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SUMMARY
In this paper, autonomous motion control approaches to
generate the coordinated motion of a dual-arm space robot
for target capturing are presented. Two typical cases are
studied: (a) The coordinated dual-arm capturing of a moving
target when the base is free-floating; (b) one arm is used
for target capturing, and the other for keeping the base
fixed inertially. Instead of solving all the variables in a
unified differential equation, the solution equation of the
first case is simplified into two sub-equations and practical
methods are used to solve them. Therefore, the computation
loads are largely reduced, and feasible trajectories can be
determined. For the second case, we propose to deal with the
linear and angular momentums of the system separately. The
linear momentum conservation equation is used to design
the configuration and the mounted pose of a balance arm to
keep the inertial position of the base’s center of mass, and the
angular momentum conservation equation is used to estimate
the desired momentum generated by the reaction wheels for
maintaining the inertial attitude of the base. Finally, two
typical tasks are simulated. Simulation results verify the
corresponding approaches.

KEYWORDS: Dual-arm space robot; Coordinated motion;
Target capturing; Path planning.

1. Introduction
Robotic systems are expected to play an increasingly
important role in future space activities. One broad area of
application is in the servicing, construction, and maintenance
of satellites and large space structures in orbit. Therefore,
space robotic technologies have been emphasized by
many countries.1–8 The Orbital Express system,7 sponsored
and led by the Defense Advanced Research Projects
Agency (DARPA), validated on-orbit satellite servicing
technologies. The most remarkable mission was that a
satellite autonomously rendezvoused with and captured
another satellite in space. Such technologies could lower
costs and prolong legacy satellites flying for 5, 10, or even
15 extra years.

* Corresponding author. E-mail: lyu11@hit.edu.cn

The autonomous target-capturing technology, which has
been successfully demonstrated by the Engineering Test
Satellite VII (ETS-VII)3 and orbital express,7 is one of
the key technologies of space robot for on-orbit servicing.
Unlike on the earth, space operations require the ability
to work in unstructured environment.9 Some autonomous
behaviors are necessary to perform complex and difficult
tasks in space. This level of autonomy relies not only on
vision, force, torque, and tactile sensors but also on advanced
planning and control capabilities. Yoshida and Umetani
developed on-line control scheme with vision feedback,
which used concept of generalized Jacobian matrix (GJM)
for motion control and guaranteed workspace (GWS) for
path planning.10,11 McCourt and Silva12 investigated the use
of model-based predictive control for the capture of a multi-
Degree of Freedom (DOF) object that moves in a somewhat
arbitrary manner. Compared with a single-arm space robot,
a dual-arm or multi-arm system has much more dexterity
and flexibility, and can complete more complex tasks.
Papadopoulos13 presented a coordinated control scheme
for space manipulators and their spacecraft. Moosavian
and Papadopoulos14 developed two basic approaches: the
barycentric vector approach and the direct path method
to kinematically model multi-arm space free-flying robots,
and proposed Multiple Impedance Control (MIC) for
manipulating objects with force tracking restrictions.15 Hu
and Vukovich16 proposed a position and force control
method that deals with the control problems of multiple
space robots, which form closed kinematic chains. Yoshida
et al.17,18 developed some methods to control two arms
simultaneously: one arm traces a given path, while the
other arm works both to keep the satellite attitude and to
optimize a total operation torque of the system. However,
much more variables (n1 + n2 + 3, where n1, n2, and 3 are,
respectively, for the first arm, the second arm, and the reaction
wheels) were required to be solved from a unified kinematic
equation. The computation load is large and complex
dynamic singularities resulting from the inverse differential
kinematic equation may exist.19 Similarly, Huang et al.20

also designed coordinated control concept to balance the base
attitude using the balance arm to counteract the disturbance
generated by the mission arm. Agrawal et al.21 presented
a scheme for motion planning of a dual-arm, free-floating
planar manipulator, where one arm is commanded to perform
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Fig. 1. (Colour online) The general model of a dual-arm space robotic system.

desired tasks whereas the other provides compensating
motions to keep the base fixed inertially. They derived the
necessary mathematical conditions and implemented some
algorithms in joint coordinates and Cartesian coordinates.
However, the equation to solve the motion of the balance
arm is possibly singular and may not give the feasible results
at singularities, especially for complex manipulation.

In this paper, we proposed on-line scheme to control the
coordinated motion of a dual-arm space robot for target
capturing. Two cases are studied: (a) The coordinated dual-
arm capturing of a moving target when the base is free-
floating (both the attitude and position are not controlled);
(b) one arm is used for target capturing, and the other for
keeping the base fixed inertially. Case (a) is partly similar
to that of ref. [17] and [18], but the solution equation is
simplified into two sub-equations and practical methods
are used to solve them. Hence, the computation loads are
largely reduced, and feasible trajectories can be determined.
For case (b), we addressed a concept to keep the base
fixed inertially during capturing. The key of the concept
is that the linear and angular momentums of the system
are handled separately. The linear momentum conservation
equation is used to design the configuration and the mounted
pose of the balance arm to keep the inertial position of the
base’s center of mass (CM). On the other hand, the angular
momentum conservation equation is used to estimate the
desired momentum generated by the reaction wheels for
maintaining the inertial attitude of the base.

The paper is organized as follows: Section 2 derives the
kinematic equations of a dual-arm space robotic system.
Section 3 presents coordinated motion control methods to
generate the trajectories of dual arms to capture a moving
target corresponding to two typical cases. In Section 4,

simulation studies of the two cases are implemented.
Section 5 is the discussion and conclusion of the work.

2. The Motion Equations of a Dual-Arm Space Robot
Major research achievements on space robot were collected
by Xu and Kanade.22 Figure 1 shows a general model
of a dual-arm space robotic system, which is composed
of the base satellite, a na DOFs serial manipulator (arm-
a), and a nb DOFs serial manipulator (arm-b). Symbol B0

denotes the satellite main body, Ba
i (i = 1, ..., na) and Bb

i

(i = 1, ..., nb), respectively, denote the ith link of arm-a and
arm-b, and J a

i and J b
i are the ith joints of arm-a and arm-b,

respectively.
In order to discuss conveniently, some symbols and

variables are defined as follows (the following vectors
are described in the inertia frame, if not pointed out
specially):∑

I : The inertia frame, whose origin lies at the system’s CM.∑
Ea,

∑
Eb: The end-effector frames of arm-a and arm-b

respectively.∑
B : The geometry reference of the base, often defined at the
center of the payload attach fitting (PAF).

