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Abstract

Nieuwenhuis et al. (2006. Solving SAT and SAT modulo theories: From an abstract Davis-

Putnam-Logemann-Loveland procedure to DPLL(T). Journal of the ACM 53(6), 937977

showed how to describe enhancements of the Davis–Putnam–Logemann–Loveland algorithm

using transition systems, instead of pseudocode. We design a similar framework for several

algorithms that generate answer sets for logic programs: smodels, smodelscc , asp-sat with

Learning (cmodels), and a newly designed and implemented algorithm sup. This approach

to describe answer set solvers makes it easier to prove their correctness, to compare them,

and to design new systems.

KEYWORDS: answer set programming, inference, learning

1 Introduction

Answer Set Programming (ASP) is a methodology commonly used for solving

combinatorial search problems (Lifschitz 2008). In the development of ASP solvers,

computational ideas behind Satisfiability (SAT) solvers (Gomes et al. 2008) play an

important role. Influence of SAT solvers development on ASP systems is twofold.

On the one hand, such ASP solvers as assat
1 and cmodels

2 follow the so-called

SAT-based approach where a SAT solver is invoked for search, possibly multiple

times. On the other hand, “native” ASP solvers that implement search procedures

specifically suited for logic programs often adopt computational techniques from

SAT solvers. For instance, dlv
3 implements backjumping (Ricca et al. 2006), and

smodelscc
4 (Ward and Schlipf 2004) extends the answer set solver smodels

5 by intro-

ducing restarts, conflict-driven backjumping, learning, and forgetting – techniques

1 http://assat.cs.ust.hk/
2 http://www.cs.utexas.edu/users/tag/cmodels
3 http://www.dbai.tuwien.ac.at/proj/dlv/
4 http://www.nku.edu/∼wardj1/Research/smodels cc.html
5 http://www.tcs.hut.fi/Software/smodels/
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136 Y. Lierler

widely used in SAT solvers. The ASP solvers clasp
6 (Gebser et al. 2007) and

sup
7 (Lierler 2008) also implement these features.

In this paper our main goal is to show how the “abstract” approach to describing

SAT solvers proposed in Nieuwenhuis et al. (2006) can be extended to ASP solvers

that use these sophisticated features. Usually computation procedures are described

in terms of pseudocode. In Nieuwenhuis et al. (2006), the authors proposed an

alternative approach to describe the dpll-like procedures. They introduced an

abstract framework that captures “states of computation,” and transitions that

are allowed between states. In this way, it defines a directed graph such that every

execution of the dpll procedure corresponds to a path in this graph. Some edges may

correspond to unit propagation steps, some to branching, and some to backtracking.

This allows the authors to model a dpll-like algorithm by a mathematically simple

and elegant object, graph, rather than a collection of pseudocode statements. In

Lierler (2008), we extended this framework for describing ASP algorithms such as

smodels, asp-sat with Backtracking, and sup without Learning. In this paper, we

expand our previous work on abstract answer set solvers to cover such features as

backjumping and learning (and also forgetting and restart). We start by introducing

an abstract framework that captures a general mechanism of these sophisticated

features in ASP solvers. For instance, this framework provides the transition

underlying the process of learning a clause, but it does not suggest which clause shall

be learned. Similarly, it provides a general description of backjumping but it does not

supply the means for computing a “backjump clause” necessary for an answer set

solver to perform backjumping. We then enhance this abstract framework to capture

enough information about a state of computation for deriving a backjump clause.

Usually, the dpll-like procedures implement conflict-driven backjumping and

learning where a particular learning schema, such as, for instance, Decision or

FirstUIP (Mitchell 2005) is applied for computing a special kind of a backjump

clause. There are two common methods for describing a backjump clause construc-

tion. One employs the implication graph (Marques-Silva and Sakallah 1996) and

the other employs resolution (Mitchell 2005). Ward and Schlipf (2004) extended

the notion of an implication graph to the smodels algorithm. They then defined

an algorithm for computing FirstUIP backjump clauses utilized by smodelscc to

implement conflict-driven backjumping and learning. In this paper we introduce the

algorithms BackjumpClause and BackjumpClauseFirstUIP based on resolution and

the enhanced abstract framework that compute Decision and FirstUIP8 backjump

clauses, respectively.

In Lierler (2008), we introduced the basic algorithm underlining the system sup

but neglected some of its features: conflict-driven backjumping, learning, forgetting,

and restarts. Here we account for these techniques and use an abstract framework

designed in this paper for describing system sup. We emphasize that the work on

6 http://www.cs.uni-potsdam.de/clasp/
7 http://www.cs.utexas.edu/users/tag/sup
8 The names of the backjump clauses follow (Mitchell 2005).
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Abstract answer set solvers with backjumping and learning 137

this abstract framework helped us to develop the ASP solver sup, to incorporate

learning into its algorithm, and to prove its correctness.

We start the paper with Section 2 that reviews the abstract DPLL framework

introduced in Nieuwenhuis et al. (2006) and some logic programming concepts.

In Section 3, we define a graph representing the application of the algorithm

for finding supporting models of a logic program. This paves the way to define

a graph representing the application of the smodels algorithm to a program in

Section 4. Section 4.2 elaborates on the relationship between previously defined

abstract frameworks. Section 5 extends the abstract DPLL framework by introducing

an additional inference rule so that the generate and test algorithm of the SAT-

based ASP system cmodels may be characterized by this graph. In Section 6,

we review the abstract framework that describes DPLL enhanced by backjumping

and learning. In Section 7, we define a general abstract framework for describing

ASP algorithms that implement such phenomena as backjumping and learning. In

Section 7.2 we describe the algorithms of systems smodelscc and sup by means of

this framework. In Section 8 we extend the abstract generate and test framework to

accommodate backjumping and learning, and in Section 8.2 we use these findings

to describe the cmodels algorithm. Section 9 extends the framework for describing

ASP algorithms to capture additional information about computation states of a

solver, demonstrates the correctness results, and discusses how the frameworks are

related to each other. Section 10 provides the proofs for these results. In Sections 10.3

and 11 we introduce the algorithms based on the extended framework for computing

a backjump clause that are important in implementing conflict-driven backjumping

and learning. Finally, in Section 12 we introduce the concept of an extended graph

for the generate and test abstract framework and state the correctness results. Owing

to the lack of space some of the proofs are omitted here. The interested reader will

find the missing proofs in the long version of the paper (Lierler 2010).

2 Review: Abstract DPLL and logic programs

2.1 Abstract classical DPLL

For a set σ of atoms, a record M relative to σ is a list of literals over σ where

(i) some literals in M are annotated by Δ that marks them as decision literals,

(ii) M contains no repetitions.

The concatenation of two such lists is denoted by juxtaposition. Frequently, we

consider a record as a set of literals, ignoring both the annotations and the order

between its elements. A literal l is unassigned by a record if neither l nor its

complement l belongs to it.

A state relative to σ is either a distinguished state FailState or a record relative to

σ. For instance, the states relative to a singleton set {a} of atoms are

FailState, ∅, a , ¬a , aΔ, ¬aΔ, a¬a , aΔ¬a ,

a¬aΔ, aΔ¬aΔ, ¬aa , ¬aΔa , ¬aaΔ, ¬aΔaΔ,

where by ∅ we denote the empty list.
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138 Y. Lierler

Unit Propagate: M =⇒ M l if
C ∨ l ∈ F and
C ⊆ M

Decide: M =⇒ M lΔ if
M is consistent and
l is unassigned by M

Fail : M =⇒ FailState if
M is inconsistent and
M contains no decision literals

Backtrack : P lΔQ =⇒ P l if
P lΔQ is inconsistent and
Q contains no decision literals

Fig. 1. The transition rules of the graph dpF .

If C is a disjunction (conjunction) of literals, then by C we understand the

conjunction (disjunction) of the complements of the literals occurring in C . We will

sometimes identify C with the multi-set of its elements.

For any conjunctive normal form (CNF) formula F (a finite set of clauses), we

will define its DPLL graph dpF . The nodes of dpF are the states relative to the set of

atoms occurring in F . We use the terms “state” and “node” interchangeably. Recall

that a node is called terminal in a graph if there is no edge leaving this node in the

graph. If a state is consistent and complete, then it represents a truth assignment

for F .

The set of edges of dpF is described by a set of “transition rules.” Each transition

rule is an expression M =⇒ M ′ followed by a condition, where M and M ′ are

nodes of dpF . Whenever the condition is satisfied, the graph contains an edge from

node M to M ′. Generally, an edge in the graph may be justified by several transition

rules. Figure 1 presents four transition rules that characterize the edges of dpF .

This graph can be used for deciding the satisfiability of a formula F simply by

constructing an arbitrary path leading from node ∅ until a terminal node M is

reached. The following proposition shows that this process always terminates, F is

unsatisfiable if M is FailState, and M is a model of F otherwise.

Proposition 1

For any CNF formula F ,

(a) graph dpF is finite and acyclic,

(b) any terminal state of dpF other than FailState is a model of F ,

(c) FailState is reachable from ∅ in dpF if and only if F is unsatisfiable.

For instance, let F be the set consisting of the clauses

a ∨ b

¬a ∨ c.
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Abstract answer set solvers with backjumping and learning 139

Here is a path in dpF :

∅ =⇒ (Decide)

aΔ =⇒ (Unit Propagate)

aΔc =⇒ (Decide)

aΔcbΔ

(1)

The name of the transition rule after each =⇒ shows the rule that justifies the

presence of this edge in the graph. Since the state aΔcbΔ is terminal, Proposition 1

(b) asserts that {a , c, b} is a model of F . Here is another path in dpF from ∅ to the

same terminal node:

∅ =⇒ (Decide)

aΔ =⇒ (Decide)

aΔ¬cΔ =⇒ (Unit Propagate)

aΔ¬cΔc =⇒ (Backtrack)

aΔc =⇒ (Decide)

aΔcbΔ

(2)

Path (1) corresponds to an execution of dpll in the sense of Davis et al. (1962);

path (2) does not correspond, because it applies Decide to aΔ even though Unit

Propagate could be applied in this state.

