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A variety of logical frameworks supports the use of higher order abstract syntax in

representing formal systems. Although these systems seem superficially the same, they differ

in a variety of ways, for example, how they handle a context of assumptions and which

theorems about a given formal system can be concisely expressed and proved. Our

contributions in this paper are two-fold: (1) We develop a common infrastructure and

language for describing benchmarks for systems supporting reasoning with binders, and (2)

we present several concrete benchmarks, which highlight a variety of different aspects of

reasoning within a context of assumptions. Our work provides the background for the

qualitative comparison of different systems that we have completed in a separate paper. It

also allows us to outline future fundamental research questions regarding the design and

implementation of meta-reasoning systems.

1. Introduction

Ten years ago, the PoplMark challenge (Aydemir et al. 2005) stimulated considerable

interest in mechanizing the meta-theory of programming languages, and it has played a

substantial role in the wide-spread use of proof assistants to prove properties, for example,

of parts of a compiler or of a language design. The PoplMark challenge concentrated on

summarizing the state of the art, identifying best practices for (programming language)

researchers embarking on formalizing language definitions, and identifying a list of

engineering improvements to make the use of proof assistants (more) common place.

While these are important questions whose answers will foster the adoption of proof

assistants by non-experts, it neglects some of the deeper fundamental questions: What

should existing or future meta-languages and meta-reasoning environments look like and

what requirements should they satisfy? What support should an ideal meta-language and

proof environment give to facilitate mechanizing meta-reasoning? How can its design

reflect and support these ideals?

We believe ‘good’ meta-languages should free the user from dealing with tedious

bureaucratic details, so he/she is able to concentrate on the essence of a proof or
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algorithm. Ultimately, this means that users will mechanize proofs more quickly. In

addition, since effort is not wasted on cumbersome details, proofs are more likely to

capture only the essential steps of the reasoning process, and as a result, may be easier to

trust. For instance, weakening is a typical low-level lemma that is used pervasively (and

sometimes silently) in a proof. Freeing the user of such details ultimately may also mean

that the automation of such proofs is more feasible.

One fundamental question when mechanizing formal systems and their meta-theory

is how to represent variables and variable binding structures. There is a wide range of

answers to this question from using de Bruijn indices to locally nameless representations,

and nominal encodings, etc. For a partial view of the field, see the papers collected in

the Journal of Automated Reasoning ’s special issue dedicated to PoplMark (Pierce and

Weirich 2012) and the one on ‘Abstraction, Substitution and Naming’ (Fernández and

Urban 2012).

Encoding object languages and logics (OLs) via higher order abstract syntax (HOAS),

sometimes referred to as ‘lambda-tree syntax’ (Miller and Palamidessi 1999), where we

utilize meta-level binders to model object-level binders is in our opinion the most advanced

technology. HOAS avoids implementing common yet notoriously tricky routines dealing

with variables, such as capture-avoiding substitution, renaming and fresh name generation.

Compared to other techniques, HOAS leads to very concise and elegant encodings

and provides significant support for such an endeavour. Concentrating on encoding

binders, however, neglects another important and fundamental aspect: The support for

hypothetical and parametric reasoning, in other words, reasoning within a context of

assumptions. Considering a derivation within a context is common place in programming

language theory and leads to several natural questions: How do we model the context

of assumptions? How do we know that a derivation is sensible within the scope of a

context? Can we model the relationships between different contexts? How do we deal

with structural properties of contexts such as weakening, strengthening and exchange?

How do we know assumptions in a context occur uniquely? How do we take advantage

of the HOAS approach to substitution?

Even in systems supporting HOAS, there is not a uniform answer to these questions.

On one side of the spectrum, we have systems that implement various dependently-

typed calculi. Such systems include the logical framework Twelf (Schürmann 2009), the

dependently-typed functional language Beluga (Pientka 2008; Pientka and Cave 2015;

Pientka and Dunfield 2010) and Delphin (Poswolsky and Schürmann 2008). All these

systems also provide, to various degrees, built-in support for reasoning modulo structural

properties of a context of assumptions.

On the other side, there are systems based on a proof-theoretic foundation, which

follow a two-level approach: They implement a specification logic (SL) inside a higher

order logic or type theory. Hypothetical judgments of object languages are modelled

using implication in the SL and parametric judgments are handled via (generic) universal

quantification. Contexts are commonly represented explicitly as lists or sets in the SL, and

structural properties are established separately as lemmas. For example, substituting for

an assumption is justified by appealing to the cut-admissibility lemma of the SL. These

lemmas are not directly and intrinsically supported through the SL, but may be integrated
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into a system’s automated proving procedures, usually via tactics. Systems following this

philosophy are, for instance, the two-level Hybrid system (Felty and Momigliano 2012;

Momigliano et al. 2008) as implemented on top of Coq and Isabelle/HOL, and the Abella

system (Gacek 2008).

The contributions of the present paper are as follows: We develop a common framework

and infrastructure for representing and describing benchmarks for systems supporting

reasoning with binders; in particular, we develop notation to view contexts as ‘structured

sequences’ and classify contexts using schemas. Moreover, we abstractly characterize

in a uniform way basic structural properties that many object languages satisfy, such

as weakening, strengthening and exchange. This lays the foundation for describing

benchmarks and comparing different approaches to mechanizing OLs. Second, we propose

several challenge problems that are crafted to highlight the differences between the

designs of various meta-languages with respect to reasoning with and within a context

of assumptions, in view of their mechanization in a given proof assistant. Using our

common framework and language, we develop the proofs for these challenge problems

in a systematic way. This provides a general footprint for mechanizing these examples,

as we will see later. In a related paper (Felty et al. 2015a), we have carried out such a

mechanization and comparison in four systems: Twelf, Beluga, Hybrid and Abella. The

common framework we present here was key for the systematic comparison of these

systems and understanding the trade-offs between them. It also may be seen as a first step

towards developing a formal translation between different foundations, e.g., a translation

between Beluga’s type-theoretic foundation and the proof-theory underlying systems such

as Hybrid or Abella.

We have also started an open repository of benchmarks called ORBI (Open challenge

problem Repository for systems supporting reasoning with BInders), described in Felty

et al. (2015b). ORBI includes a language for presenting benchmarks based on the common

framework that we develop in this paper.

Challenge problems are important as they serve as an excellent regression suite and

provide the basis for highlighting differences between and strengths and limitations of

various systems. The problems described here can be viewed as an initial set. We hope that

others will contribute to the benchmark repository, implement these challenge problems

and further our understanding of the trade-offs involved in choosing one system over

another for this kind of reasoning. A solution to the proposed benchmarks should include

an adequate way to represent syntax, contexts and judgment and a mechanized proof of

those theorems.

The paper is structured as follows: In Section 2, we motivate our definition of contexts

as ‘structured sequences’ that refines the standard view of contexts, and we describe

generically and abstractly some context properties. Using this terminology, we then

present the benchmarks and their proofs in Section 3. We conclude in Section 4 discussing

related and future work. Appendix 4 provides a quick reference guide to the benchmarks.

Full details about the challenge problems and their mechanization can be found at

https://github.com/pientka/ORBI. The notation as well as the mechanization of these

benchmarks in the four systems mentioned above are described in separate papers, Felty

et al. (2015b) and Felty et al. (2015a), respectively.
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2. Contexts of assumptions: Preliminaries and terminology

Our description follows mathematical practice, in contrast to giving a fully formal account

based on, for example, type theory. In fact, all the notions that we touch upon in this

section, such as substitution, α-renaming, bindings, context schemas to name a few, can and

have been generally treated in Beluga, see, e.g., Pientka (2008). However, we deliberately

choose not to force upon us one particular foundation, so as to make our benchmarks

more accessible to a wider audience.

2.1. Defining well-formed objects

The first question that we face when defining an OL is how to describe well-formed objects.

Consider the polymorphic lambda-calculus. Commonly, the grammar of this language is

defined using Backus–Naur form (BNF) as follows.

Types A,B ::= α | arrAB | all α. A

Terms M ::= x | lam x.M | app M1 M2 | tlam α.M | tapp M A.

The grammar, however, does not capture properties of interest such as when a given

term or type is closed. Alternatively, we can describe well-formed types and terms as

judgments using axioms and inference rules following (Martin-Löf 1996), as popularized in

programming language theory by Pfenning’s Computation and Deduction notes (Pfenning

2001).

We start with an implicit-context version of the rules for well-formed types and terms

that not only plays the part of the above BNF grammar, but is also significantly more

expressive. To describe whether a type A or term M is well formed, we use two judgments:

is tp A and is tm M, whose formation rules are as follows:

is tp A — Type A is well formed

is tp α
tpv

...

is tp A

is tp (all α. A)
tp

α,tpv
al

is tp A is tp B

is tp (arrAB)
tpar

is tm M — Term M is well formed

is tm x
tmv

...

is tm M

is tm (lam x.M)
tm

x,tmv

l

is tp α
tpv

...

is tm M

is tm (tlam α.M)
tm

α,tpv
tl

is tm M1 is tm M2

is tm (app M1 M2)
tma

is tm M is tp A

is tm (tapp M A)
tmta

.
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The rule for function types (tpar) is unsurprising. The rule tpal states that a type all α. A

is well formed if A is well formed under the assumption that the variable α is also. We

say that this rule is parametric in the name of the bound variable α – thus implicitly

enforcing the usual eigenvariable condition, since bound variables can be α-renamed at

will – and hypothetical in the name of the axiom (tpv) stating the well formedness of this

type variable. In this two-dimensional representation, derived from Gentzen’s presentation

of natural deduction, we do not have an explicit rule for variables; instead, for each type

variable introduced by tpal , we also introduce the well-formedness assumption about that

variable, and we explicitly include names for the bound variable and axiom as parameters

to the rule name.