Ck
i (k = a, b): The position of Bk

i ’s CM.
ak

i , bk
i ∈ R3(k = a, b): Position vectors from J k

i to Ck
i and

Ck
i to J k

i+1, respectively, and lk
i = ak

i + bk
i .

rk
i ∈ R3(k = a, b): The position vector of Ck

i .

rg ∈ R3: The position vector of the system’s CM.
pk

i ∈ R3(i = 1, . . . , n): The position vector of J k
i .

pk
e ∈ R3(k = a, b): The position vector of the end-effector
of arm-k.
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kk
i ∈ R3(k = a, b): The unit vector representing the rotation
direction of J k

i .

ψb, ψe ∈ R3: The attitude angle of the base and the end-
effector, expressed in terms of z–y–x Euler angles, i.e.,
ψb = [αb, βb, γb]T and ψe = [αe, βe, γe]T .

i Aj ∈ R3×3: The rotation matrix of
∑

j with respect to
∑

i .
When

∑
i is the inertia frame, the superscript i can be

missed. The matrix i Aj is described by [inj ,
i oj ,

i aj ].
ẋb ∈ R6: The linear velocity and angular velocity of B0.
ẋk

e ∈ R6(k = a, b): The linear velocity and angular velocity
of arm-k’s end-effector.

�k ∈ Rnk (k = a, b): The actual joint angle vector of arm-k.
�k

d ∈ Rnk (k = a, b): The desired joint angle vector of arm-k.
m0, m

k
i (k = a, b): The mass of B0 and Bk

i , and total mass of
the system is M = m0 + ∑na

i=1 ma
i + ∑nb

i=1 mb
i .

I0, Ik
i ∈ R3×3(k = a, b): The inertia matrixes of B0 and Bk

i

with respect to the CM of each body.
E3 : 3 × 3 identity matrix.

From Fig. 1, the position of the end-effector of arm-k
(k = a, b) is as follows:

pk
e = r0 + bk

0 +
nk∑

i=1

(
ak

i + bk
i

)
, k = a, b. (1)

Differentiating it with respect to time, a relationship
between the end-effector linear velocity and joint velocity
is obtained, i.e.,

vk
e = ṗk

e = v0 + ω0 × (
pk

e − r0
)

+
nk∑

i=1

[
kk

i × (
pk

e − pk
i

)]
θ̇ k
i , k = a, b. (2)

On the other hand, a relationship between the end-effector
angular velocity and joint velocity is expressed with

ωk
e = ω0 +

nk∑
i=1

kk
i θ̇

k
i , k = a, b. (3)

Then the differential kinematic equation can be determined
according to Eqs. (2) and (3), i.e.,

ẋk
e =

[
vk

e

ωk
e

]
= Jk

b

[
v0

ω0

]
+ Jk

m�̇
k
, k = a, b, (4)

where Jb and Jm are the Jacobian matrixes dependent on
the base and the manipulator, respectively.

Jk
b =

(
E3 − p̃k

0e

O E3

)
∈ R6×6, pk

0e = pk
e − r0,

k = a, b, (5)

Jk
m =

[
kk

1 × (
pk

e − pk
1

)
. . . kk

n × (
pk

e − pk
n

)
kk

1 . . . kk
n

]

∈ R6×nk , k = a, b. (6)

Operator r̃ is the cross-product operator, i.e.,

if r =

⎡
⎢⎣

rx

ry

rz

⎤
⎥⎦, then r̃ =

⎡
⎢⎣

0 −rz ry

rz 0 −rx

−ry rx 0

⎤
⎥⎦. (7)

As is known to all, the whole on-orbit servicing task is
composed of many stages, including far range rendezvous,
close range rendezvous (is usually divided into two sub-
phases: closing and final approach), station keeping, target
capturing and repairing, et al. The space manipulator is
only used in the capturing and repairing stages. Through
station keeping, the position and orientation of the base with
respect to the target can attain a relative ideal state, then the
control of the base is turned off and the capturing stage starts.
Therefore, when deducing the kinematic equations of free-
floating space robot, it is general to assume that the initial
values for linear and angular momentums are zeros. Many
scholars have followed this assumption.16,17,20,21,23,24

Since no external forces and torques act on the free-floating
system, the linear momentum and angular momentum are
conserved. With the assumption that their initial values are
zeros, the following equations are obtained:

P =
na+nb∑
i = 0

mi ṙ i = m0v0 +
na∑
i=1

ma
i ṙa

i +
nb∑
i=1

mb
i ṙb

i = 0, (8)

L =
na + nb∑
i = 0

(I iωi + ṙ i × mi ṙ i) = 0, (9)

where P , L are, respectively, the linear and angular
momentum of the system with respect to the inertial frame.
Let L0 be the angular momentum of the system with respect
to the mass center of the base, then the following relationship
exists:

L = L0 + r0 × P . (10)

According to Eqs. (8) and (9),

L0 = 0. (11)

Rearranging Eqs. (8) and (11) with v0, ω0, and �̇, we can
get the following equation:

[
P

L0

]
=

(
M E M r̃T

0g

M r̃0g Hw

)[
v0

ω0

]
+

[
Ja

T w

Ha
wφ

]
�̇

a

+
[

Jb
T w

Hb
wφ

]
�̇

b = 0. (12)

It can be described as

Hb ẋb + Ha
bm�̇

a + Hb
bm�̇

b = 0. (13)

The matrixes Hb and Hbm are the inertia matrixes of
the base and coupling inertia matrix, respectively. These are
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defined as follows:

Hb =
(

M E3 M r̃T
0g

M r̃0g Hw

)
∈ R6x6, (14)

Hk
bm =

[
Jk

T w

Hk
wφ

]
∈ R6×nk , k = a, b, (15)

Hw =
na∑
i=1

(
Ia

i + ma
i

(
r̃a

0i

)T (
r̃a

0i

))

+
nb∑
i=1

(
Ib

i + mb
i

(
r̃b

0i

)T (
r̃b

0i

)) + I0 ∈ R3x3, (16)

Hk
wφ =

nk∑
i=1

(
Ik

i Jk
Ri + mk

i r̃k
0i Jk

T i

) ∈ R3×nk , k = a, b,

(17)

Jk
T w =

nk∑
i=1

(
mk

i Jk
T i

) ∈ R3×nk , k = a, b, (18)

Jk
T i = [

kk
1 × (

rk
i − pk

1

)
, kk

2 × (
rk

i − pk
2

)
, . . . , kk

i

×(
rk

i − pk
i

)
, 0, . . . , 0

] ∈ R3×nk , k = a, b,

(19)

