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Surface wave pattern formation in a
cylindrical container
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Surface waves are excited by mechanical vibration of a cylindrical container having an
air/water interface pinned at the rim, and the dynamics of pattern formation is analysed
from both an experimental and theoretical perspective. The wave conforms to the geometry
of the container and its spatial structure is described by the mode number pair (n, �) that
is identified by long exposure time white light imaging. A laser light system is used
to detect the surface wave frequency, which exhibits either a (i) harmonic response for
low driving amplitude edge waves or (ii) sub-harmonic response for driving amplitude
above the Faraday wave threshold. The first 50 resonant modes are discovered. Control
of the meniscus geometry is used to great effect. Specifically, when flat, edge waves are
suppressed and only Faraday waves are observed. For a concave meniscus, edge waves are
observed and, at higher amplitudes, Faraday waves appear as well, leading to complicated
mode mixing. Theoretical predictions for the natural frequency of surface oscillations for
an inviscid liquid in a cylindrical container with a pinned contact line are made using the
Rayleigh–Ritz procedure and are in excellent agreement with experimental results.
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1. Introduction

Pattern formation on liquid interfaces is used in industrial applications like spray cooling
(Kim 2007) and biomedical technologies such as drop atomization for drug delivery
(James et al. 2003; Vukasinovic, Smith & Glezer 2007; Tsai et al. 2014), and has recently
been shown to facilitate the assembly of particles on the microscale (Chen et al. 2014),
which includes organoid cells (Chen et al. 2015) that are used in tissue engineering
applications (Guven et al. 2015). Often, modern bioprinting technologies require precise
spatial and temporal control of surface patterns in liquids confined to small containers,
such that container geometry determines the wave symmetry, and that is our focus. In
this paper, we characterize the surface wave dynamics of a cylindrical container with
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two meniscus configurations that is mechanically vibrated and report the first 50 pure
resonance modes, as well as more complicated spatial patterns that involve the mixing of
two waves with completely different dynamics.

Faraday waves are synonymous with pattern formation and have been widely studied
for their ability to, e.g. redistribute particles (Wright & Saylor 2003; Saylor & Kinard
2005) and surfactants (Strickland, Shearer & Daniels 2015) on thin liquid films, rearrange
layers of granular media (Melo, Umbanhowar & Swinney 1994), and induce turbulent
mixing of two miscible fluids (Briard, Gostiaux & Gréa 2020). This canonical problem
in fluid mechanics was first studied by Faraday (1831), who showed the interface of a
vertically vibrated liquid bath will lose stability to standing surface waves, which oscillate
at half the driving frequency. This is termed a sub-harmonic response and is characteristic
of parametric oscillations. Benjamin & Ursell (1954) used a linear stability analysis
to show that Faraday waves obey a Mathieu equation for the dynamics, with standing
waves appearing inside the ‘tongues of instability’ in the driving frequency–amplitude
space. Here, the wave frequency can be sub-harmonic (half the driving frequency),
harmonic (equal to the driving frequency), or super-harmonic (integer multiples of the
driving frequency). Most studies of Faraday waves report a sub-harmonic response as
this instability tongue typically has the lowest onset acceleration, but there are exceptions
such as the case of thin viscous fluid layers where the harmonic instability tongue has
lower onset acceleration than the sub-harmonic one (Kumar 1996; Müller et al. 1997).
Complex quasi-patterns can be observed when there are multiple driving frequencies
present (Edwards & Fauve 1994; Batson, Zoueshtiagh & Narayanan 2015). For references
to the vast literature, see the review articles by Miles & Henderson (1990) and Perlin &
Schultz (2000).

The presence of a meniscus at the contact line between the interface and vibrating
container induces motions that are harmonic with respect to the driving frequency and
are referred to as edge waves. These typically appear for driving amplitudes much lower
than the Faraday wave threshold and researchers often try to suppress such waves by
using large aspect ratio (relative to the wavelength) containers (Christiansen, Alstrøm &
Levinsen 1995), using high concentrations of soluble surfactants to enable an unpinned,
sliding, meniscus (Henderson & Miles 1990, 1991), or by using a highly viscous fluid
such that the edge waves are quickly damped (Bechhoefer et al. 1995). In general, for high
driving frequencies, the spatial wavenumber is continuous and the edge conditions and/or
container geometry do not affect Faraday waves, as shown by Edwards & Fauve (1994)
for some irregular container geometries. Notably, Ghadiri & Krechetnikov (2019) have
studied Faraday waves in time-dependent domains, revealing a number of new dynamics,
including a secondary Eckhaus instability of the primary wave pattern.