While variables might occur free in a type given via the BNF grammar, the two-

dimensional implicit-context formulation models more cleanly the scope of variables; e.g.,

a type is tp (all α. arr α β) is only meaningful in the context where we have the assumption

is tp β.

Following this judgmental view, we can also characterize well-formed terms; the rule

for term application (tma) is straightforward and the rule for type application (tmta)

simply refers to the previous judgment for well-formed types since types are embedded in

terms. The rules for term abstraction (tml) and type abstraction (tmtl) are again the most

interesting. The rule tml is parametric in the variable x and hypothetical in the assumption

is tm x; similarly, the rule tmtl is parametric in the type variable α and hypothetical in

the assumption is tp α.

We emphasize that mechanizations of a given object language can use either one of these

two representations, the BNF grammar or the judgmental implicit context formulation.

However, it is important to understand how to move between these representations and the

trade-offs and consequences involved. For example, if we choose to support the BNF-style

representation of object languages in a proof assistant, we might need to provide basic

predicates that verify whether a given object is closed; further, we may need to reason

explicitly about the scope of variables. HOAS-style proof assistants typically adopt the

judgmental view providing a uniform treatment for objects themselves (well-formedness

rules) and other inference rules about them.

2.2. Context definitions

Introducing the appropriate assumption about each variable is a general methodology

that scales to OLs accommodating much more expressive assumptions. For example, when

we specify typing rules, we introduce a typing assumption that keeps track of the fact

that a given variable has a certain type. This approach can also result in compact and

elegant proofs. Yet, it is often convenient to present hypothetical judgments in a localized

form, reducing some of the ambiguity of the two-dimensional notation. We therefore

introduce an explicit context for bookkeeping, since when establishing properties about a

given system, it allows us to consider the variable case(s) separately and to state clearly

when considering closed objects, i.e., an object in the empty context. More importantly,

while structural properties of contexts are implicitly present in the above presentation

of inference rules (where assumptions are managed informally), the explicit context

https://doi.org/10.1017/S0960129517000093 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000093


A. Felty, A. Momigliano and B. Pientka 1512

presentation makes them more apparent and highlights their use in reasoning about

contexts.

To contrast the representation using explicit contexts to implicit ones and to highlight

the differences, we re-formulate the earlier rules for well-formed types and terms given

on page 1510 using explicit contexts in Section 2.4. As another example of using explicit

contexts, we give the standard typing rules for the polymorphic lambda-calculus (see

Section 2.4). The reader might want to skip ahead to get an intuition of what explicit

contexts are and how they are used in practice. In the rest of this section, we first introduce

terminology for structuring such contexts, and then describe structural properties they

(might) satisfy.

Traditionally, a context of assumptions is characterized as a sequence of formulas

A1, A2, . . . , An listing its elements separated by commas (Girard et al. 1990; Pierce 2002).

However, we argue that this is not expressive enough to capture the structure present in

contexts, especially when mechanizing OLs. In fact, there are two limitations from that

point of view.

First, simply stating that a context is a sequence of formulas does not characterize

adequately and precisely what assumptions can occur in a context and in what order. For

example, to characterize a well-formed type, we consider a type in a context Φα of type

variables. To characterize a well-formed term, we must consider the term in a context Φαx

that may contain type variables α and term variables x.

Context Φα ::= · | Φα, is tp α

Φαx ::= · | Φαx, is tp α | Φαx, is tm x.

As a consequence, we need to be able to state in our mechanization when a given context

satisfies being a well-formed context Φα or Φαx. In other words, the grammar for Φα and

Φαx will give rise to a schema, which describes when a context is meaningful. Simply stating

that a context is a sequence of assumptions does not allow us necessarily to distinguish

between different contexts.

Second, forming new contexts by a comma does not capture enough structure. For

example, consider the typing rule for lambda-abstraction that states that lam x.M has

type (arr C B), if assuming that x is a term variable and x has type C , we can show

that M has type B. Note that whenever we introduce assumptions x:C (read as ‘term

variable x has type C ’), we at the same time introduce the additional assumption that

x is a new term variable. This is indeed important, since from it we can derive the fact

that every typing assumption is unique. Simply stating that the typing context is a list of

assumptions x:C , as shown below in the first attempt, fails to capture that x is a term

variable, distinct from all other term variables. In fact, it says nothing about x.

Typing context (attempt 1) Φ ::= · | Φ, x:C .

The second attempt below also fails, because the occurrences of the comma have two

different meanings.

Typing context (attempt 2) Φ ::= · | Φ, is tm x, x:C .
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The comma between is tm x, x:C indicates that whenever we have an assumption is tm x,

we also have an assumption x:C . These assumptions come in pairs and form one block

of assumptions. On the other hand, the comma between Φ and is tm x, x:C indicates that

the context Φ is extended by the block containing assumptions is tm x and x:C .

Taking into account such blocks leads to the definition of contexts as structured

sequences. A context is a sequence of declarations D, where a declaration is a block of

individual atomic assumptions separated by ‘;’. The ‘;’ binds tighter than ‘,’. We treat

contexts as ordered, i.e., later assumptions in the context may depend on earlier ones, but

not vice versa – this is in contrast to viewing contexts as multi-sets.

We thus introduce the following categories:

Atom A

Block of declarations D ::= A | D;A

Context Γ ::= · | Γ, D

Schema S ::= Ds | Ds + S

.

Just as types classify terms, a schema will classify meaningful structured sequences. A

schema consists of declarations Ds, where we use the subscript s to indicate that the

declaration occurring in a concrete context having schema S may be an instance of Ds.

We use + to denote the alternatives in a context schema.

We can declare the schemas corresponding to the previous contexts, seen as structured

sequences, as follows:

Sα ::= is tp α

Sαx ::= is tp α+ is tm x

Sαt ::= is tp α+ is tm x; x:C

.

We use the following notational convention for declarations and schemas: Lower

case letters denote bound variables (eigenvariables), obeying the Barendregt variable

convention; EV(D) will denote the set of eigenvariables occurring in D. Upper case letters

are used for ‘schematic’ variables. Therefore, we can always rename the x in the declaration

is tm x; x:C and instantiate C . For example, the context

is tm y; y: nat, is tp α, is tm z; z: (arr α α)

fits the schema Sαt. Although a schema does not appear to have an explicit binder, all

the eigenvariables and schematic variables occurring are considered bound. Beluga’s type

theory provides a formal type-theoretic foundation for describing schemas, where the

scope of eigenvariables and schematic variables in a schema is enforced using Σ and

Π-types (Cave and Pientka 2012; Pientka and Dunfield 2008).

We say that a declaration D is well formed if for every x ∈ EV(D), there is an atom in

D (notation A ∈ D) denoting the well-formedness judgment for x, which we generically

refer to as is wf x, with the proviso that is wf x precedes its use in D; the meta-notation

is wf will be instantiated by an appropriate atom such as is tm or is tp. A schema is

well formed if and only if all its declarations are well formed. For example, the schema

Sαt is well formed since the x in x:C is declared by is tm x appearing earlier in the same

declaration. We will assume in the following that all schemas are such.
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More generally, we say that a concrete context Γ has schema S (Γ has schema S), if

every declaration in Γ is an instance of some schema declaration Ds in S . By convention,

when we write Sl to denote a context schema, Γl will denote a valid instance of Sl , namely

such that Γl has schema Sl , where subscript l is used to denote the relationship between

the schema and an instance of it.

Schema Satisfaction Γ has schema S

· has schema S

Γ has schema S D ∈ S EV(D) ∩ EV(Γ) = �
(Γ, D) has schema S

Block D of Declaration is valid D ∈ S

D instance of Ds

D ∈ Ds

D instance of Ds

D ∈ Ds + S
D ∈ S

D ∈ Ds + S

.

Note that if D ∈ S , then it is by definition well formed. The premise EV(D)∩EV(Γ) = �
requires eigenvariables in different blocks in a context satisfying the schema to be distinct

from each other. This constraint will always be satisfied by contexts that appear in proofs

of judgments using our inference rules – again, see for example the inference rules in

Section 2.4. We remark that a given context can in principle inhabit different schemas;

for example, the context is tp α1, is tp α2 has schema Sα but also inhabits schemas Sαx and

Sαt.

Note that according to the given grammar for schemas, contexts contain only atomic

assumptions. We could consider non-atomic assumptions; in fact, more complex assump-

tions are not only possible, but sometimes yield very compact and elegant specifications,

as we touch upon in Section 4. However, to account for them, we would need to introduce

a language for terms and formulas that we feel would detract from the goal at hand.