Jk
Ri = [

kk
1,k

k
2, . . . ,kk

i ,0, . . . ,0
] ∈ R3×nk , k = a, b,

(20)

r0g = rg − r0, (21)

rk
0i = rk

i − r0. (22)

The linear velocity of the base can be solved by the
first three rows of Eq. (12) (i.e., the linear momentum
conservation equations):

v0 = −r̃T
0gω0 − Ja

T w�̇
a + Jb

T w�̇
b

M
= r̃0gω0

− Ja
T w�̇

a + Jb
T w�̇

b

M
. (23)

Substituting Eq. (23) to the last three rows of Eq. (12), the
following results are given:

(
M r̃0g r̃0g + Hw

)
ω0 + (

Ha
wφ − r̃0g Ja

T w

)
�̇

a

+ (
Hb

wφ − r̃0g Jb
T w

)
�̇

b = 0. (24)

Equation (24), i.e., the angular momentum conservation
equation, can be written as

H sω0 + Ha
��̇

a + Hb
��̇

b = 0, (25)

where

H s = (
M r̃0g r̃0g + Hw

) ∈ R3×3, (26)

Hk
� = (

Hk
wφ − r̃0g Jk

T w

) ∈ R3×nk , k = a, b, (27)

The matrix H s is proved non-singular, so

v0 = −
(

r̃0g H−1
s Ha

� + Ja
T w

M

)
�̇

a

−
(

r̃0g H−1
s Hb

� + Jb
T w

M

)
�̇

b
, (28)

ω0 = −H−1
s

(
Ha

��̇
a + Hb

��̇
b
)
. (29)

The above two equations are combined as

[
v0

ω0

]
= Ja

bm�̇
a + Jb

bm�̇
b = [

Ja
bm Jb

bm

] [ �̇
a

�̇
b

]

= Jbm

[
�̇

a

�̇
b

]
, (30)

where

Jk
bm =

⎡
⎣−r̃0g H−1

s Hk
� − Jk

T w

M
−H−1

s Hk
�

⎤
⎦, k = a, b, (31)

Jbm = [
Ja

bm Jb
bm

]
. (32)

Matrix Jk
bm(k = a, b) is the Jacobian matrix, mapping

joint rates to the velocities (linear velocity and angular
velocity) of the base. Substituting Eq. (30) to Eq. (4), the
kinematic equations are given as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋa
e = Ja

b Jbm

[
�̇

a

�̇
b

]
+ Ja

m�̇
a

ẋb
e = Jb

b Jbm

[
�̇

a

�̇
b

]
+ Jb

m�̇
b

. (33)

Equation (33) can be combined in the following form:

[
ẋa

e

ẋb
e

]
=

([
Ja

b

Jb
b

]
Jbm +

[
Ja

m O

O Jb
m

])[
�̇

a

�̇
b

]

= Jg(�b, �
a, �b)

[
�̇

a

�̇
b

]
, (34)

where Jg ∈ R12×(na + nb) is the GJM of the dual-arm space
robotic system.17,25 It is the function of the spacecraft
attitude, joint angles, and mass properties of each arm. When
na = nb = 6, Jg is a 12 × 12 square matrix. If Jg is non-
singular, then the joint trajectories of the dual arm can be
determined according to Eq. (34).

3. The Coordinated Motion Planning Methods

3.1. Dual-arm capturing when the base is free-floating
Generally, when the velocities of the end-effectors are given,
the desired joint rates of the two arms can be solved according
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Table I. Numerical complexity in deriving the generalized vs.
conventional Jacobians (6 × n).

Generalized Conventional
Jacobian matrix Jacobian matrix

Division 3 0
(3∗) (0∗)

Multiplication 13.5n2 + 155.5n + 44 30n − 11
(1463∗) (169∗)

Addition & subtraction 6n2 + 141n + 17 18n − 20
(1079∗) (88∗)

∗In case n = 6.

to Eq. (34),17,18 i.e.,

[
�̇

a

d

�̇
b

d

]
= J−1

g (�b, �
a, �b)

[
ẋa

ed

ẋb
ed

]
, (35)

where ẋa
ed and ẋb

ed are the desired end-effectors’ velocities,

and �̇
a

d and �̇
b

d are the desired joint rates to realize the
end-effectors’ motion (i.e, ẋa

ed and ẋb
ed ) of arm-a and arm-b.

The current states, i.e., �b, �a, and �b, can be measured
by corresponding sensors. However, there are na + nb (in
this paper, na = nb = 6) variables to be determined. The
computation load is very large. In 1989, Masutani et al.26,27

analyzed the computation load of GJM and compared it
with that of a traditional Jacobian matrix based on same
dimension. The important results are given as follows.

From then on “the computational cost for GJM is much
more than that of the conventional Jacobians” became a
consensus. In our paper, since the relative pose of the
target, the attitude angles, rates of the base, the joint
angles, and rates of the arms can be measured, we can
use the approximate Jacobians, that is, the conventional
Jacobians, which need only kinematic parameters and less
computational cost. The proposed motion planning method
belongs to that of resolved motion ration control (RMRC).
In addition, the main computation load is the calculation
of the Jacobian matrix and its inverse. Therefore, the
comparison given in Table I can illustrate the computation
effectiveness.

Moreover, the GJM Jg is a 12 × 12 square matrix and
its singularities are much more complexly handled than
those of a single-arm space robotic system. Since Jg is
not only the function of the kinematic parameters but also
the function of the mass properties (mass, inertia tensor,
and mass center position of each body), the singularities are
dynamic singularities,19 which are dependent on the paths in
Cartesian space. The characteristics complicate the Cartesian
path planning of space robot. Therefore, we will partition the
solution problem of Eq. (35) into two sub-problems with
lower DOFs to simplify the singularity handling and reduce
the computation load.