For small containers, surface waves conform to the container geometry, as shown by
Douady & Fauve (1988) and Douady (1990). In this case, the allowable surface modes
have large wavelength, exhibit a discrete mode number pair determined by the container
geometry, and have a finite bandwidth over which that particular mode can be excited,
as shown by Henderson & Miles (1990) in a cylindrical container. Notably, the natural
frequencies and decay rates for surface waves in a brimful cylindrical container have
been experimentally measured by Henderson & Miles (1994). Ciliberto & Gollub (1984,
1985) have shown that, in finite-size cylindrical containers, two modes that share nearly
the same frequency may interact and give rise to chaotic dynamics (Gluckman et al.
1993). Contact-line conditions become particularly important for low mode number shapes
because dissipation from contact-line motion (Davis 1980; Hocking 1987; Bostwick
& Steen 2015) can be comparable to bulk viscous dissipation and this can affect the
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threshold acceleration. To eliminate contact-line dissipation, one can either create a pinned
contact line or a free-sliding contact line by either using surfactants (Henderson &
Miles 1990) or two or more carefully chosen immiscible liquids (Batson, Zoueshtiagh &
Narayanan 2013; Ward, Zoueshtiagh & Narayanan 2019). The advantage of the free-sliding
contact-line condition is that it can be compared to the theory of Kumar & Tuckerman
(1994). In our experiments, we use a pinned contact-line condition and carefully control
the meniscus geometry to either (i) suppress edge waves to study the onset of pure Faraday
waves or (ii) purposefully excite edge waves to observe complex mode mixing phenomena.

Theoretical modelling and analysis of surface waves in containers with pinned contact
lines (as created in experiment by filling a tank until the meniscus is pinned at the tank rim)
are not as straightforward to analyse as the free-sliding contact-line case. This is because
the pinned contact-line condition is incompatible with the no-penetration condition at the
container sidewall, which makes it impossible to factor a spatial normal mode through
the governing equations to deliver a purely time-dependent evolution equation from which
the dispersion relationship can be obtained. This makes the problem over constrained.
In contrast, the free contact line is the natural boundary condition, i.e. compatible with
the no-penetration condition, making the analysis more straightforward, as shown in
the derivation of the Mathieu equation by Benjamin & Ursell (1954). New analytical
techniques have been developed to address the pinned contact line including using a
variational approach with Lagrange multiplier (Benjamin & Scott 1979; Graham-Eagle
1983), introducing a singular pressure (contact force) at the contact line (Prosperetti
2012), or using a Rayleigh–Ritz variational procedure over a constrained function space
(Bostwick & Steen 2009). With regard to cylindrical containers with pinned contact lines,
viscous dissipation has been theoretically considered by Henderson & Miles (1994) for
the first-order approximation within the Stokes boundary layer and was later extended
to higher-order approximations by Martel, Nicolas & Vega (1998). Miles & Henderson
(1998) further consider the added effect of viscous dissipation within the bulk liquid
and how this affects the decay rate. The theoretical development we present here uses
the Rayleigh–Ritz approach which shows excellent agreement between the predicted
resonance frequencies and experimental observations of our mode catalogue.

We begin this paper by describing the experimental set-up and techniques to determine
the spatial wave structure and associated dynamics in § 2. Experimental results are
reported in § 3 where we present the observation of the first 50 resonant modes, contrast
the dynamic response of harmonic edge waves from sub-harmonic Faraday waves, and
reveal complex mode mixing phenomena of edges waves with Faraday waves at a fixed
driving frequency. In § 4, we develop a theoretical model to predict the frequency and
surface mode shapes of an inviscid fluid in a cylindrical container with pinned contact line.
Comparisons between theoretical predictions and experimental observations are made and
show excellent agreement. Lastly, we offer some concluding remarks in § 5.

2. Experiment

Surface waves are excited in the experimental set-up shown in figure 1(a). A circular
Plexiglass tank of radius R = 35 mm and height H = 22 mm is mounted on a Labworks
ET-139 electromechanical shaker which provides vertical vibration of the tank. The
shaker is driven by an Agilent 33220A function generator and Labworks PA-141
amplifier combination over a range of driving frequencies fd = 7–47 Hz. The tank
acceleration a was measured using a PCB 352C33 accelerometer and a PCB 482C05 signal
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Figure 1. Schematic diagrams of (a) overall experimental set-up and (b) imaging system.

V
H

R

α

Figure 2. Schematic of meniscus geometry illustrating the contact angle α formed by a volume of water V
that creates a pinned contact line at the rim of the cylindrical container.

conditioner combination. Herein, we define the acceleration amplitude as A, which is the
average min–max of a.

The tank is filled to the brim with a volume V of deionized water such that the contact
line is pinned and there are no dynamic contact-line effects. This creates a meniscus
with contact angle α that can be controlled by subsequently adding or removing fluid
from the container so that α < 90◦ (underfilling) or α > 90◦ (overfilling). The contact
angle is illustrated in figure 2 and will be further discussed shortly. The scaled volume
V̂ ≡ V/πR2H could also be used to determine the degree of under-filling V̂ < 1 or
over-filling V̂ > 1. The relevant material properties for doubly deionized water used in
these experiments are the density ρ = 997 kg m−3, dynamic viscosity μ = 10−3 Pa s
and surface tension σ = 72 mN m−1. For capillary motions, there are two relevant time
scales; the viscous time scale tv = μR/σ and inertial time scale tc =

√
ρR3/σ , with

the relative balance given by the Ohnesorge number Oh ≡ μ/
√

ρRσ = 6 × 10−4, which
for our experiment displays inviscid motions. The Bond number is Bo ≡ ρgR2/σ = 167
where g is the gravitational acceleration.

