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Algebraic CPOs naturally generalize to finitely accessible categories, and Scott domains (i.e.,

consistently complete algebraic CPOs) then correspond to what we call Scott-complete

categories: finitely accessible, consistently (co-)complete categories. We prove that the

category SCC of all Scott-complete categories and all continuous functors is cartesian closed

and provides fixed points for a large collection of endofunctors. Thus, SCC can serve as a

basis for semantics of computer languages.

1. Introduction

In categorical logic an important idea is to generalize the classical ordering of propositions

x 6 y iff y can be proved from x

by giving individual names to proofs, and writing

f: x→ y iff f is a proof of y from x.

Thus, one uses categories instead of posets. In the present paper we take the first steps in

an analogous generalization of posets to categories in Domain Theory. Thus, the ordering

of computation stages used there

x v y iff a further computation leads from x to y

is substituted by giving individual names to computations, and writing

f: x→ y iff f is a computation leading from x to y.

This forms a category in a natural sense, and the concept of Scott domain naturally

generalizes to what we call Scott-complete categories. We show that they form a cartesian

closed category: the proof of algebraicity of function spaces is based on ‘step functors’,

which generalize the well known step functions 〈k; l〉 (sending x to l if k v x, otherwise

to ⊥) by observing that 〈k; l〉 is the composite of hom(k,−) with the adjoint of hom(l,−)

(see Lemma 1 below). We also show how the fixed-point theory extends to the present

generality. In spite of the results achieved, we stress that only the first steps in the theory
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have been taken so far, and that the paper does not present any examples not covered

by the classical Domain Theory, nor applications of the richer structure. In future work

we expect that it will be shown how categorical concepts bring a new and important

view to various concepts of Domain Theory. For example, J. Velebil has proved that

approximable relations generalize to flat profunctors (private communication). We also

expect to show that certain constructions of power domains are best performed in the

realm of Scott-complete categories.

Recall that a Scott domain is a partially ordered set that is

(a) algebraic, i.e., it has directed joins and bottom and every element is a directed join

of finite (=compact) elements, and

(b) consistently complete, i.e., every nonempty set with an upper bound has a join.

The concept of a finite element in a poset generalizes immediately to that of a finitely

presentable object of a category K: it is an object A such that hom(A,−): K → Set

preserves directed colimits. That is, if (Ki → K)i∈I is a directed colimit in K, then every

morphism f: A→ K has an essentially unique factorization through one of the morphisms

ki (more precisely: there exists i ∈ I such that f = ki ◦ f′, and if f = ki ◦ f′ = ki ◦ f′′, then

f′ and f′′ are merged by one of the connecting morphisms Ki → Kj , i 6 j, of the given

diagram). And the concept of an algebraic CPO generalizes to that of a finitely accessible

category , as introduced by Lair (1981) and Makkai and Paré (1989), i.e., a category K

such that

(a) K has directed colimits, and

(b) K has a set A of finitely presentable objects such that every object of K is a directed

colimit of objects in A.

It is well known from domain theory that algebraic CPOs have the fundamental disad-

vantage that they do not form a cartesian closed category: if A and B are algebraic CPOs,

the poset [A → B] of all continuous maps from A to B, ordered pointwise, need not be

algebraic. Several full subcategories of the category of algebraic CPOs and continuous

maps have thus been considered (see, for example, Abramsky and Jung (1994)), and

one of the most commonly used is that of Scott-domains (Scott 1982); this has a direct

generalization to finitely accessible, consistently cocomplete categories with initial objects,

as given by the following definition.

Definition 1. A category is called Scott-complete if it is finitely accessible and every diagram

with a cocone has a colimit.

We denote by SCC the category of all Scott-complete categories and functors that are

continuous , that is, preserve directed colimits. (Let us remark here that some category

theorists prefer working with filtered rather than directed colimits. However, as proved,

for example, in Adámek and Rosický (1994), a category has filtered colimits iff it has

directed ones, and a functor preserves filtered colimits iff it preserves directed ones.)