Note that the graph dpF is a modification of the classical DPLL graph defined

in Nieuwenhuis et al. (2006, Section 2.3). It is different in three ways. First, its states

are pairs M ||F for all CNF formulas F . For the purposes of this section, it is not

necessary to include F . Second, the description of the classical DPLL graph involves

a “PureLiteral” transition rule. We dropped this rule because it does not correspond

to any of the propagation rules used in answer set solvers whose algorithms we will

model in this paper. Third, in the definition of that graph, each M is required to be

consistent. In case of DPLL, because of the simple structure of a clause, it is possible

to characterize the applicability of Backtrack in a simple manner: When some of the

clauses become inconsistent with the current partial assignment, Backtrack is applica-

ble. In ASP, it is not easy to describe the applicability of Backtrack if only consistent

states are taken into account. We introduced inconsistent states in the graph dpF to

facilitate our work on extending this graph to model algorithms of answer set solvers.

2.2 Logic programs

We consider programs consisting of finitely many rules of the form

a ← b1, . . . , bl , not bl+1, . . . , not bm , (3)

where a is an atom or symbol ⊥, and each bi (1 � i � m) is an atom. We will

identify the body of rule (3) with the conjunction

b1 ∧ . . . ∧ bl ∧ ¬bl+1 ∧ . . . ∧ ¬bm , (4)
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and also with the set of its conjunctive terms. If the head a of rule (3) is an atom,

then we will identify (3) with the clause

a ∨ ¬b1 ∨ . . . ∨ ¬bl ∨ bl+1 ∨ . . . ∨ bm . (5)

If a is ⊥, then we call rule (3) a constraint and identify it with the clause

¬b1 ∨ . . . ∨ ¬bl ∨ bl+1 ∨ . . . ∨ bm . (6)

We will often omit symbol ⊥ when referring to a constraint.

We will use two abbreviated forms for rule (3): The first is

a ← B ,

where B stands for b1, . . . , bl , not bl+1, . . . , not bm . The second abbreviation is

a ← D ,F , (7)

where D stands for the positive part of the body b1, . . . , bl , and F stands for the

negative part of the body not bl+1, . . . , not bm .

The reduct ΠX of a program Π with respect to a set X of atoms is obtained

from Π by

• removing each rule (7) such that F ∩X �= ∅, and

• replacing each remaining rule (7) by a ← D .

A set X of atoms is an answer set for a program Π if X is minimal (with respect

to set inclusion) among the sets of atoms that satisfy the reduct ΠX (Gelfond and

Lifschitz 1988).

For example, let Π be the program

a ← not b c ← a

b ← not a d ← d .
(8)

Consider set {a , c}. Reduct Π{a ,c} is

a ←
c ← a

d ← d .

(9)

Set {a , c} satisfies the reduct and is minimal, hence {a , c} is an answer set of Π.

Consider set {a , c, d}. The reduct Π{a ,c,d} is (9). Set {a , c, d} satisfies the reduct but

is not minimal and hence it is not an answer set of Π.

By Bodies(Π, a) we denote the set of the bodies of all rules of Π with head a .

For any set M of literals, by M + we denote the set of positive literals from M . For

any consistent and complete set M of literals (that is, an assignment), if M + is an

answer set for a program Π, then M is a model of Π. Moreover, in this case M is

a supported model of Π, in the sense that for every atom a ∈ M , M |= B for some

B ∈ Bodies(Π, a).

A set U of atoms occurring in a program Π is said to be unfounded (Van Gelder

et al. 1991) on a consistent set M of literals w.r.t. Π if for every a ∈ U and

every B ∈ Bodies(Π, a), B ∩M �= ∅ or U ∩B+ �= ∅. There is a tight relation between

unfounded sets and answer sets:
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Proposition 2 (Corollary 2 from Saccá and Zaniolo (1990))

For any model M of a program Π, M + is an answer set for Π if and only if M

contains no non-empty subsets unfounded on M w.r.t. Π.9

For instance, let Π be program (8) and let M be a consistent set {a ,¬b, c, d} of

literals. We already demonstrated that M + = {a , c, d} is not an answer set of Π.

Accordingly, its subset {d} is unfounded on {a ,¬b, c, d} w.r.t. Π, because the only

rule in Π with d in the head d ← d is such that U ∩ B+ = {d} ∩ {d} �= ∅.
We say that a program Π entails a formula F when for any consistent and

complete set M of literals, if M + is an answer set for Π, then M |= F . For instance,

any program Π entails each rule occurring in Π.

3 Generating supported models

In Section 4 we will define, for an arbitrary program Π, a graph smΠ representing the

application of the smodels algorithm to Π; the terminal nodes of smΠ are answer

sets of Π. As a step in this direction, we describe here a simpler graph atleastΠ.

3.1 Graph atleastΠ

The terminal nodes of atleastΠ are supported models of Π. The transition

rules defining atleastΠ are closely related to procedure Atleast (Simons 2000,

Sections 4.1), which is one of the core procedures of the smodels algorithm.

The nodes of the graph atleastΠ are the states relative to the set of atoms

occurring in Π. The edges of the graph atleastΠ are described by the transition

rules Decide, Fail , Backtrack introduced in Section 2.1 and the additional transition

rules10 presented in Figure 2. Note that each of the rules Unit Propagate LP

and Backchain False is similar to Unit Propagate: the former corresponds to Unit

Propagate on C ∨ l , where l is the head of the rule, and the latter corresponds to

Unit Propagate on C ∨ l , where l is an element of the body of the rule.

This graph can be used for deciding whether program Π has a supported model

by constructing a path from ∅ to a terminal node.

Proposition 3

For any program Π,

(a) graph atleastΠ is finite and acyclic,

(b) any terminal state of atleastΠ other than FailState is a supported model of Π,

(c) FailState is reachable from ∅ in atleastΠ if and only if Π has no supported

models.

9 Corollary 2 from Sacca and Zaniolo (1990) refers to “assumption sets” rather than unfounded sets.
But as the authors have noted, in the context of this corollary the two concepts are equivalent.

10 The names of some of these rules follow (Ward 2004).

https://doi.org/10.1017/S1471068410000578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000578


142 Y. Lierler

Unit Propagate LP : M =⇒ M a if
a ← B ∈ Π and
B ⊆ M

All Rules Cancelled : M =⇒ M ¬a if B ∩ M = ∅ for all B ∈ Bodies(Π, a)

Backchain True: M =⇒ M l if

⎧⎪⎪⎨
⎪⎪⎩

a ← B ∈ Π,

a ∈ M ,

B ∩ M = ∅ for all B ∈ Bodies(Π, a) \ {B},
l ∈ B

Backchain False: M =⇒ M l if

⎧⎨
⎩

a ← l ↪B ∈ Π↪

¬a ∈ M or a = ⊥,
B ⊆ M

Fig. 2. The additional transition rules of the graph atleastΠ.

For instance, let Π be program (8). Here is a path in atleastΠ:

∅ =⇒ (Decide)

aΔ =⇒ (Unit Propagate LP)

aΔc =⇒ (All Rules Cancelled)

aΔc¬b =⇒ (Decide)

aΔc¬bdΔ·

(10)

Since the state aΔc¬bdΔ is terminal, Proposition 3 (b) asserts that {a , c,¬b, d} is a

supported model of Π.

The assertion of Proposition 3 will remain true if we drop the transition rules

Backchain True and Backchain False from the definition of atleastΠ.

3.2 Relation between dpF and atleastΠ

It is well known that the supported models of a program can be characterized as

models of program’s completion in the sense of Clark (1978). It turns out that the

graph atleastΠ is identical to the graph dpF , where F is the (clausified) completion

of Π. In order to make this claim precise, we first review the notion of completion.

For any program Π, its completion consists of Π and the formulas that can be

written as

¬a ∨
∨

B∈Bodies(Π,a)

B (11)

for every atom a in Π. CNF-Comp(Π) is the completion converted to CNF using

straightforward equivalent transformations. In other words, CNF-Comp(Π) consists

of clauses of two kinds:

(1) the rules a ← B of the program written as clauses

a ∨ B , (12)
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(2) formulas (11) converted to CNF using the distributivity of disjunction over

conjunction.11

Proposition 4

For any program Π, the graphs atleastΠ and dpCNF-Comp(Π) are equal.

For instance, let Π be the program

a ← b, not c

b.
(13)

Its completion is

(a ↔ b ∧ ¬c) ∧ b ∧ ¬c, (14)

and CNF-Comp(Π) is

(a ∨ ¬b ∨ c) ∧ (¬a ∨ b) ∧ (¬a ∨ ¬c) ∧ b ∧ ¬c. (15)

Proposition 4 asserts that atleastΠ coincides with dpCNF-Comp(Π).

From Proposition 4 it follows that applying the Atleast algorithm to a program

essentially amounts to applying dpll to its completion.

4 Answer set solver smodels

4.1 Abstract smodels

We now describe the graph smΠ that represents the application of the smodels

algorithm to program Π. smΠ is a graph whose nodes are the same as the nodes

of the graph atleastΠ. The edges of smΠ are described by the transition rules of

atleastΠ and the additional transition rule

Unfounded : M =⇒ M ¬a if

{
M is consistent, and

a ∈ U for a set U unfounded on M w.r.t. Π·

This transition rule of smΠ is closely related to procedure Atmost (Simons 2000,

Sections 4.2), which together with the procedure Atleast forms the core of the

smodels algorithm.

The graph smΠ can be used for deciding whether program Π has an answer set

by constructing a path from ∅ to a terminal node.

Proposition 5

For any program Π,

(a) graph smΠ is finite and acyclic,

(b) for any terminal state M of smΠ other than FailState, M + is an answer set

of Π,

(c) FailState is reachable from ∅ in smΠ if and only if Π has no answer sets.

11 It is essential that repetitions are not removed in the process of clausification. For instance,
CNF-Comp(a ← not a) is the formula (a ∨ a) ∧ (¬a ∨ ¬a).
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In order to illustrate the difference between smΠ and atleastΠ, assume again

that Π is program (8). Path (10) in the graph atleastΠ is also a path in smΠ. But

state aΔc¬bdΔ, which is terminal in atleastΠ, is not terminal in smΠ. This is not

surprising, since {a , c,¬b, d}+ = {a , c, d} is not an answer set of Π. To get to a state

that is terminal in smΠ, we need two more steps:

...

aΔc¬bdΔ =⇒ (Unfounded, U = {d})
aΔc¬bdΔ¬d =⇒ (Backtrack)

aΔc¬b¬d

(16)

Proposition 5 (b) asserts that {a , c} is an answer set of Π.

