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Abstract

We investigate unramified extensions of number fields with prescribed solvable Galois group G and certain
extra conditions. In particular, we are interested in the minimal degree of a number field K, Galois over
Q, such that K possesses an unramified G-extension. We improve the best known bounds for the degree of
such number fields K for certain classes of solvable groups, in particular for nilpotent groups.
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1. Introduction

A problem of widespread interest in algebraic number theory is the construction
of unramified extensions L/K of number fields with prescribed Galois group. It is
well known, for example, as a direct consequence of results on Sn-extensions with
squarefree discriminant (see [11, 13]), that such extensions exist for any given group
G. A more interesting question is, what is the smallest degree of such a number field
K over Q, possibly with additional requirements on K? In the following, we denote
by d(Q, G) the smallest integer d such that there exists a number field K of degree d

over Q which possesses an unramified Galois extension with group G; and by d′(Q, G)
the smallest integer d′ as above such that K/Q is additionally Galois. It is commonly
conjectured that every finite group occurs as the Galois group of an unramified Galois
extension L/K, where K is a quadratic number field, that is, d(Q, G) = d′(Q, G) = 2.
However, this is a difficult question (in class field theory) even for the case of abelian
groups. Detailed heuristics predicting the distribution of such extensions, generalising
the Cohen–Lenstra heuristics, have been developed by Wood [12].

For solvable G, it is known from work of Kim building on Shafarevich’s method
[5, 6] that d′(Q, G) ≤ exp(G), where the exponent exp(G) of G is defined as the least
common multiple of all element orders in G. Previously, Nomura [10] had given the
bound d′(Q, G) ≤ p · |Φ(G)| for p-groups G with Φ(G) the Frattini subgroup of G. As
noted in [5, Remark 5.2], this bound is always ≥ exp(G).
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We additionally define e(Q, G) as the minimal number e such that Q admits a
tamely ramified G-extension all of whose ramification indices divide e. The relevance
of this definition for the original question on unramified G-extensions comes from
Abhyankar’s lemma, which shows immediately that d(Q, G) ≤ e(Q, G) [8, Lemma 2.1].

For a finite group G, define the generator exponent of G to be

ge(G) := min
S

lcm{ord(x) | x ∈ S},

where S ranges over all generating subsets of G. It is easy to see that e(Q, G) ≥ ge(G)
for all finite groups G. This is because the set of all inertia groups of a (tamely ramified)
G-extension has to generate G. The converse is open.

QUESTION 1.1. Let G be a finite group. Does e(Q, G) equal ge(G)?

Note that while bounds on e(Q, G) do not automatically yield bounds on d′(Q, G)
in general, they do as soon as the implied tamely ramified G-extensions satisfy certain
additional local conditions (see Lemma 2.7). We therefore connect Question 1.1 with
the following, which is more accessible than the stronger conjecture d′(Q, G) = 2.

QUESTION 1.2. Let G be a finite group. Is it true that d′(Q, G) ≤ ge(G)?

In an earlier paper [8], Question 1.1 was investigated using function field methods,
with a focus on nonsolvable groups, in particular reaching the best possible bound
d(Q, G) = e(Q, G) = ge(G) = 2 for several new groups.

Here, we instead focus on solvable groups. For certain classes of groups, in
particular for so-called regular p-groups, ge(G) = exp(G), meaning that already the
aforementioned results [5, 6] yield a positive answer to Questions 1.1 and 1.2 for such
groups. In particular, since it is known that all p-groups of nilpotency class ≤ p − 1
are regular, it follows that d′(Q, G) ≤ e(Q, G) = ge(G) for those groups.

The main goal of this note is to extend this observation beyond the special case
exp(G) = ge(G). In particular, we prove the following result.

THEOREM 1.3. Let G be a nilpotent group of nilpotency class ≤ p, where p is the

smallest prime divisor of |G|. Then d′(Q, G) ≤ e(Q, G) = ge(G). More precisely, there

exist infinitely many cyclic number fields K of degree ≤ ge(G) such that K possesses an

unramified G-extension.

