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We study the organization of turbulence in supersonic boundary layers through
large-scale direct numerical simulations (DNS) at M∞ = 2, and momentum-thickness
Reynolds number up to Reδ2 ≈ 3900 (corresponding to Reτ ≈ 1120) which significantly
extend the current envelope of DNS in the supersonic regime. The numerical strategy
relies on high-order, non-dissipative discretization of the convective terms in the
Navier–Stokes equations, and it implements a recycling/rescaling strategy to stimulate
the inflow turbulence. Comparison of the velocity statistics up to fourth order shows
nearly exact agreement with reference incompressible data, provided the momentum-
thickness Reynolds number is matched, and provided the mean velocity and the
velocity fluctuations are scaled to incorporate the effects of mean density variation,
as postulated by Morkovin’s hypothesis. As also found in the incompressible regime,
we observe quite a different behaviour of the second-order flow statistics at sufficiently
large Reynolds number, most of which show the onset of a range with logarithmic
variation, typical of ‘attached’ variables, whereas the wall-normal velocity exhibits a
plateau away from the wall, which is typical of ‘detached’ variables. The modifications
of the structure of the flow field that underlie this change of behaviour are highlighted
through visualizations of the velocity and temperature fields, which substantiate the
formation of large jet-like and wake-like motions in the outer part of the boundary
layer. It is found that the typical size of the attached eddies roughly scales with the
local mean velocity gradient, rather than being proportional to the wall distance, as
happens for the wall-detached variables. The interactions of the large eddies in the
outer layer with the near-wall region are quantified through a two-point amplitude
modulation covariance, which characterizes the modulating action of energetic outer-
layer eddies.

Key words: boundary layer structure, compressible boundary layers, turbulent boundary
layers

1. Introduction
The prediction of turbulent high-speed wall-bounded flows remains an active field

of study for its technological importance in the aerospace industry. In this respect,
a major role has been historically played by experiments, whereas direct numerical
simulations (DNS) and large-eddy simulations (LES) have only become common
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Turbulence in supersonic boundary layers at moderate Reynolds number 121

in the last decade or so. A considerable amount of work has been devoted to the
understanding of the canonical zero-pressure-gradient boundary layer flow, which
is itself a challenging task. Indeed, boundary layers by their nature are spatially
developing flows, and their structure is strongly sensitive to the particular strategy
used to enforce the boundary conditions at the computational inflow. As recently
shown through DNS in the incompressible regime (Simens et al. 2009), and previously
observed in experiments (Erm & Joubert 1991), the achievement of a fully developed
state of the boundary layer (and thus the correct prediction of the turbulent boundary
layer statistics) requires the use of extremely long computational domains (in excess
of fifty boundary layer thicknesses), which makes accurate numerical simulations
extremely computationally demanding.

Numerical simulations of wall-bounded turbulent flows in the supersonic regime
are further slowed down by the inherently larger computational effort, and by the
possible occurrence of shock waves, either in the form of external disturbing elements
(such as in shock wave/boundary layer interactions), or embedded in turbulence (‘eddy
shocklets’). Therefore, the overwhelming majority of the computational algorithms
designed for LES and DNS of compressible flows rely on some form of upwinding or
explicit filtering (and dealiasing in spectral simulations) for numerical stabilization,
and most often incorporate some form of shock-capturing, which implies the
introduction of additional numerical dissipation. As a consequence, although the fine
grid spacings used in DNS generally guarantee adequate representation of the gross
flow features, the small-scale structures may be poorly resolved. Also, most previous
numerical studies performed in the supersonic regime are based on simplifying
assumptions to relate the spatial growth of the boundary layer with its temporal
growth in the presence of streamwise periodic boundary conditions (Guarini et al.
2000; Maeder, Adams & Kleiser 2001; Martı́n 2007). Other studies rely on the idea of
following the entire process of boundary layer transition starting from laminar inflow
conditions into the fully developed region (Pirozzoli, Grasso & Gatski 2004), or on the
extension of Lund’s recycling–rescaling technique (Stolz & Adams 2003; Xu & Martin
2004; Lagha et al. 2011).

While the dynamics of the near-wall layer are sufficiently well understood (Jiménez
& Pinelli 1999), recent studies (Hutchins & Marusic 2007) have highlighted the
occurrence of new physical mechanisms when the Reynolds number becomes
sufficiently high, which involve the interaction of energetically significant outer-
layer structures with the inner part of the boundary layer. Under such conditions
an energy peak emerges in the logarithmic part of the boundary layer, associated
with the appearance of large, streaky structures, that may be extremely long, and
that are currently referred to as ‘superstructures’. The presence of superstructures in
supersonic high-Reynolds-number boundary layers was documented in the experiments
of Ganapathisubramani, Clemens & Dolling (2006), and confirmed in the numerical
study of Ringuette, Wu & Martı́n (2008). The large-scale motions in the outer layer
are regarded to be responsible for the increase of the turbulence intensities (when
reported in inner scaling) with the Reynolds number (Hoyas & Jiménez 2006), and
for the modulation of the fine-scale near-wall turbulence (Mathis, Hutchins & Marusic
2009a). We note that, owing to difficulties in obtaining the full spatial information
in experiments, the detection of superstructures mostly relies on the analysis of time
signals at a given position, exploiting Taylor’s hypothesis, whose validity may be
questionable when applied to large-scale structures (Jiménez et al. 2010). Notable
exceptions to this statement include the tomographic particle image velocimetry
experimental data by Humble et al. (2009) and Elsinga et al. (2010), which provide
insight into the full instantaneous three-dimensional structure of the flow field.
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122 S. Pirozzoli and M. Bernardini

The discovery of the superstructures has stimulated a series of large-scale direct
numerical simulations of low-speed boundary layers (Wu & Moin 2009; Jiménez et al.
2010; Schlatter & Örlü 2010a), aiming to probe the behaviour of wall turbulence
at high Reynolds numbers. No such attempt has been made in this direction for
supersonic wall-bounded flows. The main purpose of the present paper is to fill
this gap, and provide accurate information on the behaviour of supersonic turbulent
boundary layers at (computationally) high Reynolds number. In order to achieve this
goal we have tried to minimize any source of numerical uncertainty, and developed a
numerical algorithm that with good approximation is free from spurious dissipation
errors and imprint from the numerical upstream conditions. The flow conditions
considered in this study correspond to free-stream Mach number M∞ = 2, and
Reynolds number based on the local momentum thickness and wall viscosity (Fernholz
& Finley 1976) Reδ2 = ρ∞u∞θ/µw from 560 to 3900, corresponding to friction
Reynolds numbers Reτ = ρw uτδ/µw from 200 to 1120. The relatively low Mach
numbers under consideration prevent the emergence of strong compressibility effects
with subsequent formation of turbulent shocklets, which would require the use of
some artificial dissipation to be captured. The range of Reynolds numbers considered
extends from conditions typical of previous studies, into the range accessible from
experiments, with which this work is intended to provide a bridge.

The paper is organized as follows. In § 2 the numerical strategy and the DNS
database are described; the primary turbulence statistics are presented and compared
with a wide body of available experimental data in § 3; the large-scale organization
of the flow is illustrated in § 4; the statistical organization of the turbulent eddies (in
terms of size and orientation) is addressed in § 5; the inner/outer layer interactions
are quantified in terms of amplitude modulation in § 6; the relationships between the
velocity and temperature fluctuating fields (strong Reynolds analogies) are investigated
in § 7; concluding remarks are given in § 8.

2. Numerical methodology
We solve the three-dimensional Navier–Stokes equations for a perfect compressible

gas

∂ρ

∂t
+ ∂(ρ uj)

∂xj
= 0, (2.1a)

∂(ρui)

∂t
+ ∂(ρ uiuj)

∂xj
+ ∂p

∂xi
− ∂σij

∂xj
= 0, (2.1b)

∂(ρE)

∂t
+ ∂(ρujE + puj)

∂xj
− ∂(σijui − qj)

∂xj
= 0, (2.1c)

where ρ is the density, ui (i = 1, 2, 3) is the velocity component in the ith coordinate
direction, E is the total energy, p and T the thermodynamic pressure and temperature,
respectively. The set of the conservation equations is closed with the constitutive
relations for a Newtonian fluid, whereby the heat flux vector qj and the viscous stress
tensor σij are prescribed as

qj =−k
∂T

∂xj
, (2.2a)

σij = 2µSij − 2
3 µ Skk δij, (2.2b)
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where Sij = (ui,j + uj,i)/2 is the strain-rate tensor, µ is the molecular viscosity (assumed
to depend on temperature through Sutherland’s law) and k = cpµ/Pr is the thermal
conductivity (the molecular Prandtl number is set to Pr = 0.72).

The Navier–Stokes equations are discretized on a Cartesian mesh and solved by
means of a conservative finite-difference approach. The flow solver relies on central
sixth-order discretization of the convective terms of the Navier–Stokes equations cast
in fully split form (Kennedy & Gruber 2008)

∂ρujϕ

∂xj
= 1

4
∂ρujϕ

∂xj
+ 1

4

(
uj
∂ρϕ

∂xj
+ ρ ∂ujϕ

∂xj
+ ϕ ∂ρuj

∂xj

)
+ 1

4

(
ρuj

∂ϕ

∂xj
+ ρϕ ∂uj

∂xj
+ ujϕ

∂ρ

∂xj

)
, (2.3)

where ϕ stands for any transported quantity in (2.1), being unity for the continuity
equation, ui (i = 1, 2, 3) for the momentum equation, h0 = γ /(γ − 1) p/ρ + u2/2
(where γ is the specific heat ratio) for the total energy equation. As shown by
Pirozzoli (2010), this arrangement leads to a locally conservative formulation, and
guarantees discrete conservation of the total kinetic energy in the limit case of inviscid,
incompressible flow, and also in the presence of grid stretching in the coordinate
directions. The approach allows robust spatial discretization of the convective terms
without the addition of spurious numerical dissipation in the form of upwinding or
filtering, as customary in numerical simulations of compressible flows. When cast in
locally conservative form, the method guarantees excellent computational efficiency,
and it makes hybridization with shock-capturing methods straightforward (Bernardini,
Pirozzoli & Grasso 2011). The diffusive terms in the Navier–Stokes equations are
expanded to Laplacian form for improved numerical stability, and approximated
with sixth-order central difference formulas, to guarantee proper action of molecular
viscosity at the smallest scales resolved on the computational mesh. The resulting
semi-discrete system of equations is advanced in time by means of a standard, fully
explicit fourth-order Runge–Kutta algorithm.

The database analysed in the present paper is obtained from three distinct direct
numerical simulations (hereafter referred to as TBL1, TBL2 and TBL3) of a spatially
developing zero-pressure-gradient supersonic turbulent boundary layer with free-stream
Mach number M∞ = 2, at Reynolds number from low to moderate. Several relevant
Reynolds numbers can be defined in compressible boundary layers, owing to the
strong variation of the thermodynamic properties (Smits & Dussauge 2006). The best
candidate to scale out the effects of compressibility is the Reynolds number based
on the momentum thickness and the wall viscosity (Fernholz & Finley 1976), Reδ2 ,
which reduces to the conventional momentum thickness in the incompressible limit,
and which here covers the range 560–3900 (see table 2). Another relevant Reynolds
number, which is often quoted in studies of low-speed boundary layers is the friction
Reynolds number, Reτ , giving the ratio between outer and inner length scales, and
which here covers the range 200–1120. All computations have been performed in a
long domain, which extends for Lx = 106 δin, Ly = 8.3 δin, Lz = 9.6 δin in the streamwise
(x), wall-normal (y) and spanwise (z) directions, δin being the boundary layer thickness
at the inflow station. Additional details on the properties of the computational mesh
are given in table 1, showing that the spacing in terms of wall units is sufficiently
small to virtually resolve all the energetically relevant flow scales throughout the wall
layer. Further confirmation of the adequacy of the mesh used for the DNS stems from
inspection of the spectral densities of the streamwise velocity field (Euu), reported in
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Dataset Reτ Reθ Reδ2 H Cf (×103)

TBL1 205–273 872–1242 557–793 3.13–3.07 3.42–3.07
TBL2 448–591 2082–2921 1327–1863 2.99–2.97 2.76–2.50
TBL3 843–1123 4430–6071 2827–3878 2.93–2.90 2.28–2.10

TABLE 2. Global flow properties determined from the DNS study. The range of values
refers to the second half of the computational domain, past the recycling station.
Reθ = ρ∞ u∞θ/µ∞; Reδ2 = ρ∞ u∞θ/µw; Reτ = ρw uτδ/µw; H = δ∗/θ .