A laser light system is used to measure the surface wave frequency and detect the onset
acceleration of Faraday waves, as shown in figure 1(a). A helium–neon laser beam (632.8
nm wavelength) is incident on the free surface and reflected to a position sensitive detector,
which gives an analog voltage output proportional to the position of the centroid of the
light striking the sensor. The output signal is transmitted to an oscilloscope and processed
through a fast Fourier transform (FFT) operation, which gives the surface wave frequency.
For Faraday waves, the observed frequency fo is half the driving frequency fo = 0.5fd.
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(3, 7) (5, 2) (4, 4)(a) (b) (c)

Figure 3. Typical experimentally observed Faraday wave modes with mode number pair (n, �).

In our experiment, for small forcing amplitude the measured wave frequency is identical
to the driving frequency fo = fd whenever α /= 90◦, which is indicative of edge waves
excited from the sidewall of the container. This is a geometric effect and not related to
dynamic contact-line motion. For fixed driving frequency fd, the Faraday wave threshold
is approached by increasing the tank acceleration until we observe the rapid growth of
a frequency peak with fo = 0.5fd on the FFT. The corresponding acceleration Au is the
upper limit of the threshold acceleration for that driving frequency. The amplitude is then
decreased until that frequency peak disappears on the FFT and we define this as the lower
limit of the threshold acceleration Al. The threshold acceleration lies between Au and Al.
Several iterations are successively performed until the difference between Au and Al is
smaller than 0.2 m s−2. We then report the experimental threshold acceleration as the
average value A = (Au + Al)/2.

The surface wave structure is characterized by the optical system shown in figure 1(b).
Collimated light is produced by a lens located one focal length f = 300 mm from a white
light source. To improve the degree of collimation a plate with a 2 mm diameter hole
was placed in front of the light source. The collimated beam is directed at the wave
surface and the reflected light captured by a digital camera (Canon EOS Rebel T3i)
with a Canon EF-S 18–55 mm lens. A long exposure time 0.6 s is set for most of the
images presented herein in order to blur out the travelling edge waves originating from the
container sidewall and highlight the standing wave pattern. The exception being the lowest
frequencies explored where the exposure time was set to 0.8 s to ensure that travelling
waves were truly blurred out. In this way, the dominant wave pattern in the imagery is
either edge waves under resonant conditions, or Faraday waves, or both. Edge waves away
from resonance condition will become blurred and have more uniform light intensity. The
optical axis of the camera is oriented normal to the reflected light such that locations
where the wave slope is zero (i.e. the peak or trough) are bright, whereas the regions
where the wave slope is non-zero (i.e. the nodes) appear dark. Larger slopes lead to darker
regions. Typical wave patterns are shown in figure 3. To identify the modal structure,
we compute the two-dimensional (2-D) cross-correlation between the experimental wave
pattern and the Bessel function J�(knr) cos(�θ), defined in cylindrical coordinates (r, θ ),
where � is the azimuthal mode number and kn is computed from the roots of J′

�(knR) = 0
(n is the numerical order of those roots). This generates a table of 2-D cross-correlations
in the (n, �) mode number space. Because of the existence of phase difference in the
azimuthal direction between the experimental and target images, we rotate the target image
360◦ about its centre and identify the maximum value of the 2-D cross-correlation. We
repeat this procedure for all target modes in the table and identify the maximum value of
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Figure 4. Acceleration A against driving frequency fd showing the Faraday wave tongues for various modes
(n, �).

the 2-D cross-correlation, which we associate with the modal structure of the experimental
image. This procedure has been done for the images shown in figure 3, yielding mode
number pairs (3, 7), (5, 2), (4, 4), respectively. We note that the 2-D cross-correlations can
be improved by using the predicted surface shapes that we present later in our theoretical
development. However, this does not change the modal identification of our experimental
results. Lastly, we mention that this technique breaks down when the surface wave is
a superposition of harmonic edge waves and sub-harmonic Faraday waves, as will be
discussed in § 4.

3. Experimental results

We report a number of experimental observations and these generally depend upon
the magnitude of the driving amplitude. High-amplitude forcing above the Faraday
wave threshold produces sub-harmonic waves, while low-amplitude forcing below
threshold leads to harmonic edge waves under the proper experimental protocol. In some
circumstances it is possible to simultaneously excite both a sub-harmonic wave and
harmonic wave with different modal structures for the same driving frequency. We call
these mixed modes. We note in passing that it is possible to generate Faraday waves that
are harmonic, however, the conditions under which these occur are not explored in this
work.