Note that groups of nilpotency class p include many groups for which ge(G) is
strictly smaller than exp(G), making Theorem 1.3 an improvement over previously
available bounds. An easy example (but far from the only one) is the wreath product
G = Cp ≀ Cp (= (Cp)p ⋊ Cp), which has nilpotency class p, generator exponent p and
exponent p2. (Indeed, the nilpotency class of a p-group of order pk ( k ≥ 2) is always
bounded from above by k − 1 and, in the case of nilpotency class < p, the discrepancy
between exponent and generator exponent would be impossible; see Section 2.)

Before proving Theorem 1.3 in Section 4.2, we discuss some methods allowing
generalisations in Section 4.1, in particular providing positive answers to Questions
1.1 and 1.2 for certain classes of p-groups of arbitrarily high nilpotency class.
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2. Some prerequisites

We recall some standard notions and elementary results, mostly from group theory,
which will be used later. The first is the notion of a regular p-group. One of several
equivalent definitions is the following (see [4, Ch. III.10]).

DEFINITION 2.1 (Regular p-group). A p-group G is called regular if for every a, b ∈ G

there exists c in the derived subgroup of 〈a, b〉 ≤ G such that apbp
= (ab)pcp.

We will only use the following two consequences of regularity (see Corollary 4.13
and Theorem 4.26 in [3]).

PROPOSITION 2.2. Every p-group of nilpotency class < p is regular.

PROPOSITION 2.3. In a regular p-group G, the order of a product of any finitely many

elements cannot exceed the orders of all these elements. In particular, exp(G) = ge(G).

We will also make use of higher commutators and their role in calculating powers
of products of group elements.

DEFINITION 2.4. Let G be a finite group and a, b ∈ G. Denote by [a, b] := a−1b−1ab

the commutator of a and b. Iteratively, a commutator of weight i in a and b is defined
as follows.

• The commutators of weight 1 are a and b.
• The commutators of weight i ≥ 2 are [x, y], where x and y are commutators of

weights j and i − j for some j ∈ {1, . . . , i − 1}.

THEOREM 2.5 (Hall [3, Theorem 3.1]). Let G be a finite group and a, b ∈ G. For i ∈ N,

denote by Ri,j the iterated commutators of weight i in a and b ( j ∈ {1, . . . , ni} for some

ni ∈ N), in some prescribed order. Then there exist polynomial functions fi,j such that,

for all n ∈ N,

(ab)n
= anbn

∏

i≥2

ni
∏

j=1

R
fi,j(n)
i,j .

Note. The product over i ≥ 2 is a priori infinite and should be interpreted as
‘
∏

2≤i<N(· · · ) times an element of the group generated by weight-N commutators’ for
arbitrarily chosen N ∈ N. In groups where all suitably high commutators vanish (such
as nilpotent groups), there is no ambiguity in the notation. More precisely, fi,j is an
integer linear combination of the polynomials

(

X

1

)

, . . . ,

(

X

i

)

, where

(

X

d

)

:=
X(X − 1) · · · (X − d + 1)

d!
.

We set G1 := G and iteratively Gd := [G, Gd−1] for every d ≥ 2. In particular,
G2 = [G, G] = G′ is the commutator subgroup of G and G = G1 > G2 > · · · is the
lower central series of G. In particular, if G is nilpotent of class c, then Gc+1 = {1}.
Then [3, Theorems 2.51 and 2.53] give the following lemma.
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LEMMA 2.6. [Gi, Gj] ≤ Gi+j for all i, j ≥ 1. In particular, every weight-i commutator

of G is contained in Gi.

Finally, we include a number-theoretic lemma which ensures that we have
d′(Q, G) ≤ e(Q, G) under certain extra conditions.

LEMMA 2.7 [7, Lemma 4.5]. Let G be the Galois group of a tamely ramified extension

F/Q all of whose decomposition groups are abelian. Then G occurs as the Galois

group of an unramified extension of some cyclic number field L. Moreover, let m denote

the least common multiple of all ramification indices at ramified primes in F/Q. Then

one may choose L such that [L : Q] ≤ m.

3. Shafarevich’s method and the constant r(G)

The following deep result, due to Shafarevich, solves the inverse Galois problem for
solvable groups.

THEOREM 3.1 (Shafarevich [9, Ch. IX.6]). Let G be a finite solvable group and K be

a number field. Then there are infinitely many Galois extensions L/K with group G

fulfilling the following conditions:

(i) L/K is tamely ramified;

(ii) all decomposition groups at ramified primes in L/K are cyclic and equal to the

respective inertia groups.