2.3. Structural properties of contexts

So far we have introduced terminology for describing objects in three different ways:

using a BNF grammar, defining objects and rules via a two-dimensional implicit context,

and using an explicit context containing structured sequences of assumptions following a

given context schema. For the latter, we have not yet described the associated inference

rules. Before we do (in Section 2.4 as mentioned), we introduce structural properties of

explicit contexts generically and abstractly.

We concentrate here on developing a common framework for describing object lan-

guages including structural properties they might satisfy. However, we emphasize that

whether a given object language does admit structural properties such as weakening or

exchange is a property that needs to be verified on a case-by-case basis.† In the subsequent

discussion and in all our benchmarks, we concentrate on examples satisfying weakening,

† Existing metalanguages make similar commitments to structural properties: for example, the LF-type theory

satisfies by construction those properties and so does a specification logic based on hereditary Harrop

formulae, as we elaborate in the companion paper (Felty et al. 2015a)

https://doi.org/10.1017/S0960129517000093 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000093


Benchmarks for bindings 1515

exchange and strengthening, i.e., assumptions can be used as often as needed, they can be

used in any order, and certain assumptions will be known not to be needed. Our refined

notion of context has an impact on structural properties of contexts: e.g., weakening can

be described by adding a new declaration to a context, as well as adding an element

inside a block of declarations. We distinguish between structural properties of a concrete

context and structural properties of all contexts of a given schema. For example, given

the context schemas Sα and Sαx, we know that all concrete contexts of schema Sαx can be

strengthened to obtain a concrete context of schema Sα. Dually, we can think of weakening

a context of schema Sα to a context of schema Sαx. We introduce the operations rm and

perm, where rm removes an element of a declaration, and perm permutes the elements

within a declaration.

Definition 2.1 (Operations on declarations).

— Let rmA : S → S ′ be a total function taking a (well formed) declaration D ∈ S and

returning a (well formed) declaration D′ ∈ S ′, where D′ is D with A removed, if A ∈ D;

otherwise D′ = D.

— Let permπ : S → S ′ be a total function that permutes the elements of a (well formed)

declaration D ∈ S according to π to obtain a (well formed) declaration D′ ∈ S ′.

Using these operations on declarations, we state structural properties of declarations,

later to be extended to contexts. These make no assumptions and give no guarantees about

the schema of the context Γ, D and the resulting context Γ, f(D), where f ∈ {rmA, permπ}.
In fact, we often want to use these properties when Γ satisfies some schema S , but D does

not yet fit S; in this case, we apply an operation to D so that Γ, f(D) does satisfy the

schema S .

Since our context schema may contain alternatives, the function rm is defined via

case-analysis covering all the possibilities, where we describe dropping all assumptions of

a case using a dot, e.g., is tm x �→ ·. For example,

— rmx:A : Sαt → Sαx = λd.case d of is tp α �→ is tp α | is tm y; y:A �→ is tm y

— rmis tm x : Sαx → Sα = λd.case d of is tp α �→ is tp α | is tm y �→ ·

Property 2.1 (Structural properties of declarations).

1. Declaration weakening

Γ, rmA(D),Γ′ � J

Γ, D,Γ′ � J
d-wk .

2. Declaration strengthening

Γ, D,Γ′ � J

Γ, rmA(D),Γ′ � J
d − str†

with the proviso (†) that A is irrelevant to J and Γ′. In practice, this may be done by

maintaining a dependency call graph of all judgments.

3. Declaration exchange

Γ, D,Γ′ � J

Γ, permπ(D),Γ′ � J
d-exc .
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The special case rmA(A) drops A completely, since

rmA = λd.case d of A �→ · | . . .

We treat Γ, ·,Γ′ as equivalent to Γ,Γ′. Hence, in the special case where we have

Γ, rmA(A),Γ′, we obtain the well-known weakening and strengthening laws on contexts

that are often stated as

Γ, A,Γ′ � J

Γ,Γ′ � J
str† Γ,Γ′ � J

Γ, A,Γ′ � J
wk .

In contrast to the above, the general exchange property on blocks of declarations cannot

be obtained ‘for free’ from the above operations and we define it explicitly:

Property 2.2 (Exchange).

Γ, D′, D,Γ′ � J

Γ, D, D′,Γ′ � J
exc

with the proviso that the sub-context D,D′ is well formed.

Further, we state structural properties of contexts generically. To ‘strengthen’ all

declarations in a given context Γ, we simply write rm∗
A(Γ) using the ∗ superscript.

More generally, by f∗ with f ∈ {rmA, permπ}, we mean the iteration of the operation f

over a context.

Property 2.3 (Structural properties of contexts).

1. Context weakening

rm∗
A(Γ) � J

Γ � J
c − wk

2. Context strengthening

Γ � J

rm∗
A(Γ) � J

c − str†

with the proviso (†) that declarations that are instances of A are irrelevant to J .

3. Context exchange

Γ � J

perm∗
π(Γ) � J

c − exc .

Finally, by rmD (resp. rm∗
D), we mean the iteration of rmA (resp. rm∗

A) for every

A ∈ D, while keeping the resulting declaration and the overall context well-formed, e.g.,

rmis tm y; y:A( ) = rmis tm y(rmy:A( )). All the above properties are admissible with respect to

those extended rm functions.

The following examples illustrate some of the subtleties of this machinery:

— Γ, rmx:A(is tm y; y:A) = Γ, is tm y. Bound variables in the annotation of rm can

always be renamed so that they are consistent with the eigenvariables used in the

declaration.

— rm∗
is tm x(is tm x1, is tp α, is tp β, is tm x2) = is tp α, is tp β. Here, the rm operation

drops one of the alternatives in the schema Sαx.
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— rm∗
y:A(is tm x1; x1:nat, is tm x2; x2:bool, is tp α) = (is tm x1, is tm x2, is tp α). The

schematic variable A occurring in the annotation of rm will be instantiated with nat

when strengthening the block is tm x1; x1:nat and similarly with bool.

— rm∗
is tm y; y:A(is tp α, is tp β) = (is tp α, is tp β). An rm operation may leave a context

unchanged.

We state next the substitution properties for assumptions. The parametric substitution

property allows us to instantiate parameters, i.e., eigenvariables, in the context. For

example, given is tp α, is tp β � J and a type bool, we can obtain is tp bool, is tp β �
[bool/α]J by replacing α with bool. The hypothetical substitution property allows us

to eliminate an atomic formula A that is part of a declaration D. For example, given

is tp bool, is tp β � J and evidence that is tp bool, we can obtain is tp β � J . In type

theory, the two substitution properties collapse into one.

Property 2.4 (Substitution properties).

— Hypothetical substitution

If Γ1, (D1;A;D2),Γ2 � J and Γ1, D1 � A, then Γ1, (D1;D2),Γ2 � J provided that D1;D2

is a well formed declaration in Γ1.

— Parametric substitution

If Γ1, (D1; is wf x;D2),Γ2 � J , then Γ1, (D1; [t/x]D2), [t/x]Γ2 � [t/x]J for any term t

for which Γ1, D1 � is wf t holds.

While parametric and hypothetical substitution do not preserve schema satisfaction by

definition, we typically use them in such a way that contexts continue to satisfy a given

schema.

We close this section recalling that, although we concentrate in our benchmarks on

describing object languages that satisfy structural properties usually associated with

intuitionistic logic, we note that our terminology can be used to also characterize sub-

structural object languages. In the case of a linear object language, we might choose to

only use operations such as perm and omit operations such as rm so as to faithfully and

adequately characterize the allowed context operations.

2.4. The polymorphic lambda-calculus revisited

In systems supporting HOAS, inference rules are usually expressed using an implicit-

context representation as illustrated on page 1510. The need for explicit structured

contexts, as discussed in Sections 2.2 and 2.3, arises when performing meta-reasoning about

the judgments expressed by these inference rules. In order to make the link, we revisit the

example from Section 2.1 giving a presentation with explicit contexts, and then we make

some preliminary remarks about context schemas and meta-reasoning. We will adopt

the explicit-context representation of inference rules in the rest of the paper with the

informal understanding of how to move between the implicit and explicit formulations.

In this formulation, depicted in Figure 1 and differently from the implicit one, we have

a base case for variables. Here, to look up an assumption in a context, we simply write

A ∈ Γ, meaning that there is some block D in context Γ such that A ∈ D. For example,
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Well-formed Types

is tp α ∈ Γ

Γ � is tp α
tpv

Γ � is tp A Γ � is tp B

Γ � is tp (arrA B)
tpar

Γ, is tp α � is tp A

Γ � is tp (all α. A)
tpal

Well-formed Terms

is tm x ∈ Γ
Γ � is tm x

tmv

Γ, is tm x � is tm M

Γ � is tm (lam x. M)
tml

Γ, is tp α � is tm M

Γ � is tm (tlam α. M)
tmtl

Γ � is tm M1 Γ � is tm M2

Γ � is tm (app M1 M2)
tma

Γ � is tm M Γ � is tp A

Γ � is tm (tapp M A)
tmta

Typing for the Polymorphic λ-Calculus

x:B ∈ Γ
of v

Γ � x : B

Γ, is tp α � M : B
of tl

Γ � tlam α. M : all α. B

Γ � M : all α. A Γ � is tp B
of ta

Γ � (tapp M B) : [B/α]A

Γ, is tm x; x:A � M : B
of l

Γ � lam x. M : arrA B

Γ � M : arrB A Γ � N : B
of a

Γ � (app M N) : A

Fig. 1. Explicit-context formulation of inference rules.

x:B ∈ Γ holds if Γ contains block is tm x; x:B. We will also overload the notation and

write D ∈ Γ to indicate that Γ contains the entire block D. We recall the distinction

between the comma used to separate blocks, and the semi-colon used to separate atoms

within blocks, as seen in the of l rule, for example. The assumption that all variables

occurring in contexts are distinct from one another is silently preserved by the implicit

proviso in rules that extend the context, where we rename the bound variable if it is

already present.