3.1. Faraday waves
To suppress harmonic edge waves in these experiments, we fill the container such that
the contact angle α = 90◦. This serves to eliminate edge waves, leaving the interface
perfectly flat at accelerations below the Faraday wave threshold. A frequency sweep is
performed using an interval of 0.2 Hz and the threshold acceleration is determined for each
frequency, following the procedure described above, giving the results shown in figure 4.
For a fixed frequency, the interface is flat below the threshold acceleration which becomes
the oscillating surface shape defined by (n, �) above threshold. A given mode (n, �) can be
excited over a range of frequencies and the particular frequency with the lowest threshold
acceleration is twice the resonance frequency for that particular mode. Note that the onset
acceleration at resonance is relatively constant for all modes. Typical Faraday wave tongues
are shown in figure 4 for the (1, 0), (1, 2), (1, 3), (2, 1), (1, 4) modes. For the other modes,
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35.7 – 36.2 Hz

10

38.8 – 39.8 Hz

11

42.4 Hz

12

34.4 – 35.0 Hz

13

37.2 – 37.4 Hz

14

39.8 Hz

15

42.6 – 43.4 Hz

46.2 – 46.8 Hz11.2 – 12.2 Hz 17.2 – 17.6 Hz 23.3 – 23.9 Hz 30.2 – 31.2 Hz 37.8 – 38.0 Hz

41.8 – 42.2 Hz7.1 – 7.7 Hz

10.2 – 11.0 Hz 16.2 – 17.0 Hz 22.5 – 23.1 Hz 29.8 – 30 Hz 37.6 Hz

13.8 – 14.8 Hz 20.2 – 21.0 Hz 26.5 – 26.7 Hz 33.6 – 34.2 Hz

45.6 – 46.0 Hz

41.0 – 41.6 Hz12.4 – 13.6 Hz 18.6 – 19.6 Hz 25.5 – 26.3 Hz 33.2 – 33.4 Hz

15.0 – 16.0 Hz 21.2 – 22.2 Hz 28.3 – 29.4 Hz

40.0 – 40.8 Hz17.8 – 18.4 Hz 24.9 – 25.3 Hz 32.2 – 32.4 Hz

43.6 – 44.6 Hz19.8 – 20.0 Hz 27.0 – 28.1 Hz 35.2 – 35.6 Hz

38.2 – 38.6 Hz22.3 – 22.5 Hz 30.2 Hz

24.1 – 24.7 Hz

26.9 Hz

29.6 Hz

31.4 – 32.0 Hz

Figure 5. Experimentally observed Faraday wave mode shapes defined by the mode number pair (n, �) with
corresponding driving frequency range.
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10 15

fd  (Hz)

20

I

Figure 6. Edge wave frequency response plotting a measure of the light intensity I against the driving
frequency fd .

e.g. the (2, 2) or (1, 5) modes, we can only obtain the left-hand side or right-hand side of
the instability tongue, respectively. In these situations, we take the resonance frequency to
be the frequency at the smallest acceleration. This is likely due to the overlap of instability
tongues or mode competition in these frequency ranges, where the tongues are clustered
close together. Furthermore, some modes, e.g. the (1, 6) mode, can only be excited
over a small frequency window which makes it challenging to experimentally observe.
Despite this fact, we have experimentally observed the first 50 Faraday wave modes, as
shown in figure 5 with the corresponding driving frequency range. Those difficult to find
modes have been discovered with the aid of theoretical predictions that we develop in a
forthcoming section.

3.2. Edge waves
Harmonic edge waves can be excited by under-filling the container such that α < 90◦
wherein edge waves occur for driving amplitudes much smaller than the Faraday wave
threshold. Edge waves are always axisymmetric � = 0 and the radial mode number n
increases with frequency. Figure 6 shows the frequency response for edge waves with a
driving amplitude below the Faraday wave threshold. Here, we plot a measure of the light
intensity against the driving frequency. As noted above, away from resonance, travelling
waves are observed and are blurred in the imagery due to the long exposure time of the
images. This is shown in figure 7(a–e), which shows the image of the n = 5 mode as the
frequency is increased from just below resonance to just above resonance. The frequency
response exhibits 6 resonance peaks within this range of driving frequencies, images of
which are shown in figure 7( f –j). The first peak corresponds to the (1, 0) mode, the second
peak to the (2, 0) mode and so on. Note that the bandwidth for a given mode increases with
frequency and mode number n, e.g. the (6, 0) mode has a larger bandwidth than the (1, 0)

mode, and this is consistent with increased dissipation for higher mode numbers, even
though the viscosity of water is small (Bostwick & Steen 2016).

3.3. Mode mixing
By increasing the driving amplitude above the Faraday wave threshold, we have observed
the simultaneous excitation of harmonic edge waves with sub-harmonic Faraday waves
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fd = 16.3 Hz 16.6 16.9 17.2 17.5

n = 1 n = 2 n = 3 n = 4 n = 5

(a)

( f )

(b)

(g)

(c)

(h)

(d)

(i)

(e)

( j)

Figure 7. Edge waves (a–e) for driving frequencies fd = 16.3 to 17.5 Hz show the images becoming
progressively less clear away from resonance at 16.9 Hz for the n = 5 mode and ( f –j) corresponding resonant
modes for n = 1, 2, 3, 4, 5.