(a) (b)
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FIGURE 1. Spectral densities of streamwise velocity fluctuations in the spanwise direction at
y+ = 15 in inner scaling (a), and at y/δ = 0.2 in outer scaling (b). See table 3 for line legend.

figure 1 as a function of the spanwise wavenumber (kz). The spectra do not exhibit any
energy pile-up at the high-wavenumber end which, given the absence of any numerical
energy drain in the solver, indicates that all the flow scales are properly resolved. The
figure further shows excellent collapse of the spectra at high wavenumbers when inner
scaling is used, and at low wavenumbers when the outer scaling is used. The spectral
peak observed in figure 1(a) at low wavenumbers for the high-Re simulations is the
signature of an imprint of the outer-layer eddies on the near-wall region, which will be
elaborated further on.

The boundary conditions at the upper and outflow boundaries are specified by
unsteady characteristic decomposition in the direction normal to the boundary (Poinsot
& Lele 1992), and setting to zero the time variation of the incoming waves to
minimize reflection of spurious disturbances back into the computational domain.
A characteristic wave decomposition is also used at the no-slip wall, where perfect
reflection of acoustic waves is enforced, and the wall temperature is held fixed to its
nominal adiabatic value (Taw/T∞ = 1 + r(γ − 1)/2 M2

∞, the recovery factor being set
to r = Pr1/3). The flow is assumed to be statistically homogeneous in the spanwise
direction, along which numerical periodicity is enforced. The two-point correlations in
the spanwise direction (also see § 5) do not highlight any obvious coherent dynamics
associated with finite computational span, supporting the adequacy of the size of the
computational domain.

Particular attention has been devoted to the correct prescription of the inflow
boundary conditions, which is a key ingredient in the simulation of spatially
developing turbulent flows. As shown by Simens et al. (2009), the characteristic spatial
scale for complete boundary layer decorrelation is approximately 30–50 boundary
layer thicknesses, which mandates the use of extremely long computational domains.
In the present study the inflow conditions are prescribed through a recycling–rescaling
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procedure, suitably adapted to the compressible case (Pirozzoli, Bernardini & Grasso
2010a), and the recycling station is placed at xrec = 53 δin downstream of the inflow
station, which is sufficient to achieve full decorrelation from the inflow, as testified
from inspection of the streamwise two-point correlations, as was also done by Simens
et al. (2009). The analysis (not reported) shows that the first half of the domain is
contaminated by (although minimal) spurious numerical correlation. Consequently, the
flow statistics are only collected in the second half of the domain (x> xrec), where they
are believed to be free from numerical artifacts.

A note of caution must also be issued regarding the sample used for the collection
of the flow statistical properties. First, we must point out that a long initial transient
of the simulations must be discarded for statistical purposes, during which turbulence
spontaneously rearranges to an equilibrium state. In our experience a good indicator to
check the establishment of equilibrium is the boundary layer shape factor (H = δ∗/θ ,
where δ∗ is the displacement thickness, and θ is the momentum thickness). In
the supersonic case the initial transient is relatively short compared to subsonic
boundary layer simulations, given the virtual absence of feedback waves from the
computational outlet, and we have found that, with proper specification of the
recycling procedure, a period T0 ≈ 100δin/u∞ is sufficient. After the end of the initial
transient, equally spaced time samples of the full flow field have been collected at time
intervals 1t ≈ 1.5δin/u∞, to guarantee a satisfactory degree of decorrelation between
consecutive samples. Since the boundary layer is spatially developing, homogeneity
in the streamwise direction in principle cannot be exploited, unlike for channel flows.
This implies the need to collect many more time samples of the flow. However,
to keep the computational effort within reasonable bounds, we decided to perform
averaging of the flow statistics at a given station (say x0) over a small surrounding
streamwise interval (−Lav . (x − x0) . Lav, where Lav ≈ δ). As shown by Jiménez
et al. (2010), streamwise averaging alleviates the effect of numerical noise while
not introducing significant statistical errors, given the slow streamwise growth of the
boundary layer. Further details on the properties of the statistical ensemble are given in
table 1.

We note that the TBL3 dataset (which includes a total of over two billion points)
significantly extends the Re envelope of compressible boundary layer DNS, coming
very close in terms of momentum thickness and friction Reynolds number to the
landmark incompressible boundary layer simulation of Schlatter & Örlü (2010a),
which is hereafter used as a primary low-speed reference for comparison. To our
knowledge, previous compressible DNS studies were limited to Reδ2 . 1500 (Duan,
Beekman & Martı́n 2010, 2011), whereas similar values were reached in LES (Stolz &
Adams 2003). Although still far from values of technological relevance, and accessible
in experiments, the Reynolds numbers here attained are sufficient to start observing
large-scale influences on the near-wall region (Schlatter et al. 2009).

For the sake of notational clarity, the streamwise, wall-normal and spanwise velocity
components will be hereafter also denoted as u, v, w, respectively, and either the
Reynolds decomposition (ϕ = ϕ + ϕ′), or the mass-weighted (Favre) decomposition
(ϕ = ϕ̃ + ϕ′′, ϕ̃ = ρ ϕ/ρ), will be used for the generic variable ϕ. Also, consistent
with the classical nomenclature (Pope 2000), we define the inner layer as the region
y/δ < 0.1, the outer layer as the region y+ > 50, the viscous sublayer as the region
y+ < 5, the buffer layer as the region 5 < y+ < 30, and the near-wall layer as the
region y+ < 50. Referring to the coherent structures, a notational remark is also
necessary. In this paper we call large-scale structures those eddies (the term eddy is
used to denote a region where one or more flow variables retain a sufficient degree
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of coherence, as quantified through the auto-correlation statistics) which populate the
outer layer (and scaling with δ) and small-scale structures those which populate the
inner layer (scaling with δv). This notation is potentially conflicting with that generally
adopted by the turbulence community, whereby the term ‘large-scale’ is used to denote
structures associated with the velocity fields, whereas the term ‘small-scale’ is used
to denote structures associated with the field of the velocity gradient. The confusion
is avoided here by using the term ‘vortical structures’ to refer to structures associated
with the velocity gradient field.

When dealing with turbulent eddies, we use the terminology ‘attached’ and
‘detached’ to denote eddies whose size is larger and smaller than the wall distance,
respectively, following the nomenclature introduced by Jiménez & Hoyas (2008),
whereas in the original definition given by Townsend (1976) attached eddies were
defined as those whose size is proportional to the wall distance. Attached variables
are then designated as those variables which can support attached eddies, whereas
detached variables only support detached eddies. This is the case of the wall-normal
velocity component, which cannot support attached eddies because of the blocking
effect of the wall.

3. Turbulence statistics
The validation of supersonic boundary layer simulations is hampered by the limited

availability of experimental data, which are far less abundant than for subsonic flows,
and which are affected by significant scatter, mainly related to the greater difficulty
in getting accurate measurements in the supersonic regime (Smits & Dussauge
2006). As a consequence, validation of compressible boundary layer DNS data is
very often made by comparing with equivalent data obtained in the incompressible
regime, assuming that Morkovin’s hypothesis (Morkovin 1961) holds. In its basic form,
Morkovin’s hypothesis amounts to stating that the turbulence time and length scales
are not affected by compressibility, whose primary effect is the variation of the mean
density and of the thermodynamic properties across the wall layer, which also implies
variation of the relevant local Reynolds numbers. Assuming that a constant stress layer
exists, and neglecting the contribution of molecular viscosity, it follows that

ũ′′v′′ ∼
(
ρw

ρ

)
u2
τ ,

(
ũ′′i

2
)1/2

∼ (ρw/ρ
)1/2

uτ . (3.1)

Following the mixing length arguments that lead to the incompressible logarithmic law,
one can also argue that in the constant stress layer

τ =−ρ ũ′′v′′ = ρνt
∂ ũ

∂y
= ρ`2

m

(
∂ ũ

∂y

)2

= ρwu2
τ , (3.2)

where ρνt is the eddy viscosity, and `m is the typical size of the stress-bearing eddies.
Morkovin’s hypothesis implies that, as in the incompressible case, the size of eddies in
the overlap layer is proportional to the distance from the wall,

`m = ky, (3.3)

which leads to a logarithmic law of variation for the effective velocity (van Driest
1951),

u+VD =
1
k

log y+ + C, duVD = (ρ/ρw)
1/2 du, (3.4)
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FIGURE 2. (Colour online available at journals.cambridge.org/flm) Comparison of (a) van-
Driest-transformed mean defect velocity and (b) velocity and shear stress fluctuations (the
asterisk denotes properties scaled as in (3.1)) with reference experimental data (see table 3
for line legend). Symbols denote experimental data by Eléna & Lacharme (1988) (diamonds),
Hou (2003) (down-pointing triangles), Bookey et al. (2005) (circles), Humble et al. (2009)
(up-pointing triangles), Piponniau et al. (2009) (squares).

with y+ = y/δv. As pointed out by Smits & Dussauge (2006), the van Driest
effective velocity is expected to satisfactorily collapse data in the overlap layer,
and (approximately) also in the viscous sublayer, limited to the case of adiabatic
walls. The validity of Morkovin’s density scaling has been addressed in a series of
recent studies (Duan et al. 2010, 2011; Lagha et al. 2011), which indicate moderate
success in scaling mean and fluctuating velocity distributions across a range of
Mach numbers, also in the presence of heated and cooled walls. Here we aim at
quantitatively establishing the validity of Morkovin’s hypothesis in the presence of
mild compressibility effects through comparison with state-of-the-art incompressible
DNS data at the highest Reynolds numbers currently available.

3.1. Velocity statistics
A comparison of the basic velocity statistics with experimental data at similar Mach
number (see table 4 for specification of the flow conditions) is shown in figure 2.
Given the lack of reliable data in the inner part of supersonic boundary layers and the
wide disparity in the Reynolds numbers, the mean defect velocity is reported in outer
units in figure 2(a), where fair agreement with most experiments is found. Significant
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FIGURE 3. (Colour online) Comparison of mean velocity distributions with reference
incompressible DNS data (Schlatter & Örlü 2010a), shown with dotted lines. The thin solid
line in (a) denotes the standard law of the wall, compounding u+ = y+ with u+ = y+/k + C,
k = 0.41, C = 5.2. (b) The compensated mean velocity profiles, the symbols denoting the
reference 1/k log-law values (circles, k = 0.41; squares, k = 0.384). See table 3 for line
legend.

scatter in the experimental data is observed in the distribution of the turbulence
intensities and Reynolds shear stress, shown in figure 2(b), where velocity fluctuations
are scaled according to (3.1). The figure clearly highlights trends also observed in
low-speed boundary layers, on which we will report later on. First, the near-wall peak
of the streamwise velocity fluctuations slowly grows with the Reynolds number (by
about 7 % in the available range), as a consequence of the increased influence of the
large-scale outer-layer structures on the inner-layer dynamics, whereas the opposite
behaviour is found away from the wall, the switch between the two behaviours
occurring at y/δ ≈ 0.2. On the other hand, the wall-normal velocity component and
the shear stress seem to consistently asymptote to a limiting plateau distribution, which
corresponds to the onset of an equilibrium layer. The DNS results qualitatively agree
with all the available experimental data, but much better quantitative correspondence
is found with the recent data by Piponniau et al. (2009), with the exception of the
wall-normal velocity component, which is known to be somewhat underestimated in
experiments (Eléna & Lacharme 1988).