3.1.1. Simplification of kinematic equations. As pointed
out above, the linear and angular momentums of free-
floating system are conserved. By eliminating the holonomic
constraints of linear momentum conservation, the total

system is formulated as a nonholonomic system of na +
nb + 3 variables, including three dependent variables.23

Firstly, there exists the following relationship:

m0r0 +
na∑
i=1

ma
i ra

i +
nb∑
i=1

mb
i rb

i = M rg, (36)

where the system CM (rg) is fixed in inertia space. From
Fig. 1, the CM of each link is

rk
i = r0 + bk

0 +
i − 1∑
j = 1

(
ak

j + bk
j

) + ak
i . (37)

In Eq. (37), k = a, b; i = 1, 2, . . . , nk. According to Eqs.
(36) and (37), the base CM is determined by

r0 = rg −

na∑
i=1

ma
i ba

0

M
−

nb∑
i=1

mb
i bb

0

M

−

na∑
i=1

ma
i

(
i − 1∑
j = 1

(
aa

j + ba
j

) + aa
i

)

M

−

nb∑
i=1

mb
i

(
i−1∑

j = 1

(
ab

j + bb
j

) + ab
i

)

M
. (38)

Substituting Eq. (38) to Eq. (1), the position of the end-
effector of arm-a is

pa
e = r0 + ba

0 +
na∑
i=1

(
aa

i + ba
i

)

= rg +
m0+

nb∑
i=1

mb
i

M
ba

0 −
nb∑
i=1

mb
i

M
bb

0

na∑
i=1

×
⎛
⎝

i−1∑
q=0

ma
q+

nb∑
j=1

mb
j

M
aa

i +
i∑

q=0
ma

q+
nb∑
j=1

mb
j

M
ba

i

⎞
⎠

−
nb∑
i=1

⎛
⎝

nb∑
i

mb
i

M
ab

i +
nb∑
i+1

mb
i

M
bb

i

⎞
⎠

= rg + b̂
a

0 +
na∑
i=1

(
âa

i + b̂
a

i

)
− �

bb
0 −

na∑
i=1

(
�

ab
i + �

bb
i

)
.

(39)

Similarly, the position vector of the end-effector is

pb
e = rg + b̂

b

0 +
nb∑
i=1

(
âb

i + b̂
b

i

)
− �

ba
0 −

na∑
i=1

(
�

aa
i + �

ba
i

)
,

(40)
where ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
âa

i =
i−1∑

q = 0
ma

q+
nb∑

j = 1
mb

j

M
aa

i , i = 1, . . . , na

b̂
a

i =
i∑

q = 0
ma

q+
nb∑

j = 1
mb

j

M
ba

i , i = 0, . . . , na

, (41)
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âb
i =

i−1∑
q=0

mb
q+

na∑
j = 1

ma
j

M
ab

i , i = 1, . . . , nb

b̂
b
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q=0
mb

q+
na∑

j = 1
ma

j

M
bb

i , i = 0, . . . , nb

, (42)
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�

aik =
nk∑
i

mk
i

M
ak

i , i = 1, . . . , nk

�

bk
i =

nk∑
i + 1

mk
i

M
bk

i , i = 0, . . . , nk

, k = a, b . (43)

Vectors âk
i ,

�

ak
i and b̂

k

i ,
�

bk
i are aligned with ak

i and bk
i

(k = a, b) respectively, and their lengths are constantly
proportional to those of the corresponding vectors. Therefore,

âk
i ,

�

ak
i and b̂

k

i ,
�

bk
i are called “virtual link vectors.”

Differentiating the two sides of Eq. (39),

va
e = vg + ω0 ×

(
b̂

a

0 − b̃
b

0

)
+

na∑
i=1

ωa
i ×

(
âa

i + b̂
a

i

)
−

nb∑
i=1

ωb
i ×

(
�

ab
i + �

bb
i

)
, (44)

where ωk
i is the angular velocity of the ith body of arm-k

(k = a, b), which is calculated by

ωk
i = ω0 +

i∑
j = 1

kk
j θ̇

k
j , k = a, b . (45)

Since there are no external forces on the system, with the
assumption that the initial linear momentum is zero, the CM
of the system keeps stationary, i.e., vg = 0. Hence, Eq. (44)
can be simplified as

va
e = −

(
˜̂pa

ge − �̃

pb
ge

)
ω0 +

na∑
i=1

[
ka

i × (
pa

e − p̂a
i

)]
θ̇ a
i

−
nb∑
i=1

[
kb

i ×
(

pb
e − �

pb
i

)]
θ̇ b
i . (46)

In Eq. (46)

p̂a
ge = b̂

a

0 +
na∑
i=1

Aa
i

(
i âa

i +i b̂
a

i

)
, (47)

�

p
b

ge = �

bb
0 +
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i

(
i �

ab
i +i

�

bb
i

)
, (48)

p̂a
i =
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a

0 − �

bb
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na∑
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i + �

bb
i

)
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bb
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)
,

i > 1, (49)
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bb
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− �
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0 −
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)
,

i > 1. (50)

Then the differential kinematic equation of arm-a can be
given by combining Eqs. (46) and (3):

ẋa
e =

[
va

e

ωa
e

]
= Ĵ

a

bω0 + Ĵ
a

m�̇
a + �

J b
m�̇

b
(51)

where

Ĵ
a

b =
[

−
(̃̂

p
a

ge − �̃

pb
ge

)
I3

]
∈ R6×3, (52)

Ĵ
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m =
[
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1 × (
pa

e − p̂a
1

)
. . . ka

n × (
pa

e − p̂a
n

)
ka

1 . . . ka
n

]
∈ R6×n,

(53)

�

J b
m = −

[
kb

1 × (
pb

e − �

pb
1

)
. . . kb

n × (
pb

e − �

pb
n

)
kb

1 . . . kb
n

]
∈ R6×n.

(54)

Similarly, the differential kinematic equation of arm-b can
be described in the following form:

ẋb
e =

[
vb

e

ωb
e

]
= Ĵ

b

bω0 + �

J a
m�̇

a + Ĵ
b

m�̇
b
. (55)

The corresponding vectors and matrixes are similar to
those of arm-a. After the simplification of the motion
equations, two important results are given, i.e., Eqs. (51) and
(55), in which based on the law of the linear momentum
conservation the linear velocity of the base’s CM is
eliminated.

3.1.2. The coordinated motion planning. (a) The main
procedure: During the capturing, the hand-eye cameras
supply the relative poses (position and attitude) of the target
with respect to the end-effector on real-time. Based on the
measured relative pose, the desired velocities (linear and
angular velocities) of the two arms can be planned to capture
the target in a coordinated behavior. Then the desired joint
rates of arm-a and arm-b are generated according to the
simplified differential kinematic equations, i.e., Eqs. (51)
and (55).