For Scott-complete categories K and L we prove that the category [K → L] of all

continuous functors, a full subcategory of LK, is also Scott-complete. Consequently, the

category SCC is cartesian closed.

We also introduce a generalization of the concept of Scott’s embedding-projection

(Scott 1972). Although the concept is much more technical than in the case of partial
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orders, the idea remains the same: an embedding-projection pair of continuous functors

is an adjoint pair E a P such that PE = id and the unit of the adjunction is the identity.

What also remains the same is the close relationship between directed limits and directed

colimits in the category

SCCe

of all Scott-complete categories and all embedding-projection adjunctions. As a conse-

quence, we obtain a strong fixpoint theorem for endofunctors of SCCe that are locally

continuous – well, more precisely: for locally continuous 2-functors from SCCe into itself.

Recall that SCCe has the structure of a 2-category because for arbitrary two objects K,

L of SCCe we have an obvious structure of a category on hom(K,L) whose morphisms

are natural transformations. Now a 2-functor from SCCe maps not only objects (Scott-

complete categories) to objects, and morphisms (continuous functors) to morphisms, but

also maps natural transformations between those morphisms to natural transformations.

Here one can see another step in a direction that the (by now ‘classical’) theory of re-

cursively defined domains as fixed points of functors has taken. In the category CPOe, a

recursive definition A ::= T (A) is interpreted as follows: T is an object part of an endo-

functor of CPOe, and we take it for granted that there is a corresponding morphism-part

turning T into a locally continuous functor T : CPOe → CPOe. Then T has a least fixed

point, which is our interpretation of a solution to the original recursive equation. Now in

SCCe we start, again, with a recursive definition A ::= T (A) and interpret it as an object-

part of an endofunctor, but here we also have to consider the morphism-part and the

natural-transformation-part of T . If the resulting 2-functor T : SCCe → SCCe is locally

continuous, i.e., the derived functors hom(K,L) → hom(T (K), T (L)) are continuous

for all pairs K, L of Scott-complete categories, then T has a canonical solution, i.e.,

least-and-largest fixed point, of the given recursive equation. Let us remark that, although

in the category SCCe we do not consider functors (as morphisms) but only functors up

to natural isomorphism, this does not diminish the precision with which fixed points

serve as solutions of recursive equations; in fact, all the usual constructions of domains

(product, function-space, and so on) do not specify endofunctors, but only endofunctors

up to natural isomorphism.

We finally characterize sketches that sketch precisely the Scott-complete categories and

show which first-order logical theories precisely axiomatize all Scott-complete categories.

From that characterization the cartesian closedness of the category SCC can be directly

derived from Theorem 7.1.3. of Aageron (1991).

2. Scott-complete categories

Remark 1.

(i) Recall from Makkai and Paré (1989) that a category K is called accessible provided

that there exists a regular cardinal λ such that

(a) K has λ-directed colimits (i.e., colimits over all λ-directed posets)

and
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(b) K has a set A of λ-presentable objects such that every object of K is a

λ-directed colimit of A-objects.

(ii) A category is called consistently complete if each nonempty diagram with a cone has

a limit (dually: consistently cocomplete).

Notation 1. We denote by Kλ a full subcategory of K representing all λ-presentable

objects (i.e., such that every λ-presentable object of K is isomorphic to precisely one

object of Kλ). As proved in Makkai and Paré (1989), Kλ is a small category.

When λ = ω we call K a finitely accessible category and use

Kfp

rather than Kω . For every object K of a finitely accessible category, the comma-category

Kfp ↓ K of all arrows with a domain in Kfp and the codomain K is filtered. Thus, the

canonical diagram D:Kfp ↓ K → K, assigning to each arrow its domain, is a filtered

diagram (equivalently: a diagram with a directed cofinal subdiagram).

Theorem 1. An accessible category is consistently complete iff it is consistently cocomplete.