A comparison of the velocity statistics with the incompressible dataset of Schlatter
& Örlü (2010a), here selected for the availability of high-Re data and for the
documented absence of post-transitional effects, is displayed in figures 3 and 4. Three
stations from Schlatter’s dataset have been selected, at which Reτ = 252, 492, 1145,
corresponding to Reθ = 670, 1410, 3630. These conditions are well suited to compare
with the present DNS, being very close in terms of Reτ (and also in terms of Reδ2) to
the three stations given in table 3.

Figure 3 highlights near collapse of compressible and incompressible DNS data,
once density variations are properly accounted for. The agreement also seems to
improve as the Reynolds number becomes higher, most likely as a consequence of the
onset of clearer separation of scales between the inner and the outer layer, which
makes more accurate the hypotheses underlying the derivation of the van Driest
velocity scaling. Such nice agreement has several implications. First, it supports
the reliability of the present dataset, which, as the reference incompressible data,
is apparently free from remnants of the transition process, and therefore can be
regarded as an accurate approximation of a fully developed supersonic turbulent
boundary layer. Second, to our knowledge, this is the first time that the validity of
Morkovin’s hypothesis has been so precisely gauged, albeit limited to the weakly
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Station
#

Dataset Line type x0/δin δ/δin Reτ Reθ Reδ2 H Cf (×103) Mτ

1 TBL1 Dot-dashed 87.45 2.75 251 1122 715 3.08 3.19 0.0799
2 TBL2 Dashed 71.64 2.21 497 2377 1516 2.98 2.67 0.0730
3 TBL3 Solid 105.60 2.38 1116 6046 3837 2.91 2.11 0.0649

TABLE 3. Boundary layer properties at the reference streamwise stations considered for the
analysis. Cf = 2τw/(ρ∞u2

∞); Mτ = uτ/ (γRT̃w)
1/2

.

M∞ Reτ Reθ Reδ2 H Cf (×103)

Eléna & Lacharme (1988) 2.32 1 050 4 700 2 800 3.46 2.15
Smits et al. (1989) 2.9 15 000 80 000 39 800 — 2.83
Hou (2003) 2.0 6 758 34 900 23 100 2.89 1.62
Bookey et al. (2005) 2.9 501 2 400 1 200 5.49 2.25
Humble et al. (2009) 2.1 8 600 49 000 30 500 3.14 1.50
Piponniau et al. (2009) 2.28 1 080 5 100 3 100 3.54 2.00

TABLE 4. Summary of parameters for reference supersonic boundary layer experiments.

compressible regime. Third, the results imply that, for many purposes, studies in the
mildly supersonic regime directly translate to the incompressible regime.

Besides the favourable agreement with incompressible data, figure 3 highlights
several physical features. Upon superficial inspection, figure 3(a) seems to support
the formation of a logarithmic layer that (at the highest available Re) extends
approximately from y+ = 50 to y+ = 200. Inspection of the diagnostic function
y+ du+VD/dy+, reported in figure 3(b) indicates that probably it is not quite the case,
since the compensated velocity distribution does not show any significant 1/k plateau,
at least for k = 0.41. However, the formation of an inflection point in the diagnostic
function is observed around y+ ≈ 125 at the highest Re, for k ≈ 0.384, which is
the asymptotic value suggested for high-Reynolds-number boundary layers (Nagib &
Chauhan 2008). Higher Reynolds number data would be needed to confirm or refute
this assertion.

Other features are retrieved from inspection of the fluctuating velocity variances,
shown in figure 4 in inner scaling. We recall that the attached-eddy hypothesis
(Townsend 1976; Jiménez & Hoyas 2008) predicts that the onset of a sensible
equilibrium layer is accompanied by the formation of logarithmic layers for the
variance of attached variables, whereas no such layer should form for the variance of
detached variables. Quantitative predictions for the scaling of the velocity fluctuations
based on the attached-eddy hypothesis were made by Perry & Li (1990), who
concluded that the variance of the velocity fluctuations should scale as

u′2i
u2
τ

= Bi − Ai log(y/δ)− V(y+), (3.5)

where B1 = 2.39, A1 = 1.03, B2 = 1.6, B3 = 1.20, A3 = 0.475, and V(y+) accounts for
viscous corrections. This inference is essentially confirmed by the data in figure 4(c),
where the predictions of (3.5) are shown (with V = 0) for the streamwise and the
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FIGURE 4. (Colour online) Comparison of fluctuating velocity statistics (the asterisk denotes
properties scaled as in (3.1)) with reference incompressible DNS data (Schlatter & Örlü
2010a), reported with dotted lines. (a–c) The distributions of Reynolds stress components at
stations 1–3, respectively. Density scaling is used to collapse the two datasets. See table 3 for
line legend. The dashed lines in (c) correspond to the predictions of (3.5) for i= 1 (top), i= 3
(bottom). The vertical lines denote the edge of the boundary layer.

spanwise velocity variances. The onset of a logarithmic layer (to be confirmed at
higher Re) is noticed, which roughly follows the scaling predicted by (3.5) with
V = 0, even though the values of Bi seem to be somewhat overestimated. Better
approximation of the logarithmic law is seen for the spanwise velocity component
than for the streamwise component, which is likely to be contaminated with the peaks
caused by the streaks in the buffer layer (Jiménez & Hoyas 2008). One should also
note the presence of a bump in the distribution of w′ in the outer layer, which is
probably the signature of large-scale dynamics in the outer-layer bulges, and which is
not present in channel flow DNS (Jiménez & Hoyas 2008).

3.2. Thermodynamic properties
Instructive information is gained from inspection of the thermodynamic properties,
depicted in figure 5. The thermodynamic fluctuations, especially those of the density
field, are useful in turbulence modelling, since they appear in many unclosed terms
of the Reynolds-average Navier–Stokes equations, representing the net contribution
of mass flux (Gatski & Bonnet 2009). The fluctuating Mach number, reported in
figure 5(a), is seen to scale well with Mτ . Given the numerical values of the friction
Mach number at the three stations here considered (see table 3), it follows that M′

is less than about 0.2 throughout the boundary layer. According to the interpretation
of Smits & Dussauge (2006), genuine effects of compressibility are then expected
to be weak. Figure 5(b–d) highlights quite a different behaviour of the fluctuations
of density, temperature and pressure. First, it is found that in the viscous and buffer
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FIGURE 5. Distribution of root-mean-square thermodynamic properties in inner scaling. (a)
Mach number; (b) density; (c) temperature and total temperature (grey lines); (d) pressure.
The horizontal dotted line in (d) denotes experimental data taken outside the boundary
layer (Laufer 1964). See table 3 for line legend.

layers the pressure and density fluctuations have comparable magnitude, and they are
both larger that T ′′, as a consequence of the isothermal state of the wall. On the other
hand, at the edge of the boundary layer, near equilibrium of density and temperature
fluctuations is observed, which is indicative of the local importance of the entropic
mode, probably associated with sharp gradients of the flow variables at the edge of
the turbulent bulges. Outside the boundary layer temperature and density fluctuations
become much less than the pressure fluctuations, which is a clear indication of the
dominance of the acoustic mode, through which boundary layer noise is radiated to the
far field. Incidentally, the observed intensity of the pressure fluctuations is very nearly
independent of Re, and close to the experimental correlation data of Laufer (1964)
for M∞ = 2 (reported as a dotted line in figure 5d). The proposed wall scaling yields
good collapse of the temperature and density fluctuations in the inner layer, whereas
pressure fluctuations show strong sensitivity to the Reynolds number, which is a hint
of strong outer-layer imprinting. A different behaviour of ρ ′, T ′′, p′ is observed far
from the wall, where p′ and T ′′ exhibit a tendency to form logarithmic distributions.
Consistent with the previous discussion of Townsend’s theory, we may conclude that
pressure and temperature are attached variables. Less clear is the behaviour of ρ ′,
which apparently exhibits a plateau in the outer layer. However, as found in the later
analysis of the wall imprint of the turbulence eddies, density also has the character of
an attached variable. The observed odd scaling can then be explained as a results of
the strong peak of density fluctuations at the boundary layer edge.

3.3. Higher-order statistics

A comparison of the higher-order velocity statistics with the data of Schlatter & Örlü
(2010a) is reported in figure 6, where the skewness and the flatness of the streamwise
velocity fluctuations are shown, to provide information on the internal intermittency
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FIGURE 6. Higher-order statistics of streamwise velocity fluctuations (a,b) and temperature
fluctuations (c,d). The skewness is reported in (a,c), and the flatness in (b,d). See table 3 for
line legend. In (a,b) the hollow symbols correspond to the incompressible DNS of Schlatter &
Örlü (2010a), whereas the filled symbols correspond to the experiments of Eléna & Lacharme
(1988). In (c,d) the symbols correspond to the incompressible DNS data of Kong, Choi & Lee
(2000).

of the velocity field. As is well established for canonical channel flows (Kim, Moin
& Moser 1987), the probability distribution of the streamwise velocity fluctuations is
significantly positively skewed near the wall. Such behaviour is found to be quite
insensitive to the Reynolds number, which is an indication of the robustness of
the inner cycle of streak formation and bursting (Jiménez & Pinelli 1999). Above
the buffer layer the behaviour of turbulence is found to be very nearly Gaussian,
with Su ≈ 0 (but negative), Fu ≈ 3, whereas strong intermittency is found again near
the edge of the boundary layer, where very large values of the flatness are found.
The strongly negative value of the skewness near the edge of the boundary layer
suggests the dominance of weak high-speed events, whereas the low-speed events
are more intense, but rarer. The distribution of the skewness and flatness of the
streamwise velocity nearly superimpose onto the incompressible data of Schlatter
& Örlü (2010a), also near the edge of the boundary layer, which further indicates
that the dynamics of the boundary layer turbulence is essentially incompressible, at
least for the flow conditions here considered. Reasonable agreement is also found
with internal intermittency measurements available in the supersonic regime (Eléna &
Lacharme 1988). Given the similarity of that test case with the present DNS data at
station 3, we expect that the mismatch in the position of the boundary layer edge
is due to inaccuracy in the estimation of the friction coefficient in the experiments.
Also interesting is the distribution of the higher-order statistics of the temperature
field, shown in figure 6(c) and (d), which indicates similar values of the flatness
compared to u′, but the opposite behaviour in terms of the skewness. As shown later
on, this finding is caused by the strong anti-correlation of u′ with T ′. The trends of
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FIGURE 7. Comparison of DNS data with theoretical correlations. Circles denote DNS from
TBL1-3 datasets (see line legend in table 4). Other symbols: triangles (Komminao & Skote
2002); squares (Schlatter & Örlü 2010a); diamonds (Simens et al. 2009). The dotted lines
indicate: equation (3.8) in (a); (3.9) in (b); (3.10) in (c).

the skewness and flatness of T ′ are consistent with those reported by Kong et al.
(2000) for a heated incompressible boundary layer at Reτ ≈ 150 under isothermal wall
conditions, even though the absolute value of the skewness is found to be consistently
larger in the present DNS, so is the flatness in the inner layer, which is an indication
of stronger intermittency when the temperature field is coupled with the velocity field.