(a) (b) (c) (d) (e)

Figure 8. Mode mixing is observed upon increasing the driving amplitude from (a) to (e) for driving frequency
fd = 34.7 Hz. A pure harmonic edge wave (a,b) mixes with a sub-harmonic azimuthal wave above the threshold
acceleration (c). Further increasing the driving amplitude leads to a high-amplitude mixed mode (d,e).

when the tank is under-filled (α < 90◦). Here, an axisymmetric (n, 0) edge wave mixes
with an azimuthal (n, �) Faraday wave leading to a complex, beautiful, spatial pattern.
Figure 8 shows a typical amplitude sweep for fixed driving frequency fd = 34.7 Hz. For
small driving amplitude, harmonic edge waves are excited (a) and once the threshold
acceleration is reached (b) a sub-harmonic Faraday wave is born that evolves into a
steady wave pattern (c). Incremental increases in driving amplitude above threshold result
in high-amplitude patterns (d,e). We note that unsteady Faraday waves were observed
beyond the forcing amplitudes explored here, but we did not pursue these motions further.
Figure 9 shows a number of mixed modes with the corresponding driving frequency. The
edge wave frequency response diagram in figure 6 and mode table in figure 5 can be
used to identify the corresponding mixing modes at the particular driving frequency. For
example, the fd = 13.4 Hz image in figure 9 is the superposition of the (4, 0) harmonic
edge wave and (1, 3) sub-harmonic Faraday wave. Because these motions are observed
deep into the instability tongue, it is possible they are susceptible to nonlinear effects such
as mode–mode interactions but we do not pursue this further.

4. Theory of surface waves in a cylindrical container

Consider a cylindrical container of radius R and height H filled with an inviscid fluid that
creates a pinned contact line in cylindrical coordinates (r, θ, z), as shown in figure 10.
The flat interface has surface tension σ and is given a small disturbance ξ(r, θ, t). In what
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18.4 Hz 24.6 Hz 25.1 Hz 31.7 Hz

10.2 Hz 13.4 Hz 15.5 Hz 16.4 Hz(a) (b) (c) (d)

(e) ( f ) (g) (h)

Figure 9. High-amplitude mixed modes are observed at the indicated driving frequency.

x

y

z

g H

R

r

z

ξ

ρ

σ

(a) (b)

Figure 10. Definition sketch in (a) 2-D planar and (b) 3-D perspective views.

follows we perform a linear stability analysis, wherein the pressure p and velocity fields v
will be associated with the disturbance fields.

4.1. Hydrodynamic field equations
The fluid is assumed to be incompressible and the flow irrotational, which allows us to
define the velocity fields as v = ∇Φ, where the velocity potential Φ satisfies Laplace’s
equation

∇2Φ = 0. (4.1)

The velocity potential satisfies the no-penetration condition

∂Φ

∂r

∣∣∣∣
r=R

= 0,
∂Φ

∂z

∣∣∣∣
z=0

= 0, (4.2a,b)

at the walls of the cylindrical container and a kinematic condition

∂Φ

∂z
= ∂ξ

∂t
(4.3)

on the free surface z = H, which relates the normal velocity to the perturbation amplitude
there. The pressure field in D for small interface disturbance is given by the linearized
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Bernoulli equation

p = −ρ
∂Φ

∂t
− ρgξ, (4.4)

where ρ is the fluid density and g is the gravitational constant. The pressure at the free
surface is governed by the linearized Young–Laplace equation

p
σ

= − 1
R2

(
∂2ξ

∂r2 + 1
r

∂ξ

∂r
+ 1

r2
∂2ξ

∂θ2

)
, (4.5)

valid for small disturbances |ξ | � 1. The pinned contact-line condition is given by

ξ |r=R = 0. (4.6)

Lastly, volume conservation is enforced by the integral condition∫ 2π

0

∫ R

0
rξ(r, θ) dr dθ = 0. (4.7)

Equations (4.1)–(4.7) are the linearized disturbance equations which are a well-posed
system of partial differential equations.

4.2. Normal modes
The following dimensionless variables are introduced:

r̄ = r/R, z̄ = z/R, ξ̄ = ξ/R, t̄ = t
√

σ


r3 , Φ̄ = Φ

√
ρ

σR
, p̄ = p

(
R
σ

)
.

(4.8a–f )

Here, lengths are scaled by the radius of the cylinder R, time with the capillary time scale√
ρR3/σ and pressure with the capillary pressure σ/R.
Normal modes,

Φ (x, t) = φ(r, z)eiωtei�θ , ξ(r, θ, t) = y(r)eiωtei�θ , (4.9a,b)

are then applied with the scalings (4.8a–f ) to the domain equations to yield

1
r

∂

∂r

(
r
∂φ

∂r

)
− �2

r2 φ + ∂2φ

∂z2 = 0, p = −iλφ − Bo y, (4.10)

with corresponding boundary conditions

∂φ

∂r

∣∣∣∣
r=1

= 0,
∂φ

∂z

∣∣∣∣
z=0

= 0, p|z=h = −
(

∂2y
∂r2 + 1

r
∂y
∂r

− �2

r2 y
)