The assertion of Proposition 5 will remain true if we drop the transition rules All

Rules Cancelled , Backchain True, and Backchain False from the definition of smΠ.

4.2 Smodels algorithm

We can view a path in the graph smΠ as a description of a search process for

an answer set for a program Π by applying inference rules. Therefore, we can

characterize the algorithm of an answer set solver that utilizes the inference rules of

smΠ by describing a strategy for choosing a path in smΠ. A strategy can be based,

in particular, on assigning priorities to some or all inference rules of smΠ, so that a

solver will never apply a transition rule in a state if a rule with higher priority is

applicable to the same state.

We use this method to describe the smodels algorithm. System smodels assigns

priorities to the inference rules of smΠ as follows:

Backtrack,Fail�
Unit Propagate LP,All Rules Cancelled,Backchain True,Backchain False�
Unfounded� Decide.

For example, let Π be program (8). The smodels algorithm may follow a path

∅ =⇒ (Decide)

aΔ =⇒ (Unit Propagate LP)

aΔc =⇒ (All Rules Cancelled)

aΔc¬b =⇒ (Unfounded)

aΔc¬b¬d

in the graph smΠ, whereas it may never follow path (10), because Unfounded has a

higher priority than Decide.

4.3 Tight programs

We will now review the definitions of a positive dependency graph and a tight

program. The positive dependency graph of a program Π is the directed graph G

such that

• the nodes of G are the atoms occurring in Π, and
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• G contains the edges from a to bi (1 � i � l ) for each rule (3) in Π, where a

is an atom.

A program is tight if its positive dependency graph is acyclic. For instance,

program (8) is not tight since its positive dependency graph has a cycle because of

the rule d ← d . The program constructed from (8) by removing this rule is tight.

Recall that for any program Π and any assignment M , if M + is an answer set

of Π, then M is a supported model of Π. For the case of tight programs, the

converse also holds: M + is an answer set for Π if and only if M is a supported

model of Π (Fages 1994) or, in other words, is a model of the completion of Π.

It turns out that for tight programs the graph smΠ is “almost identical” to the

graph dpF , where F is the clausified completion of Π. To make this claim precise,

we need the following terminology.

We say that an edge M =⇒ M ′ in the graph smΠ is singular if

• the only transition rule justifying this edge is Unfounded , and

• some edge M =⇒ M ′′ can be justified by a transition rule other than

Unfounded or Decide.

For instance, let Π be the program

a ← b

b ← c.

The edge

aΔbΔ¬cΔ =⇒ (Unfounded, U = {a , b})
aΔbΔ¬cΔ¬a

in the graph smΠ is singular, because the edge

aΔbΔ¬cΔ =⇒ (All Rules Cancelled)

aΔbΔ¬cΔ¬b

also belongs to smΠ.

With respect to the actual smodels algorithm (Simons 2000), singular edges of the

graph smΠ are inessential: In view of priorities for choosing a path in smΠ described

in Section 4.2, smodels never follows a singular edge. Indeed, the transition rule

Unfounded has the lower priority than any other transition rule but Decide. By sm
−
Π

we denote the graph obtained from smΠ by removing all singular edges.

Proposition 6

For any tight program Π, the graph sm
−
Π is equal to each of the graphs atleastΠ

and dpCNF-Comp(Π).

For instance, let Π be the program (13). This program is tight, its completion is (14),

and CNF-Comp(Π) is formula (15). Proposition 6 asserts that sm
−
Π coincides with

both dpCNF-Comp(Π) and atleastΠ.

From Proposition 6 it follows that applying the smodels algorithm to a tight

program essentially amounts to applying dpll to its completion. A similar relation-

ship, in terms of pseudocode representations of smodels and dpll, is established

in Giunchiglia and Maratea (2005).
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5 Generate and test

In this section we present a modification of the graph dpF (Section 2.1) that includes

testing “partial” assignments of F found by dpll.

Let F be a CNF formula, and be a formula formed from atoms occurring in F .

The terminal nodes of the graph gtF ,G defined below are models of formula F ∧G .

This modification of the graph dpF is of interest, for example, in connection with

the fact that answer sets of a program Π can be characterized as models of its

completion extended by the so-called loop formulas of Π (Lin and Zhao 2002). If

CNF-Comp(Π), as given above, is the completion converted to CNF, and LF (Π) is

the conjunction of all loop formulas of Π, then for any assignment M , M + is an

answer set of Π if M is a model of CNF-Comp(Π) ∧ LF (Π). Hence, the terminal

nodes of the graph gtCNF-Comp(Π),LF (Π) will correspond to answer sets of Π.

The nodes of the graph gtF ,G are the same as the nodes of the graph dpF .

The edges of gtF ,G are described by the transition rules of dpF and the additional

transition rule

Test: M =⇒ M l if

⎧⎨
⎩

M is consistent,

G |= M ,

l ∈ M ·
It is easy to see that the graph dpF is a subgraph of the graph gtF ,G . The latter

graph can be used for deciding whether a formula F ∧G has a model by constructing

a path from ∅ to a terminal node.

Proposition 7

For any CNF formula F and a formula G formed from atoms occurring in F ,

(a) graph gtF ,G is finite and acyclic,

(b) any terminal state of gtF ,G other than FailState is a model of F ∧ G ,

(c) FailState is reachable from ∅ in gtF ,G if and only if F ∧ G is unsatisfiable.

Note that to verify the applicability of the new transition rule Test we need a

procedure for testing whether G entails a clause, but there is no need to explicitly

write out G . This is important because LF (Π) can be very long (Lin and Zhao

2002).

For instance, let Π be the nontight program d ← d . Its completion is d ↔ d ,

and CNF-Comp(Π) is (d ∨ ¬d ). This program has one loop formula d → ⊥.

Proposition 7 asserts that a terminal state ¬d of gtCNF-Comp(Π),d→⊥ is a model of

CNF-Comp(Π) ∧ LF (Π). It follows that {¬d}+ = ∅ is an answer set of Π. To

compare with the graph dpCNF-Comp(Π): state d is a terminal state in dpCNF-Comp(Π)

whereas d is not a terminal state in gtCNF-Comp(Π),d→⊥ because the transition rule

Test is applicable to this state.

asp-sat with Backtracking (Giunchiglia et al. 2006) is a procedure that computes

models of the completion of the given program using dpll, and tests them until an

answer set is found. The application of this procedure to a program Π can be viewed

as constructing a path from ∅ to a terminal node in the graph gtCNF-Comp(Π),LF (Π) by

adopting a strategy that Test is applied to a state M only when M is an assignment.
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Unit Propagate λ: M ‖Γ =⇒ M l‖Γ if
C ∨ l ∈ F ∪ Γ and
C ⊆ M

Backjump: P lΔQ‖Γ =⇒ P l ‖Γ if
P lΔQ is inconsistent and
F |= l ∨ P

Learn: M ‖Γ =⇒ M ‖C , Γ if
every atom in C occurs in F and
F |= C

Fig. 3. The additional transition rules of the graph dplF .

6 Review: Abstract DPLL with learning

Most modern SAT solvers implement such sophisticated techniques as backjumping

and learning:

Backjumping: Chronological backtracking (used in classical dpll) can be seen as

a prototype of backjumping. Unlike backtracking that undoes only the previously

made decision, backjumping is generally able to backtrack further in the search tree

by undoing several decisions at once.

Learning: Most modern SAT solvers implement the so-called conflict-driven back-

jumping and learning: Whenever backjumping is performed they add (learn) a

“backjump clause” to the clause database of a solver. Learning backjump clauses

prevents a solver from reaching “similar” inconsistent states.

In this section we will extend the graph dpF to capture the ideas behind

backjumping and learning. The new graph will be closely related to the DPLL

System with Learning graph introduced in Nieuwenhuis et al. (2006, Section 2.4).

We first note that the graph dpF is not adequate to capture such technique as

learning because it is incapable to reflect a change in a state of computation related

to newly learned clauses. We start by redefining a state so that it incorporates

information about changes performed on a clause database.

For a CNF formula F , an augmented state relative to F is either a distinguished

state FailState or a pair M ||Γ, where M is a record relative to the set of atoms

occurring in F , and Γ is a (multi-)set of clauses over atoms of F that are entailed

by F .

We now define a graph dplF for any CNF formula F . Its nodes are the augmented

states relative to F . The transition rules Decide and Fail of dpF are extended to dplF

as follows: M ||Γ =⇒ M ′||Γ (M ||Γ =⇒ FailState) is an edge in dplF justified by

Decide (Fail ) if and only if M =⇒ M ′ (M =⇒ FailState) is an edge in dpF justified

by Decide (Fail ). Figure 3 presents the other transition rules of dplF . We refer to the

transition rules Unit Propagate λ, Backjump, Decide, and Fail of the graph dplF as

Basic. We say that a node in the graph is semi-terminal if no rule other than Learn

is applicable to it. We will omit the word “augmented” before “state” when this is

clear from a context.
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The graph dplF can be used for deciding the satisfiability of a formula F simply

by constructing an arbitrary path from node ∅||∅ to a semi-terminal node.

Proposition 8

For any CNF formula F ,

(a) every path in dplF contains only finitely many edges justified by Basic

transition rules,

(b) for any semi-terminal state M ||Γ of dplF reachable from ∅||∅, M is a model

of F ,

(c) FailState is reachable from ∅||∅ in dplF if and only if F is unsatisfiable.

On the one hand, Proposition 8 (a) asserts that if we construct a path from ∅||∅ so that

Basic transition rules periodically appear in it, then some semi-terminal state will be

eventually reached. On the other hand, Proposition 8 (b) and (c) assert that as soon as

a semi-terminal state is reached the problem of deciding whether formula F is satisfi-

able is

solved.

For instance, let F be the formula

a ∨ b

¬a ∨ c.

