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In this note we consider a simple immigration birth—death process with total ca-
tastrophes and we obtain the transient probabilit@as approach involves a re-
newal argumentt is comparatively simpler and leads to more elegant expressions
than other approaches that appeared in the literature recently

1. INTRODUCTION

We consider a simple immigration birth—death process of individuals that is influ-
enced by random total catastrophes whiwhen they occyrannihilate the entire
population Choosing an appropriate unit of tigieis assumed that when the state of
the system is, the immigration rate ig, the birth rate is1A, the death rate isy, and

the catastrophe rate is arehe process can then be described as having the follow-
ing transition rates in the time intervél t + 6t):

Transition Rate
n-n+1 v+An (n=0)
n—->n-1 pun (n=1)
n—0 1 (n=1)

The same process was considered by KyriaKiljsSwift [8], and Chao and Zheng
[2]. Swift, Chaq and Zheng used the forward Kolmogorov equations to determine
the probabilityp,(t) that the population sizZé(t) at timet = 0 is equal toan = 0 given
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that P(N(0) = a) = p,, a = 0. They obtained a partial differential equation for
the generating function gd,(t), n = 0. Swift used the symbolic software package
Mathematica to solve the partial differential equation and then gave expressions
for po(t) in terms of the hypergeometric functioBhao and Zheng solved the par-

tial differential equation using the method of characteristics, &meln obtained
closed-form expressions fpp(t), n = 0. Chao and Zheng also studied the station-
ary probabilities,, n = 0, of the processThey solved an ordinary differential
equation for the generating function®f, n = 0, and then obtained expressions for
T, N=0.

In the next sectioywe obtain expressions f@r(t), n = 0, in a comparatively
simpler manner by applying a renewal argumevttich has been used |B] for the
determination ofry. The same renewal argument has also been used for the deter-
mination of the transient probabilities of the simple immigration catastrophe process
(se€]6]) and the transient probabilities of a simple immigration—emigration catas-
trophe procesésee[7]). Economou and Fakindg] also utilized this argument to
study the transient and limiting distribution of a continuous-time Markov chain in-
fluenced by a regulating point process

2. TRANSIENT SOLUTION

Assume that the catastrophes are introduced at rate 1 even if the process is in state 0
This assumption does not change the behavior of the process and implies that the
catastrophes occur as a Poisson process with ratetU;, t = O, be the backward
recurrence timéi.e., the length of time measured backward from titie the last
catastrophe at or befote. It is well known (seg e.g., Cox [3, p. 31]) that U, is
exponentially distributed with parametercensored at timé(i.e., the distribution

of U; has a continuous part with densiy* in the interval(0, t) and a probability

atom of sizee t att). Therefore conditioning onU;, we obtain

Pa(t) = go PaPan(t) = go |0.{|Dan(t)et + JO ﬁon(S)est], 1)

wherep,n(t) = P{N(t) = n|N(0) = a} andpa.,(t) = P{X(t) = n|X(0) = a} for the
simple immigration birth—death procegs(t);t = 0}. Let

P(x,1) = X Pan()X",
n=0
the probability generating function &(t). Clearly,

1 [a“P(x,t)] )

pan(t) = E ax"
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It is well known (see relatior(8.71) in Bailey[1]) that

A pEe Pt 1) — (pet Pt - )X
P(x,t) = (A6 — ) — A(e" WL — I)xarvA if u# A #0,

P(x,t) = {1+ (x— 1)e“t}aexp{5 (x—1)(1— eut)],

(At — Atx + x)2
(At +1— Axt)/A+a

A=0#,

P(x,t) =

if A=

Using the Leibniz rulewe find expressions for theth derivative ofP(x, t) with
respect tox, and from(1) and(2), we obtain the following expressions

If p# A #0,

n—1

1
pn(t) =e! 2 papan(t) + |/\ |J~|V/A ]___[ (v + Ai)

X f |/\e(/\7p)s _ u| *V//\*n|e(/\*ll)5 _ 1|nefs dS (3)
0
where
n

Pan(t) = [A — p["* kgo K= K!

n—
X

i

1

X [T [v+ A(a+i)]|Ae? Wt — y-a kX gt — 1“}.

x

-1

—

(a—1)| (et - gy

I
T o

i=0

IfA=0#W

pn(t) =e™ ZO papan(t)

L <3> J t exp[ Y- e‘“S)](l— e e sds  (4)
nt\u/ Jo M
where

n

—k—
pan(t) = kEO k'(n k)' Izl_lo |)(1_ e—ul)a—n+2k

X exp[—pt(n —k) — z (1- e‘“‘)KK)k
W n/
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IfA=p#0,
oo n—1 1 t
Pa(t) = €7 D) PaPan(t) + [T (v + Ai) Ef (1+As)"*""s"eds  (5)
a=0 i=0 H 0
where
n n—k—1
an(t) = e — a—i
k—1
X [T v+ A(a+i)]az mkgant2k(q — at)n k(L + At) Ak
i=0

It can be shown thd®) and(5) are equal to the corresponding expressid® and
(20) in [2].

If ttends to infinity in(3)—(5), the first terms in these expressions vanldking
the transformatioly = e~° in the integralswe obtain the same expressions for the
stationary probabilities that Chao and Zheng obtaifsed]2, Thm. 3.2]).
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