The first case is that the base is free-floating, but its
attitude angles and angular velocity are measured using some
sensors – star sensors (or earth sensors) for attitude �b

and gyroscope for angular velocity ω0. They are generally
mounted on a traditional satellite. Moreover, the two arms are
equipped with potentiometers and encoders (each joint has
a potentiometer and an encoder for backup and redundant
purposes), which are used to measure the joint angles
(�a, �b) and rates (�̇

a
, �̇

b
) (joint rates can be obtained

by differentiating the joint angles).
The main steps of the planning method are as follows:

1. Set the stopping criteria, i.e., allowable range of the
relative position and the orientation are εp = 20 mm and
εo = 2◦, respectively, and the allowed maximal time is
tmax .
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2. Measure the pose of the target relative to the end-effectors
using the hand-eye cameras. The relative position and

attitude are denoted by r̂k
eh and �̂

k

eh (k = a, b).
3. Calculate the pose error (i.e., ek

p, ek
o) and judge whether

the target lies within the capturing box (i.e., the grasp
area, ‖ek

p‖ ≤ εp and ‖ek
o‖ ≤ εo). If so, the manipulator

closes its gripper and grasps the target; else, go to step 4.
4. Predict the target motion according to the measured

values.
5. Read the current states (i.e., �b, ω0, �

a, �̇
a
, �b, �̇

b
) of

the space robotic system from the corresponding sensors.
6. Plan the end-effector velocities, which drive the end-

effector to track and approach the target along the closest
path (i.e., straight lines) using the measured and estimated
results.

7. The singularity-avoiding algorithm is called to determine
the desired joint angles and rates, i.e., �k

d, �̇
k

d .
8. The joint controllers generate driving torques of the joints

to follow �k
d and �̇

k

d .
9. t = t + 
t . If t < tmax , go to step 2; else, the algorithm

stops, meaning that the space robot cannot capture the
target in the prescribed time.

(b) The planning of the end-effector velocities: It is
assumed that the measured results of the cameras are

rk
eh = [X, Y, Z]T , �k

eh = [α, β, γ ]T , (56)

where rk
eh and �k

eh are, respectively, the relative position and
attitude supplied by camera-k, mounted on the end-effector
of arm-k (k = a, b).

The desired end-effector velocities are planned as follows:

ẋk
ed =

[
vk

ed

ωk
ed

]
= K k

[
rk

eh


Ok

]
+

[
vk

h

ωk
h

]
, (57)

where vk
h and ωk

h are the estimated linear and angular
velocities of the target, K k is a matrix formed of the
proportional coefficients used to limit the motion of the end-
effector (in the paper, the bounds of the linear and angular
velocities are 30 mm/s and 5◦/s, respectively), and �Ok is
the orientation error, which is defined as


Ok = 1

2

(
nk

e × nk
h + ok

e × ok
h + ak

e × ak
h

)

= 1

2

⎡
⎢⎣

Ak
eh (2, 3) − Ak

eh (3, 2)

−Ak
eh (1, 3) + Ak

eh (3, 1)

Ak
eh (1, 2) − Ak

eh (2, 1)

⎤
⎥⎦, (58)

where [nk
e, ok

e, ak
e] and [nk

h, ok
h, ak

h] are the rotation matrixes
of

∑
ek and

∑
hk , respectively. In addition, Ak

eh is the relative
attitude matrix calculated according to the attitude angle �k

eh.
The pose errors used to judge whether the target is within the
capturing box are calculated by

ek
p = ∥∥rk

eh

∥∥, ek
o = ∥∥
Ok

∥∥. (59)

(c) A practical approach to solve inverse kinematic:
Equations (51) and (55) can be written in another form, i.e.,

Ĵ
a

m�̇
a = ẋa

e − Ĵ
a

bω0 − �

J b
m�̇

b
, (60)

Ĵ
b

m�̇
b = ẋb

e − Ĵ
b

bω0 − �

J a
m�̇

a
. (61)

The “current states of the system” at time t,
i.e., �b(t), ω0(t), �a(t), �̇

a
(t), �b(t), �̇

b
(t), can be

supplied by the sensors. So “the desired states at next
sample time,” i.e., �a

d (t + 
t), �b
d (t + 
t) and �b

d (t +

t), �̇

b

d (t + 
t), can be recursively planned according
to the desired velocities of the end-effectors on real-time.
Equation (60) is slightly modified in the following form
(Eq. (61) will be handled in a similar way):

Ĵ
a

m�̇
a

d (t + 
t) = ẋa
ed (t + 
t) − Ĵ

a

bω0(t) − �

J b
m�̇

b
(t).

(62)
The vectors in Eq. (62), described in the inertial frame,

are then transformed to the body-fixed frame of the base by
multiplying matrix diag(AT

0 , AT
0 ), i.e.,

0 Ĵ
a

m�̇
a

d (t + 
t) = 0 ẋa
ed (t + 
t) − 0 Ĵ

a

bω0(t) − 0 �

J b
m�̇

b
(t).
(63)

The right side of Eq. (63) is actually the end-effector
velocity with relative to the base (expressed in the base frame)
and denoted by

0 ẏa
ed (t + 
t) = 0 ẋa

ed (t + 
t) − 0 Ĵ
a

bω0(t) − 0 �

J b
m�̇

b
(t).

(64)
So, Eq. (63) can be written as

0 Ĵ
a

m�̇
a

d (t + 
t) = 0 ẏa
ed (t + 
t), (65)

where 0 ẏa
ed (t + 
t) is the desired velocity with respect

to the base. From Eq. (53), 0 Ĵ
a

m is independent on
dynamic parameters. Therefore, the singularities of 0 Ĵ

a

m are
kinematic. Then the dynamic singularity-handling problem
is transformed into real-time kinematic singularity avoiding
problem. It should be pointed out that the dynamic singularity
points in the task space and cannot be identified beforehand.
However, when the angular velocity and attitude of the
base are measured on real-time (at each sampling period),
a simplified kinematic equation, i.e., Eq. (65), is derived.
Equations (62)–(65) show that the desired inertial motion of
the end-effector (ẋa

ed ) at time t + 
t can be realized by the
planned joint motion (�̇

a

d ) according to Eq. (65), using the
states of the space robotic system at time t. It is undeniable
that compared with the results given by the ideal relationship
(i.e., Eq. (35)) there are certain errors, because the states at
t + 
t are little different from the states at t. However, if 
t is
short enough, or the desired motion is slow, the errors will not
be large and can be neglected. In addition, the actual relative
pose between the end-effector and the target can be measured
on real-time, which means that the errors will not cumulate.