Here is a path in dplF :

∅||∅ =⇒ (Learn)

∅||b ∨ c =⇒ (Decide)

¬bΔ||b ∨ c =⇒ (Unit Propagate λ)

¬bΔc||b ∨ c =⇒ (Unit Propagate λ)

¬bΔca||b ∨ c

(17)

Since the state ¬bΔca is semi-terminal, Proposition 8 (b) asserts that {¬b, c, a} is a

model of F .

Recall that the transition rule Backtrack of the graph dpF – a prototype of

Backjump – is applicable in any inconsistent state with a decision literal in dpF . The

transition rule Backjump, on the other hand, is applicable in any inconsistent state

with a decision literal that is reachable from ∅||∅ (the proof of this statement is

similar to the proof of Lemma 2.8 in Nieuwenhuis et al. (2006)). The application of

Backjump where lΔ is the last decision literal and l ′ is l can be seen as an application

of Backtrack . This fact shows that Backjump is essentially a generalization of

Backtrack . The subgraph of dpF induced by the nodes reachable from ∅ is basically

a subgraph of dplF .

7 Answer set solver with learning

In this section we will extend the graph smΠ to capture backjumping and learning.

As a result we will be able to model the algorithms of systems smodelscc and sup.
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Backchain False λ: M ‖Γ =⇒ M l‖Γ if

⎧⎨
⎩

a ← l ,B ∈ Π ∪ Γ,
¬a ∈ M or a = ⊥,
B ⊆ M

Backjump LP : P lΔQ‖Γ =⇒ P l ‖Γ if
P lΔQ is inconsistent and
Π entails l ∨ P

Learn LP : M ‖Γ =⇒ M ‖← B , Γ if Π entails B

Fig. 4. The additional transition rules of the graph smlΠ.

7.1 Graph smlΠ

An (augmented ) state relative to a program Π is either a distinguished state, i.e.,

FailState, or a pair of the form M ||Γ, where M is a record relative to the set of atoms

occurring in Π, and Γ is a (multi-)set of constraints formed from atoms occurring

in Π that are entailed by Π.

For any program Π, we will define a graph smlΠ. Its nodes are the augmented

states relative to Π. The transition rules Unit Propagate LP, All Rules Cancelled,

Backchain True, Unfounded, Decide, and Fail of smΠ are extended to smlΠ as follows:

M ||Γ =⇒ M ′||Γ (M ||Γ =⇒ FailState) is an edge in smlΠ justified by a transition

rule T if and only if M =⇒ M ′ (M =⇒ FailState) is an edge in smΠ justified by T .

Figure 4 presents the other transition rules of smlΠ.

We refer to the transition rules Unit Propagate LP, All Rules Cancelled, Backchain

True, Backchain False λ, Unfounded, Backjump LP, Decide, and Fail of the graph

smlΠ as Basic. We say that a node in the graph is semi-terminal if no rule other than

Learn LP is applicable to it.

The graph smlΠ can be used for deciding whether a program Π has an answer

set by constructing a path from ∅||∅ to a semi-terminal node.

Proposition 9

For any program Π,

(a) every path in smlΠ contains only finitely many edges labeled by Basic transition

rules,

(b) for any semi-terminal state M ||Γ of smlΠ reachable from ∅||∅, M + is an

answer set of Π,

(c) FailState is reachable from ∅||∅ in smlΠ if and only if Π has no answer sets.

Thus, if we construct a path from ∅||∅ so that Basic transition rules periodically

appear in it, then some semi-terminal state will be eventually reached; as soon

as a semi-terminal state is reached the problem of finding an answer set is

solved.

For instance, let Π be program (8). Here is a path in smlΠ with every edge

annotated by the name of a transition rule that justifies the presence of this edge in
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the graph:

∅||∅ =⇒ (Decide)

aΔ||∅ =⇒ (Unit Propagate LP)

aΔc||∅ =⇒ (All Rules Cancelled)

aΔc¬b||∅ =⇒ (Decide)

aΔc¬bdΔ||∅ =⇒ (Unfounded)

aΔc¬bdΔ¬d ||∅ =⇒ (Backjump LP)

aΔc¬b¬d ||∅ =⇒ (Learn LP)

aΔc¬b¬d ||¬a ∨ ¬c ∨ b ∨ ¬d

(18)

Since the state aΔc¬b¬d is semi-terminal, Proposition 9 (b) asserts that

{a , c,¬b,¬d}+ = {a , c}

is an answer set for Π.

Proof of Proposition 9 is in Section 10.1.

As in case of the graphs dpF and dplF , Backjump LP is applicable in any

inconsistent state with a decision literal that is reachable from ∅||∅ (Proposition 12

in Section 9), and is essentially a generalization of the transition rule Backtrack of

the graph smΠ.

Modern SAT solvers often implement such sophisticated techniques as restart and

forgetting in addition to backjumping and learning.

Restart: A solver restarts the dpll procedure whenever the search is not making

“enough” progress. The idea is that upon a restart a solver will explore a new part

of the search space using the clauses that have been learned.

Forgetting: This technique is usually implemented in relation to conflict-driven

backjumping and learning. When a solver “notes” that earlier learned clauses are

not helpful anymore, it removes (forgets) them from the clause database. Forgetting

allows a solver to avoid a possible exponential space blow-up introduced by learning.

We may extend the graph smlΠ with the following transition rules that capture

the ideas behind these technique:

Restart: M ||Γ =⇒ ∅||Γ
Forget LP : M || ← B , Γ =⇒ M ||Γ.

The transition rules Restart and Forget LP are similar to the analogous rules given

in Nieuwenhuis et al. (2006) for extending dpll procedure with restart and forgetting

techniques. It is easy to prove a result similar to Proposition 9 for the graph smlΠ

with Restart and Forget LP (for such graph a state is semi-terminal if no rule other

than Learn LP , Restart , Forget LP is applicable to it.)

7.2 Smodelscc and sup algorithms

In Section 4.2 we demonstrated a method for specifying the algorithm of an answer

set solver by means of the graph smΠ. In particular, we described the smodels

algorithm by assigning priorities to transition rules of smΠ. In this section we use
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this method to describe the smodelscc (Ward and Schlipf 2004) and sup (Lierler

2008) algorithms by means of smlΠ.

System smodelscc enhances the smodels algorithm with conflict-driven backjump-

ing and learning. Its strategy for choosing a path in the graph smlΠ is similar to

that of smodels. System smodelscc assigns priorities to inference rules of smlΠ as

follows:

Backjump LP,Fail�
Unit Propagate LP,All Rules Cancelled,Backchain True,Backchain False λ�
Unfounded� Decide.

Also, smodelscc always applies the transition rule Learn LP in a non-semi-

terminal state reached by an application of Backjump LP , because it implements

conflict-driven backjumping and learning.12

In Lierler (2008), we introduced the simplified sup algorithm that relies on

backtracking rather than conflict-driven backjumping and learning that are actually

implemented in the system. We now present the sup algorithm that takes these

sophisticated techniques into account.

System sup assigns priorities to inference rules of smlΠ as follows:

Backjump LP,Fail�
Unit Propagate LP,All Rules Cancelled,Backchain True,Backchain False λ�
Decide� Unfounded.

Similar to smodelscc , sup always applies the transition rule Learn LP in a non-

semi-terminal state reached by an application of Backjump LP . In Section 11 we

discuss details on which clause is being learned during an application of Learn LP .

For example, let Π be program (8). Path (18) corresponds to an execution of

system sup, but does not correspond to any execution of smodelscc because for the

latter Unfounded is a rule of higher priority than Decide. Here is another path in

smlΠ from ∅||∅ to the same semi-terminal node:

∅||∅ =⇒ (Decide)

aΔ||∅ =⇒ (Unit Propagate LP)

aΔc||∅ =⇒ (All Rules Cancelled)

aΔc¬b||∅ =⇒ (Unfounded)

aΔc¬b¬d ||∅

(19)

Path (19) corresponds to an execution of system smodelscc , but does not correspond

to any execution of system sup because for the latter Decide is a rule of higher

priority than Unfounded .

The strategy of sup of assigning the transition rule Unfounded the lowest priority

may be reasonable for many problems. For instance, it is easy to see that transition

rule Unfounded is redundant for tight programs. The sup algorithm is similar

to the SAT-based answer set solvers such as assat (Lin and Zhao 2004) and

12 System smodelscc (sup) also implements restarts and forgetting that may be modeled by the transition
rules Restart and Forget LP . An application of these transition rules in smlΠ relies on particular
heuristics implemented by the solver.

https://doi.org/10.1017/S1471068410000578 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000578


152 Y. Lierler

cmodels (Giunchiglia et al. 2006) (see Section 8.2) in the fact that it will first

compute a supported model of a program and only then will test whether this

model is indeed an answer set, i.e., whether Unfounded is applicable in this state.

8 Generate and test with learning

In this section we model backjumping and learning for the generate and test

procedure by defining a graph gtlF ,G that extends gtF ,G (Section 5) in a similar

manner as dplF (Section 6) extends dpF .

8.1 Graph gtlF ,G

An (augmented) state relative to a CNF formula F and a formula G formed from

atoms occurring in F is either a distinguished state FailState or a pair of the

form M ||Γ, where M is a record (Section 2.1) relative to the set of atoms occurring

in F , and Γ is a (multi-)set of clauses formed from atoms occurring in F that are

entailed by F ∧ G .

The nodes of the graph gtlF ,G are the augmented states relative to a CNF

formula F and a formula G formed from atoms occurring in F . The edges of gtlF ,G

are described by the transition rules Unit Propagate λ, Decide, Fail of dplF , the

transition rules

Backjump GT : P lΔQ ||Γ =⇒ P l ′||Γ if

{
P lΔQ is inconsistent and

F ∧ G |= l ′ ∨ P
,

Learn GT : M ||Γ =⇒ M ||C , Γ if

{
every atom in C occurs in F and

F ∧ G |= C
,

and the transition rule Test of gtF ,G that is extended to gtlF ,G are as follows:

M ||Γ =⇒ M ′||Γ is an edge in gtlF ,G justified by Test if and only if M =⇒ M ′ is

an edge in gtF ,G justified by Test .

We refer to the transition rules Unit Propagate λ, Test, Decide, Fail , Backjump GT

of the graph gtlF ,G as Basic. We say that a node in the graph is semi-terminal if no

rule other than Learn GT is applicable to it.