Note that we use a generic Γ for the context appearing in these rules, whereas the

reader may have expected this to be, for example, Φαt having schema Sαt in the typing

rules. In fact, we take a more liberal approach, where we pass to the rules any context

that can be seen as a weakening of Φαt; in other words, any Γ such that there exists a D

for which rm∗
D(Γ) = Φαt.

Suppose now, to fix ideas, that Φαt � M : B holds. By convention, we implicitly assume

that both B and M are well formed, which means that Φαt � is tp B and Φαt � is tm M.

In fact, we can define functions rm∗
x:C and rm∗

is tm x;x:C , use them to define strengthened

contexts Φαx and Φα, and apply the c-str rule to conclude the following:

1. Φαx := rm∗
x:C (Φαt), Φαx has schema Sαx, and Φαx � is tm M;

2. Φα := rm∗
is tm x;x:C (Φαt), Φα has schema Sα, and Φα � is tp B.

2.5. Generalized contexts vs. context relations

As an alternative to using functions such as rm∗
x:C in item (1), we may adopt the more

suggestive notation Φαx ∼ Φαt, using inference rules for the context relation corresponding

to the graph of the function λd.case d of is tp α �→ is tp α | is tm x; x:C �→ is tm x:
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· ∼ ·
Φαx ∼ Φαt

(Φαx, is tp α) ∼ (Φαt, is tp α)

Φαx ∼ Φαt

(Φαx, is tm x) ∼ (Φαt, is tm x; x:B)
.

Similarly, an alternative to rm∗
is tm x;x:C in item (2) is the following context relation:

· ∼ ·
Φα ∼ Φαt

(Φα, is tp α) ∼ (Φαt, is tp α)

Φα ∼ Φαt

Φα ∼ (Φαt, is tm x; x:B)
.

The above two statements can now be restated using these relations. Given Φαt, let Φαx

and Φα be the unique contexts such that

1. Φαx ∼ Φαt, Φαx has schema Sαx, and Φαx � is tm M;

2. Φα ∼ Φαt, Φα has schema Sα, and Φα � is tp B.

When stating and proving properties, we often relate two judgments to each other,

where each one has its own context. For example, we may want to prove statements such

as ‘if Φαx � J1 then Φαt � J2.’ The question is how we achieve that. In the benchmarks in

this paper, we consider two approaches:

1. We reinterpret the statement in the smallest context that collects all relevant assump-

tions; we call this the generalized context approach (G). In this case, we reinterpret the

above statement about J1 in a context containing additional assumptions about typing,

which in this case is Φαt, yielding

‘if Φαt � J1, then Φαt � J2.’

2. We state how two (or more) contexts are related ; we call this the context relations

approach (R). Here, we define context relations such as those above and use them

explicitly in the statements of theorems. In this case, we use Φαx ∼ Φαt yielding

‘if Φαx � J1 and Φαx ∼ Φαt, then Φαt � J2.’

Note that here too we ‘minimize’ the relations, in the sense of relating the smallest

possible contexts where the relevant judgments make sense.

2.6. Context promotion and linear extension of contexts and schemas

Another common idiom in meta-reasoning occurs when we have established a property

for a particular context and we would like to use this property subsequently in a more

general context. Assume that we have proven a lemma about types in context Φα of the

form ‘if Φα � J1 then Φα � J2.’ We now want to use this lemma in a proof about terms,

that is where we have a context Φαx and Φαx � J1. We may need to promote this lemma,

and prove: ‘if Φαx � J1, then Φαx � J2.’ We will see several examples of such promotion

lemmas in Section 3.

Finally, to structure our subsequent discussion, it is useful to introduce some additional

terminology regarding context relationships, where we use ‘relationship’ in contrast to the

more specific notion of ‘context relation.’

— Linear extension of a declaration: A declaration D2 is a linear extension of a declaration

D1, if every atom in the declaration D1 is a member of the declaration D2.
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— Linear extension of a schema: A schema S2 is a linear extension of a schema S1, if

every declaration in S1 is a linear extension of a declaration in S2. For example, Sαt is

a linear extension of Sαx.

Given a context Φ1 of schema S1 and a context Φ2 of schema S2, where S2 is a linear

extension of S1, we say that Φ2 is a linear extension of Φ1 (i.e., linear context extension).

Of course, sometimes declarations, schemas and contexts are not related linearly. For

example, we may have a schema S2 and a schema S3 both of which are linear extensions

of S1; however, S2 is not a linear extension of S3 (or vice versa). In this case, we say S2

and S3 are non-linear extensions of each other and they share a most specific common

fragment.

3. Benchmarks

In this section, we present several case studies establishing proofs of various properties

of the lambda-calculus. We have structured this section around the different shapes and

properties of contexts, namely the following.

1. Basic linear context extensions: We consider here contexts containing no alternatives.

We refer to such contexts as basic. We discuss context membership and revisit structural

properties such as weakening and strengthening.

2. Linear context extensions with alternative declarations.

3. Non-linear context extensions: We consider more complex relationships between con-

texts and discuss how our proofs involving weakening and strengthening

change.

4. Order: We consider how the ordered structure of contexts impacts proofs relying on

exchange.

5. Uniqueness: We consider here a case study which highlights how the issue of distinctness

of all variable declarations in a context arises in proofs.

6. Substitution: Finally, we exhibit the fundamental properties of hypothetical and

parametric substitution.

The benchmark problems are purposefully simple; they are designed to be easily

understood so that one can quickly appreciate the capabilities and trade-offs of the

different systems in which they can be implemented. Yet we believe they are represent-

ative of the issues and problems arising when encoding formal systems and reasoning

about them. As we go along, we discuss both the G approach and the R approach

and comment on the trade-offs and differences in proofs depending on the chosen

approach.

3.1. Basic linear context extension

We concentrate in this section on contexts with simple schemas consisting of a single

declaration. We aim to show the basic building blocks of reasoning over open terms:

namely, what a context looks like and the structure of an inductive proof. For the latter,

we focus on the case analysis and, at the risk of being pedantic, the precise way in which

the induction hypothesis is applied.
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We start with a very simple judgment: Algorithmic equality for the untyped lambda-

calculus, written (aeq M N), also known as copy clauses, see Miller (1991). We say that

two terms are algorithmically equal provided they have the same structure with respect

to the constructors.

Algorithmic equality

aeq x x ∈ Γ

Γ � aeq x x
aev

Γ, is tm x; aeq x x � aeq M N

Γ � aeq (lam x.M) (lam x.N)
ael

Γ � aeq M1 N1 Γ � aeq M2 N2

Γ � aeq (app M1 M2) (app N1 N2)
aea

.

The context schemas needed for reasoning about this judgment are the following:

Context schemas Sx := is tm x

Sxa := is tm x; aeq x x

.

where a context Φxa satisfying Sxa is the smallest possible context in which such an equality

judgment can hold. Thus, as discussed in the previous section, when writing judgment

Φxa � aeq M N, we assume that Φxa � is tm M and Φxa � is tm N hold, and thus also

Φx � is tm M and Φx � is tm N hold by employing an implicit c-str (using rm∗
aeq x x).

We note that both contexts Φx and Φxa are simple contexts consisting of one declaration

block. Moreover, Sx is a sub-schema of Sxa and therefore the context Φxa is a linear

extension of the context Φx.

In view of the pedagogical nature of this subsection and also of the content of

Section 3.3, which will build on this example, we start with a straightforward property:

algorithmic equality is reflexive. This property should follow by induction on M (via the

well-formed term judgment, which is not shown, but uses the obvious subset of the rules in

Section 2.4). However, the question of which contexts the two judgments should be stated

in arises immediately; recall that we want to prove ‘if Γ1 � is tm M then Γ2 � aeq M M.’

Γ2 should be a context satisfying Sxa since the definition of this schema came directly from

the inference rules of this judgment. The form that Γ1 should take is less clear. The main

requirement comes from the base case, where we must know that for every assumption

is tm x in Γ1, there exists a corresponding assumption aeq x x in Γ2. The answer differs

depending on whether we choose the R approach or the G approach. We discuss each in

turn below.