Proof. Put A = Kλ in the above notation.

(1) Assume that K is consistently complete. Let D: D → K be a nonempty diagram

with a cocone in K. As proved in Makkai and Paré (1989), there exists a regular cardinal

λ such that

(i) D has less than λ morphisms,

(ii) every object Dd is λ-presentable in K

and

(iii) K has properties (a), (b) of the above Remark 1; K is λ-accessible for short.

We prove first that every cocone of D factorizes through a cocone with a codomain in

A. In fact, let (Dd
cd→ C) be a cocone of D. By (b) in Remark 1, we have a λ-directed

colimit (Ci
qi→ C)i∈I with every Ci in A. For each d ∈ Dobj, since Dd is λ-presentable, there

exists i ∈ I such that cd factorizes through qi (say, cd = qic
+
d ), and moreover, i can be

chosen independent of d, since I is λ-directed and the number of all d’s is smaller than λ.

Analogously, for each δ: d → d′ in D, since cd = cd′ · Dδ and Dd is λ-presentable, there

exists j > i such that the connecting morphism Cij: Ci → Cj fulfils Cij · c+
d = Cij · cd′ ·Dδ.

Again, j can be chosen independent of δ, since the number of all δ’s is smaller than λ.

Put c∗d = Cij · c+
d . Then (Dd

c∗
d→ Cj) is a cocone of D through which the original cocone

factorizes:

cd = qi · c+
d = qj · Cij · c+

d = qj · c∗d.
Denote by L the category of all cocones of D and their natural transformations. We

need to prove that D has a colimit, that is, that L has an initial object. We have just

observed that the (small) set of all cocones with a codomain in A is weakly initial in

L; moreover, this set is nonempty because, by assumption, D has a cocone. By Freyd’s

Adjoint Functor Theorem, it is sufficient to show that L has nonempty limits. In fact, for

each nonempty diagram D∗: D∗ →L, we observe that the diagram UD∗: D∗ →K, where

U: L → K is the codomain-functor, has a limit in K: we know that D∗ is nonempty
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and that UD∗ has a cone obtained by choosing an object d ∈ Dobj and forming the

d-components of cocones. Let (L
pd∗→ UD∗d∗) be a limit of UD∗in K. For each d ∈ Dobj

we have a cone of UD∗ formed, for each d∗ ∈ (D∗)obj, by all d-components of the cocone

D∗d∗. Let rd: Dd → L be the unique morphism factorizing that cone, then it is easy to

verify that (Dd
rd→ L) is a cocone of D, and that this object of L together with the

morphisms pd∗ for d∗ ∈ (D∗)obj form a limit of D∗ in L. Consequently, L has an initial

object, i.e., a colimit of D.

(2) Let K be consistently complete. The Yoneda embedding E: K → SetAop

with

EK = hom(−, K)/Aop is full and faithful. In fact, this is equivalent to saying that A is a

dense category, and this follows from the accessibility of K, see Makkai and Paré (1989).

Let D: D →K be a nonempty diagram with a cone. Since K is λ-accessible, D has a

cone

(C → Dd)d∈Dobj with C ∈A.

To prove that D has a limit in K, we first form a limit of ED in SetAop

; say,

(F
fd→ EDd)d∈Dobj .

The functor F: Aop → Set can be described as follows: for every object X, FX is the

set of all cones of D with the domain X (and the corresponding component of fd is the

d-component of the cones); in particular,

FC 6= W .

Consequently, the category Pf of points of F (whose objects are pairs (A, a) with A ∈A

and a ∈ FA, and morphisms f: (A, a)→ (B, b) are K-morphisms f: A→ B with Ff(b) =

a) is nonempty. The diagram Pf: Pf → K given by (A, a) 7→ A has a cocone: in fact,

every object d of the (nonempty) category D defines a cocone whose (A, a)-component is

ad: A→ Dd, the d-component of the cone a. Consequently, Pf has a colimit in K, say,

((A, a)
wA,a→ C∗) for all (A, a) ∈ Pobj

f .