3.4. Wall properties

Comparisons of the statistics of wall properties with available correlations are
reported in figure 7, which includes the skin friction coefficient (figure 7a), the
root-mean-square wall pressure fluctuations (figure 7b), and the inner-layer peak of
the root-mean-square velocity fluctuations (figure 7c). Given the scarcity of direct
measurements of these properties in the supersonic regime, and/or the problems in
obtaining accurate estimates, the DNS data are here compared with existing, well-
established incompressible correlations. In this respect we note that, to compare
values of the skin friction coefficient at different Mach numbers it is customary
to exploit suitable transformations, the best known of which is perhaps the van
Driest II transformation (van Driest 1956). As shown by Hopkins & Inouye (1971),
this amounts to reducing the friction coefficient and the Reynolds number to
‘incompressible’ values (denoted with the subscript ‘i’), according to

Cf i = Fc Cf , Reθ i = µ∞
µw

Reθ = Reδ2, (3.6)
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where, in the case of an adiabatic wall state

Fc = Tw/T∞ − 1

arcsin2α
, α = Tw/T∞ − 1√

Tw/T∞
(
Tw/T∞ − 1

) . (3.7)

The transformed skin friction distribution from the present DNS dataset is compared
in figure 7(a) with selected incompressible DNS data (also reported in the study of
Schlatter & Örlü 2010a), and with a widely used friction law (Smits, Matheson &
Joubert 1983)

Cf i = 0.024Reθ
−1/4
i . (3.8)

Excellent collapse on the correlation curve is obtained for all the skin friction data
obtained from DNS, which (upon van Driest II scaling) replicate the correct skin
friction trend with Reδ2 . This is a further confirmation of the accuracy of the present
data, and also of the reliability of the van Driest II transformation in collapsing data
at different Mach number. The distribution of the wall pressure fluctuation intensities
(scaled by the wall friction) is reported in figure 7(b). In the same figure we also show
the semi-empirical correlation proposed by Farabee & Casarella (1991),

p′2w/τ
2
w = 6.5+ 1.86 log(max(Reτ/333, 1)). (3.9)

The DNS data show a continuous increase of the inner-scaled pressure fluctuations
with Reτ , at a rate that is consistent with the logarithmic increase of the correlation.
This behaviour is likely to be the indication of increased pressure footprint of the
outer-layer dynamics (Jiménez et al. 2010), which is the subject of a companion
study (Bernardini & Pirozzoli 2011b). In contradiction of (3.9), the increasing
trend is also found to extend to the low-Reynolds-number range. The peak of the
streamwise turbulence intensity (shown in figure 7c) also consistently increases with
Reτ , highlighting a high-Reynolds-number effect which is well known in the low-speed
regime. Overall a trend consistent with the logarithmic law

u∗pk
2 = 4.837+ 1.075log10Reτ , (3.10)

proposed by Hutchins et al. (2009) is observed, even though larger values are observed
compared to the incompressible case (also check the u∗ peaks in figure 4).

4. Flow organization
The overall organization of the flow can be conveniently investigated by looking at

wall-parallel slices, reported in figures 8–10 for the streamwise velocity fluctuations,
and in figures 11–13 for the temperature fluctuations field. For the purpose of
qualitatively understanding the variation of the typical scales, data are extracted at
various distances from the wall. One slice is cut at y+ = 15, which is the location
where peak turbulence production occurs, and is representative of the inner-layer
turbulence regeneration cycle. One slice is taken at y/δ = 0.3, which is representative
of the outer part of the boundary layer, and one at y/δ = 0.9, near the edge of the
boundary layer, where the intermittency function (not shown here) attains an inflection
point. To rule out any possible artifact associated with the streamwise growth of the
boundary layer (Hutchins & Marusic 2007), the slices are extracted by effectively
keeping y/δ constant upon interpolation of the numerical data (which are naturally
collocated at discrete values of y).
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FIGURE 8. Instantaneous streamwise velocity field in the x–z plane at y+ = 15. (a) TBL1
(x0 = 87.5δin), (b) TBL2 (x0 = 71.6δin), (c) TBL3 (x0 = 92.3δin). Contour levels are shown for
−0.256 u′/u∞ 6 0.25, from dark to light shades.

As seen in figure 8, the velocity field in the inner layer exhibits the typical
streaky pattern also observed in low-speed boundary layers, with alternating stripes
of enhanced and reduced momentum, which can be interpreted as the remnants
of ‘sweep’ and ‘ejection’ events, respectively (i.e. wall-ward and outward motions).
Similar visualizations of near-wall streaks in compressible boundary layer DNS were
also reported by Duan et al. (2010, 2011), at Reδ2 ≈ 1500. As expected, the typical
spanwise size of the velocity streaks in the inner layer is significantly reduced (as a
fraction of δ) at higher Reynolds number, scaling in wall units. In the high-Reynolds-
number (TBL3) case, besides the obvious fine-scale organization, the near-wall streaks
also exhibit distinct larger-scale organization, with apparent clustering of several low-
and high-speed stripes, caused by the imprint of overlaying, outer-layer structures
(compare with figure 9c).
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FIGURE 9. Instantaneous streamwise velocity field in the x–z plane at y/δ = 0.3. (a) TBL1
(x0 = 87.5δin), (b) TBL2 (x0 = 71.6δin), (c) TBL3 (x0 = 92.3δin). Contour levels are shown for
−0.156 u′/u∞ 6 0.15, from dark to light shades.

Looking at the velocity field in the outer layer (figure 9), a qualitatively similar
pattern is found at all Re, with high- and low-speed velocity streaks, now on a much
larger scale, to which we will refer as outer-layer streaks, and which correspond
to the superstructures observed in supersonic experiments (Ganapathisubramani et al.
2006). Even though outer-layer streaks have also been observed in DNS at M∞ = 3,
Reτ =300–500 (Ringuette et al. 2008), figure 9 clearly shows that they become more
and more evident as Re becomes higher, providing evidence for the emergence of
substantial energy at low wavenumbers. The spanwise spacing of the outer-layer
streaks is found to be of the same order of magnitude for all three simulations,
consistent with a change from wall scaling to outer scaling. The scenario changes
near the edge of the boundary layer (figure 10), where the flow becomes extremely
intermittent, with regions of relatively quiescent, irrotational fluid interspersed with
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FIGURE 10. Instantaneous streamwise velocity field in the x–z plane at y/δ = 0.9. (a) TBL1
(x0 = 87.5δin), (b) TBL2 (x0 = 71.6δin), (c) TBL3 (x0 = 92.3δin). Contour levels are shown for
−0.126 u′/u∞ 6 0.12, from dark to light shades.

bulges of rotational fluid erupting from the underlying layers, also apparently scaling
with δ.

The temperature field in the inner layer (figure 11) also reveals a clear streaky
pattern, qualitatively similar to that of u. Looking carefully, one will observe close
correspondence of zones with positive temperature fluctuations with low-speed streaks,
and vice-versa. This is a typical manifestation of the well-known tendency for velocity
and temperature fluctuations in shear flows to be negatively correlated. In this case,
it is an obvious consequence of the fact that the outward wall-normal motions
communicate negative velocity fluctuations and positive temperature fluctuations from
the inner, low-speed and high-temperature layers, to the upper layers. This behaviour
is very similar to that observed in DNS of low-speed thermal boundary layers (Kong
et al. 2000), and supports a relatively passive role of temperature in the dynamics
of supersonic boundary layers (however, recall the observations made regarding the
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FIGURE 11. Instantaneous temperature field in the x–z plane at y+ = 15. (a) TBL1
(x0 = 87.5δin), (b) TBL2 (x0 = 71.6δin), (c) TBL3 (x0 = 92.3δin). Contour levels are shown
for −0.36 T ′/T∞ 6 0.3, from dark to light shades.

higher-order temperature statistics). Moving to the outer layer the similarity between
streamwise velocity and temperature fields becomes less clear, as suggested by
comparison of figure 12 with figure 9. Strong correlations of low-speed streaks with
negative temperature fluctuations is still observed at this off-wall location. However,
the behaviour of temperature fluctuations is here much more ‘isotropic’ than that of
velocity fluctuations, in the sense that the thermal streaks also spread significantly
in the spanwise direction. High-temperature streaks tend to manifest themselves with
mushroom-shaped heads followed by trailing hot wakes, whereas the low-temperature
ones do not seem to have a particular organization. These differences are symptomatic
of fundamentally different dynamic behaviour of the temperature and streamwise
velocity fields, which apparently were not noticed in previous studies. The temperature
field near the edge of the boundary layer (see figure 12) is characterized by mushroom-
shaped ejections of fluid erupting into the outer, cooler stream, and which bear
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FIGURE 12. Instantaneous temperature field in the x–z plane at y/δ = 0.3. (a) TBL1
(x0 = 87.5δin), (b) TBL2 (x0 = 71.6δin), (c) TBL3 (x0 = 92.3δin). Contour levels are shown
for −0.26 T ′/T∞ 6 0.2, from dark to light shades.

close similarities with the cloud-like structures visualized with the Rayleigh scattering
technique (which effectively educes density variations) by Smith & Smits (1995)
and Bookey et al. (2005). Note that the trailing hot wakes are much shorter at
this off-wall location. These observations help to explain the sharp increase of the
temperature skewness previously observed in the outermost part of the boundary
layers when commenting on figure 6(c), which is indicative of very intense events
with positive temperature fluctuations (corresponding to hot fluid ejections), whereas
low-temperature events are more frequent, but much less intense.

Visualizations of the velocity and temperature fluctuation fields in longitudinal, wall-
normal planes are presented in figures 14 and 15. The figures clearly highlight the
strongly intermittent nature of the outer-most part of the layer, which is dominated
by sharp fronts separating the mainstream irrotational fluid from the inner rotational
motions. Such interfaces are rather blurred in the velocity visualizations, whereas
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FIGURE 13. Instantaneous temperature field in the x–z plane at y/δ = 0.9. (a) TBL1
(x0 = 87.5δin), (b) TBL2 (x0 = 71.6δin), (c) TBL3 (x0 = 92.3δin). Contour levels are shown
for −0.156 T ′/T∞ 6 0.15, from dark to light shades.

they look much neater in the temperature visualizations. As also found in low-speed
boundary layers, deep incursions of outer fluid (valleys) are seen, which reach well
into the inner part of the boundary layer. The overall geometry of bulges, as well as
their size, is similar at the various Reynolds numbers here considered, which suggests
that they obey an outer scaling. As expected, however, finer-scale features are observed
at the edge of the turbulent bulges as the Reynolds number increases. A particularly
striking feature is the presence (much clearer at higher Re) of large-scale, ramp-
shaped zones having relatively uniform momentum (sketched with dashed lines in
figure 14c), which span the entire boundary layer height, and which were first noticed
in the low-speed experiments of Adrian, Meinhart & Tomkins (2000). Those authors
reported that the backs of the ramp-shaped structures have typical inclinations of
about 12◦, which is similar to what is found here. The typical slope of the temperature
bulges is apparently much larger, and probably closer to 45◦ (also see the later
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FIGURE 14. Instantaneous streamwise velocity fluctuation field in the x–y plane. (a) TBL1
(x0 = 87.5δin), (b) TBL2 (x0 = 71.6δin), (c) TBL3 (x0 = 92.3δin). Contour levels are shown for
−0.15 6 u′/u∞ 6 0.15, from dark to light shades. The dashed lines in (c) highlight tentative
boundaries for the large-scale u-bearing eddies.

quantitative analysis). In this respect, we recall that passive scalars in a shearing field
are expected to preferentially align in the principal strain direction, which is 45◦ for
a parallel shear flow (Warhaft 2000). A 45◦ inclination is also frequently quoted in
visualization experiments based on passive tracers, and it is the typical inclination
of hairpin vortices (Head & Bandyopadhyay 1981). The more shallow angle of the
u-bearing eddies compared to the temperature eddies then apparently indicates stronger
interaction with the mean flow.

The visualizations in cross-stream planes (figures 16 and 17) help elucidate the
scale-separation effect that is typical of higher-Re flows. While the TBL1 dataset
does show a single layer of mushroom-shaped eddies which lift momentum and
temperature from the wall, the TBL3 dataset clearly highlights the juxtaposition of a
population of near-wall eddies resembling those found at low Reτ , with an additional
layer of alternating positive- and negative-velocity eddies, having a roughly circular
shape (sketched with dashed lines in figure 16c), and centred at about y/δ = 0.3.
We note that a zoom in the near-wall region for the TBL3 dataset (shown in
figure 16d of the figures) shows qualitatively the same features as the TBL1 dataset,
confirming the invariance of the near-wall motions as Reτ is increased. Putting these
observations together with those made regarding the streamwise and the wall-parallel
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FIGURE 15. Instantaneous temperature fluctuation field in the x–y plane. (a) TBL1 (x0 =
87.5δin), (b) TBL2 (x0 = 71.6δin), (c) TBL3 (x0 = 92.3δin). Contour levels are shown for
−0.26 T ′/T∞ 6 0.2, from dark to light shades.

flow slices one can also conclude that the outer-layer u-bearing eddies that become
energetically relevant at high Reτ have shapes similar to the ‘conical eddies’ postulated
by Townsend (1976), and for which there has been little evidence so far, with the
exception of the work of del Álamo et al. (2006).

