lecture Notes in Computer Science 1490, pp. 36–53. Springer-

Verlag.

Fidge, C., Kearney, P. and Utting, M. (1995) Interactively verifying a simple real-time sched-

uler. In: P. Wolper (ed.), Computer Aided Verification: Lecture Notes in Computer Science

939, pp. 395–408. Springer-Verlag.

Hagen, R. A. and Robinson, P. J. (1999) Qu-Prolog 4.3 Reference Manual. Technical Report

No. 99-03, Software Verification Research Centre, University of Queensland.

Haridi, S., von Roy, P., Brand, P. and Schulte, C. (1998) Programming languages for distributed

applications. New Generation Computing, 16(3), 223–261.

Hemenegildo, M., Cabenza, D. and Carro. M. (1995) On the uses of attributed variables in

parallel and concurrent logic programming systems. In: L. Sterling (ed.), Proceedings of

ICLP95, pp. 631–645. MIT Press.

McCabe, F. G. and Clark, K. L. (1995) April : Agent Process Interaction Language. In: N.

Jennings and M. Wooldridge (eds.), Intelligent Agents: Lecture Notes in Computer Science

890, pp. 324–340. Springer-Verlag.

https://doi.org/10.1017/S147106840100120X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840100120X

Multi-threading and message communication in Qu-Prolog 301

McCabe, F. G. (1999) ICM Reference Manual. Fujitsu Labs of America,

http://www.nar.fla.com/icm/manual.html.

Robinson, P. J. (1997) Qu-Prolog 4.2 User Guide. Technical Report No. 97-12, Software

Verification Research Centre, University of Queensland.

Tarau, P. (1997) BinProlog 5.75 User Guide. Technical Report 97-1, Départment

d’Informatique, Université de Moncton.

https://doi.org/10.1017/S147106840100120X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840100120X