3.1.1. Context relations, R version. The relation needed here is Φx ∼ Φxa, defined as

follows:

Context relation

. ∼ . crele
Φx ∼ Φxa

Φx, is tm x ∼ Φxa, is tm x; aeq x x
crelxa

.

Note that is tm x will occur in Φx in sync with an assumption block containing

is tm x; aeq x x in Φxa. This is a property which needs to be established separately, so at

the risk of redundancy, we state it as a ‘member’ lemma.
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Lemma 3.1 (Context membership).

Φx ∼ Φxa implies that is tm x ∈ Φx iff is tm x; aeq x x ∈ Φxa.

Proof. By induction on Φx ∼ Φxa.

Theorem 3.1 (Admissibility of reflexivity, R version). Assume Φx ∼ Φxa.

If Φx � is tm M, then Φxa � aeq M M.

Proof. By induction on the derivation D :: Φx � is tm M.

Case

D =
is tm x ∈ Φx

tmv
Φx � is tm x

is tm x ∈ Φx by rule premise

is tm x; aeq x x ∈ Φxa by Lemma 3.1

Φxa � aeq x x by rule aev

Case

D =

D1

Φx � is tm M1

D2

Φx � is tm M2

tma
Φx � is tm (app M1 M2)

Φx � is tm M1 sub-derivation D1

Φxa � aeq M1 M1 by IH

Φx � is tm M2 sub-derivation D2

Φxa � aeq M2 M2 by IH

Φxa � aeq (app M1 M2) (app M1 M2) by rule aea

Case

D =

D′

Φx, is tm x � is tm M
tml

Φx � is tm (lam x.M)

Φx, is tm x � is tm M sub-derivation D′

Φx ∼ Φxa by assumption

(Φx, is tm x) ∼ (Φxa, is tm x; aeq x x) by rule crelxa
Φxa, is tm x; aeq x x � aeq M M by IH

Φxa � aeq (lam x.M) (lam x.M) by rule ael .

To be precise about the instantiation of the inductions hypothesis, consider the following

general statement of the theorem (and induction hypothesis):

forall Φ1,Φ2, N, if Φ1 ∼ Φ2 and Φ1 � is tm N, then Φ2 � aeq N N.

In the tml case above, Φ1, Φ2 and N in the conclusion of this case are Φx, Φxa and

(lam x.M), respectively, while the instantiations of Φ1, Φ2 and N for the induction

hypothesis are (Φx, is tm x), (Φxa, is tm x; aeq x x) and M, respectively.
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3.1.2. Generalized contexts, G version. In this example, since Sxa includes all assumptions

in Sx, Sxa will serve as the schema of our generalized context.

Theorem 3.2 (Admissibility of reflexivity, G version). If Φxa � is tm M, then Φxa �
aeq M M.

Proof. By induction on the derivation D :: Φxa � is tm M.

Case

D =
is tm x ∈ Φxa

tmv
Φxa � is tm x

is tm x ∈ Φxa by rule premise

Φxa contains block (is tm x; aeq x x) by definition of Sxa
Φxa � aeq x x by rule aev

Case

D =

D1

Φxa � is tm M1

D2

Φxa � is tm M2

tma
Φxa � is tm (app M1 M2)

Φxa � aeq M1 M1 by IH on D1

Φxa � aeq M2 M2 by IH on D2

Φxa � aeq (app M1 M2) (app M1 M2) by rule aea

Case

D =

D′

Φxa, is tm x � is tm M
tml

Φxa � is tm (lam x.M)

Φxa, is tm x; aeq x x � is tm M by d -wk on D′

Φxa, is tm x; aeq x x � aeq M M by IH

Φxa � aeq (lam x.M) (lam x.M) by rule ael

We again consider the general statement of the theorem (and induction hypothesis):

forall Φ, N, if Φ � is tm N, then Φ � aeq N N.

In this version of the tml case, Φ and N in the conclusion are Φxa and (lam x.M),

respectively, while the instantiations of Φ and N for the induction hypothesis are

(Φxa, is tm x; aeq x x) and M, respectively.

Note that the application cases of Theorems 3.1 and 3.2 are the same except for the

context used for the well-formed term judgment. The lambda case here, on the other

hand, requires an additional weakening step. In particular, d -wk is used to add an atom

to form the declaration needed for schema Sxa. The context before applying weakening

does not satisfy this schema, and the induction hypothesis cannot be applied until it does.

We end this subsection, stating the remaining properties needed to establish that

algorithmic equality is indeed a congruence, which we will prove in Section 3.3. Since the

proof involves only Φxa, the two approaches (R & G) collapse.
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Lemma 3.2 (Context inversion). If aeq M N ∈ Φxa, then M = N.

Proof. Induction on aeq M N ∈ Φxa.

Theorem 3.3 (Admissibility of symmetry and transitivity).

1. If Φxa � aeq M N, then Φxa � aeq N M.

2. If Φxa � aeq M L and Φxa � aeq L N, then Φxa � aeq M N.

Proof. Induction on the given derivation using Lemma 3.2 in the variable case.

3.2. Linear context extensions with alternative declarations

We extend our algorithmic equality case study to the polymorphic lambda-calculus,

highlighting the situation where judgments induce context schemas with alternatives. We

accordingly add the judgment for type equality, atp A B, noting that the latter can be

defined independently of term equality. In other words, aeq M N depends on atp A B,

but not vice versa. In addition to Sα and Sαx introduced in Section 2, the following new

context schemas are also used here

Satp := is tp α; atp α α

Saeq := is tp α; atp α α + is tm x; aeq x x

.

The rules for the two equality judgments extend those given in Section 3.1. The additional

rules are stated below.

Algorithmic equality for the polymorphic lambda-calculus

. . .

Γ, is tp α; atp α α � aeq M N

Γ � aeq (tlam α.M) (tlam α.N)
aetl

Γ � aeq M N Γ � atp A B

Γ � aeq (tapp M A) (tapp N B)
aeta

atp α α ∈ Γ

Γ � atp α α
atα

Γ, is tp α; atp α α � atp A B

Γ � atp (all α. A) (all α. B)
atal

Γ � atp A1 B1 Γ � atp A2 B2

Γ � atp (arrA1 A2) (arrB1 B2)
ata

.

We show again the admissibility of reflexivity. We start with the G version this time.

3.2.1. G version. We first state and prove the admissibility of reflexivity for types, which

we then use in the proof of admissibility of reflexivity for terms. The schema for the

generalized context for the former is Satp since the statement and proof do not depend on

terms. The schema for the latter is Saeq .

Theorem 3.4 (Admissibility of reflexivity for types, G version). If Φatp � is tp A, then

Φatp � atp A A.

https://doi.org/10.1017/S0960129517000093 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000093


Benchmarks for bindings 1525

The proof is exactly the same as the proof of Theorem 3.2, modulo replacing app and

lam with arr and all, respectively, and using the corresponding rules.

As we have already mentioned in Section 2, it is often the case that we need to appeal

to a lemma in a context that is different from the context where it was proved. A concrete

example is the above lemma, which is stated in context Φatp, but is needed in the proof of

the next theorem in the larger context Φaeq . To illustrate, we state and prove the necessary

promotion lemma here.

Lemma 3.3 (G-promotion for type reflexivity). If Φaeq � is tp A, then Φaeq � atp A A.

Proof.

Φaeq � is tp A by assumption

Φatp � is tp A by c-str

Φatp � atp A A by Theorem 3.4

Φaeq � atp A A by c-wk

In general, proofs of promotion lemmas require applications of c-str and c-wk which

perform a uniform modification to an entire context. In contrast, the abstraction cases

in proofs such as the lambda case of Theorem 3.2 require d -wk to add atoms to a

single declaration. The particular function used here is rm∗
is tm x;aeq x x, which drops an

entire alternative from Φaeq to obtain Φatp and leaves the other alternative unchanged. The

combination of c-str and c-wk in proofs of promotion lemmas is related to subsumption,

see Harper and Licata (2007).

Note that we could omit Theorem 3.4 and instead prove Lemma 3.3 directly, removing

the need for a promotion lemma. For modularity purposes, we adopt the approach that

we state each theorem in the smallest possible context in which it is valid. This particular

lemma, for example, will be needed in an even bigger context than Φaeq in Section 3.3. In

general, we do not want the choice of context in the statement of a lemma to depend on

later theorems whose proofs require this lemma. Instead, we choose the smallest context

and state and prove promotion lemmas where needed.

Theorem 3.5 (Admissibility of reflexivity for terms, G version). If Φaeq � is tm M, then

Φaeq � aeq M M.

Proof. Again, the proof is by induction on the given well-formed term derivation, in

this case D :: Φaeq � is tm M, and is similar to the proof of Theorem 3.2. We show the

case for application of terms to types.

Case

D =

D1

Φaeq � is tm M

D2

Φaeq � is tp A

Φaeq � is tm (tapp M A)

Φaeq � aeq M M by IH on D1

Φaeq � atp A A by Lemma 3.3 on conclusion of D2

Φaeq � aeq (tapp M A) (tapp M A) by rule aeta

https://doi.org/10.1017/S0960129517000093 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000093


A. Felty, A. Momigliano and B. Pientka 1526

3.2.2. R version. We introduce four context relations Φα ∼ Φatp, Φαx ∼ Φaeq , Φαx ∼ Φα

and Φaeq ∼ Φatp. We define the first two as follows (where we omit the inference rules for

the base cases).