For each object d of D let c∗d: C
∗ → Dd be the unique factorization of the above cocone,

that is,

wA,a · c∗d = ad for all (A, a) ∈ Pobj
F , d ∈ Dobj.

It is easy to verify that (C∗
c∗
d→ Dd) is a cone of D. To see that this is a limit of D, let

(A0, a0) ∈ Pobj
F be another cone. It factorizes through the cone (c∗d) via wA0 ,a0

. It remains

to verify the uniqueness of factorization: given h, h′: A → C∗ with c∗dh = c∗dh
′(= ad) for

any d, we will show that h = h′. The equation c∗dh = c∗dh
′ guarantees that a coequalizer of

h and h′ exists in K; say, k: C∗ → B. In order to prove h = h′, we will show that k is a

split monomorphism: let bd: B → Dd be the unique morphism with

c∗d = bd · k for d ∈ Dobj,

and let b = (bd) be the corresponding cone of D, then we will show that the object (B, b)

of PF fulfils

wB,b · k = idC∗ .
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It is sufficient to prove that for every object (A, a) of PF we have wB,b · k · wA,a = wA,a.

In fact, we have a morphism

k · wA,a: (A, a)→ (B, b)

of PF , since for each d ∈ Dobj

F(k, wA,a)(bd) = bd k wA.a
= c∗d wA,a
= ad,

and therefore, the required equality follows from the compatibility of the above limit cone

of PF .

Corollary 2. A category is Scott-complete iff it is finitely accessible, consistently complete,

and has an initial object.

Examples 1.

(1) A poset, considered as a category, is Scott-complete iff it is a Scott domain.

(2) Every locally presentable category in the sense of Gabriel and Ulmer (1971), i.e., every

complete, finitely accessible category, is Scott-complete, and has a terminal object.

Conversely, every Scott-complete category with a terminal object is locally finitely

presentable. Thus, the relationship between locally finitely presentable categories

and Scott-complete categories is analogous to that between continuous lattices and

Scott-domains.

(3) Scott-complete categories are precisely the free completions under directed colimits

of small, finitely consistently cocomplete categories. (This is quite analogous to the

fact that Scott-domains are precisely the directed-join completions of conditional

semilattices). More precisely:

(i) Let K be Scott-complete. Then Kfp is a small category in which every finite

diagram with a cocone has a colimit. In fact, finite colimits of finitely presentable

objects are finitely presentable. As proved in Makkai and Paré (1989), K is a free

completion of Kfp under directed colimits. That is, every functor F:Kfp →L,

where L has directed colimits, has a continuous extension to K, which is unique

up-to natural isomorphism.

(ii) Conversely, given a small category A with colimits of all finite diagrams with

a cocone, let K be a free completion of A with respect to directed colimits.

(K is described in Part 2.C of Adámek and Rosický (1994).) Then K has

both directed colimits and colimits of finite consistent diagrams – thus, K is

consistently cocomplete. Since A has an initial object, so does K.

3. The cartesian closed category of Scott-complete categories

Definition 2. We define the category SCC to have as objects all Scott-complete categories

and as morphisms all continuous (i.e., directed colimits preserving) functors.

Observation 1. There are, essentially, no set-theoretical problems connected with the
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above definition: since, by Example 1(3), Scott-complete categories are precisely the free

completions of small, consistently finitely cocomplete categories, we conclude that

(a) SCC-objects can be coded (up to isomorphism of categories) by small categories;

thus, SCCobj is a class

(b) SCC-morphisms from K to L are fully determined by their restriction to Kfp, thus

homSCC(K,L) is a (small) set.

Notation 2. For two Scott-complete categories K and L we denote by [L → K] the

category of all continuous (i.e., directed-colimits preserving) functors from L to K and

all natural transformations. Observe that this is equivalent to the category of all functors

from the small category Lfp to K, that is,

[L→K] ∼= KLfp .