The graph gtlF ,G can be used for deciding whether a formula F ∧G has a model

by constructing a path from ∅||∅ to a terminal node.

Proposition 10

For any CNF formula F and a formula G formed from atoms occurring in F ,

(a) every path in gtlF ,G contains only finitely many edges labeled by Basic

transition rules,

(b) for any semi-terminal state M ||Γ of gtlF ,G reachable from ∅||∅, M is a model

of F ∧ G ,

(c) FailState is reachable from ∅||∅ in gtlF ,G if and only if F ∧ G is unsatisfiable.

As in case of the graph dplF , the transition rule Backjump GT is applicable in

any inconsistent state with a decision literal that is reachable from ∅||∅. We call such

states as backjump states.
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Proposition 11

For any CNF formula F and a formula G formed from atoms occurring in F , the

transition rule Backjump GT is applicable in any backjump state in gtlF ,G .

8.2 Cmodels algorithm

System cmodels implements an algorithm called asp-sat with Learning (Giunchiglia

et al. 2006) that extends asp-sat with Backtracking by backjumping and learning.

The application of cmodels to a program Π can be viewed as constructing a path

from ∅||∅ to a terminal node in the graph gtlF ,G , where

• F is the completion of Π converted to conjunctive normal form, and

• G is LF (Π) defined in Section 5.

In Section 4.2 we demonstrated a method for specifying the algorithm of an

answer set solver by means of the graph smΠ. We use this method to describe the

cmodels algorithm using the graph gtlF ,G . System cmodels assigns priorities to the

inference rules of gtlF ,G as follows:

Backjump GT,Fail� Unit Propagate λ� Decide� Test.

Also, cmodels always applies the transition rule Learn GT in a non-semi-terminal

state reached by an application of Backjump GT .

The priorities imposed on the rules by cmodels guarantee that the transition rule

Test is applied to a model of F ∪ Γ (clausified completion F extended by learned

clauses Γ). This allows cmodels to proceed with its search in case if a found model

is not an answer set. Furthermore, the cmodels strategy guarantees that in a state

reached by an application of Test , first Backjump GT will be applied and then in the

resulting state Learn GT will be applied. The clause learned due to this application

of Learn GT is derived by means of loop formulas (see Giunchiglia et al. 2006). In

this sense cmodels uses loop formulas to guide its search.

Systems sag (Lin et al. 2006) and clasp (Gebser et al. 2007) are answer set solvers

that are enhancements of cmodels. First, they compute and clausify program’s

completion and then use unit propagate on resulting propositional formula as an

inference mechanism. Second, they guide their search by means of loop formulas.

Third, they implement conflict-driven backjumping and learning. Also, sag uses SAT

solvers for search. The systems differ from cmodels in the following:

• They maintain the data structure representing an input logic program through-

out the whole computation.

• in addition to implementing inference rules of the graph gtlF ,G , they also

implement the inference rule Unfounded of smΠ. A hybrid graph combining

the inference rule Unfounded of smΠ and the inference rules of gtlF ,G may be

used to describe the sag and clasp algorithms.

System sag assigns the same priorities to the inference rules of the hybrid graph as

cmodels. Also, sag at random decides whether to apply the inference rule Unfounded

in a state.
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On the other hand, system clasp assigns priorities to the inference rules of the

hybrid graph as follows:

Backjump GT,Fail� Unit Propagate λ� Unfounded� Decide.

Like cmodels, both sag and clasp always apply the transition rule Learn GT in

a non-semi-terminal state reached by an application of Backjump GT .

9 Backjumping and extended graph

Recall the transition rule Backjump LP of smlΠ

Backjump LP : P lΔQ ||Γ =⇒ P l ′||Γ if

{
P lΔQ is inconsistent and

Π entails l ′ ∨ P
·

A state in the graph smlΠ is a backjump state if it is inconsistent, contains a decision

literal, and is reachable from ∅||∅. Note that it may not be clear a priori whether

Backjump LP is applicable to a backjump state and if so to which state the edge

leads due to the application of Backjump LP . These questions are important if we

want to base an algorithm on this framework. It turns out that Backjump LP is

always applicable to a backjump state.

Proposition 12

For a program Π, the transition rule Backjump LP is applicable to any backjump

state in smlΠ.

Proposition 12 guarantees that a backjump state in smlΠ is never semi-terminal. In

the end of this section we show how Proposition 12 can be derived from the results

proved later in this paper. Next question to answer is how to continue choosing

a path in the graph after reaching a backjump state. To answer this question we

introduce the notions of reason and extended graph.

For a program Π, we say that a clause l ∨ C is a reason for l to be in a list of

literals P l Q w.r.t Π if Π entails l ∨ C and C ⊆ P . We can equivalently restate the

second condition of Backjump LP “Π entails l ′ ∨ P” as “there exists a reason for l ′

to be in P l ′ w.r.t. Π” (note that l ′ ∨ P is a reason for l ′ to be in P l ′). We call a

reason for l ′ to be in P l ′ a backjump clause. Note that Proposition 12 asserts that a

backjump clause always exists for a backjump state. It is clear that we may continue

choosing a path in the graph after reaching a backjump state if we know how to

compute a backjump clause for this state. We now define a graph sml
↑
Π that shares

many properties of smlΠ but allows us to give a simpler procedure for computing

a backjump clause.

An extended record M relative to a program Π is a list of literals over the set of

atoms occurring in Π, where

(i) each literal l in M is annotated either by Δ or by a reason for l to be in M

w.r.t. Π,

(ii) M contains no repetitions,

(iii) for any inconsistent prefix of M its last literal is annotated by a reason.
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For instance, let Π be the program

a ← not b

c.

The list of literals

bΔaΔ¬b¬b∨¬a

is an extended record relative to Π. On the other hand, the lists of literals

aΔ¬aΔ aΔ¬b¬b∨¬a bΔ bΔaΔ¬b¬b∨¬a cΔ

are not extended records.

An extended state relative to a program Π is either a distinguished state FailState

or a pair of the form M ||Γ, where M is an extended record relative to Π, and Γ

is the same as in the definition of an augmented state (i.e., Γ is a (multi-)set of

constraints formed from atoms occurring in Π that are entailed by Π). It is easy to

see that for any extended state S relative to a program Π, the result of removing

annotations from all nondecision literals of S is a state of smlΠ: we will denote this

state by S ↓.

For instance, consider program a ← not b. All pairs

FailState ∅||∅ aΔ¬b¬b∨¬a ||∅ ¬aΔbb∨a ||∅

are among valid extended states relative to this program. The corresponding states S ↓

are

FailState ∅||∅ aΔ¬b||∅ ¬aΔb||∅.

We now define a graph sml
↑
Π for any program Π. Its nodes are the extended

states relative to Π. The transition rules of smlΠ are extended to sml
↑
Π as follows:

S1 =⇒ S2 is an edge in sml
↑
Π justified by a transition rule T if and only if S ↓1 =⇒ S ↓2

is an edge in smlΠ justified by T .

We will omit the word “extended” before “record” and “state” when this is clear

from a context.

The following lemma formally states the relationship between nodes of the graphs

smlΠ and sml
↑
Π.

Lemma 1

For any program Π, if S ′ is a state reachable from ∅||∅ in the graph smlΠ, then

there is a state S in the graph sml
↑
Π such that S ↓ = S ′.

The definitions of Basic transition rules and semi-terminal states in sml
↑
Π are

similar to their definitions for smlΠ.

Proposition 9↑

For any program Π,

(a) every path in sml
↑
Π contains only finitely many edges labeled by Basic transition

rules,

(b) for any semi-terminal state M ||Γ of sml
↑
Π, M + is an answer set of Π,

(c) sml
↑
Π contains an edge leading to FailState if and only if Π has no answer

sets.
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Note that Proposition 9↑(b), unlike Proposition 9 (b), is not limited to semi-terminal

states that are reachable from ∅||∅. As in the case of the graph smlΠ, sml
↑
Π can be

used for deciding whether a program Π has an answer set. Furthermore, the new

graph provides the means for computing a backjump clause that permits practical

application of the transition rule Backjump LP . Sections 10.3 and 11 describe

the BackjumpClause (Algorithm 1) and BackjumpClauseFirstUIP (Algorithm 2)

procedures that compute Decision and FirstUIP backjump clauses respectively.

We say that a state in the graph sml
↑
Π is a backjump state if its record is

inconsistent and contains a decision literal. Unlike the definition of a backjump

state in smlΠ, this definition does not require a backjump state to be reachable

from ∅||∅ in sml
↑
Π. As in case of the graph smlΠ, any backjump state in sml

↑
Π is not

semi-terminal.

Proposition 12↑

For a program Π, the transition rule Backjump LP is applicable to any backjump

state in sml
↑
Π.

Proposition 12 easily follows from Lemma 1 and Proposition 12↑.

Next section will present the proofs for Proposition 9↑, Lemma 1, and Proposi-

tion 12↑. It is interesting to note that the proofs of Lemma 1 and Proposition 12↑

implicitly provide the means for choosing a path in the graph sml
↑
Π:

• Given a state M ||Γ and a transition rule Unit Propagate LP, All Rules

Cancelled, Backchain True, Backchain False λ, or Unfounded applicable to

M ||Γ, the proof of Lemma 1 describes a clause that may be used to construct

a record M ′ so that there is an edge M ||Γ =⇒ M ′||Γ because of this transition

rule.

• Given a backjump state M ||Γ, the proof of Proposition 12↑ describes a

backjump clause that can be used to construct a record M ′ so that there

is an edge M ||Γ =⇒ M ′||Γ because of Backjump LP .

Furthermore, the construction of the proof of Proposition 12↑ paves the way for

procedure BackjumpClause presented in Algorithm 1.

10 Proofs of Proposition 9↑, Lemma 1, Proposition 12↑

10.1 Proof of Proposition 9↑

Lemma 2

For any program Π, an extended record M relative to Π, and every assignment X

such that X + is an answer set for Π, if X satisfies all decision literals in M , then

X |= M .