Since decomposition groups at unramified primes are automatically cyclic,
Theorem 3.1 together with Lemma 2.7 immediately regains the bound d′(Q, G) ≤
exp(G) for all solvable groups G. In order to improve on this bound and move towards
the proof of Theorem 1.3, we recall Shafarevich’s method in more detail.

Firstly, at the heart of Shafarevich’s proof of Theorem 3.1 is a result on solvability of
split embedding problems with nilpotent kernel (see [9, Theorem 9.6.7]), which, given
a Galois extension L/K with group H, guarantees the existence of an N ⋊ H-extension
F/K containing L/K such that all ramified primes of L/K split completely in F/L and
all ramified primes of F/L have cyclic decomposition groups equal to the respective
inertia group in F/K.

Next, given any solvable group G and normal subgroup N ⊳ G, call a proper
subgroup U < G a partial complement for N if NU = G. Note that in this case G

necessarily occurs as a quotient of a suitable semidirect product N ⋊ U. Partial com-
plements exist for all normal subgroups N not contained in the Frattini subgroup of G

[9, Proposition 9.6.8]. In particular, the Fitting subgroup F(G), defined as the (unique)
largest nilpotent normal subgroup of G, always has this property [9, Proposition 9.6.9].
Since |U| < |G|, Theorem 3.1 is then derived by induction, since Properties (i) and (ii)
are preserved under taking quotients.

This motivates the following definition.
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DEFINITION 3.2. Let G be a solvable group. Set G0 := G. As long as Gi−1 , {1}, we
iteratively define Ni to be a nilpotent normal subgroup of Gi−1 such that Ni possesses a
partial complement Gi in Gi−1 (that is, Gi , Gi−1 and NiGi = Gi−1). Let s be minimal
such that Gs = {1}. For each i = 1, . . . , s, denote by ei the exponent of the group Ni.
Define r(G) = min lcm(e1, . . . , es), where the minimum is taken over all series of
(Ni, Gi)i=1,...,s as above.

Note in particular that r(G) divides exp(G), as it is the least common multiple of
certain element orders of G. For many groups G, r(G) is actually significantly smaller
than exp(G). For example, let G = Cp ≀ (Cp ≀ (· · · ≀ Cp)) · · · ) be a k-fold iterated wreath
product of cyclic groups of order p. Then exp(G) = pk, whereas r(G) = p. To see
the latter, simply write G = (Cp)n ⋊ H with suitable n ∈ N, set N1 := (Cp)n, G1 := H

and note that exp(N1) = p and G1 is essentially of the same structure as G, so one
can proceed by induction. On the other hand, one always has r(G) ≥ ge(G), since
N1 · · ·Nr = G.

The following useful inequality is also straightforward from the definition of r(G).

LEMMA 3.3. Let G be a p-group, N a normal subgroup of G and U a partial

complement of N in G. Then r(G) ≤ lcm{exp(N), r(U)}.

Proof. Set N1 = N, G1 = U and continue (N1, G1) to a series ((Ni, Gi) | i ∈ {1, . . . , s})
as in Definition 3.2 and such that the series ((Ni, Gi) | i ∈ {2, . . . , s}) inside U reaches
the smallest possible value r(U). Set ei = exp(Ni) for i = 1, . . . , s. We have r(U) =
lcm(e2, . . . , es) and r(G) ≤ lcm(e1, . . . , es) = lcm(exp(N), r(U)). �

PROPOSITION 3.4. Let G be a solvable group and k be a number field. Suppose that

((Ni, Gi) | i ∈ {1, . . . , s}) is any series of nilpotent normal subgroups Ni and partial

complements Gi as in Definition 3.2, and let ei = exp(Ni) for i = 1, . . . , s. Then there

exist infinitely many tamely ramified Galois extensions F/k with group G such that all

ramification indices divide lcm(e1, . . . , es), and all decomposition groups at ramified

primes are cyclic and equal to the inertia groups. Moreover, there exist infinitely many

cyclic Galois extensions K/k of degree [K : k] ≤ lcm(e1, . . . , es) such that K possesses

an unramified G-extension. In particular, d′(Q, G) and e(Q, G) are bounded from

above by r(G).