Context relations

Φα ∼ Φatp

Φα, is tp α ∼ Φatp, is tp α; atp α α

Φαx ∼ Φaeq

Φαx, is tm x ∼ Φaeq, is tm x; aeq x x

Φαx ∼ Φaeq

Φαx, is tp α ∼ Φaeq, is tp α; atp α α

.

Note that Φαx ∼ Φaeq is the extension of Φx ∼ Φxa with one additional case for equality

for types. Again, we remark on our policy to use the smallest contexts possible for

modularity reasons. Otherwise, we could have omitted the Φα ∼ Φatp relation, and stated

the next theorem using Φαx ∼ Φaeq . We also omit the (obvious) inference rules defining

Φαx ∼ Φα and Φaeq ∼ Φatp, and instead note that they correspond to the graphs of

the following two functions, respectively, which simply remove one of the two schema

alternatives:

rm∗
is tm x = λd.case d of is tp α �→ is tp α | is tm x �→ ·

rm∗
is tm x;aeq x x = λd.case d of is tp α; atp α α �→ is tp α; atp α α | is tm x; aeq x x �→ ·

We start with the theorem for types again, whose proof is similar to the R version of

the previous example (Theorem 3.1) and is therefore omitted.

Theorem 3.6 (Admissibility of reflexivity for types, R version).

Let Φα ∼ Φatp. If Φα � is tp A, then Φatp � atp A A.

Lemma 3.4 (Relational strengthening). Let Φαx ∼ Φaeq . Then, there exist contexts Φα and

Φatp such that Φαx ∼ Φα, Φaeq ∼ Φatp and Φα ∼ Φatp.

Proof. By induction on the given derivation of Φαx ∼ Φaeq .

We again need a promotion lemma, this time involving the context relation.

Lemma 3.5 (R-promotion for type reflexivity). Let Φαx ∼ Φaeq . If Φαx � is tp A, then

Φaeq � atp A A.

Proof.

Φαx � is tp A by assumption

Φα � is tp A by c-str

Φαx ∼ Φaeq by assumption

Φα ∼ Φatp by relational strengthening (Lemma 3.4)

Φatp � atp A A by Theorem 3.6

Φaeq � atp A A by c-wk
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Theorem 3.7 (Admissibility of reflexivity for terms, R version). Let Φαx ∼ Φaeq . If Φαx �
is tm M, then Φaeq � aeq M M.

Proof. Again, the proof is by induction on the given derivation. Most cases are similar to

the analogous cases in the proof of the R version for the monomorphic case (Theorem 3.1)

and the G version for types in the polymorphic case (Theorem 3.4). We show again the

case for application of terms to types to compare with the G version.

Case

D =

D1

Φαx � is tm M

D2

Φαx � is tp A

Φαx � is tm (tapp M A)

Φαx ∼ Φaeq by assumption

Φαx � is tm M sub-derivation D1

Φaeq � aeq M M by IH

Φαx � is tp A sub-derivation D2

Φaeq � atp A A by Lemma 3.5

Φaeq � aeq (tapp M A) (tapp M A) by rule aeta

Since type equality is subordinate to term equality we can pursue reflexivity of the

former independently. The context relation Φtp ∼ Φatp is defined analogously to Φx ∼ Φxa

and so we omit it.

Lemma 3.6 (‘Member’ lemma for type equality). If Φtp ∼ Φatp, then is tp α ∈ Φtp iff

atp α α ∈ Φatp.

Proof. Standard.

Theorem 3.8 (Admissibility of reflexivity for types, R version). Let Φtp ∼ Φatp. If Φtp �
is tp A, then Φatp � atp A A.

Proof. By induction on the given derivation.

Now the context relation Φx ∼ Φxa, relative to the proof of admissibility of reflexivity,

has an additional case.

Context relation

. ∼ . crele

Φx ∼ Φaeq

Φx, is tm x ∼ Φaeq, aeq x x
creltm

Φx ∼ Φaeq

Φx, is tp a ∼ Φaeq, atp α α
creltp

Lemma 3.7 (‘Member’ lemma for term equality). Let Φx ∼ Φaeq . is tm x ∈ Φx iff aeq x x ∈
Φaeq .

Proof. Standard.

Theorem 3.9 (Admissibility of reflexivity for terms, R version). Let Φx ∼ Φaeq . If Φx �
is tm M, then Φaeq � aeq M M.
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Proof. By induction on the given derivation using the above Theorem 3.8 in the aeta
case.

3.3. Non-linear context extensions

We return to the untyped lambda-calculus of Section 3.1 and establish the equivalence

between the algorithmic definition of equality defined previously, and declarative equality

Φxd � deq M N, which includes reflexivity, symmetry and transitivity in addition to the

congruence rules.‡

Declarative equality

deq x x ∈ Γ

Γ � deq x x
dev

Γ, is tm x; deq x x � deq M N

Γ � deq (lam x.M) (lam x.N)
del

Γ � deq M1 N1 Γ � deq M2 N2

Γ � deq (app M1 M2) (app N1 N2)
dea

Γ � deq M M
der

Γ � deq M L Γ � deq L N

Γ � deq M N
det

Γ � deq N M

Γ � deq M N
des

Context schema Sxd ::= is tm x; deq x x

.

We now investigate the interesting part of the equivalence, namely that when we have

a proof of (deq M N) then we also have a proof of (aeq M N). We show the G version

first.

3.3.1. G version. Here, a generalized context must combine the atoms of Φxa and Φxd

into one declaration:

Generalized context schema Sda := is tm x; deq x x; aeq x x

The following lemma promotes Theorems 3.2 and 3.3 to the ‘bigger’ generalized context.

Lemma 3.8 (G-promotion for reflexivity, symmetry and transitivity).

1. If Φda � is tm M, then Φda � aeq M M.

2. If Φda � aeq M N, then Φda � aeq N M.

3. If Φda � aeq M L and Φda � aeq L N, then Φda � aeq M N.

Proof. Similar to the proof of Theorem 3.3 where the application of c-str transforms a

context Φda to Φxa by considering each block of the form (is tm x; deq x x; aeq x x) and

removing (deq x x).

Theorem 3.10 (Completeness, G version).

If Φda � deq M N, then Φda � aeq M N.

‡ We acknowledge that this definition of declarative equality has a degree of redundancy: The assumption

deq x x in rule del is not needed, since rule der plays the variable role. However, it yields an interesting

generalized context schema, which exhibits issues that would otherwise require more complex case studies.
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Proof. By induction on the derivation D :: Φda � deq M N. We only show some cases.

Case

D = der
Φda � deq M M

Φda � is tm M by (implicit) assumption

Φda � aeq M M by Lemma 3.8 (1)

Case

D =

D1

Φda � deq M L

D2

Φda � deq L N
det

Φda � deq M N

Φda � aeq M L and Φda � aeq L N by IH on D1 and D2

Φda � aeq M N by Lemma 3.8 (3)

Case

D =

D′

Φda, is tm x; deq x x � deq M N
del

Φda � deq (lam x.M) (lam x.N)

Φda, is tm x; deq x x; aeq x x � deq M N by d -wk on D′

Φda, is tm x; deq x x; aeq x x � aeq M N by IH

Φda, is tm x; aeq x x � aeq M N by d -str

Φda � aeq (lam x.M) (lam x.N) by rule ael

The symmetry case is not shown, but also requires promotion, via Lemma 3.8 (2). Note

that the del case requires both d -str and d -wk. In contrast, the binder cases for the G

versions of the previous examples (Theorems 3.2, 3.4 and 3.5) required only d-wk. The

need for both arises from the fact that the generalized context is a non-linear extension

of two contexts, i.e., it is not the same as either one of the two contexts it combines.

3.3.2. R version. The context relation required here is Φxa ∼ Φxd:

Context relation

Φxa ∼ Φxd

Φxa, is tm x; aeq x x ∼ Φxd, is tm x; deq x x
crelad

.

As in Section 3.2, we need the appropriate promotion lemma, which again requires a

relation strengthening lemma:

Lemma 3.9 (Relational strengthening). Let Φxa ∼ Φxd. Then, there exists a context Φx

such that Φx ∼ Φxa.

Lemma 3.10 (R-promotion for reflexivity). Let Φxa ∼ Φxd. If Φxd � is tm M, then Φxa �
aeq M M.

The proofs are analogous to Lemmas 3.4 and 3.5, with the proof of Lemma 3.10 requiring

Lemma 3.9.
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Theorem 3.11 (Completeness, R version). Let Φxa ∼ Φxd. If Φxd � deq M N, then

Φxa � aeq M N.

Proof. By induction on the derivation D :: Φxd � deq M N.