A three-dimensional view of the outer-layer streaks for the TBL3 dataset is given in
figure 18, where we report iso-surfaces of negative and positive velocity fluctuations,
as well as iso-surfaces of the vortex tube strength (Pirozzoli, Bernardini & Grasso
2010b), normalized by the local r.m.s. vorticity (ω′). The figure confirms the hints
of two-dimensional representations that the outer-layer structures come in the form
of elongated streaks with low and high momentum, the two having similar shapes.
The iso-surfaces of the vortex strength indicator highlight the presence of a multitude
of small-scale, tube-like structures, very few of which have shapes conforming to
canonical hairpins, such as those found in transitional or post-transitional flows (Wu
& Moin 2009). Looking carefully at the figure (also see the top projection in the
x–z plane, shown in figure 19a), one will see that vortex tubes in the outer layer
have a clear tendency to cluster above the low-speed streaks, rather than around
the high-speed ones. Evidence for clustering of symmetric and asymmetric hairpin-
like vortices above low-speed superstructures in supersonic boundary layers was also
provided from DNS data at lower Re (Ringuette et al. 2008), and from experiments
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FIGURE 16. Instantaneous streamwise velocity field in the z–y plane. (a) TBL1 (x0 =
87.5δin), (b) TBL2 (x0 = 71.6δin), (c) TBL3 (x0 = 92.3δin). (d) A zoom of the zone marked
with a box in (c). Contour levels are shown for −0.15 6 u′/u∞ 6 0.15, from dark to light
shades. The dashed circles in (c) highlight tentative boundaries for the large-scale u-bearing
eddies.

(Elsinga et al. 2010). Inspection of the bottom projection (figure 19b) of the flow field
highlights vortices residing underneath the outer-layer streaks. In this case, clearer
association of clusters of vortex tubes with the high-speed outer-layer streaks is
observed.

These findings can be tentatively incorporated into a mechanistic model of outer-
layer turbulence by regarding low-speed streaks as wakes, and high-speed streaks
as jets, both embedded in a shearing velocity field. As is well known, the outer
interfaces of jets and wakes tend to roll up to form compact ring-shaped vortical
objects upon Kelvin–Helmholtz instability. The rings, whose axis would be aligned
with the streamwise direction, would then undergo the action of shear, giving rise to
hairpin-shaped structures (Suponitsky, Cohen & Bar-Yoseph 2005). The sense of the
mean shear is such as to promote the (clockwise) vorticity on top of the low-speed
streaks, and inhibit the (counter-clockwise) vorticity on top of the high-speed ones,
which are depleted with vortex tubes. The same mechanism promotes the (counter-
clockwise) vorticity underneath the high-speed streaks, and inhibits the (clockwise)
vorticity underneath the low-speed ones, resulting in the pattern observed in figure 19.

5. Statistical properties of turbulent eddies
In this section we address the statistical structural properties of the eddies embedded

in the boundary layer through interrogation of the DNS database. Specifically, we aim
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FIGURE 17. Instantaneous temperature field in the z–y plane. (a) TBL1 (x0 = 87.5δin), (b)
TBL2 (x0 = 71.6δin), (c) TBL3 (x0 = 92.3δin). (d) A zoom of the zone marked with a box in l
(c). Contour levels are shown for −0.26 T ′/T∞ 6 0.2, from dark to light shades.

at characterizing the size and the orientation of the typical eddies that populate the
wall layer, and elucidate their influence on the boundary layer dynamics. Some
of these issues have been partially addressed for incompressible channel flows and
boundary layers, but much less is know regarding supersonic boundary layers (Smits &
Dussauge 2006).

5.1. Two-point correlations
The primary tool to characterize the shape of the turbulent eddies is the two-point
autocorrelation, which for the generic variable ϕ is defined as

Rϕϕ(1x, y,1z; y)= 〈ϕ(x+1x, y, z+1z, t) ϕ(x, y, z, t)〉
〈ϕ2 (x+1x, y, z, t)〉1/2 〈ϕ2 (x, y, z, t)〉1/2 , (5.1)

the angle brackets denoting averages taken with respect to time, to the spanwise
direction, and to the streamwise direction (with the limitations stated in § 2), and y
representing the wall distance of the point around which the statistics are collected.
In figures 20 and 21 the two-point correlations of u′, v′, T ′ in the spanwise
direction, Rϕϕ(0, y,1z; y), are reported at all off-wall distances within the boundary
layer. Similar representations were used for channel flows by Jiménez & Hoyas
(2008), using the dual spectral representation and taking spectral densities with
respect to the streamwise direction. Here we prefer to reason in physical rather than
Fourier space, which we believe yields a more direct perception of the structure
of the eddies, and mainly consider the correlations in the spanwise direction, since
streamwise correlations yield little information on the nature of streaks given their
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FIGURE 18. Three-dimensional view of outer-layer coherent structures in the TBL3 dataset
(only a limited portion of the flow domain is shown). Iso-surfaces of negative velocity
fluctuations are rendered in blue (u′/u∞ = −0.1), and positive velocity fluctuations in red
(u′/u∞ = 0.1). Iso-surfaces of vortex tubes strength (ωt/ωrms = 2) are rendered in grey shades.

peculiar meandering pattern (Hutchins & Marusic 2007). We also note that spectral
densities in experiments are usually taken with respect to the streamwise direction
by applying Taylor’s hypothesis to time series at a given off-wall station, which
introduces additional uncertainties (del Álamo & Jiménez 2009).

Inspection of the spanwise u′ correlations (reported in figure 20 in both inner and
outer units) highlights some fundamental properties of the boundary layer turbulence.
First, at least one minimum of the correlation is observed across the boundary layer,
whose spanwise distance from the conditioning point generally increases with the wall
distance. This is a clear reflection of the streaky pattern of the velocity field, which,
as shown in the visualizations of figures 8–10, persists all the way up to the edge
of the boundary layer, and whose spacing steadily increases. In the inner layer the
first minimum (note that its value becomes positive at higher Re) invariably occurs
for spanwise separations 1z+ ≈ 50, which implies a typical spacing of the streaks
λ+z ≈ 100, coincident with the frequently quoted value for canonical low-speed wall-
bounded flows (Kim et al. 1987). The maximum absolute value of the autocorrelation
in the inner layer always occurs at a wall distance y+ ≈ 15, which is the signature of
the turbulence regeneration cycle (Jiménez & Pinelli 1999). An additional relative
minimum is also apparent in the maps in the outer part of the boundary layer,
whose position and spanwise separation scales well in outer units, being located at
y = 0.2–0.3δ, and corresponding to a typical spanwise separation 1z ≈ 0.3δ. The
relative amplitude of the outer-layer minimum becomes significantly stronger than the
inner-layer one as Re increases, reflecting the emergence of an outer mode of turbulent
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FIGURE 19. Projection of coherent structures in x–z plane, as seen from above (a) and from
below (b), for the TBL3 dataset. Flooded contours of u′ are shown (contours from −0.3u∞ to
0.3u∞, blue to red) at y/δ = 0.3, with superposed vortical structures (same as in figure 18).

motion, which was first identified in boundary layers by Hutchins & Marusic (2007),
and which was previously noticed in the analysis of the flow visualizations. Given
the different scaling of the inner- and outer-layer modes, their positions and scales
spread apart as the Reynolds number increases. When scale separation is attained, the
outer-layer mode is observed to impose a footprint on the underlying layers through
the formation of a large-scale, near-wall minimum. As a consequence, two typical
length scales were observed when discussing figure 8(c). In this sense we can affirm
that, at sufficiently high Re, the outer-layer eddies that carry streamwise velocity
become attached to the wall, their size being at least as large as their distance from the
wall. Under these conditions, a logarithmic layer for the variance of u′ is expected to
form (Townsend 1976), whose onset was observed in figure 4(c).

To get further insight into the change of the typical size of streaks across the
boundary layer, in figures 20 and 21 we also report (with dots) iso-lines of multiples
of the outer eddy length scale (`o) defined in (5.4) below, for reasons that will
be clarified in the next section. The iso-lines of β`o (where β is an arbitrary
multiplicative constant) are found to be nearly parallel to the local iso-correlation
curves, especially for large values of the correlation. On the other hand, the iso-
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FIGURE 20. (Colour online) Maps of spanwise autocorrelation Rϕϕ(0, y,1z; y) of
streamwise (ϕ = u, left column) and wall-normal (ϕ = v, right column) velocity fluctuations.
a,b TBL1, c,d TBL2, e,f TBL3. Thirty-two contour levels are shown, from −0.3 to 1 (the
dashed pattern denotes negative values). The dotted lines denote iso-lines of β`o (see (5.4)),
for 0.01 6 β 6 102 (sixteen logarithmically spaced contours are shown). The solid diagonal
line highlights the trend for ‘wall-tangent’ eddies (1z = y). The horizontal lines indicate the
position of representative wall-parallel flow sections (y+ = 15, y/δ = 0.3, y/δ = 0.9).

correlation curves of u′ are observed to scale quite poorly with the wall distance (the
trend is given by the solid diagonal line 1z= y).
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FIGURE 21. (Colour online) Maps of spanwise autocorrelation of temperature fluctuations
RTT(0, y,1z; y). a TBL1, b TBL2, c TBL3. Thirty-two contour levels are shown, from −0.3
to 1 (the dashed pattern denotes negative values). The dotted lines denote iso-lines of β`o
(see (5.4)), for 0.01 6 β 6 102 (sixteen logarithmically spaced contours are shown). The
solid diagonal line highlights the trend for ‘wall-tangent’ eddies (1z = y). The horizontal
lines indicate the position of representative wall-parallel flow sections (y+ = 15, y/δ = 0.3,
y/δ = 0.9).

The autocorrelation maps of the wall-normal velocity fluctuations, in the right
column of figure 20, show quite a different scenario, and a single negative minimum
is observed throughout the boundary layer, whose spanwise separation gradually
increases on moving away from the wall. The iso-correlation lines in this case are
are found to follow less closely the scaling with `o, and a narrow region with linear
scaling of the v-bearing eddies with the wall distance is perhaps observed in the
TBL3 dataset. In the near-wall region the minimum typically occurs at 1z+ = 25
which, consistent with the classical interpretation (Kim et al. 1987), is the signature
of streamwise counter-rotating rollers having a diameter of about 50 wall units. It is
important to note that, unlike the streamwise velocity, the behaviour of v′ does not
significantly change with Reτ , and no imprint on the near-wall region is observed.
Accordingly, v has to be regarded as a detached variable, and accordingly its variance
(again recalling figure 4) does not show any tendency to form a logarithmic layer.

The autocorrelations of T ′, shown in figure 21, exhibit a pattern qualitatively similar
to the streamwise velocity, with clear evidence for large-scale organization in the
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FIGURE 22. Autocorrelation maps (Rϕϕ(1x, y, 0; y)) of streamwise (left column) and wall-
normal (right column) velocity fluctuations in x–y plane for (a,b) y+ = 15, (c,d) y/δ = 0.3,
(e,f ) y/δ = 0.9, for the TBL3 dataset. Levels from −0.2 to 1 are shown, in steps of 0.05.
The dot-dashed lines indicate the regression curves obtained from least-square fit of the
autocorrelation of u′.

outer layer at high Reτ , and a negative correlation peak corresponding to thermal
streaks which extends all the way down to the buffer layer. However, since the mean
temperature gradient goes to zero at the wall (recalling that the wall is nominally
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FIGURE 23. Autocorrelation map of temperature fluctuations (RTT(1x, y, 0; y)) in x–y plane
for (a) y+ = 15, (b) y/δ = 0.3, (c) y/δ = 0.9, for the TBL3 dataset. Levels from −0.2 to 1 are
shown, in steps of 0.05.

adiabatic), the negative peak becomes much weaker, turning into merely a dip in
the correlation curve, and vanishing in the viscous sublayer, owing to the absence
of significant turbulent transport of temperature. Although the outer T-bearing eddies
maintain a footprint in the near-wall region, this is much weaker than for the u-
bearing eddies, and their influence apparently does not reach down to the wall. The
maps of density, pressure, and spanwise velocity correlations (not reported) also show
a characteristic imprinting of the outer-layer eddies on the near-wall region, which
supports the wall-attached character of those variables.