Proof. It suffices to prove the first assertion, since the second one follows from
Lemma 2.7 and the last one is immediate from the definition of r(G). We proceed
by induction over s.

If s = 1, then G is nilpotent of exponent e1 and the assertion is immediate from
Theorem 3.1. Now let s ≥ 2. Then G = N1G1 is a quotient of some semidirect product
N1 ⋊ G1. Note that ((Ni, Gi) | i ∈ {2, . . . , s}) is a series as in Definition 3.2 for the group
G1. Thus, we may inductively assume the existence of a G1-extension F/k yielding the
assertion for G1. By [9, Theorem 9.6.7], there exist infinitely many tamely ramified
Galois extensions E/k with group N1 ⋊ G1 such that all decomposition groups at
ramified primes are cyclic, equal to the respective inertia groups, and embed either
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into Gal(F/k) or into N1. Thus, all ramification indices in E/k, and a fortiori in its
G-subextension, divide lcm(e1, lcm(e2, . . . , es)). This completes the proof. �

4. Groups satisfying r(G) = ge(G)

4.1. Compatibility with taking direct products and wreath products. Proposition
3.4 shows that the Shafarevich method yields the constant r(G), rather than the in
general larger exp(G), as an upper bound for e(Q, G) and d′(Q, G). However, the true
value of r(G) is usually hard to determine directly from its definition. We therefore
aim at exhibiting examples in which r(G) = ge(G), thus providing a positive answer to
Questions 1.1 and 1.2 for G. We begin with a simple, but useful, observation.

LEMMA 4.1. Let G = G1 × · · · × Gn be solvable and assume that ge(Gi) = r(Gi) for all

i = 1, . . . , n. Then ge(G) = r(G).

Proof. Since each generating set of G projects to a generating set of each Gi, and
conversely the union of generating sets for each Gi forms a generating set for G, one
has ge(G) = lcm(ge(G1), . . . , ge(Gn)).

For r(G), let ((Nij, Gij) | i ∈ {1, . . . , s}) be a series of normal subgroups and partial
complements inside Gj as in Definition 3.2 (assumed of the same length s independent
of j, via adding trivial subgroups if necessary), reaching the minimum value r(Gj) for
j = 1, . . . , n. Then ((

∏n
j=1 Nij,

∏n
j=1 Gij) | i ∈ {1, . . . , s}) reaches the value

lcm
(

exp
( n
∏

j=1

N1j

)

, . . . , exp
( n
∏

j=1

Nsj

))

= lcm{exp(Ni,j) | i = 1, . . . , s; j = 1, . . . , n} = lcm(r(G1), . . . , r(Gn)).

In particular, this shows that

r(G) ≤ lcm(r(G1), . . . , r(Gn)) = lcm(ge(G1), . . . , ge(Gn)) = ge(G).

Since always ge(G) ≤ r(G), the assertion follows. �

In other words, the equality r(G) = ge(G) is well behaved under taking direct
products. It is also well behaved under taking wreath products, at least under some
technical assumptions.

LEMMA 4.2. Let G and H be solvable groups, with H embedded into Sn, and let Γ =

G ≀ H = Gn ⋊ H, with H acting by permuting the n copies of G. If ge(G) = r(G) and

ge(H) = r(H), then ge(Γ) = r(Γ), provided that at least one of the following conditions

is fulfilled:

(a) ge(G) divides ge(H);
(b) G has a cyclic quotient C of order ge(G).1

1 This is automatic if, for example, G is abelian, and also if ge(G) is a prime.
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Proof. Let ((Ni, Gi) | i ∈ {1, . . . , s}) as in Definition 3.2, achieving the minimal value
lcm(e1, . . . , es) = r(G). Set Ñi = Nn

i
≤ Gn and G̃i = Gi ≀ H. Then G̃i is a partial com-

plement for the normal subgroup Ñi of G̃i−1 and G̃s = H. Continue this sequence
by choosing a sequence of normal subgroups and partial complements inside H,
achieving the minimal value r(H). Note that exp(Ñi) = exp(Ni) for all i. Thus, r(Γ) ≤
lcm(exp(Ñ1), . . . , exp(Ñs), r(H)) = lcm(r(G), r(H)) = lcm(ge(G), ge(H)).