,

∂φ

∂z

∣∣∣∣
z=h

= iλy, y|r=1 = 0. (4.11a–e)

Here, λ ≡ ω
√

ρR3/σ is the scaled frequency, h = H/R the cylinder aspect ratio and Bo ≡
ρgR2/σ the Bond number. The volume conservation constraint (4.7) is naturally satisfied
for � /= 0, but for � = 0 requires ∫ 1

0
ry(r) dr = 0. (4.12)
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4.3. Integro-differential equation
This is an interfacial-driven flow and we can derive a single integro-differential equation
for the interface disturbance y by mapping the problem to the interface. This is a boundary
integral approach. To begin, a Bessel series solution for φ is sought,

φ(r, z) =
∞∑

n=1

An cosh(kn�z)J�(kn�r), (4.13)

where kn� is the nth zero of J′
�(k), as required to satisfy the no-penetration condition at the

lateral sidewall (r = 1), with J� the Bessel function. Note that the no-penetration condition
at the bottom of the container z = 0 is naturally satisfied by this solution. Similarly, the
interface disturbance y can be expanded as

y(r) =
∞∑

n=1

CnJ�(kn�r), Cn = 〈y, J�(kn�r)〉
〈J�(kn�r), J�(kn�r)〉 , (4.14a,b)

where the inner product is defined as

〈f (r), g(r)〉 =
∫ 1

0
rf (r)g(r) dr. (4.15)

The coefficients An, Cn are related by the kinematic condition, An = iλCn/kn� sinh(kn�h),
and this gives the general solution for the velocity potential

φ(r, z) = iλ
∞∑

n=1

1
kn�

cosh(kn�z)
sinh(kn�h)

〈y, J�(kn�r)〉
〈J�(kn�r), J�(kn�r)〉J�(kn�r), (4.16)

written implicitly through y. This solution is applied to the Young–Laplace equation to
give

λ2
∞∑

n=1

coth(kn�h)

kn�

〈y, J�(kn�r)〉
〈J�(kn�r), J�(kn�r)〉J�(kn�r) − Bo y +

[
d2y
dr2 + 1

r
dy
dr

− �2

r2 y

]
= 0,

(4.17)

which is an integro-differential equation for the interface disturbance y.

4.4. Operator formalism
The governing integro-differential eigenvalue problem (4.17) can be recast as an operator
equation

λ2M[y] + K[y; Bo] = 0, (4.18)

with

M[y] ≡
∞∑

n=1

1
kn�

coth(kn�h)
〈y, J�(kn�r)〉

〈J�(kn�r), J�(kn�r)〉J�(kn�r), (4.19)

an integral operator representative of the fluid inertia and

K[y; Bo] ≡ −Bo y +
[

d2

dr2 + 1
r

d
dr

− �2

r2

]
y, (4.20)

a differential operator representative of the restorative forces of surface tension and gravity.
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4.5. Rayleigh–Ritz method
An approximate solution to the eigenvalue problem (4.18) is constructed using the
Rayleigh–Ritz method, where the pinned contact-line condition y|r=1 = 0 and volume
conservation condition (4.12) are built into the function space over which the minimization
is done. This approach has been applied previously to constrained drops by Bostwick &
Steen (2009, 2013a,b).

We begin by defining a set of functions that satisfy the pinned edge condition,

S�
n(r) = J�(kn�r) − J�(kn�)

J�(k1�)
J�(k1�r), n = 2, 3, . . . , N. (4.21)

Note the summation starts at n = 2. It is straightforward to show that the integral constraint
(4.12) for � = 0 is naturally satisfied for this choice of basis functions by using the Bessel
function identity

∫ 1
0 rJ0(kr) dr = −J′

0(k)/k2. Since kn0 was chosen such that J′
0(k) = 0,

it follows that
∫ 1

0 rJ0(kn0r) dr = 0 and using linearity gives
∫ 1

0 rS0
n(r) dr = 0 for all n.

The functions S�
n are not orthogonal, but the Gram–Schmidt procedure can be applied

to generate a set of orthonormal basis functions V�
i (r), where i = 1, 2, 3, . . . , N, such that∫ 1

0 rV�
i (r)V�

j (r) dr = δij with δij the Kronecker delta function. The surface disturbance y
can be re-expressed using this orthonormal set as

y(r) =
∞∑

i=1

ciV�
i (r). (4.22)

Equation (4.22) is applied to the operator (4.18) and inner products are taken to yield the
matrix equation

(λ2M + K)c = 0, (4.23)

with matrices M and K defined as

M = 〈
M[Vi], Vj

〉
, K = 〈

K[Vi], Vj
〉
, (4.24a,b)

and c the coefficient vector.

4.6. Results
Equation (4.23) is a standard matrix eigenvalue problem that can be solved numerically
using the MATLAB function polyeig for the eigenvalue/vector pairs (λ, c). For the
results presented here, we use a truncation of N = 30 which produces relative eigenvalue
convergence of 0.01 %. The convergence properties of eigenvalues and eigenvectors using
the Rayleigh–Ritz method are discussed in Segel (1987).