Proof

By induction on the length of M . The property trivially holds for ∅. We assume that

the property holds for any state with n elements. Consider any state M with n + 1

elements. Let X be an assignment such that X + is an answer set for Π and X

satisfies all decision literals in M . We will now show that X |= M .
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Case 1. M has the form P lΔ. By the inductive hypothesis, X |= P . Since X

satisfies all decision literals in M , X |= l .

Case 2. M has the form P l l∨C . By the inductive hypothesis, X |= P . By the

definition of a reason (i) Π entails l ∨ C , and (ii) C ⊆ P . From (ii) it follows that

P |= ¬C . Consequently, X |= ¬C . From (i) it follows that for any assignment X

such that X + is an answer set, X |= l ∨ C . Consequently, X |= l . �

The proof of Proposition 9↑ assumes the correctness of Proposition 12↑ that we

demonstrate in Section 10.3. Note that Proposition 9 (b), (c) easily follow from

Lemma 1 and Proposition 9↑ (b), (c). Proof of Proposition 9 (a) is similar to the

proof of Proposition 9↑ (a).

Proposition 9↑

For any program Π,

(a) every path in sml
↑
Π contains only finitely many edges labeled by Basic transition

rules,

(b) for any semi-terminal state M ||Γ of sml
↑
Π, M + is an answer set of Π,

(c) sml
↑
Π contains an edge leading to FailState if and only if Π has no answer

sets.

Proof

(a) For any list N of literals by |N | we denote the length of N . Any state M ||Γ
has the form M0 lΔ

1 M1 · · · lΔ
p Mp ||Γ, where lΔ

1 · · · lΔ
p are all decision literals of M ;

we define α(M ||Γ) as the sequence of nonnegative integers |M0|, |M1|, . . . , |Mp |, and

α(FailState) = ∞. For any states S and S ′ of sml
↑
Π, we understand α(S ) < α(S ′) as

the lexicographical order. We first note that for any state M ||Γ, value of α is based

only on the first component M of the state. Second, there is a finite number of

distinct values of α because of the fact that there is a finite number of distinct M s

over Π. We conclude that there is a finite number of distinct values of α for the

states of sml
↑
Π, even though the number of distinct states in sml

↑
Π is infinite.

By the definition of the transition rules of sml
↑
Π, if there is an edge from M ||Γ to

M ′||Γ′ in sml
↑
Π formed by any Basic transition rule, then α(M ||Γ) < α(M ′||Γ′). Then,

because of the fact that there is a finite number of distinct values of α, it follows

that there is only a finite number of edges because of the application of Basic rules

possible in any path.

(b) Let M ||Γ be a semi-terminal state so that none of the Basic rules are applicable.

From the fact that Decide is not applicable, we conclude that M assigns all literals.

Furthermore, M is consistent. Indeed, assume that M is inconsistent. Then,

since Fail is not applicable, M contains a decision literal. Consequently, M ||Γ is a

backjump state. By Proposition 12↑, the transition rule Backjump LP is applicable

in M ||Γ. This contradicts our assumption that M ||Γ is semi-terminal.

Also, M is a model of Π: Since Unit Propagate LP is not applicable in M ||Γ, it

follows that for every rule a ← B ∈ Π, if B ⊆ M , then a ∈ M .

Assume that M + is not an answer set. Then, by Proposition 2, there is a non-

empty unfounded set U on M w.r.t. Π such that U ⊆ M . It follows that Unfounded
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is applicable (with an arbitrary a ∈ U ) in M ||Γ. This contradicts the assumption

that M ||Γ is semi-terminal.

(c) Left-to-right: There is a state M ||Γ in sml
↑
Π such that there is an edge

between M ||Γ and FailState. By the definition of sml
↑
Π, this edge is due to the

transition rule Fail . Consequently, state M ||Γ is such that M is inconsistent and

contains no decision literals. By Lemma 2, for every assignment X such that X + is

an answer set for Π, X satisfies M . Since M is inconsistent, we conclude that Π has

no answer sets.

Right-to-left: Consider the process of constructing a path consisting only of edges

because of Basic transition rules. By (a) it follows that this path will eventually

reach a semi-terminal state. By (b) this semi-terminal state cannot be different from

FailState because Π has no answer sets. We conclude that there is an edge leading

to FailState. �

10.2 Proof of Lemma 1

The proof uses the notion of loop formula (Lin and Zhao 2004).

Given a set A of atoms by Bodies(Π,A) we denote the set that consists of the

elements of Bodies(Π, a) for all a in A. Let Π be a program. For any set Y of atoms,

the external support formula (Lee 2005) for Y is∨
B∈Bodies(Π,Y ),B+∩Y =∅

B . (20)

We will denote the external support formula by ESΠ,Y . For any set Y of atoms, the

loop formula for Y is the implication∨
a∈Y

a → ESΠ,Y .

We can rewrite this formula as the disjunction∧
a∈Y

¬a ∨ ESΠ,Y . (21)

From the Main Theorem in Lee (2005) we conclude the following:

Lemma on Loop Formulas

For any program Π, Π entails loop formula (21) for all sets Y of atoms that occur

in Π.

For a state S in the graph sml
↑
Π, we say that S ↓ in smlΠ is the image of S .

Lemma 1

For any program Π, if S ′ is a state reachable from ∅||∅ in the graph smlΠ, then

there is a state S in the graph sml
↑
Π such that S ↓ = S ′.

Proof

Since the property trivially holds for the initial state ∅||∅, we only need to prove that

all transition rules of smlΠ preserve it.

Consider an edge M ||Γ =⇒ M ′||Γ′ in the graph smlΠ such that there is a state

M1||Γ in the graph sml
↑
Π satisfying the condition (M1||Γ)↓ = M ||Γ. We need to
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show that there is a state in the graph sml
↑
Π such that M ′||Γ′ is its image in smlΠ.

Consider several cases that correspond to a transition rule leading from M ||Γ to

M ′||Γ′:

Unit Propagate LP : M ||Γ =⇒ M a||Γ if

{
a ← B ∈ Π and

B ⊆ M
·

M ′||Γ′ is M a||Γ. It is sufficient to prove that M1aa∨B ||Γ is a state of sml
↑
Π. It

is enough to show that a clause a ∨B is a reason for a to be in M a . By applicability

conditions of Unit Propagate LP , B ⊆ M . Since Π entails its rule a ← B , Π entails

a ∨ B .

All Rules Cancelled : M ||Γ =⇒ M ¬a||Γ if B ∩M �= ∅ for all B ∈ Bodies(Π, a).

M ′||Γ′ is M ¬a||Γ. Consider any B ∈ Bodies(Π, a). Since B ∩M �= ∅, B contains a

literal from M : call it f (B ). It is sufficient to show that

¬a ∨
∨

B∈Bodies(Π,a)

f (B ) (22)

is a reason for ¬a to be in M ¬a .

First, by the choice of f (B ), f (B ) ∈ M ; consequently,

∨
B∈Bodies(Π,a)

f (B ) ⊆ M .

Second, since f (B ) ∈ B , the loop formula ¬a ∨ ESΠ,{a} entails (22). By Lemma on

Loop Formulas, it follows that Π entails (22).

Backchain True: M ||Γ =⇒ M l ||Γ if

⎧⎪⎪⎨
⎪⎪⎩

a ← B ∈ Π,

a ∈ M ,

B ′ ∩M �= ∅ for all B ′ ∈ Bodies(Π, a)\{B},
l ∈ B .

M ′||Γ′ is M l ||Γ. Consider any B ′ ∈ Bodies(Π, a) \B . Since B
′ ∩M �= ∅, B ′ contains

a literal from M : call it f (B ′). A clause

l ∨ ¬a ∨
∨

B ′∈Bodies(Π,a)\B

f (B ′) (23)

is a reason for l to be in M l . The proof of this statement is similar to the case of

All Rules Cancelled .

Backchain False λ: M ||Γ =⇒ M l ||Γ if

⎧⎨
⎩

a ← l ,B ∈ Π ∪ Γ,

¬a ∈ M or a = ⊥,

B ⊆ M .

M ′||Γ′ is M l ||Γ. A clause l ∨B ∨ a is a reason for l to be in M l . The proof of this

statement is similar to the case of Unit Propagate LP .

Unfounded : M ||Γ =⇒ M ¬a||Γ if

{
M is consistent and

a ∈ U for a set U unfounded on M w.r.t. Π.

M ′||Γ′ is M ¬a||Γ. Consider any B ∈ Bodies(Π,U ) such that U ∩ B+ = ∅. By

the definition of an unfounded set it follows that B ∩ M �= ∅. Consequently, B
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contains a literal from M : call it f (B ). The clause

¬a ∨
∨

Bodies(Π,U ),B+∩U =∅

f (B ) (24)

is a reason for ¬a to be in M ¬a . The proof of this statement is similar to the case

of All Rules Cancelled .

Backjump LP , Decide, Fail , and Learn LP : obvious. �

The process of turning a state of smlΠ reachable from ∅||∅ into a corresponding

state of sml
↑
Π can be illustrated by the following example: Consider a program Π

a ← not b k ← l , not b

b ← not a , not c ← m , not l , not b

c ← not f m ← not k , not l

← k , d

(25)

and a path in smlΠ

∅||∅ =⇒ (Decide)

aΔ||∅ =⇒ (All Rules Cancelled)

aΔ¬b||∅ =⇒ (Decide)

aΔ¬bcΔ||∅ =⇒ (Backchain True)

aΔ¬bcΔ¬f ||∅ =⇒ (Decide)

aΔ¬bcΔ¬f dΔ||∅ =⇒ (Backchain False λ)

aΔ¬bcΔ¬f dΔ¬k ||∅ =⇒ (Backchain False λ)

aΔ¬bcΔ¬f dΔ¬k¬l ||∅ =⇒ (Backchain False λ)

aΔ¬bcΔ¬f dΔ¬k¬l¬m||∅ =⇒ (Unit Propagate LP)

aΔ¬bcΔ¬f dΔ¬k¬l¬mm||∅

(26)

The construction in the proof of Lemma 1 applied to the nodes in this path gives

the following states of sml
↑
Π:

∅||∅
aΔ||∅
aΔ¬b¬b∨¬a ||∅
aΔ¬b¬b∨¬a cΔ||∅
aΔ¬b¬b∨¬a cΔ¬f ¬f ∨¬c ||∅
aΔ¬b¬b∨¬a cΔ¬f ¬f ∨¬c dΔ||∅
aΔ¬b¬b∨¬a cΔ¬f ¬f ∨¬c dΔ¬k¬k∨¬d ||∅
aΔ¬b¬b∨¬a cΔ¬f ¬f ∨¬c dΔ¬k¬k∨¬d¬l¬l∨b∨k ||∅
aΔ¬b¬b∨¬a cΔ¬f ¬f ∨¬c dΔ¬k¬k∨¬d¬l¬l∨b∨k¬m¬m∨l∨b ||∅
aΔ¬b¬b∨¬a cΔ¬f ¬f ∨¬c dΔ¬k¬k∨¬d¬l¬l∨b∨k¬m¬m∨l∨b mm∨k∨l ||∅

(27)

It is clear that these nodes form a path in sml
↑
Π with every edge justified by the

same transition rule as the corresponding edge in path (26) in smlΠ.