Now, in case (a), the latter expression simply equals ge(H), which is a trivial lower
bound for ge(Γ), via projecting a generating set onto one of H. In total, r(Γ) ≤ ge(Γ),
giving equality, as claimed. In case (b), Γ projects onto C ≀ H, which (due to C

being abelian) projects onto C × H. Thus, ge(Γ) ≥ ge(C × H) = lcm(ge(C), ge(H)) =
lcm(ge(G), ge(H)) with equality r(Γ) = ge(Γ) in total. �

REMARK 4.3. Lemmas 4.1 and 4.2 yield a mechanism to construct large classes of
groups with a positive answer to Questions 1.1 and 1.2, by beginning with groups as
in Theorem 1.3 and taking iterated direct and wreath products. For example, taking
iterated wreath products of a p-group G of nilpotency class ≤ p yields examples Γ
of arbitrarily high nilpotency class, whereas starting with a nilpotent group G of
non-prime-power order necessarily yields non-nilpotent examples Γ (see [1]). It should
be remarked that the stronger condition exp(G) = ge(G), while also preserved under
taking direct products, is not at all preserved under taking wreath products. In fact,
when taking iterated wreath products of a group G with itself, the generator exponent
is preserved, whereas the exponent grows in every iteration. This serves as additional
motivation for investigation of the constant r(G), since it allows automatic construction
of classes of examples which would be missed by naive considerations investigating
only exp(G).

4.2. Proof of Theorem 1.3. We now turn to the proof of Theorem 1.3. This involves
a close inspection of commutators in nilpotent groups.

LEMMA 4.4. Let G be a p-group of generator exponent e := ge(G) and nilpotency

class c. If p ≥ c, then G′ = [G, G] is of exponent at most e.

Proof. We show iteratively that Gd is of exponent at most e for d = c + 1, . . . , 2 in
inverse order. The statement is trivial for Gc+1 = {1}.

So, assume that the statement has been shown for Gd+1 (for some d ≥ 2). Since Gd

is of nilpotency class ≤ c − 1 < p, it is regular. Thus, by Proposition 2.3, it suffices
to show that ge(Gd) ≤ e. That is, it suffices to show that every commutator in Gd =

[G, Gd−1] has order dividing e.
Let {x1, . . . , xn} be a generating set of G with all xi of order dividing e (which exists

by assumption). Using the well-known commutator identity

[xz, y] = [z, [ y, x]][x, y][z, y] (4.1)

iteratively, every commutator [g, h] (with g ∈ G, h ∈ Gd−1) can be written as a product
of commutators of the form [xni

, hi] with ni ∈ {1, . . . , n} and hi ∈ Gd−1. In particular,
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[g, h]e
= (

∏

i[xni
, hi])e. Again, since Gd is regular, the order of [g, h] cannot exceed all

the orders of [xni
, hi]. It thus suffices to show that [xk, y]e

= 1 for k ∈ {1, . . . , n} and
y ∈ Gd−1. Now

1 = [1, y] = [xe
k, y] = [xk, y]xe−1

k · [xe−1
k , y] = [xk, y]xe−1

k · · · [xk, y]xk · [xk, y].

Using the fact that xe−1
k
= x−1

k
, the above equation simplifies to

1 = [xe
k, y] = (xk · [xk, y])e.

Writing the last power (xk · [xk, y])e out using Theorem 2.5 and noting that xe
k
= 1 leads

to 1 = xe
k

[xk, y]e
= [xk, y]e times terms of the form R

fi,j(e)
i,j , with weight i (≥ 2) commu-

tators Ri,j of xk and [xk, y] and polynomials fi,j which are integer linear combinations

of
(

X

1

)

, . . . ,
(

X

i

)

. In particular, all these higher commutators lie in [G, [G, Gd−1]] = Gd+1.
Therefore, they all have order dividing e, by induction. Furthermore, using the fact
that [xk, y] ∈ Gd and the fact that all higher commutators Ri,j as above may be assumed
to contain at least one entry [xk, y], Lemma 2.6 yields Ri,j ∈ [Gd, Gi−1] ≤ Gd+i−1. In
particular, Ri,j vanishes for all i ≥ c − d + 2. So, we may assume that i ≤ c − d + 1 ≤
c − 1 < p. But then i! is coprime to p and hence fi,j(e) is divisible by e, implying that

R
fi,j(e)
i,j = 1.