Some insight into the orientation of the turbulent eddies can be gained from
inspection of the spatial autocorrelations of the flow variables in the x–y plane,
Rϕϕ(1x, y, 0; y). The maps corresponding to conditioning events located at y+ = 15,
y/δ = 0.3, y/δ = 0.9 are reported in figures 22 and 23, where only the statistics
corresponding to the TBL3 dataset are shown, the others being qualitatively similar.
In the near-wall region the velocity streaks appear to be lifted away from the wall
at a narrow angle, and exhibit streamwise coherence over many δ values. Further
away from the wall the correlation also becomes wide in the wall-normal direction,
and significant anti-correlation of streamwise velocity disturbances located on opposite
sides of the boundary layer edge is observed. The organization of the wall-normal
velocity, shown in the right column of figure 22, is quite different, consisting of
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compact motions in the near-wall region, and of strongly elongated motions in the
wall-normal directions for eddies centred in the outer layer. This scenario is consistent
with the observations of Jiménez et al. (2010) that ‘the structures of u are long, and
those of v are tall’. Inspection of the v′ autocorrelation in the outer layer for the
outermost probing station also highlights the presence of two negative lobes, located
right outside the boundary layer on both sides of the primary positive lobe, at about
±δ. Together with the observations made for u′ one can then envisage a scenario
whereby an outward ejection (i.e. a strong positive-v′ event, with associated negative-u′

event) taking place near the boundary layer edge, causes an outward excursion of the
turbulent/non-turbulent interface. As a consequence, acceleration of the outer stream
takes place, which is highlighted by the negative u′ correlation peak in figure 22(c).
For continuity, compensating negative-v′ events are found on each side of the bulge,
whose distance is of the same order of magnitude as the size of bulges visualized in
figure 14. The temperature field, whose autocorrelation maps are shown in figure 23,
exhibit a pattern very similar to u′. However, at the outer-layer stations the primary
correlation ridge seems to be much more inclined with respect to the main stream
direction, as a consequence of the more passive dynamics of the temperature field
compared to u′, and consistent with the steep slope of the temperature fronts seen in
figure 15.

5.2. Structure angles and length scales
Quantitative information regarding the orientation and the characteristic length scales
of the turbulent eddies are collected here, as extracted from the autocorrelation maps.
For this purpose, the inclination of the eddies with respect to the streamwise direction
is estimated through linear least-square fit of the x–y plane correlations shown in
figures 22 and 23. The size of the eddies is instead extracted by considering the
integral length scale based on the autocorrelations in the jth coordinate direction,

Λ
ϕ
j =

∫
Rϕϕ(1xj) dxj. (5.2)

To avoid problems with lack of convergence of the smallest correlation levels, the
integration extrema for the evaluation of (5.2) are taken to be the intersections with the
R = 0.05 correlation iso-level. Marginally different results are obtained with different
choices of the threshold level, even though the qualitative trends remain.

Regarding the inclination of the eddies, figure 24 (where only the results for the
TBL3 dataset are shown, the others being similar) shows a very different behaviour
of the flow variables. As qualitatively observed in figure 22, the u-bearing eddies
have shallow angles with respect to the flow direction. In particular, their inclination
in the outer part of the boundary layer becomes very close to the ‘universal’ eddy
inclination angle of 14◦ for the large-scale coherent structures of turbulent boundary
layers (Marusic & Heuer 2007), and also to the characteristic 12◦ inclination angle
of the ramp-shaped structures observed by Adrian et al. (2000). For comparison,
Ringuette et al. (2008) report 17◦–20◦ as the typical inclination of vortex packets at
M∞ = 3. Since the v-bearing eddies tend to be very elongated in the wall-normal
direction, their typical inclination (not reported in the figure) is close to 90◦. The
ρ-bearing eddies are steeply inclined with respect to the wall, which can be expected
given that density (under the assumption of weak compressibility effects) obeys a pure
advection equation. The T eddies are typically in between ρ and u, their inclination
angle being typically two times larger than that of the u′ eddies.
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FIGURE 24. Distribution of the ‘structure angle’ of the flow variables for TBL3 dataset.
Symbols: �, ρ; 1, u; � , T . The horizontal dotted line indicates the typical structure
angle (14◦) advocated by Marusic & Heuer (2007). Solid circles indicate the structure angle
measured from correlations of (ρu)′ by Spina et al. (1991), and solid squares denote data
from correlations of ρ ′ by Bookey et al. (2005).

We recall that experimental studies in the supersonic regime report typical
inclination angles of 30◦–60◦, based on the analysis of the auto-correlation of the
streamwise momentum fluctuations (ρu)′ (Smith & Smits 1995), and of the density
fluctuations (Bookey et al. 2005). The trends given in those experiments (reported with
solid symbols in figure 24) are fully compatible (although the angles are somewhat
larger) with those here obtained for the ρ-bearing eddies, but they are certainly
much larger than those found for the u-bearing eddies. For consistency with the
experiments of Smith & Smits (1995), the size of the (ρu)-bearing eddies was also
computed, and found to be very similar to that of the u-bearing eddies. The reason
for the lack of agreement with those experiments in not clear at this stage, but part
of it might lie (Spina, Donovan & Smits 1991; Smits & Dussauge 2006) in the
significant influence of the probe size in the measurement of the two-point correlations
in experiments, or to failure of Taylor’s hypothesis.

The issue of the typical size of the eddies in wall-bounded flows has been frequently
debated both in the incompressible and the compressible flow community. Early
experiments (Spina & Smits 1987; Smits et al. 1989; Spina et al. 1991; Spina,
Smits & Robinson 1994) at M∞ = 3 and much higher Re also indicated consistent
growth of the (ρu)-bearing eddies with the wall distance, but a strong effect of
compressibility was only reported for the streamwise extent, which was found to be
reduced by a factor of about two compared to low-speed boundary layers. Recent
measurements of correlations in supersonic boundary layers have been performed at
M∞ = 2, Reτ = 5600 by Ganapathisubramani et al. (2006), who analysed velocity
signals from probes placed in the outer layer, finding an increasing trend with the
wall distance of both the streamwise and the spanwise length scales. Quantitative
inspection of the correlation maps (see figure 25) indicated strong differences with
respect to low-speed measurements, with an increase by a factor of at least four in the
streamwise direction and a factor of two in the spanwise direction, which the authors
justified by appealing to a wider extension of the logarithmic layer in the supersonic
case. Previous DNS data (Duan et al. 2011) show very weak compressibility effects on
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FIGURE 25. (Colour online) Comparison of the streamwise (a) and spanwise (b)
autocorrelation coefficient of u′ for y/δ = 0.5, with the experimental data of Hutchins &
Marusic (2007) (M∞ ≈ 0, Reτ = 1120, denoted with circles) and of Ganapathisubramani et al.
(2006) (M∞ = 2, Reτ = 5600, denoted with crosses).

the size of the eddies up to M∞ = 3, and slow decrease in the streamwise length at
higher M∞.

The computed streamwise and spanwise u′ autocorrelations at y/δ = 0.5 are
compared with experiments in figure 25. The excellent agreement with the low-speed
data of Hutchins & Marusic (2007) at similar Reτ indicates with little doubt that both
the streamwise and the spanwise length scales are weakly affected by compressibility
and Reynolds number variation. Looking more carefully one will observe much closer
agreement for the streamwise length scale, whereas differences of the order of 15 %
are observed for the spanwise length scale. As anticipated, the supersonic experiments
of Ganapathisubramani et al. (2006) yield much larger correlation length scales, to an
extent that is not likely to be explainable by the Reynolds number difference.

The trends of the streamwise and spanwise integral length scales with the wall
distance are shown in figure 26 (again, limited to the TBL3 dataset). The streamwise
integral length scale of u′ (figure 26a) shows steady growth in the inner layer, followed
by decrease past y/δ ≈ 0.1, the typical streamwise length in the outer layer being
Λu

z ≈ 0.8 δ. A very similar behaviour is also found for the temperature field, whose
typical length scales are apparently half those for the velocity field. This may be
a consequence of the lesser degree of organization of the temperature field in the
outer layer (clearly apparent in figure 12). Figure 26 also quantitatively supports the
observation that the v-bearing motions are much more compact, having typical length
scales of Λv

x ≈ 0.2 δ in the outer layer.
As previously pointed out, the trends of the spanwise integral length scales (shown

in figure 26 b) are more relevant to understand the change of the characteristic size
of the eddies across the wall layer, and several low-speed experiments are available
for comparison. The data by Monty et al. (2007), shown in figure 26(b), exhibit the
same trend found in the present DNS. Even closer agreement is found by applying
the same definition of integral length scale used by those authors (their estimates are
based on the distance between two successive Ruu = 0.05 crossings) to the DNS data,
which then yield consistent overprediction of about 15 % with respect to low-speed
experiments. The continuous increasing trend of the integral scales of u′ with the
wall distance was taken by Monty et al. (2007) as an indication of the validity of
Townsend’s attached-eddy hypothesis, whereby the eddy size should scale linearly with
the wall distance. In our opinion, based on inspection of figure 26(b), no sizeable
range with linear variation can be detected, except perhaps for Λv

z at y/δ . 0.2.
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FIGURE 26. Distribution of integral length scales in the streamwise direction (a) and in
the spanwise direction (b) for the TBL3 dataset. Symbols: 1, ϕ = u; ∇, ϕ = v; �, ϕ = T .
The filled circles in (b) indicate experimental data from Monty et al. (2007), and the solid
triangles denote the integral length scales of u′ determined from the crossing with the
Ruu = 0.05 value.

To explain the observed trends of the eddies size (say, `) we reason that, based on
the general assumption that it depends on a typical flow length scale (L), on a typical
velocity scale (V), and on the local velocity gradient, and assuming a power-law
behaviour, the following scaling results:

`

L
∼
(

V

L

)α (
∂ ũ

∂y

)−α
, (5.3)

where α is an arbitrary exponent. It is natural to assume that in the inner layer L = δv,
V = uτ , and in the outer layer L= δ, V = uτ , even though some authors would suggest
V = u∞ (George & Castillo 1997). Strict viscous scaling at the wall implies that
`∼ δv = ν1/2

w (∂u/∂y)−1/2
w , whence α = 1/2 follows, and the scaling laws for the size of

eddies in the outer and in the inner layer become

`o

δ
∼
(uτ
δ

)1/2
(
∂ ũ

∂y

)−1/2

,
`i

δv
∼
(

uτ
δv

)1/2(
∂ ũ

∂y

)−1/2

. (5.4)
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FIGURE 27. Distribution of integral length scales in the spanwise direction, scaled by the
reference inner (a) and outer (b) scales defined in (5.4), and by the local value of the mixing
length (c) defined in (5.4). See table 3 for line legend. Symbols: 1, ϕ = u; ∇, ϕ = v; � ,
ϕ = T .

To test the validity of the proposed scalings, in figure 27 the spanwise integral length
scales of u′, v′, T ′ are scaled with respect to the outer (figure 27a) and inner length
scales (figure 27b) defined in (5.4). It is found that the normalized scales of u′ and T ′

are approximately constant with the wall distance and with Re, which supports a
good degree of universality of the proposed scalings. However, a consistent drift to
larger values of the inner-layer scales with Re is observed, which is the result of the
imprinting of the outer-layer eddies. The proposed scalings apparently do not work

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

36
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.368


Turbulence in supersonic boundary layers at moderate Reynolds number 157

for v′, the reason for the failure residing in its nature as a detached variable, which
only supports eddies with maximum size equal to the wall distance. Consistently, a
nearly linear range of variation of Λv

z is observed around y/δ ≈ 0.1. An alternative
scaling for the eddy size can be considered, based on the mixing length assumption
given in (3.2), whereby

`m ∼
(
τw

ρ

)1/2(
∂ ũ

∂y

)−1

. (5.5)

The integral length scale of the eddies scaled by `m is shown in figure 27(c). This
time (paying attention to the range of values in the plots) better collapse of the size
of the outer-layer v′ eddies is found, compared to the u′ eddies. The conclusion might
then be drawn that detached eddies approximately scale with the local mixing length,
whereas attached eddies scale according to (5.4). Although not shown, the behaviour
of the spanwise velocity and of the pressure and density fluctuations also corresponds
to that of attached variables.