Each eigenvalue λn,� and eigenvector cn,� pair can be distinguished by the mode number
pair (n, �), where n and � are the radial and azimuthal mode numbers, respectively.
Figure 11 illustrates the modal structure through the (a–c) interface deflection and (d–f )
one minus the absolute value of the wave slope, of which the latter can be compared
directly to our experimental imaging technique. With regard to the interface deflection
for a given mode (n, �), the azimuthal wavenumber � represents the number of polar
sectors, whereas the radial mode number n represents the number of nodes, or locations of
zero displacement, in the radial direction. For example, the (1, 2) mode has � = 2 sectors
illustrated by the two lobes and n = 1 radial node. In the one minus the absolute value of
wave slope rendering, the azimuthal mode number � is represented by the 2� dark sectors

915 A19-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

97
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.97


X. Shao, P. Wilson, J.R. Saylor and J.B. Bostwick

(2, 0) (1, 2) (3, 3)

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

(a) (b) (c)

(d) (e) ( f )

Figure 11. Mode (n, �) predictions plotting surface shape (a–c) and one minus absolute value of wave
slope (d–f ).

emanating from the origin and the radial mode number n by the number of radial minima,
which appear as dark rings in figure 11; e.g. the (1, 2) mode has 2� = 4 rays and n = 1
radial minima (dark ring). Note the outermost dark ring is due to the pinned meniscus and
is not included in the counting. We have used these predictions to identify modal structure
in experiment by performing 2-D cross-correlations with the absolute value of wave slope.
For a given experimental mode, a table of 2-D cross-correlations can be computed and the
maximum value used to identify the mode number pair (n, �). This was done for the table
of modes shown in figure 5 and the modal structure was unambiguous.

The discrete spectrum for λ varies with the set of parameters (h, Bo). Figure 12 plots the
frequency λ against aspect ratio h for the Bond number Bo = 167 used in our experiments.
For each mode (n, �), the frequency increases with h and then plateaus. This is the infinite
depth limit and we note this transition happens at different aspect ratios for each mode.
This transition shifts to lower h for increasing frequency and this indicates the fluid
motion becomes more localized to the surface for these modes. The lowest frequency
(1, 1) sloshing mode is most affected by the container depth. We note that the (2, 0) and
(1, 5) modes have nearly the same frequency and this is most likely the reason that we
could not experimentally observe an instability tongue for either of these modes in the
frequency sweep shown in figure 4.

Figure 13 is a plot of the frequency λ against Bond number Bo for the aspect ratio
h = 0.628 used in our experiments and shows a monotonically increasing trend with
Bo for each mode. Pure capillary waves occur in regions where the curve is flat and
capillary–gravity waves in regions where the curve is steadily increasing. The transition
from capillary waves to capillary–gravity waves occurs at critical Bond number Bo which
increases with frequency and mode number, as could be expected.

4.7. Comparison to experiment
We can compare our theoretical predictions with the experimental observations shown
in figure 5 with the understanding that the response is sub-harmonic fo = 0.5fd. That is,
to excite a Faraday wave in experiment requires one to use a driving frequency twice
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Figure 12. Frequency λ against aspect ratio h for Bo = 167.
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Figure 13. Frequency λ against Bond number Bo for h = 0.628.

the natural frequency for a given mode. Table 1 lists the computed natural frequencies
for the modes (n, �) observed in experiment. The agreement is excellent with nearly all
predictions within 1 % of the experimental values. We note that these small per cent
errors are somewhat fortuitous given that the 0.2 Hz spacing in driving frequency used
in searching for resonance in the experiments gives an uncertainty in the experimentally
determined resonance frequency that is larger than the stated errors for most entries in
table 1. The comparison with the harmonic edge waves shown in figure 6 is also excellent
when we associate the resonance peaks with the corresponding natural frequencies. Lastly,
we note the comparison between theory and experiments by Henderson & Miles (1994)
shows similarly good agreement for a different set of experimental conditions, as shown
in table 2.

5. Concluding remarks

We have studied pattern formation on mechanically excited surface waves with a controlled
meniscus geometry in a cylindrical container from both experimental and theoretical
perspectives. The container geometry dictates the symmetry of the surface waves which
are described by the integer-valued mode number pair (n, �). The wave dynamics can
be complex and this is controlled by the experimental conditions through the (i) driving
amplitude and (ii) control of the contact angle at the lateral boundary of the container by
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n = 1 2 3 4 5 6