Therefore finally [xk, y]e
= 1. This shows the assertion. �

THEOREM 4.5. For any p-group G of nilpotency class c ≤ p, we have r(G) = ge(G).

Proof. Let {x1, . . . , xk} be a minimal set of generators such that all xi have order
dividing e := ge(G). We can assume that k ≥ 2. Set H := 〈G′, xk〉 and consider the
commutator subgroup H′. Using the commutator identity (4.1) as in the previous proof,
one easily verifies that every commutator in [H, H] is a product of commutators of the
form [xk, z] or [ y, z] with y, z ∈ G′. In particular, H′ ≤ [G, G′] = G3.

Therefore, H has nilpotency class at most c − 1 ≤ p − 1 and so is regular. By
Proposition 2.3, for any a ∈ 〈xk〉 and b ∈ G′, the order of ab does not exceed the
maximum of the orders of a and b. However, ord(a) divides e by definition, and ord(b)
divides e by Lemma 4.4. In total, (ab)e

= 1 and so exp(H) divides e. Furthermore, H is
a normal subgroup of G (as G/G′ is abelian). Finally, H has a partial complement
in G, namely U := 〈x1, . . . , xk−1〉, which is strictly smaller than G by definition of
{x1 . . . , , xk}. Of course U then has generator exponent dividing e, again by definition,
and nilpotency class ≤ c. Inductively, r(U) divides e and, since exp(H) divides e as
shown above, it follows from Lemma 3.3 that r(G) ≤ e. Since always r(G) ≥ e, the
assertion follows. �

In particular, we find the following consequence, which with Proposition 3.4 readily
yields Theorem 1.3.

COROLLARY 4.6. Let G be a finite nilpotent group of class c and assume that p ≥ c,

where p is the smallest prime divisor of |G|. Then r(G) = ge(G).
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Proof. Since a nilpotent group is the direct product of its Sylow subgroups, this
follows directly from Theorem 4.5 together with Lemma 4.1. �

5. Combination with other methods

The bound c ≤ p in Theorem 4.5 is best possible in the sense that there exist
p-groups of nilpotency class p + 1 for which r(G) > ge(G), the easiest and smallest
example being the dihedral group D8 of order 16. For other small primes p, computer
search with Magma [2] provides examples of order |G| = pp+2 and it should be possible
to give explicit examples for all p. For example, for p = 3, six out of 67 groups of order
pp+2 have nilpotency class p + 1 and, out of those, two fail to satisfy r(G) = ge(G).
For such groups, additional ideas are required to answer Questions 1.1 and 1.2. One
thing to note is that, due to the nature of Shafarevich’s method, one may improve
on the bound r(G) by replacing any value r(Gi) in the iteration process of Definition
3.2 by any known upper bound for e(Q, Gi), in case such a bound better than r(Gi)
is known. For example, e(Dn,Q) = 2 is known from class field theory (see [13]).
Substituting this value in the definition of r(G) whenever a dihedral Gi occurs (and
calling the thus altered constant r′(G) for the moment) yields e(Q, G) = r′(G) = ge(G)
for six of the eight nilpotent groups of order < 64 which fulfil r(G) > ge(G). The two
remaining cases ( U1 = SmallGroup(32,19) and U2 = SmallGroup(32,20) in Magma’s
database) both have generator exponent 4 and r′(Ui) = 8. However, they both embed
as index-two normal subgroups into G = SmallGroup(64,189), which has r′(G) = 2.
So, there exist tame G-extensions L/Q with all inertia groups of order two. Choose a
quadratic extension K/Q, without loss of generality linearly disjoint to the fixed fields
Fi of Ui in L (i = 1, 2), such that LK/K is an unramified G-extension. Then LK/FiK

is an unramified Ui-extension and FiK/Q is Galois with group C2 × C2, whose order
equals ge(Ui). We have therefore at least answered Question 1.2 for Ui and in total have
obtained the following result (aided by computer calculation).

THEOREM 5.1. Question 1.2 has a positive answer for all nilpotent groups of

order < 64.
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