6. Turbulence modulation
The occurrence of a modulating action of the large-scale outer motions on the

small-scale near-wall structures was first investigated in the context of incompressible
boundary layers by Mathis et al. (2009a). Those authors found that, in addition
to the (linear) imprinting mechanism previously discussed, nonlinear phenomena of
amplitude modulation (AM) also take place between the inner- and the outer-layer
eddies. The intensity of the amplitude modulation imparted by a large-scale eddy
placed at a location P1 to a small-scale eddy placed at another location P2 was
quantified by those authors by: (i) determining the high-pass filtered component of
the velocity signal at P2 (say u2H); (ii) demodulating u2H by means of the Hilbert
transform to obtain its envelope (say u2E); (iii) determining the low-pass filtered
component of the signal envelope (say u2EL); and (iv) calculating the correlation
coefficient (hereafter referred to as amplitude modulation coefficient, RAM) between the
low-pass filtered envelope at P2 and the low-pass filtered signal at P1,

R12
AM =

u1L u2EL√
u1

2
L

√
u2

2
EL

. (6.1)

Although the correlation can in general be applied to signals taken from two distinct
points, Mathis et al. (2009a) argued that the one-point AM coefficient provides a
reasonable estimate for the full two-point AM coefficient, and exploited a one-point
analysis to quantify inner/outer interaction effects across the boundary layer. High
levels of positive and negative correlation were observed in the inner and outer
region of the wall layer, respectively, with a zero crossing in the logarithmic region.
According to the interpretation of Mathis et al. (2009a), the positive correlation found
in the near-wall region indicates that positive (negative) large-scale velocity excursions
in the outer layer induce local enhancement (suppression) of the small-scale near-wall
turbulent fluctuations. The opposite effect is observed in the outer layer. The analysis
was extended to pipe and channel flows by Mathis et al. (2009b), who observed
approximate invariance of the one-point AM coefficient in the inner region when data
are compared at similar friction Reynolds number.

The distributions of the computed one-point AM correlation coefficients R11
AM(y) (for

obvious reasons related to homogeneity of the flow, only the y dependence is left)
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FIGURE 28. (Colour online) Distribution of the one-point amplitude modulation coefficient
(R11

AM), according to (6.1). The symbols denote experimental incompressible boundary layer
data at Reτ = 3020 (Mathis et al. 2009b). See table 3 for line legend.

are reported in figure 28, as a function of the wall-normal inner-scaled coordinate.
For the purpose of evaluating the various terms in (6.1), filtering is performed in the
spanwise direction, with cut-off wavelength λz = δ/2, which, based on inspection of
figure 20, approximately marks the boundary between the small- and the large-scale
domains. The effect of varying the filter width was also addressed, but no qualitative
change was observed. An overall consistent trend with the experiments of Mathis et al.
(2009b) is found throughout the wall layer, which, in view of the wide disparity in
the Reynolds numbers, and of the different approach used for filtering (spatial filtering
is used here as opposed to filtering in the time domain in the experiments) makes us
confident that the AM quantification procedure is properly implemented. The typical
behaviour observed in all canonical wall-bounded flows is recovered, with an inversion
of the sign of the modulation coefficient from positive to negative taking place in
the DNS data at approximately y/δ = 0.035. The main difference with respect to the
experimental measurements resides in the formation of a plateau in the overlap layer,
where DNS data level off to about −0.2.

As shown by Schlatter & Örlü (2010b), the one-point AM coefficient is strongly
related to the local skewness of velocity fluctuations. Indeed, the maps shown in
figures 28 and 6(a) bear strong similarities. Schlatter & Örlü (2010b) were able to
show that this similarity also persists when applying the AM analysis to synthetic
random signals having the same probability density function as the original velocity
signals (and thus having non-zero skewness), indicating an inherent link between
skewness and one-point modulation, which does not necessarily reflect genuine
physics.

To overcome the possible limitations of the one-point modulation analysis we
propose to fully exploit the two-point AM correlation. Specifically, to evaluate the
modulation mechanism we consider the two-point covariance between the large-scale
velocity at P1 and the low-pass filtered envelope of the velocity signal at P2

C12
AM = u1L u2EL. (6.2)
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FIGURE 29. (Colour online) Maps of two-point AM covariance (C12
AM) of the streamwise

velocity, according to (6.2), at (a) stations 1, (b) 2, and (c) 3. The position of the modulating
event (y/δ = 0.2) is highlighted with a cross, and data are scaled with respect to u2

τ . The
dot-dashed lines indicate the local 14◦ direction with respect to the horizontal.

The AM covariance is here preferred over the corresponding correlation coefficient,
since it has the advantage of providing a perception of the absolute importance of
the modulation effect between any two probe pairs (Bernardini & Pirozzoli 2011a).
The modulation covariance thus defined is applied to study the modulating influences
in the boundary layer by fixing the conditioning point P1 at y/δ = 0.2, which is
representative of the outer-layer eddies. The probe P2 is then displaced with respect
to P1 in the streamwise and wall-normal directions, thus obtaining AM covariance
maps which depend on the wall-normal coordinate and on the streamwise separation,
say 1x.

The two-dimensional modulation maps determined from this procedure are shown
in figure 29. For clarity of the representation the wall-normal distance is reported in
logarithmic scale to zoom into the near-wall region, and the position of the modulating
probe is highlighted with a cross. For guidance in the interpretation, the local 14◦

direction about the modulating point is also drawn with a dot-dashed line. Regardless
of Reτ , a negative modulation peak is observed in the vicinity of the conditioning
point, which is associated with the locally negative value of the velocity skewness.
More relevant is the emergence of a positive modulation peak in the proximity of the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

36
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.368


160 S. Pirozzoli and M. Bernardini

wall, whose intensity grows at increasing Reτ , and which is likely to be the signature
of a genuine modulating influence of the outer-layer eddies on the near-wall layer.
We note that this positive peak approximately leans in the positive 14◦ direction with
respect to the conditioning point, which leads to interpreting the observed positive
modulation as the result of the interaction of the large-scale outer-layer u-bearing
eddies (statistically embodied by the map of figure 22b) with the wall. It is also
remarkable that the site where the peak modulation occurs lies, for all cases, at a wall
distance y+ ≈ 6.5, and its influence extends to both the viscous sublayer and the buffer
zone at sufficiently high Re.

7. Thermal statistics
The relationship between velocity and temperature has great relevance in high-

speed flight applications, given the strong coupling between thermal heating and the
development of boundary layers. A class of useful relations was originally developed
by Morkovin (1961), which are collectively referred to as strong Reynolds analogies
(SRA), based on the assumption of uniform mean total temperature and negligible
total temperature fluctuations (which is clearly violated in the present dataset, see
figure 5c):

RuT = ũ′′T ′′(
ũ′′2
)1/2(

T̃ ′′2
)1/2 =−1, (7.1)

(
T̃ ′′2
)1/2

/T̃

(γ − 1)M2
(

ũ′′2
)1/2

/ũ
= 1, (7.2)

Pr t =
[
−ρũ′′v′′

]
∂T̃/∂y[

−ρṽ′′T ′′
]
∂ ũ/∂y

= 1, (7.3)

where M2 = ũ2/(γRT̃). Extended versions of the original SRA have been developed by
various authors, based on mixing length assumptions, and leading to(

T̃ ′′2
)1/2

/T̃

(γ − 1)M2
(

ũ′′2
)1/2

/ũ
≈ 1

c
(
1− ∂T̃0/∂T̃

) , (7.4)

Pr t =
(

1− ∂T̃0

∂T̃

)−1

(7.5)

where either c= 1 (Gaviglio 1987), or c= Pr t (Huang, Coleman & Bradshaw 1995).
The temperature–velocity correlation and the turbulent Prandtl number obtained

from DNS are shown in figure 30. figure 30(a) shows lack of correlation between
u′ and T ′ in the region immediately adjacent to the wall, where the mean temperature
gradient is zero, and therefore turbulent transport of temperature is prevented. The
maximum of the correlation coefficient is found in the buffer layer, which becomes
weaker with increasing Re. For y/δ > 0.5 the distributions become independent of
Re, and level off to about −0.55. A drop in the correlation is observed in the
vicinity of the boundary layer edge, a feature which is present in many experiments
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FIGURE 30. (Colour online) Distributions of temperature–velocity correlation coefficient (a),
and turbulent Prandtl number (b). (a) The hollow symbols indicate incompressible heated
channel flow DNS (Abe & Antonia 2009) at Reτ = 180 (squares), 395 (triangles), 640
(diamonds), 1020 (circles); solid symbols denote compressible experiments by Debiève
(1983) at M∞ = 3, Reδ2 = 2720 (circles) and by Smith & Smits (1993) at M∞ = 2.9,
Reδ2 = 38 500 (squares). (b) The hollow symbols indicate incompressible heated boundary
layer DNS data by Kong et al. (2000), and solid symbols compressible experiments by
Debiève (1983).

(including those shown in the figure), but absent from most DNS (with the exception
of Guarini et al. 2000). The behaviour of RuT (which contradicts (7.1)) reflects the
previously noticed association between thermal and momentum streaks within the
buffer layer, which becomes weaker in the outer layer. Experimental data in the
supersonic regime indicate either a flat (Debiève 1983) or slowly decreasing (Smith &
Smits 1993) trend in the outer layer, but with larger absolute values than DNS, and
thus in closer agreement with SRA predictions. The turbulent Prandtl number (shown
in figure 30b) exhibits a near-wall peak in the buffer layer whose strength decreases
with Re, and an apparent Reynolds-number-independent decreasing trend for y/δ > 0.5.
Also in this case, the basic SRA relation (7.3) is not satisfied, and agreement with
supersonic experiments is only fair. Comparison with DNS of incompressible heated
wall-bounded flows (Kong et al. 2000; Abe & Antonia 2009) shows the same trends as
a function of y and Reτ . However, larger values of RuT and Pr t are consistently found
in that case, which is evidence of stronger dependence of temperature on velocity
fluctuations when the former behaves as a passive scalar.
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FIGURE 31. Assessment of SRA. (a) SRA prediction (7.5) of turbulent Prandtl number.
(b–d) Predictions of temperature–velocity correlations from SRA: (b) Morkovin’s analogy
(SRA); (c) Gaviglio’s analogy (GSRA); (d) Huang et al.’s analogy (HSRA).

An assessment of the various extended SRA relations in the light of the DNS data
is attempted in figure 31. To visually appreciate deviations of the DNS data from
predictions, the left-hand sides of (7.2), (7.5), (7.4) are divided by the corresponding
right-hand sides, so that validity of an SRA relation implies that the associated
indicator is unity. figure 31(a) shows excellent prediction of the turbulent Prandtl
number from the (extended) SRA relation (7.5), and of the temperature–velocity
correlation from the standard SRA relation (7.2), for y/δ < 0.5. Even outside that
range, the SRA relations satisfactorily remove the Reynolds-number dependence from
the data. Better results in the outer layer are obtained with the use of HSRA, for
which the indicator function ranges between 0.8 and 1. Overall, the trends are not too
far from those seen in the previous study of Guarini et al. (2000). We must recall that
the present study is limited to a single Mach number, and to adiabatic wall conditions.
As shown by Duan et al. (2010), the wall thermodynamic state has a strong impact on
the performance of SRA. Therefore, it would be interesting to verify the performance
of the SRA at high Reynolds numbers in the presence of significant compressibility
effects.