To solve Eq. (65), there only exist kinematic singularities.
In order to easily explain the singularity avoidance concept, a
Puma-like robot (wrist-partitioned manipulator) is used as an
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example (although wrist-partitioned space manipulators are
taken as the example, the approaches can be easily extended
to other types of manipulators). According to the definitions
of Jacobian matrixes, the following relationship exists:

(
0 Ĵ

a

m

) =
[

I − (
L̂a

6 + L̂a
7

)
Z̃

a

6

O I

] (
0 Ĵ

a

W

)
, (66)

where L̂a
6 + L̂a

7 is the length from the wrist center to the end-
effector of the virtual manipulator. 0 Ĵ

a

W is the wrist-reference
Jacobian matrix, establishing relationship between the joint
rates and wrist velocities. It is of the following form:

0 Ĵ
a

W =
[

0 Ĵ
a

11 O3×3

0 Ĵ
a

21
0 Ĵ

a

22

]
. (67)

Then the method “Singularity Separation Plus Damped
Reciprocal” (SSPDR), proposed by the authors,28 are used
to handle the singularities.

The desired joint rates of arm-b are also determined using
the similar method to solve the following equation:

0 Ĵ
b

m�̇
b

d (t + 
t) = 0 ẏb
ed (t + 
t), (68)

where

0 ẏb
ed (t + 
t) = 0 ẋb

ed (t + 
t) − 0 Ĵ
b

bω0(t) − 0 �

J a
m�̇

a
(t).

(69)

3.2. The single-arm capturing while keeping the base’s
inertial pose
3.2.1. The existing problems of traditional methods. For
some applications, the two arms can be used as the mission
arm and the balance arm. The mission arm is used to
accomplish desired mission and the balance arm is used
to compensate the attitude of the base using the dynamics
coupling characteristic. Furthermore, the balance arm can be
designed to maintain the base approximately fixed in the iner-
tial pose during the manipulation of the mission arm. Agrawal
et al21. derived the necessary mathematical conditions and
implemented some algorithms for motion planning in joint
coordinates and Cartesian coordinates. But the singularities
are important problems needed to be solved further.

The momentum conservation equations of the free-floating
space robot are rewritten here to illuminate the concept, i.e.,

Hb ẋb + Ha
bm�̇

a + Hb
bm�̇

b = 0. (70)

In order to keep the base fixed inertially, i.e., ẋb = 0, the
following condition must be satisfied:

Ha
bm�̇

a + Hb
bm�̇

b = 0. (71)

If arm-a is used as the mission arm, �̇
a

d is planned
according to the requirement of the mission. Then the joint

rates of the balance arm are determined by

�̇
b

d = − (
Hb

bm

)−1
Ha

bm�̇
a

d . (72)

Unfortunately, Hb
bm is a possible singularity for some

cases. Agrawal et al.21 used the algorithms based on
position kinematics of the system coupled with the iterative
procedure to satisfy the nonholonomic constraints and
avoid singularities during motion. However, the scheme
implemented for the planar dual-arm, free-floating system
will be much more complex for higher DOF systems, such as
the case studied in this paper. So we propose an approach with
which the balance arm is mainly used to maintain the inertial
position of the base’s centroid, and the reaction wheels are
used to absorb the resultant angular momentums generated
by the two arms’ motion. This method is detailed in the
following parts. The linear momentum conservation equation
(i.e., Eq. (8)) and the angular momentum conservation
equation (i.e., Eq. (25)) are handled respectively. Equation
(8) or its position form (Eq. (36)) is used to simplify the
kinematic equations (Section 3.1.1) and plan the coordinated
motion of the balance arm (Section 3.2.1). In addition,
Eq. (25) is used to plan the desired angular speed of the
reaction wheels to absorb the resultant angular momentums
generated by the two arms’ motion. This method is detailed
in the following parts.

3.2.2. The trajectory planning of the mission arm and
balance arm. Firstly, the motion of arm-a is autonomously
planned to capture the target according to the measurements
of the camera mounted on its end-effector. Since the base
is inertially fixed, the linear and angular velocities are
approximately zero, i.e.,

v0 ≈ 0, ω0 ≈ 0. (73)

Submitting Eq. (73) to Eq. (4), the following equation can
be used to determine the desired joint rates of arm-a:

ẋa
ed = Ja

m�̇
a

d . (74)

Equation (74) is same as the traditional kinematic equation
of the base-fixed manipulator, and the SSPDR method is
directly used to handle the singularity problems.

The linear momentum conservation equation is a
holonomic constraint and can be written in the following
position form:

m0r0 +
na∑
i=1

ma
i ra

i +
nb∑
i=1

mb
i rb

i = m0r0 + Ma ra∑

+Mbrb∑ = 0, (75)

where Ma = ∑na

i=1 ma
i and Mb = ∑nb

i=1 mb
i are the total mass

of arm-a and arm-b, respectively, and ra∑ and rb∑ are their
equivalent centroids. Then the system is considered as three
parts: the base, arm-a, and arm-b. If the total system,
including the base and the two arms, are elaborately designed,
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Fig. 2. (Colour online) The positional relationship of the centroid of the two arms and base.

it is possible to satisfy the following condition during motion:

Ma ra∑ + Mbrb∑ = 0. (76)

Then the base’s CM is fixed at r0 = 0, derived from
Eq. (75). This concept is shown in Fig. 2.

Here we design two full identical arms and mounted
centrosymmetrically with respect to the centroid of the base.
When the joints of arm-b move with same trajectories as
those of arm-a, i.e.,

�̇
b

d = �̇
a

d, (77)

condition (76) is naturally satisfied, and r0 will be constant
during the motion.

It should be pointed out that Eq. (77) is not directly
deduced from Eq. (72). The precondition of utilizing Eq. (77)
is that “the two arms are fully identical and mounted
centrosymmetrically with respect to the centroid of the
base.” When this precondition is satisfied, �̇

b

d = �̇
a

d will
always make Ma ra∑ + Mbrb∑ = const. Correspondingly, r0

will always remain constant (in fact, r0 will have tiny
variation for the reason that the joint control errors exist).
By elaborately designing and arranging the two arms and
the base, the second task in the paper can be easily
completed.

Fig. 3. (Colour online) The dual-arm space robotic system and the malfunctioned satellite.

https://doi.org/10.1017/S0263574711001007 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711001007


764 Coordinated motion planning of dual-arm space robot for target capturing

Table II. The mass properties of the space robotic system.