10.3 Proof of Proposition 12↑

In this section Π is an arbitrary and fixed logic program.
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For a record M , by lcp(M ) we denote its largest consistent prefix. We say that a

clause C is conflicting on a list M of literals if Π entails C , and C ⊆ lcp(M ). For

example, let M be the first component of the last state in (27):

aΔ¬b¬b∨¬a cΔ¬f ¬f ∨¬c dΔ¬k¬k∨¬d¬l¬l∨b∨k¬m¬m∨l∨b mm∨k∨l . (28)

Then, lcp(M ) is obtained by dropping the last element mm∨k∨l of M . It is clear that

the reason m ∨ k ∨ l for m to be in M is a conflicting clause on M .

Lemma 3

The literal that immediately follows lcp(M ) in an inconsistent record M has the

form lC , where C is a conflicting clause on M .

For any inconsistent record l1 · · · ln and any conflicting clause C on this record,

by βl1···ln (C ) we denote the set of numbers i such that li ∈ C . (It is clear that

every element from C equals to one of the literals in l1 · · · ln .) The relation I < J

between subsets I and J of {1 · · · n} is understood here as the lexicographical order

between I and J sorted in descending order. For instance, {2 6 7} < {6 7 8} because

{7 6 2} < {8 7 6} in lexicographical order.

Recall that the resolution rule can be applied to clauses C ∨ l and C ′ ∨ ¬l and

produces the clause C ∨ C ′, called the resolvent of C ∨ l and C ′ ∨ ¬l on l .

Lemma 4

Let M be a record and let lB be a nondecision literal from lcp(M ). If clause D is

the resolvent of B and clause C conflicting on M , then

(i) D is a clause conflicting on M ,

(ii) βM (D) < βM (C ).

For instance, let M be (28), let reason ¬m ∨ l ∨ b for ¬m in lcp(M ) be B , and let

conflicting clause m ∨ k ∨ l on M be C . Then D , the result of resolving B together

with C , is clause k ∨ l ∨ b. Lemma 4 asserts that k ∨ l ∨ b is a conflicting clause on

M and that βM (D) < βM (C ). Indeed, βM (D) = {2 6 7} and βM (C ) = {6 7 8}.
Let record M be l1 · · · li · · · ln , the decision level of a literal li is the number of

decision literals in l1 · · · li : we denote it by decM (li ). We will also use this notation

to denote the decision level of a set of literals: For a set P ⊆ M of literals, decM (P )

is the decision level of the literal in P that occurs latest in M . For record M and

a decision level j by M j we denote the prefix of M that consists of the literals in

M that belong to decision level less than j and by M j ] we denote the prefix of M

that consists of the literals in M that belong to decision level less than or equal to j .

For instance, let M be record (28), then decM (¬k ) = 3, decM (¬b c ¬k ) = 3, M 3 is

aΔ¬b¬b∨¬a cΔ¬f ¬f ∨¬c , and M 3] is M itself.

Lemma 5

For an inconsistent record M and a conflicting clause l ∨ C on M , if decM (l ) >

decM (c) for all c ∈ C , then lcp(M )decM (C )] l l∨C is a record.

Proposition 12↑

For a program Π, the transition rule Backjump LP is applicable to any backjump

state in sml
↑
Π.
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Proof

Let M ||Γ be a backjump state in sml
↑
Π. Let R be the list of reasons that are assigned

to the nondecision literals in lcp(M ).

Consider the process of building a sequence C1,C2, . . . of clauses so that

• C1 is the reason of the member of M that immediately follows lcp(M ), and

• Cj (j > 1) is a resolvent of Cj−1 and some clause in R

while derivation of new clauses is possible. From Lemma 4 (i) and the choice of C1

and R, it follows that any clause in C1,C2 . . . is conflicting. By Lemma 4 (ii) we

conclude that βM (Cj ) < βM (Cj−1) (j > 1). It is clear that this process will terminate

after deriving some clause Cm , since the number of conflicting clauses on M is finite.

It is clear that the clause Cm cannot be resolved against any clause in R.

Case 1. Cm is the empty clause. Since M ||Γ is a backjump state, M contains a

decision literal lΔ. By part (iii) of the definition of a record, l belongs to lcp(M ).

Consequently, M can be represented in the form lcp(M )decM (l ) lΔQ .

By the choice of C1, C1 is a reason and must consist of at least one literal.

Consequently, m > 1. Clause Cm is derived from clauses Cm−1 and some clause in R.

Since Cm is empty, Cm−1 is a unit clause l ′. We will show that

lcp(M )decM (l ) lΔQ ||Γ =⇒ lcp(M )decM (l ) l ′l
′ ||Γ

is an application of Backjump LP . It is sufficient to demonstrate that lcp(M )decM (l ) l ′l
′

is a record. Since lcp(M )decM (l ) lΔQ is a record, we only need to show that l ′ �∈
lcp(M )decM (l ) and clause l ′ is a reason for l ′ to be in lcp(M )decM (l ) l ′. Recall that

Cm−1, i.e., l ′ is a conflicting clause. Consequently, Π entails l ′ and l ′ ∈ lcp(M ). Since

lcp(M ) is consistent, l ′ �∈ lcp(M ) so that l ′ �∈ lcp(M )decM (l ). On the other hand, from

the fact that Π entails l ′, it immediately follows that clause l ′ is a reason for l ′ to

be in lcp(M )decM (l ) l ′.

Case 2. Cm is not empty. Since Cm is a conflicting clause on M , the complement

of any literal in Cm belongs to lcp(M ). Furthermore, every such complement is a

decision literal in lcp(M ). Indeed, if this complement is l
l∨B ∈ lcp(M ), then l ∨ B is

one of the clauses Bi , and it can be resolved against Cm .

By the definition of a decision level, there is at most one decision literal that

belongs to any decision level. It follows that Cm can be written as l ∨ C ′m so

that decM (l ) > decM (c) for any c ∈ C ′m . Consequently, M can be written as

lcp(M )decM (l ) l
Δ
Q . Note that

lcp(M )decM (l ) l
Δ
Q ||Γ =⇒ lcp(M )decM (C ′m )] lCm ||Γ

is an application of Backjump LP . Indeed, by Lemma 5 lcp(M )decM (C
′
m )] lCm is a

record. �

Algorithm 1 presents procedure BackjumpClause that computes a backjump

clause for any backjump state in the graph sml
↑
Π. The algorithm follows from the

construction of the proof of Proposition 12↑. It is based on the iterative application

of the resolution rule on reasons of the smallest inconsistent prefix of a state. The

proof of Proposition 12↑ allows to conclude the termination of BackjumpClause and
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BackjumpClause (M ||Γ);

Arguments : M ||Γ is a backjump state

Return Value : C is a backjump clause

begin

C ← the reason of the member of M that immediately follows lcp(M );

N ← the list of the nondecision literals in lcp(M );

R ← the list of the reasons that are assigned to the literals in N;

while C ∩N �= ∅ do

l ← a literal in C ∩N;

B ← the clause in R that contains l ;

C ′ ← the resolvent of C and B on l ;

if C ′ = ∅ then
return C

C ← C ′

return C;

end

Algorithm 1: A procedure for generating a backjump clause.

asserts that a clause returned by the procedure is a backjump clause on a backjump

state.

For instance, let Π be (25). Consider an execution of BackjumpClause on Π and

backjump state (28). The table below gives the values of lcp(M ), C , N , and R

during the execution of the BackjumpClause algorithm. By Ci we denote a value of

C before the i th iteration of the while loop.

lcp(M ) aΔ¬b¬b∨¬a cΔ¬f ¬f ∨¬c dΔ¬k¬k∨¬d¬l¬l∨b∨k¬m¬m∨l∨b

C1 m ∨ k ∨ l

N ¬b¬b∨¬a ¬f ¬f ∨¬c ¬k¬k∨¬d ¬l¬l∨b∨k ¬m¬m∨l∨b

R ¬b ∨ ¬a , ¬f ∨ ¬c, ¬k ∨ ¬d , ¬l ∨ b ∨ k , ¬m ∨ l ∨ b

C2 k ∨ l ∨ b is the resolvent of C1 and ¬m ∨ l ∨ b

C3 k ∨ b is the resolvent of C2 and ¬l ∨ b ∨ k

C4 ¬d ∨ b is the resolvent of C3 and ¬k ∨ ¬d

C5 ¬d ∨ ¬a is the resolvent of C4 and ¬b ∨ ¬a

(29)

The algorithm will terminate with the clause ¬d ∨ ¬a . Proof of Proposition 12↑

asserts that (i) this clause is a backjump clause such that d and a are decision

literals in M , and (ii) the transition

aΔ¬b¬b∨¬a cΔ¬f ¬f ∨¬c dΔ¬k¬k∨¬d¬l¬l∨b∨k¬m¬m∨l∨b mm∨k∨l ||∅ =⇒
aΔ¬b¬b∨¬a¬d¬d∨¬a ||∅ (30)

in sml
↑

Π is an application of Backjump LP . Indeed, by Lemma 5 lcp(M )decM (¬a)]¬
d¬d∨¬a , in other words aΔ¬b¬b∨¬a¬d¬d∨¬a , is a record.