8. Conclusions
The structure of supersonic adiabatic boundary layers has been investigated through

use of DNS data at M∞ = 2 up to Reδ2 ≈ 3900 (Reτ ≈ 1120), which allows one
to start probing high-Reynolds-number effects. Particular attention has been paid to
the numerical strategy, which apparently does not suffer from problems of spurious
numerical dissipation and from artifacts related to improper enforcement of the
turbulence inflow conditions. The comparison of the velocity statistics with reference
incompressible DNS data shows that (at least at this Mach number) the effects of
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the flow compressibility can be effectively incorporated by accounting for the mean
density variations across the wall layer. When this is done, the velocity statistics up
to fourth order very nearly collapse onto number (either Reδ2 or Reτ ) is matched. To
our knowledge, this is the strongest evidence in favour of the validity of Morkovin’s
hypothesis presented so far. Similarly, extremely precise collapse of the skin friction
coefficient onto incompressible scaling laws is observed when the van Driest II
transformation is applied, which takes into account density variation effects to leading
order. The influence of Reynolds number increase mainly manifests itself by a loss
in strict scaling of the near-wall properties with wall units. As also observed in the
incompressible regime, the variance of the wall pressure and the squared peak of the
streamwise velocity fluctuations are found to grow logarithmically with Re, with weak
influence of compressibility.

Flow visualizations have been used to establish the qualitative structure of the inner-
and outer-layer eddies, and to quantify their interactions. The nature of the inner-layer
energy-containing eddies is found to be the same at all Re, with the typical alternating
pattern of high- and low-speed streaks, whose size roughly scales in wall units. A
similar pattern (but with length scales comparable to δ) also emerges in the outer layer
at sufficiently high Reynolds number, which was not observed in previous numerical
simulations. The structures associated with the vorticity field are found to have a
typical cane-like shape, and few instances of hairpin-shaped vortices are observed, the
boundary layer being fully developed. At high Reynolds number, vortex tubes in the
outer layer tend to stand on top of the low-speed streaks, which probably explains
why low-speed streaks are more eye-catching compared to high-speed ones. The arrays
of vortex tubes ‘riding’ the low-speed streaks can be identified with the packets of
hairpins, that in the commonly accepted view are regarded to be responsible for the
formation of superstructures (Adrian et al. 2000). On the other hand, it is found
that vortices in the inner part of the boundary layer tend to concentrate underneath
the outer-layer low-speed streaks. Our interpretation is that vortex tubes (or hairpins)
are the consequence, rather than the cause, of the presence of velocity streaks. As
discussed in the paper, vortex tubes in the wall layer can be interpreted as the results
of the roll-up of vorticity at the edge of the large-scale streaks, under the action of
the mean shear. As a consequence of the clockwise orientation of the mean shear, the
vortices tend to cluster at the top of the low-speed streaks, and at the bottom of the
high-speed ones.

The analysis of the autocorrelations of the flow variables gives quantitative
information on the structure of the energy-containing eddies. Some variables, such
as u and T , which are ‘attached’ to the wall, in the sense that they support
eddies whose size may be larger than the wall distance, can leave an imprint
on the near-wall region. Eddies belonging to this family are found to have size
proportional to a length scale based on the local mean shear (in the outer layer,
`o ∼ (uτδ)1/2 (∂ ũ/∂y)−1/2), and the variance of the associated variables exhibits a
logarithmic range of variation in the outer layer. On the other hand, the wall-normal
velocity component (which is constrained by the blocking effect of the wall) appears
to be detached from the wall, the associated eddies having size which is smaller than
the wall-attached eddies, and which approximately scales with the local mixing length
scale (`m ∼ (τw/ρ)

1/2 (∂ ũ/∂y)−1). It should be noted that `m is bound to vary linearly
with the wall distance in the presence of logarithmic variation of ũ, and accordingly
a narrow range of linear variation of the size of the v-bearing eddies with the wall
distance is found. Given that active motions (i.e. those containing fluctuations of the
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wall-normal velocity) are responsible for the production of Reynolds stress, the fact
that only the v-bearing eddies scale with the wall distance is entirely consistent with
the arguments leading to the logarithmic law for the mean velocity.

Some conclusions can also be drawn regarding the effects of compressibility on the
size of the eddies, and specifically of the u-bearing eddies, which have traditionally
been studied in experiments. We find that the integral longitudinal length scales are
virtually the same as in the incompressible case. Weak effects are discovered on the
spanwise length scale, which is found to overestimate incompressible data by 15 %
approximately. This contradicts of available experimental data at similar Mach number,
which mostly suggest reduction of the longitudinal length scale, and no effect on the
spanwise length scale. Exploration of the higher supersonic regime is certainly needed
to draw more definite conclusions in this respect. Changes in the typical size of the
eddy structures would invalidate the consequences of Morkovin’s hypothesis, and thus
should be accompanied by sizeable effects on the flow statistics.

Differences are also found in the orientation of the large-scale eddies for the
different variables. The u-bearing eddies are found to be typically inclined at 12◦–14◦

with respect to the streamwise direction, which is the same orientation suggested for
the large structures in incompressible boundary layers, and which is probably related
to the typical inclination of the ramp-like interfaces between zones with different
momentum (Adrian et al. 2000). Other variables, such as density and temperature,
are found to have steeper inclination with respect to the wall, as a consequence of
their behaviour being more similar to that of passive scalars, which are expected to
align approximately along the 45◦ direction. The v-bearing eddies have a very different
behaviour, being very compact in the wall-parallel directions, and extending their
influence mainly in the wall-normal direction.

Besides an imprinting on the near-wall region in the form of juxtaposition of
different scales of motion, attached eddies are found to convey a more subtle effect
through the modulation imparted to the near-wall small-scale eddies. This effect,
which was observed and quantified in low-speed boundary layers, is here characterized
in terms of a new metric, namely the amplitude modulation covariance of the velocity
field. This tool allows full characterization of the modulating influence of eddies
placed in the outer layer (here the reference point is set at y/δ = 0.2) on any
other point in the streamwise/wall-normal plane. The main result is the emergence
of a positive modulation peak whose amplitude steadily grows with Re, which is
approximately oriented in the backward 14◦ direction with respect to the modulating
probe, and which is located at the root of the buffer layer (y+ ≈ 6.5). The presence
of this peak sheds further light on the previous observation that near-wall vortices
are mainly found underneath large-scale high-speed streaks. Indeed, positive values
of the modulation indicate that large-scale high-velocity events in the outer layer are
associated with increased small-scale activity in the wall proximity. One can then
envisage a scenario where local increase of streamwise velocity in an extended region
of the outer layer induces local increase of the mean shear, which results in local
enhancement of turbulence production near the wall.

Finally, the relationships between temperature and velocity fluctuations have been
investigated, and the validity of the set of relations known as SRA has been put
to the test. Consistent with the observations of the velocity and temperature fields,
the u–T correlation is found to be always negative, with modulus close to unity in
the inner layer, and decreasing to about 0.5 in the outer layer as a consequence of
the different behaviour of the velocity and temperature streaks. The turbulent Prandtl
number if found to be significantly different from unity, contrary to the prediction of
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the standard form of the SRA. On the other hand, the modified form of SRA which
incorporates the effect of variation of the total temperature is found to better predict
the variation of Pr t, at least up to y/δ = 0.5. In the same region of the wall layer
the classical SRA provides good predictions of the temperature variance as a fraction
of the velocity variance, whereas modified analogies seem to give uniformly good
predictions throughout the boundary layer.

We believe that the present effort constitutes the most complete description of the
structure of turbulence at moderately supersonic boundary layers currently available,
and the database itself can be usefully exploited for improving and calibrating
turbulence models for high-speed, high-Reynolds-number flows. Of course, it needs to
be completed with data from simulations at higher Mach number to more completely
establish trends related to the effects of compressibility. Work in this direction is in
progress.

The statistics of the database presented in the paper are available on-line at the web
page http://reynolds.dma.uniroma1.it/dnsm2/, together with supporting documentation.

We acknowledge the Italian computing center CINECA for the availability of high-
performance computing resources and support through the 2010/11 ISCRA Award.
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DUAN, L., BEEKMAN, I. & MARTÍN, M. P. 2010 Direct numerical simulation of hypersonic

turbulent boundary layers. Part 2. Effect of wall temperature. J. Fluid Mech. 655, 419–445.
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HOYAS, S. & JIMÉNEZ, J. 2006 Scaling of velocity fluctuations in turbulent channels up to
Reτ = 2003. Phys. Fluids 18, 011702.

HUANG, P. G., COLEMAN, G. N. & BRADSHAW, P. 1995 Compressible turbulent channel flows:
DNS results and modelling. J. Fluid Mech. 305, 185–218.

HUMBLE, R. A., ELSINGA, G. E., SCARANO, F. & VAN OUDHEUSDEN, B. W. 2009
Three-dimensional instantaneous structure of a shock wave/turbulent boundary layer interaction.
J. Fluid Mech. 622, 33–62.

HUTCHINS, N. & MARUSIC, I. 2007 Evidence of very long meandering features in the logarithmic
region of turbulent boundary layers. J. Fluid Mech. 579, 1–28.

HUTCHINS, N., NICKELS, T. B., MARUSIC, I. & CHONG, M. S. 2009 Hot-wire spatial resolution
issues in wall-bounded turbulence. J. Fluid Mech. 635, 103–136.
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SIMENS, M. P., JIMÉNEZ, J., HOYAS, S. & MIZUNO, Y. 2009 A high-resolution code for a
turbulent boundary layers. J. Comput. Phys. 228, 4218–4231.

SMITH, D. R. & SMITS, A. J. 1993 The simultaneous measurement of velocity and temperature
fluctuations in the boundary layer of a supersonic flow. Exp. Therm. Fluid Sci. 7, 221–229.

SMITH, M. W. & SMITS, A. J. 1995 Visualization of he structure of supersonic turbulent boundary
layers. Exp. Fluids 18, 288–302.

SMITS, A. J. & DUSSAUGE, J.-P. 2006 Turbulent Shear Layers in Supersonic Flow, 2nd edn.
American Institute of Physics.

SMITS, A. J., MATHESON, N. & JOUBERT, P. N. 1983 Low-Reynolds-number turbulent boundary
layers in zero and favourable pressure gradients. J. Ship Res. 147–157.

SMITS, A. J., SPINA, E. F., ALVING, A. E., SMITH, R. W. & FERNANDO, E. M. 1989 A
comparison of the turbulence structure of subsonic and supersonic boundary layers. Phys.
Fluids A 1, 1865–1875.

SPINA, E. F., DONOVAN, J. F. & SMITS, A. J. 1991 On the structure of high-Reynolds-number
supersonic turbulent boundary layers. J. Fluid Mech. 222, 293–327.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

36
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.368


168 S. Pirozzoli and M. Bernardini

SPINA, E. F. & SMITS, A. J. 1987 Organized structures in a compressible turbulent boundary layer.
J. Fluid Mech. 182, 85–109.

SPINA, E. F., SMITS, A. J. & ROBINSON, S. K. 1994 The physics of supersonic turbulent boundary
layers. Annu. Rev. Fluid Mech. 26, 287–319.

STOLZ, S. & ADAMS, N. A. 2003 Large-eddy simulation of high-Reynolds-number supersonic
boundary layers using the approximate deconvolution model and a rescaling and recycling
technique. Phys. Fluids 15 (8), 2398–2412.

SUPONITSKY, V., COHEN, J. & BAR-YOSEPH, P. Z. 2005 The generation of streaks and hairpin
vortices from a localized vortex disturbance embedded in unbounded uniform shear flow.
J. Fluid Mech. 535, 65–100.

TOWNSEND, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University
Press.

WARHAFT, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32, 203–240.
WU, X. & MOIN, P. 2009 Direct numerical simulation of turbulence in a nominally zero-pressure-

gradient flat-plate boundary layer. J. Fluid Mech. 630, 5–41.
XU, S. & MARTIN, M. P. 2004 Assessment of inflow boundary conditions for compressible

turbulent boundary layers. Phys. Fluids 16 (7), 2623–2639.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

36
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.368

	Turbulence in supersonic boundary layers at moderate Reynolds number
	Introduction
	Numerical methodology
	Turbulence statistics
	Velocity statistics
	Thermodynamic properties
	Higher-order statistics
	Wall properties

	Flow organization
	Statistical properties of turbulent eddies
	Two-point correlations
	Structure angles and length scales

	Turbulence modulation
	Thermal statistics
	Conclusions
	References