B0 B1 B2 B3 B4 B5 B6

Mass (kg) 1000 13 10 13 10 13 12
i ai /m 0.6 0 −0.493 0.026 0.391 −0.026 −0.189

0 −0.012 0.145 −0.070 −0.144 0.070 0
0 0.097 0 0 0 0 0.023

i bi /m 0.5 0 −0.357 0.032 0.573 −0.032 −0.099
0 0.070 −0.145 0.012 0.086 −0.012 0
0.712 0.026 0 0 0 0 −0.023

i I i (kg.m2 ) Ixx 490 0.113 0.034 0.069 0.633 0.227 0.212
Iyy 520 0.136 1.387 0.226 0.567 0.069 0.210
Izz 510 0.059 1.382 0.203 0.093 0.203 0.208
Iyx 1.341 0 0 0 0 0 0
Izx 0.116 −0.008 0 −0.006 0 0 0
Izy 0.158 0 0 0 0.202 0.008 0

The condition “two arms are fully identical and mounted
centrosymmetrically with respect to the centroid of the base”
is only an example, which always satisfies Eq. (76) when
using Eq. (77) to generate the motion of the counter arm. In
fact, Eq. (76) can be written in the following form:

Ma ra∑ (�a) + Mbrb∑ (�b) = 0, (78)

where ra∑ (�a) and rb∑ (�b) show that ra∑ and rb∑ are,
respectively, the functions of �a and �b. If the motion of
arm-b is planned to satisfy the above equation, the position of
the base satellite’s centroid will be fixed in the inertial frame
during the mission. Since Eq. (76) is independent on specific
configuration, the proposed method can also be used for other
cases except for the example “two arms are fully identical and
mounted centrosymmetrically with respect to the centroid of
the base.” However, we can simplify the planning algorithm
by elaborately designing the counter arm, as shown by the
given example.

3.2.3. The motion planning of reaction wheels. Although a
balance arm can be designed to keep the inertial position
of the base’s CM, the resultant angular momentum of
arm-a and arm-b will be not zero. Therefore, in order to
maintain the orientation of the base to be fixed inertially, the
reaction wheels are used to compensate the resultant angular
momentum. The angular momentum conservation Eq. (25)
is then modified as (ω0 ≈ O):

Ha
��̇

a

d + Hb
��̇

b

d + Hw� = 0, (79)

where Hw = diag(Iwx
, Iwy

, Iwz
) and � = [�x, �y, �z]T

are, respectively, the inertial matrix and rotation speed vector
composed of the corresponding component of the flywheels.
Then the motion of the flywheels can be determined by

� = H−1
w

(
Ha

��̇
a

d + Hb
��̇

b

d

)
. (80)

If the reaction wheels are controlled to realize the motion
given in Eq. (80), then the base will be stabilized at its initial
orientation.

4. Simulation Study

4.1. The designed dual-arm space robot system
The target to be serviced is assumed to be a malfunctioned
satellite, one of whose solar panels is unfolded. The designed
space robotic system used for the on-orbit servicing mission
is shown as Fig. 3. It is composed of a carrier spacecraft
(called space base or base) and two 6DOFs PUMA-type
manipulators (called space manipulators, which are denoted
as arm-a and arm-b). The two arms are identical, that is
to say, they have the same geometry and mass properties.
However, they are mounted at different positions. Table II
lists the dimensions and mass properties of the bodies (Sat
and Bi stand for the satellite and the ith body, respectively).

The control system of the space manipulator is a typical
distributed control system (DCS); its structure is shown in
Fig. 4. It is composed of a coordinated planner, 12 joint
controllers (JC; six for each arm), two hand-eye end-effector
controllers (one for each arm), and two hand-eye camera
processors (one for each arm). The coordinated planner
receives instructions from the ground or other subsystems,
such as GNC subsystem, data-handling subsystem, etc.; then
it plans the trajectories of the manipulator joints. Limited
by the computation abilities of the on-board processors,
the communication frequency between subsystems through
Controller Area Network (CAN) bus is about 4 Hz. On the
other hand, the control cycle of the joint controller, whose
control law is Proportional-Integral-Derivative (PID), is
lower than 5 ms (control frequency is about 200 Hz). Each JC
autonomously interposes more position nodes using a certain
polynomial function. Here the 3rd spline function is used.

4.2. Simulation for dual-arm capturing when the base is
free-floating
A typical on-orbit servicing mission is conducted in a series
of operations: far-range rendezvous, close-range rendezvous
(it is usually divided into two sub-phases: closing and final
approach), station keeping, target capturing, and repairing.
The space manipulator is only used in the capturing and
repairing stages. Through station keeping, the position and
orientation of the base with respect to target can attain a
relative ideal state, then the control of the base is turned off
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Fig. 4. (Colour online) The control structure of the space manipulator.

Fig. 5. (Colour online) The initial state when capturing the target.

and the capturing stage starts. In this paper, we focus on the
target capturing and assume that the station keeping stage
is finished, which means that the relative linear and angular
speeds of the target will not be very large.

According to the target capturing demonstrated on ETS-
VII and Orbital Express, the space robot will move toward
the approach corridor from a far range, where the arm is
first commanded to the ready-capture configuration, which
positioned the tip of the arm above a virtual capture-box
attached to the arm base frame. The space robot has to
position itself so that the target handle was in the capture-

Fig. 6. (Colour online) The final state when capturing the target.

box, within specified relative rates, prior to initiation of
visual servo. Once the space robot positioned itself so that
the target is within the capture-box, the arms will have a
clear view of the target with its hand-eye cameras. The arms’
vision systems are then commanded to acquire the visual
features on the target. Once the target feature is acquired,
the space robot transitions to free-floating, and the arms
are controlled in visual servo mode to capture the target.
As for the selection of the ready-capture configuration,
the main factors needing consideration include common
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Fig. 7. The variation curves of the relative pose of arm-a.

capture-box range (it is determined by the geometry
dimension and mounted pose) of the two arms, the station-
keeping ability (relative pose and rate) of the space robot,
and the measure range of the hand-eye cameras. For the
space robot designed in Section 4.1, the ready-capture
configurations of the two arms are as under:

�a
0 = �b

0

= [0◦, −130.00◦, 88.75◦, −30◦, −218.76◦, −25◦]T.