Note that a backjump clause may be derived in other ways than captured by

BackjumpClause algorithm: the transition rule Backjump LP is applicable with an

arbitrary backjump clause. Usually, the dpll-like procedures implement conflict-

driven backjumping and learning where a particular learning schema such as, for
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instance, Decision or FirstUIP (Mitchell 2005) is applied for computing a special

kind of a backjump clause. It turns out that the BackjumpClause algorithm captures

the Decision learning schema for ASP. Typically, SAT solvers impose an order for

resolving the literals during the process of Decision backjump clause derivation. We

can impose similar order by replacing the line

l ← a literal in C ∩N

in the algorithm BackjumpClause with

l ← a literal in C ∩N that occurs latest in lcp(M ).

In fact, the sample application of BackjumpClause algorithm described in (29) follows

this order.

11 FirstUIP conflict-driven backjumping and learning

The conflict-driven backjumping and learning proved to be a highly successful

technique in modern SAT solving. Furthermore, in Zhang et al. (2001) the authors

investigated the performance of various learning schemes and established experi-

mentally that FirstUIP clause is the most useful single clause to learn. Success of

the conflict-driven learning led to the implementation of its ASP counterpart in

systems smodelscc , clasp, and sup. There are two common methods for describing

a backjump clause construction in the SAT literature. The first one employes the

implication graph (Marques-Silva and Sakallah 1996) and the second one employes

resolution (Mitchell 2005). Ward and Schlipf (2004) extended the definition of an

implication graph to the smodels algorithm and implemented FirstUIP learning

schema in answer set solver smodelscc . In the previous section we used sml
↑
Π

formalism and resolution to describe the BackjumpClause algorithm for computing

an ASP counterpart of a Decision backjump clause. In Gebser et al. (2007) the

authors used the concepts from constraint programming to implement FirstUIP

learning schema in answer set solver clasp.

The Algorithm 2 presents the BackjumpClauseFirstUIP procedure for computing

an ASP counterpart of the FirstUIP backjump clause by means of sml
↑
Π formalism

and resolution. The algorithm computes the FirstUIP backjump clause for any

backjump state in the graph sml
↑
Π. BackjumpClauseFirstUIP is employed by the

system sup in its implementation of conflict-driven backjumping and learning.

We now state the correctness of the algorithm BackjumpClauseFirstUIP . We start

by showing its termination. By C1 we will denote the initial value assigned to clause

C . From Lemma 4 (i) and the choice of C1 we conclude that at any point of

computation clause C is conflicting on M . By Lemma 4 (ii), the value of βM (C )

decreases with each new assignment of clause C in the while loop. It follows that

the while loop will terminate because the number of conflicting clauses C on M

such that |C ∩ P | > 1 is finite. By Cm we will denote the clause C with which

the while loop terminates. In other words, BackjumpClauseFirstUIP returns Cm . We

now show that Cm is indeed a backjump clause. We already concluded that Cm is a

conflicting clause on M . Furthermore, from the termination condition of the while
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BackjumpClauseFirstUIP (M ||Γ)
Arguments : M ||Γ is a backjump state

Return Value : C is a backjump clause

begin
C ← the reason of the member of M that immediately follows lcp(M )

l ← the literal in C that occurs latest in lcp(M )

P ← the sublist of lcp(M ) that consists of the literals that belong to the decision

level dec(l )

R ← the list of the reasons that are assigned to the literals in P

while |C ∩ P | > 1 do

l ← the literal in C that occurs latest in P

B ← the clause in R that contains l

C ← the resolvent of C and B on l
return C

end

Algorithm 2: A procedure for generating the FirstUIP backjump clause.

loop |Cm ∩ P | � 1. From the choice of C1 and P it follows that |Cm ∩ P | = 1.

Consequently, Cm can be written as l ∨ C ′m , where l is in singleton Cm ∩ P . By

Lemma 4 (ii), β(Cm ) � β(C1). From the definition of β and the choice of P it

follows that decM (l ) > decM (c) for all c ∈ C ′m . By Lemma 5, lcp(M )decM (C ′m )] lCm is a

record. In other words, transition

M ||Γ =⇒ lcp(M )decM (C ′m )] lCm ||Γ

is an application of Backjump LP . Consequently, Cm is a backjump clause.

For instance, let Π be (25). Consider an execution of BackjumpClauseFirstUIP on

Π and a backjump state (28). The table below gives the values of lcp(M ), C , P , and

R during the execution of BackjumpClauseFirstUIP . By Ci we denote a value of C

before the i th iteration of the while loop.

lcp(M ) aΔ¬b¬b∨¬a cΔ¬f ¬f ∨¬c dΔ¬k¬k∨¬d¬l¬l∨b∨k¬m¬m∨l∨b

C1 m ∨ k ∨ l

P dΔ¬k¬k∨¬d ¬l¬l∨b∨k ¬m¬m∨l∨b

R ¬k ∨ ¬d , ¬l ∨ b ∨ k , ¬m ∨ l ∨ b

C2 k ∨ l ∨ b is the resolvent of C1 and ¬m ∨ l ∨ b

C3 k ∨ b is the resolvent of C2 and ¬l ∨ b ∨ k

The BackjumpClauseFirstUIP algorithm will terminate with the clause k ∨ b.

12 Extended graph: generate and test

In this section we introduce an extended graph gtl
↑
F ,G for the generate and test

abstract framework gtlF ,G similar as in Section 9 we introduced sml
↑
Π for smlΠ.

For a formula H , we say that a clause l ∨ C is a reason for l to be in a list P l Q

of literals w.r.t. H if H |= l ∨ C and C ⊆ P .
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An (extended) record M relative to a formula H is a list of literals over the set

of atoms occurring in H , where

(i) each literal l in M is annotated either by Δ or by a reason for l to be in M

w.r.t. H ,

(ii) M contains no repetitions,

(iii) for any inconsistent prefix of M its last literal is annotated by a reason.

An (extended) state relative to a CNF formula F , and a formula G formed from

atoms occurring in F is either a distinguished state FailState or a pair of the

form M ||Γ, where M is an extended record relative to F ∧ G , and Γ is the same

as in the definition of an augmented state (i.e., Γ is a (multi-)set of clauses formed

from atoms occurring in F that are entailed by F ∧ G). For any extended state S

relative to F and G , the result of removing annotations from all nondecision literals

of S is a state of gtlF ,G : we will denote this state by S ↓.

For a CNF formula F and a formula G formed from atoms occurring in F , we

will define a graph gtl
↑
F ,G . The set of the nodes of gtl

↑
F ,G consists of the extended

states relative to F and G . The transition rules of gtlF ,G extended to gtl
↑
F ,G are as

follows: S1 =⇒ S2 is an edge in gtl
↑
F ,G justified by a transition rule T if and only

if S ↓1 =⇒ S ↓2 is an edge in gtlF ,G justified by T .

The lemma below formally states the relationship between nodes of the graphs

gtlF ,G and gtl
↑
F ,G .

Lemma 6

For any CNF formula F and a formula G formed from atoms occurring in F , if

S ′ is a state reachable from ∅||∅ in the graph gtlF ,G , then there is a state S in the

graph gtl
↑
F ,G such that S ↓ = S ′.

The definitions of Basic transition rules and semi-terminal states in gtl
↑
F ,G are

similar to their definitions for gtlF ,G .

Proposition 10↑

For any CNF formula F and a formula G formed from atoms occurring in F ,

(a) every path in gtl
↑
F ,G contains only finitely many edges labeled by Basic

transition rules,

(b) for any semi-terminal state M ||Γ of gtl
↑
F ,G , M is a model of F ∧ G ,

(c) gtl
↑
F ,G contains an edge leading to FailState if and only if F∧G is unsatisfiable.

A state in the graph gtl
↑
F ,G is a backjump state if its record is inconsistent and

contains a decision literal. Any backjump state in gtl
↑
F ,G is not semi-terminal.

Proposition 11↑

For any CNF formula F and a formula G formed from atoms occurring in F , the

transition rule Backjump GT is applicable in any backjump state in gtl
↑
F ,G .

Algorithms BackjumpClause and BackjumpClauseFirstUIP are applicable to the

backjump states of the graph gtl
↑
F ,G .
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13 Related work

Simons (2000) and Ward (2004) described the smodels and smodelscc algorithms,

respectively, by means of pseudocode and demonstrated their correctness. In this

paper we designed an abstract framework that was used as an alternative method

for describing these algorithms and demonstrating their correctness.

Gebser and Schaub (2006) provided a deductive system for describing inferences

involved in computing answer sets by tableaux methods. The abstract framework

presented here can be viewed as a deductive system also, but of a very different

kind. First, it accounts for phenomena such as backjumping and learning (and also

forgetting and restart), whereas the Gebser–Schaub system does not. Second, we

describe backtracking by an inference rule, and the Gebser–Schaub system does

not. Accordingly, the derivations considered in this paper describe search process,

and derivations in the Gebser–Schaub system do not. Also, the abstract framework

discussed here does not have any inference rule similar to Cut; that is why its

derivations are paths, rather than trees.

14 Conclusions

In this paper we showed how to model advanced algorithms for computing answer

sets of a program by means of simple mathematical objects, graphs. We extended

the abstract frameworks proposed in Lierler (2008) for describing native and SAT-

based ASP algorithms to capture such sophisticated features as backjumping and

learning. We characterized the algorithms of systems smodelscc , sup, and cmodels

that implement these features. We note that the work on this abstract framework

helped us design the new answer set solver sup, and preliminary experimental

analysis showed that sup is a competitive representative in the family of answer

set solvers. We hope that in the future this framework will suggest designs of

other systems for computing answer sets. The abstract approach to describing

algorithms simplifies the analysis of their correctness and allows us to study the

relationship between various algorithms by analyzing the differences in strategies of

choosing a path in the graph. For example, the description of the smodelscc and sup

algorithms in this framework reflects their differences in a simple manner via distinct

assignments of priorities to edges of the graph that characterize these systems. Also

we used this framework to describe two algorithms for computing Decision and

FirstUIP backjump clauses for the implementation of conflict-driven backjumping

and learning in answer set solvers. This formalism provided the transparent means

for specifying these algorithms. We believe that the development of this abstract

framework powerful enough to describe advanced features of answer set solvers in a

simple manner will promote the use of these sophisticated features in more solvers.
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