Case

D = der
Φxd � deq M M

Φxd � is tm M by (implicit) assumption

Φxa � aeq M M by Theorem 3.10

Case

D =

D1

Φxd � deq M L

D2

Φxd � deq L N
det

Φxd � deq M N

Φxa � aeq M L and Φxa � aeq L N by IH on D1 and D2

Φxa � aeq M N by Theorem 3.3 (2)

Case

D =

D′

Φxd, is tm x; deq x x � deq M N
del

Φxd � deq (lam x.M) (lam x.N)

Φxa ∼ Φxd by assumption

Φxa, is tm x; aeq x x ∼ Φxd, is tm x; deq x x by rule crelad
Φxa, is tm x; aeq x x � aeq M N by IH on D′

Φxa � aeq (lam x.M) (lam x.N) by rule ael

Only one promotion lemma is required in this proof, for the reflexivity case (which requires

one occurrence each of c-str and c-wk), and no strengthening or weakening is needed in

the lambda case (thus no occurrences of d -str/wk in this proof). In contrast, the proof

of the G version of this theorem (Theorem 3.10) uses 3 occurrences of each of c-str and

c-wk via promotion Lemma 3.8 and one occurrence each of d -str and d -wk in the lambda

case.

3.4. Order

A consequence of viewing contexts as sequences is that order comes into play, and therefore

the need to consider exchanging the elements of a context. This happens when, for example,

a judgment singles out a particular occurrence of an assumption in head position. We

exemplify this with a ‘parallel’ substitution property for algorithmic equality, stated below.

The proof also involves some slightly more sophisticated reasoning about names in the

variable case than previously observed. Furthermore, note that this substitution property

does not ‘come for free’ in a HOAS encoding in the way, for example, that type substitution

(Lemma 3.11) does.
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Theorem 3.12 (Pairwise substitution). If Φxa, is tm x; aeq x x � aeq M1 M2 and Φxa �
aeq N1 N2, then Φxa � aeq ([N1/x]M1) ([N2/x]M2).

Proof. By induction on the derivation D :: Φxa, is tm x; aeq x x � aeq M1 M2 and

inversion on Φxa � aeq N1 N2. We show two cases.

Case

D =
aeq y y ∈ Φxa, is tm x; aeq x x

aev
Φxa, is tm x; aeq x x � aeq y y

.

We need to establish Φxa � aeq ([N1/x]y) ([N2/x]y).

Sub-case: y = x: Applying the substitution to the above judgment, we need to show

Φxa � aeq N1 N2, which we have.

Sub-case: aeq y y ∈ Φxa, for y �= x. Applying the substitution in this case gives us

Φxa � aeq y y, which we have by assumption.

Case

D =

D′

Φxa, is tm x; aeq x x, is tm y; aeq y y � aeq M1 M2

del
Φxa, is tm x; aeq x x � aeq (lam y.M1) (lam y.M2)

Φxa, is tm y; aeq y y, is tm x; aeq x x � aeq M1 M2 by exc on D′

Φxa � aeq N1 N2, by assumption

Φxa, is tm y; aeq y y � aeq N1 N2 by d -wk

Φxa, is tm y; aeq y y � aeq ([N1/x]M1) ([N2/x]M2) by IH

Φxa � aeq [N1/x](lam y.M1) [N2/x](lam y.M2) by rule ael and possible renaming

We remark that there are more general ways to formulate properties such as The-

orem 3.12 that do not require (on paper) exchange, for example,

if Φxa, is tm x; aeq x x,Φ′
xa � aeq M1 M2 and Φxa � aeq N1 N2, then Φxa,Φ

′
xa �

aeq ([N1/x]M1) ([N2/x]M2).

The proof of the latter statement has a similar structure to the previous one, except that

it uses d -wk in the first variable sub-case, while the binding case does not employ any

structural property to apply the induction hypothesis, by taking (Φ′′
xa, is tm y; aeq y y) as

Φ′
xa. While this works well in a paper and pencil style, it is much harder to mechanize,

since it brings in reasoning about appending and splitting lists that are foreign to the

matter at hand.

We conclude by noting that there are examples where exchange cannot be applied,

since the dependency proviso is not satisfied. Cases in point are substitution lemmas for

dependent types. Here, other encoding techniques must be used, as explored in Crary

(2009).

3.5. Uniqueness

Uniqueness of context variables plays an unsurprisingly important role in proving type

uniqueness, i.e., every lambda-term has a unique type. For the sake of this discussion,
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it is enough to consider the monomorphic case, where abstractions include type an-

notations on bound variables, and types consist only of a ground type and a function

arrow.

Terms M ::= y | lam xA.M | app M1 M2

Types A ::= i | arrAB

.

The typing rules are the obvious subset of the ones presented in Section 2, modified to

take a type superscript on bound variables, yielding

Context schema St := is tm x; x:A .

The statement of the theorem requires only a single context and thus there is no

distinction to be made between the R and G versions. Recall that we assume that

eigenvariables in different blocks in a context satisfying the schema are distinct from each

other.

Theorem 3.13 (Type uniqueness). If Φt � M : A and Φt � M : B, then A = B.

Proof. The proof is by induction on the first derivation and inversion on the second.

We show only the variable case where uniqueness plays a central role.

Case

D =
x:A ∈ Φt

of v
Φt � x : A

.

We know that x:A ∈ Φt by rule of v . By definition, Φt contains block (is tm x; x:A).

Moreover, we know Φt � x : B by assumption. By inversion using rule of v , we know

that x:B ∈ Φt, which means that Φt contains block (is tm x; x:B). Since all assumptions

about x occur uniquely, these must be the same block. Thus, A must be identical

to B.

3.6. Substitution

In this section, we address the interaction of the substitution property with context

reasoning. It is well known and rightly advertised that substitution lemmas come ‘for free’

in HOAS encodings, since substitutivity is just a by-product of hypothetical-parametric

judgments. We refer the reader to Pfenning (2001) for more details. A classic example is

the proof of type preservation for a functional programming language, where a lemma

stating that substitution preserves typing is required in every case that involves a β-

reduction. However, this example theorem is unduly restrictive since functional programs

are closed expressions; in fact, the proof proceeds by induction on (closed) evaluation and

inversion on typing, hence only addressing contexts in a marginal way. We thus discuss a

similar proof for an evaluation relation that ‘goes under a lambda’ and we choose parallel

reduction, as it is a standard relation also used in other important case studies such as
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the Church–Rosser theorem. The context schema and relevant rules are below.

Parallel reduction

x� x ∈ Γ
prv

Γ � x� x

Γ, is tm x; x� x � M � N
prl

Γ � lam x.M � lam x.N

Γ, is tm x; x� x � M �M ′ Γ � N � N ′
prβ

Γ � (app (lam x.M) N)� [N ′/x]M ′

Γ � M �M ′ Γ � N � N ′
pra

Γ � (app M N)� (app M ′ N ′)

Context schema Sr := is tm x; x� x

The relevant substitution lemma is:

Lemma 3.11. If Φt, is tm x; x:A � M : B and Φt � N : A, then Φt � [N/x]M : B.

Proof. While this is usually proved by induction on the first derivation, we show it as

a corollary of the substitution principles.

Φt, is tm x; x:A � M : B by assumption

Φt, is tm N;N:A � [N/x]M : B by parametric substitution

Φt, is tm N � [N/x]M : B by hypothetical substitution

Φt � is tm N by (implicit) assumption

Φt � [N/x]M : B by hypothetical substitution

We show only the R version of type preservation. For the G version, the context

schema is obtained by combining the schemas Sr and St similarly to how Sda was defined

to combine Sxa and Sxd in Section 3.3.1. We leave it to the reader to complete such a

proof. For the R version, we introduce the customary context relation, which in this

case is

Φr ∼ Φt

Φr, is tm x; x� x ∼ Φt, is tm x; x:A
crelrt

Theorem 3.14 (Type preservation for parallel reduction). Assume Φr ∼ Φt. If Φr � M � N

and Φt � M : A, then Φt � N : A.

Proof. The proof is by induction on the derivation D :: Φr � M � N and inversion on

Φt � M : A. We show only two cases.

Case

D =
x� x ∈ Φr

prv
Φr � x� x

.

We know that in this case M = x = N. Then, the result follows trivially.
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Case

D =

D1

Φr, is tm x; x� x � M �M ′
D2

Φr � N � N ′
prβ

Φr � (app (lam x.M) N)� [N ′/x]M ′

Φt � (app (lam x.M) N) : A by assumption

Φt � (lam x.M) : arrB A and Φt � N : B by inversion on rule of a

Φt � N ′ : B by IH on D2 and the latter

Φt, is tm x; x:B � M : A by inversion on rule of l

Φr ∼ Φt by assumption

(Φr, is tm x; x� x) ∼ (Φt, is tm x; x:B) by rule crelrt
Φt, is tm x; x:B � M ′ : A by IH

Φt � [N ′/x]M ′ : A by Lemma 3.11 (substitution)

If we were to prove a similar result for the polymorphic λ-calculus, we would need

another substitution lemma, namely:

Lemma 3.12.

If Φαt, is tp α � M : B and Φαt � is tp A, then Φαt � [A/α]M : [A/α]B.

Again, this follows immediately from parametric and hypothetical substitution, whereas

a direct inductive proof may not be completely trivial to mechanize.