(81)

The initial attitude of the base is assumed as

�b0 = [0 0 0 ]T . (82)

The CM frame of the target, and the poses of the handles
mounted on the target (with respect to

∑
B) are, respectively,

as follows:

X t = [2.1480 m, 0.30 m, 0.0 m, 0.00◦, 0.00◦,

0.00◦]T , (83)

Xa
h0 = [

2.1480 m, 0.30 m, 0.4 m, 0.00◦, 0.00◦,

0.00◦]T , (84)

Xb
h0 = [

2.1480 m, 0.30 m, −0.4 m, 0.00◦, 0.00◦,

0.00◦]T . (85)

As discussed above, the target capturing stage will not
start until the station keeping condition is satisfied. That is
to say, the maximum relative linear and angular velocities
between the tip of the arm and the grapple fixture on the target
prior to the initiation of arm motion for free-flyer capture are
controlled within specified limits. When these conditions are
satisfied, the visual feature and grapple fixture on the target
are within the field of view of the cameras mounted on the
arm end-effector. According to the experiences of the Orbital
Express29–31 and ETS-VII, the target CM is assumed to move
with constant velocities (moderate velocities):

vt = [5 mm/s, 5 mm/s, −5 mm/s]T ,

ωt = [−0.5◦/s, −0.5◦/s, −0.5◦/s]T .
(86)

The plus or minus sign is set according to worse case for
the target capturing, i.e., the target moves apart from the base.

The initial state determined by Eqs. (81)–(85) is three-
dimensional as displayed in Fig. 5. The coordinated motion
approaches proposed in Section 3 are used to plan the
trajectories of the two arms. The velocities of the end-effector
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Fig. 8. The variation curves of the relative pose of arm-b.

Fig. 9. The joint trajectories of arm-a.
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Fig. 10. The joint trajectories of arm-b.

and joint are limited as follows:

vmax = 30 mm/s, θ̇max = 5◦/s. (87)

It should be pointed out that Eq. (87) is not a design limit
of the space manipulator. It is only the parameter used by
motion planning algorithm to limit the maximum values of
the planned velocities of the end-effector. These parameters,
combined with the Eq. (57), guarantee that the planned joint
trajectory is feasible. They are only empirical values for the
case considered in this paper and can be modified according
to different applications.

Corresponding to the controller structure shown in Fig. 4,
the sample time used in the simulation is set as follows:

1. The image processing and pose measurement period of
the hand-eye camera is 250 ms (4 Hz).

2. The trajectory generation cycle of the planner is 250 ms
(4 Hz).

3. The control cycle of each joint controller is 5 ms (200
Hz). The joint controller autonomous interposes more
knots between the current value and the desired value
from the planner.

According to the simulation results, the dual-arm space
robot autonomously captured the target in coordinated
behavior (see Fig. 6) at 22.5 s.

The position of the handles with respect to the end-
effectors (measured by the hand-eye cameras mounted on the
effectors of arm-a and arm-b) varies as shown in Figs. 7 and 8,
respectively. The gradually decreasing close to zero indicates
that the end-effectors approach the target into its capture-box
and then grasps the target. The trajectory of each joint during
the capturing is illuminated as in Figs. 9 and 10, respectively.
During the capturing, the base is “free-floating,” i.e., its
attitude and position are not actually controlled. Therefore,

Fig. 11. (Colour online) The initial state.

Fig. 12. (Colour online) The final state.
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Fig. 13. The variation of the relative pose.

the base moves in response to the reaction of the manipulator.
The CM position of the base changes [−0.015 m, −0.028 m,

and −0.003 m]T with respect to its initial position, and the
base attitude changes from [0, 0, 0] to [−4.72◦, 0.49◦, and
1.34◦].

4.3. Simulation for the single-arm capturing while keeping
the base’s inertial pose
For this case, one arm (mission arm, named arm-a) is used to
capture the moving target, and the other arm (balance arm,
named arm-b) is used to keep the position of the base’s CM
approximately fixed in the inertial frame. In addition, the
attitude of the satellite is stabilized by the reaction wheels.
Two arms are designed and mounted centrosymmetrically
with respect to the centroid of the base, so that the condition
(76) is always satisfied if the two arms move with the same
trajectories.

A possible design is shown in Fig. 11, and the vectors to
define the two arms’ mounted positions are, respectively,

ba
0 = [

0.5, 0, 0.712
]T

, bb
0 = − [

0.5, 0, 0.712
]T

.

(88)
The inertia of each reaction flywheel is (the unit is kg.m2)

Jw = 2.86 × 10−2. (89)

In order to clearly illuminate the concept presented in
Section 3.3, and compare the results with other cases, the
same initial conditions of Section 4.2 are used for simulation,
i.e., the initial joint angles of arm-a and arm-b, target position
and velocities, and the constraints on the two arms are shown
as in Eqs. (81)–(87). According to the simulation results,

Fig. 14. The variation of the base pose.

Fig. 15. The motion of the flywheels.

arm-a autonomously captured the target at 15.7 s. The final
state after capturing is shown in Fig. 12. The relative pose
varies as in Fig. 13, the monotonous decreasing to zero
illuminates that the end-effector approaches the handle until
it goes into the capturing-box, i.e., the envelop capability
of the end-effector’s fingers. During the capturing, both the
CM’s position and attitude of the base are nearly invariable
(the variations of the position and attitude are less than 6e-
5 m and 0.75◦, respectively, which is shown in Fig. 14).
The drive torques of the reaction wheels are between −0.75
Nm and 0.85 Nm, and the angular velocities of the reaction
flywheels are shown in Fig. 15. Compared with the case
above (Section 4.2), we can see that the space robot captures
the target more quickly for the same conditions (only 15.7 s).
It is obvious that the inertially fixed base is very useful for
quick capturing.
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5. Conclusion
Compared with a single-arm space robot, a dual-arm or multi-
arm system has much more dexterity and flexibility, and can
complete more complex tasks. In this paper, the coordinated
motion planning of a dual-arm space robot is studied.
Corresponding to different applications, two typical cases are
considered. The first case is that two arms are used both to
capture the target and manipulate it synchronously. The other
case is that one arm is used to capture and manipulate the
target, but the other arm is used to keep the base fixed in the
inertial frame. Each mode has its own advantages and disad-
vantages. It is worth mentioning that the method used for the
second case supplies an attractive concept, i.e., by elaborate
designing and arranging the two arms, the motion of the bal-
ance arm can be easily planned to keep the CM position of the
base approximately motionless. In order to keep the attitude
of the base invariable, the reaction wheel is required to absorb
the resultant angular momentums generated by the two arms’
motion. If the movement velocities of the space manipulator
are relatively large, the generated angular momentum will ex-
ceed the capability of the reaction wheel. We are studying the
feasibility of designing the structure of a second arm, which
is used to compensate the angular and linear momentums
simultaneously. Based on the novel design, the trajectory of
the balance arm can be easily planned and will not encounter
the singularity problem of Eq. (72). In the future, we will set
up an air-bearing experiment system and verify the motion
planning methods using practical mechanism.
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