� = 0 5.82 (0.4 %) 8.67 (0.3 %) 11.68 (0.2 %) 15.05 (1.0 %) 18.80 (1.1 %) 22.92 (0.8 %)
1 3.71 (0.2 %) 7.20 (0.0 %) 10.10 (0.0 %) 13.29 (0.1 %) 16.85 (0.3 %) 20.79 (0.5 %)
2 5.33 (0.5 %) 8.47 (0.3 %) 11.53 (0.3 %) 14.92 (0.1 %) 18.68 (0.6 %) 22.81 (0.8 %)
3 6.58 (0.4 %) 9.73 (0.7 %) 12.98 (0.1 %) 16.58 (0.7 %) 20.54 (0.3 %) —
4 7.71 (0.1 %) 11.00 (0.0 %) 14.47 (0.5 %) 18.28 (0.4 %) — —
5 8.81 (1.0 %) 12.30 (0.8 %) 15.99 (0.7 %) 20.01 (0.9 %) — —
6 9.93 (0.3 %) 13.64 (1.0 %) 17.56 (0.8 %) 21.78 (0.5 %) — —
7 11.06 (1.2 %) 15.02 (0.5 %) 19.16 (0.2 %) — — —
8 12.23 (0.6 %) 16.43 (0.4 %) — — — —
9 13.43 (0.3 %) 17.89 (3.9 %) — — — —
10 14.68 (0.8 %) 19.39 (2.6 %) — — — —
11 15.96 (0.3 %) 20.92 (1.3 %) — — — —
12 17.28 (0.1 %) — — — — —
13 18.64 (0.3 %) — — — — —
14 20.04 (0.7 %) — — — — —
15 21.49 (0.1 %) — — — — —

Table 1. Theoretical natural frequency predictions measured in Hz for modes (n, �) with comparison against
experimental observation for Bo = 167 and h = 0.628.

H&M 94 Predictions

(s, m) f (Hz) (n, �) f (Hz) % difference

(1, 0) 4.65 (1, 1) 4.71 1.4 %
(2, 0) 6.32 (1, 2) 6.41 1.4 %
(0, 1) 6.84 (1, 0) 6.89 0.7 %
(3, 0) 7.80 (1, 3) 7.90 1.3 %
(4, 0) 9.26 (1, 4) 9.37 1.2 %
(1, 1) 8.57 (2, 1) 8.65 1.0 %

Table 2. Theoretical frequency predictions measured in Hz for modes (n, �) with comparison against
Henderson & Miles (1994) experiments for Bo = 99.3 and h = 1.37. Note the different modal classification
systems, (s, m) and (n, �).

under-filling or over-filling the tank whose interface is pinned at the rim. For α = 90◦, the
air/water interface remains flat until a threshold driving amplitude is reached coinciding
with the emergence of a sub-harmonic Faraday wave pattern and we have experimentally
observed the first 50 resonant modes (cf. figure 5). The situation is different when
the container is under-filled, creating a concave meniscus in which case we observe
(i) harmonic edge waves with � = 0 for driving amplitudes below the Faraday wave
threshold (figure 6) and (ii) the simultaneous excitation of a harmonic edge wave and
sub-harmonic Faraday wave above the threshold, which creates a complex, beautiful
surface pattern (cf. figure 9). Theoretical predictions for the natural frequencies of an
inviscid liquid in a cylindrical container with a pinned contact line are generated using the
Rayleigh–Ritz procedure over a constrained function space and show excellent agreement
with experiment.

Our experimental technique contrasts with those in the literature in that we purposefully
create a pinned meniscus and control its geometry to suppress edge waves in order to
study the onset of pure Faraday waves. Other authors have used either (i) large aspect ratio
containers to minimize the effect of edge waves or (ii) surfactants to create a sliding edge
condition which also suppresses edge waves. Our technique allows us to cleanly define
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the instability tongues for a large number of modes (cf. figure 4). Furthermore, our optical
technique that includes generating long exposure time images that are processed using 2-D
cross-correlations to identify the modal structure is both inexpensive and efficient. These
techniques could be applied to other interfacial pattern formation phenomena. Among
the more interesting experimental observations is that we have shown by controlling the
meniscus geometry, surface waves can be excited with a complex dynamics that includes
the mixing of two unique spatial modes at the same driving frequency; one harmonic edge
wave and one sub-harmonic Faraday wave (cf. figures 8 and 9). This system could be
further exploited to explore nonlinear wave interactions.

For a perfectly flat interface, there is a discrete spectrum of resonance frequencies
and mode shapes for which our theoretical predictions show excellent agreement with
experimental observations. The frequency spectrum can shift due to dissipation (or
damping), either from finite viscosity or dynamic wetting effects, and this depends upon
the dissipation generated by the respective mode (n, �). It is well known that higher mode
number shapes have more viscous dissipation, whereas the lower mode number shapes
display more contact-line dissipation. Given that it is common for two distinct modes to
have nearly the same resonance frequency (cf. figures 4 and 5), it could be expected that
the order in which modes appear in a frequency sweep (i.e. spectral ordering) could change
with increased dissipative effects. In addition, under-filling or over-filling of the container
breaks the symmetry of the flat interface by creating a meniscus with a given contact angle.
This geometric wetting effect has been shown to shift the resonance frequency for sessile
drops such that the spectrum reorders (Bostwick & Steen 2014; Chang et al. 2015). For
this case, a new organizing principle has been developed that culminates in the periodic
table of droplet motions (Steen, Chang & Bostwick 2019). By exploiting our experimental
approach to include a range of contact angles (as opposed to just the two explored herein),
it may be possible to observe similar spectral reordering due to wetting effects and this
should be explored further.
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