4. Conclusions

We have presented an initial set of benchmarks that highlight a variety of different aspects

of reasoning within a context of assumptions. We have also provided an infrastructure for

formalizing these benchmarks in a variety of HOAS-based systems, and for facilitating

their comparison. We have developed a framework for expressing contexts of assumptions

as structured sequences, which provides additional structure to contexts via schemas and

characterizes their basic properties.

As mentioned, in a related paper (Felty et al. 2015a), we compare four systems on

the benchmarks presented here. We refer the reader to this paper for the details of the

formalizations in Twelf, Beluga, Hybrid and Abella, and for an extensive discussion of

their comparison, along with a summary table comparing these systems on 13 features

that we have identified. To give a flavour of this comparison, we mention two general

points of comparison here. First, our results show that Beluga and Twelf are better suited

to G versions of the theorems, whereas Abella and Hybrid are better suited to R versions.

Furthermore, R versions are possible in Beluga, but not in Twelf, while G versions are

possible to varying degrees in both Hybrid and Abella.

Another point of comparison is how much general support for HOAS (and beyond)

that each system supports. In summary, Beluga provides intrinsic support for abstracting

over variables and contexts, as well as for relating contexts via first-class substitutions

and inductive definitions. Abella includes a special ∇-quantifier to abstract over objects

denoting variables and also provides inductive definitions. Contexts in both Abella
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and Hybrid must be handled explicitly. Hybrid lacks intrinsic support for abstracting

over variables, which increases the burden on the user. While this is a significant

drawback, Hybrid has several advantages. It inherits both inductive definitions and

recursive functions from the ambient logic, which simplify proofs about context schemas

and relations. In addition, it can directly take advantage of Coq’s tactics, libraries and

decision procedures.

This comparison has had the additional benefit of leading to or validating planned

improvements to the systems. For example, Beluga now has better support for context

relations, and there is continued work in this direction. One of the next steps for Hybrid

is to implement the ∇ quantifier, which will provide greatly increased support for context

variables. There has also been new work in Abella in the direction of providing better

support for automating lemmas about contexts.

Related work. Our approach to structuring contexts of assumptions takes its inspiration

from Martin–Löf’s theory of judgments (Martin-Löf 1996), especially in the way it has

been realized in Edinburgh LF (Harper et al. 1993). However, our formulation owes

more to Beluga’s type theory, where contexts are first-class citizens, than to the notion

of regular world in Twelf. The latter was introduced in Schürmann (2000), and used

in Schürmann and Pfenning (2003) for the meta-theory of Twelf and in Momigliano

(2000) for different purposes. It was further explicated in Harper and Licata (2007)’s

review of Twelf’s methodology, but its treatment remained unsatisfactory since the notion

of worlds is extra-logical. Recent work (Wang and Nadathur 2013) on a logical rendering

of Twelf’s totality checking has so far been limited to closed objects.

The creation and sharing of a library of benchmarks has proven to be very beneficial

to the field it represents. The brightest example is TPTP (Sutcliffe 2009), whose influence

on the development, testing and evaluation of automated theorem provers cannot be

underestimated. Clearly, our ambitions are much more limited.

The success of TPTP has spurned other benchmark suites in related subjects, see, for

example, SATLIB (Hoos and Stützle 2000); however, the only one concerned with induc-

tion is the Induction Challenge Problems (http://www.cs.nott.ac.uk/∼lad/research/

challenges), a collection of examples geared to the automation of inductive proof. The

benchmarks are taken from arithmetic, puzzles, functional programming specifications,

etc., and as such have little connection with our endeavour. A more recent version can be

found in Claessen et al. (2015). On the other hand, Twelf’s wiki (http://twelf.org/wiki/

Case studies), Abella’s library (http://abella-prover.org/examples), Beluga’s distri-

bution and the Coq implementation of Hybrid (http://www.site.uottawa.ca/

∼afelty/HybridCoq/) contain a set of context-intensive examples, some of which

coincide with the ones presented here.

Future Work. Selecting a small set of benchmarks has an inherent element of arbitrariness.

The reader may complain that there are many other features and issues not covered in

Section 3. We agree and we mention some additional categories, which we could not

discuss in the present paper for the sake of space.
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— One of the weak spots of most current HOAS-based systems is the lack of lib-

raries, built-in data-types and related decision procedures: for example, case stud-

ies involving calculi of explicit substitutions require a small corpus of arithmetic

facts, that, albeit trivial, still need to be (re)proven, while they could be auto-

matically discharged by decision procedures such as Coq’s omega. Thus, systems

like Hybrid could take advantage of such procedures. At the same time, there

are also specifications that are functional in nature, such as those that descend

through the structure of a lambda-term, say counting its depth, the number of

bound occurrences of a given variable, etc.; most HOAS systems would encode

those functions relationally, but this entails again the additional proof obligations

of proving those relations total and deterministic. Case in point, the proof of

correctness for the translation between De Bruijn and HOAS terms in Abella, see

http://abella-prover.org/examples/lambda-calculus/debruijn ho.thm, 40%

of which consists of basic facts about natural numbers.

— In the benchmarks that we have presented all blocks are composed of atoms, but there

are natural specifications, to wit the solution to the PoplMark challenge in Pientka

(2007) or other case studies such as Wang et al. (2013), where contexts have more

structure, as they are induced by third-order specifications.

— Proofs by logical relations typically require, in order to define reducibility candidates,

inductive definitions and strong function spaces, i.e., a function space that does not

only model binding. A direct encoding of those proofs is out of reach for systems

such as Twelf, although indirect encodings exist (Schürmann and Sarnat 2008). Other

systems, such as Beluga and Abella, are well capable of encoding such proofs, but

differ in how this is accomplished, see Cave and Pientka (2015) and Gacek et al.

(2012).

— Finally, a subject that is gaining importance is the encoding of infinite behaviour,

typically realized via some form of co-induction. Context-intensive case studies have

been explored, for example, in Momigliano (2012); Momigliano et al. (2002).

One of the outcomes of our framework for expressing contexts of assumptions is the

unified treatment of all weakening/strengthening/exchange re-arrangements, via the rm

and perm operations. This opens the road to a lattice-theoretic view of declarations and

contexts, where, roughly, x  y holds iff x can be reached from y by some rm operation: A

generalized context will be the join of two contexts and context relations can be identified

by navigating the lattice starting from the join of the to-be-related contexts. We plan

to develop this view and use it to convert G proofs into R and vice versa, as a crucial

step towards breaking the proof/type theory barrier. Another direction is abstracting over

the structure of contexts, which is now tied up to sequences, possibly in the form of an

abstract data-type of context construction that satisfies certain properties w.r.t. the rm

and perm operations. This could help to capture more exotic context structures, such as

the ones occurring in the logic of bunched implication.
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Appendix. Overview of Benchmarks

In this appendix, we provide a quick reference guide to some of the key elements of the

benchmark problems discussed in Section 3. In the tables below, ULC (STLC) stands

for the untyped (simply-typed) lambda-calculus, and POLY stands for the polymorphic

lambda-calculus. The entry ‘same’ means that there is no difference between the R and G

version of the theorem because there is only one context involved.

A.1. A recap of benchmark theorems.

Theorem Thm no. Version Page

aeq-reflexivity for ULC 3.1 R 1522

aeq-reflexivity for ULC 3.2 G 1523

aeq-symmetry and transitivity for ULC 3.3 same 1524

atp-reflexivity for POLY 3.4 G 1524

aeq-reflexivity for POLY 3.5 G 1525

atp-reflexivity for POLY 3.8 R 1526

aeq-reflexivity for POLY 3.9 R 1527

aeq/deq-completeness for ULC 3.10 G 1528

aeq/deq-completeness for ULC 3.11 R 1530

type uniqueness for STLC 3.13 same 1532

type preservation for parallel reduction for STLC 3.14 R 1533

aeq-parallel substitution for ULC 3.12 same 1531

A.2. A recap of schemas and their usage.

Context Schema Block Description/Used in:

Φα Sα is tp α type variables

Φx Sx is tm x term variables

Φαx Sαx is tp α+ is tm x type/term variables

Φαt Sαt is tp α+ is tm x; x:T type-checking for POLY

Φxa Sxa is tm x; aeq x x Thm 3.2, 3.3, and 3.12

Φatp Satp is tp α; atp α α Thm 3.4

Φaeq Saeq is tp α; atp α α + is tm x; aeq x x Thm 3.5

Γda Sda is tm x; deq x x; aeq x x Thm 3.10

Φxd Sxd is tm x; deq x x Thm 3.11

Φt St is tm x; oft x A Thm 3.13

Φr Sr is tm x; x� x Thm 3.14
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A.3. A recap of the main context relations and their usage.

Relation Related blocks Used in:

Φx ∼ Φxa is tm x ∼ (is tm x; aeq x x) Thm 3.1

Φα ∼ Φatp is tp α ∼ (is tp α; atp α α) Thm 3.6

Φαx ∼ Φaeq Φx ∼ Φxa plus Φα ∼ Φatp Thm 3.7

Φxa ∼ Φxd (is tm x; aeq x x) ∼ (is tm x; deq x x) Thm 3.11

Φr ∼ Φt (is tm x; x� x) ∼ (is tm x; x:A) Thm 3.14
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