In fact, by Example 1(3) above, each functor F inKfp has an essentially unique extension

to a functor F∗ in [L → K], and then F 7→ F∗ is an equivalence of the above two

categories. We want to prove that [L → K] is a Scott-complete category. This is

analogous to the proof that a function-space of two Scott domains is a Scott domain.

Whereas the latter proof is based on step functions, our proof will use the following ‘step’

functors.

Lemma 1. Let K and L be Scott-complete categories. Given finitely presentable objects

K in K and L in L, the functor

PL,K = FK · hom(L,−): L→K

where FK : Set → K is a left adjoint of hom(K,−), is a finitely presentable object of

[L→K].

Proof.

(1) PL,K is a continuous functor. In fact, we first observe that the category K has

co-powers
∐

M K because the discrete diagram of M copies of K has a cocone (with

codomain K if M 6= W and codomain ⊥ if M = W). Thus, hom(K,−) has a left

adjoint FK given by FKM =
∐

M K . Now FK preserves colimits, and, since L is

finitely presentable, hom(L,−) preserves directed colimits – thus, PL,K is continuous.

(2) The following type of Yoneda lemma holds for all functors Q in [L→K]: there is a

bijective correspondence between morphisms from PL,K to Q and maps f: K → QL,

that is,

homK(K,QL) ∼= homSCC(PL,K, Q).

In fact, each f: K → QL induces a natural transformation f∗: PL,K → Q whose map

f∗X:
∐

hom(L,X) K → QX has the h-component given by

(∗) (f∗X)h = Qh · f: K → QX for each X ∈Lobj, h ∈ hom(L,X).

Conversely, given any natural transformation t: PL,K → Q, there exists a unique

f: K → QL with t = f∗, viz, the idL-component of tL:
∐

hom(L,L) K → QL.

(3) Each PL,K is finitely presentable in the category [L→K]. In fact, let D be a directed

diagram with a colimit (Ri
ri→ R)i∈I in [L → K]. For each morphism t: PL,K → R
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we have t = f∗ where f: K → RL. Since K is finitely presentable, and

(RiL
(ri)L→ RL)i∈I

is a directed colimit in K (recall that [L→K] ∼= KLfp , thus, directed colimits are

formed object-wise in [L→K]), we see that f factors essentially uniquely through

some (ri)L. Now, f = (ri)L · g is equivalent to f∗ = ri · g∗, and thus t = f∗ factors

essentially uniquely through ri.

Theorem 3. A finite product of Scott-complete categories is Scott-complete, and for Scott-

complete categories L and K the functor category [L → K] is Scott-complete. Thus,

SCC is a cartesian closed category.

Proof. The statement about finite products is trivial because in a finite product of

categories

(a) colimits are computed coordinate-wise, and

(b) finitely presentable objects are just those with finitely presentable coordinates.

Let L and K be Scott-complete categories. Since colimits in [L → K] ∼= KLfp are

computed object-wise, the category [L → K] has directed colimits and is consistently

cocomplete. It remains to find a set A of finitely presentable objects of [L → K] such

that every continuous functor is a directed colimit of functors in A. Let A be the closure

of the set of all step-functors PL,K with K in Kfp and L in Lfp under existing finite

colimits in [K→L].

Because of the previous lemma, each object of A is finitely presentable in [L → K].

Thus, to conclude the proof, we only have to show that every object R of [L → K] is

a directed (or, equivalently, filtered) colimit of a diagram in A. We use the canonical

diagram D whose scheme is the comma-category A ↓ R (consisting of all P
p
→ R with

P ∈ A) and which is given by D(P
p
→ R) = P . This is a filtered diagram, that is, A ↓ R

is a filtered category, which follows immediately from the fact that A is closed under

existing finite colimits: given a finite subcategory B of A ↓ R, we have that D(B) has

a cocone (with codomain R) in [L → K], thus P = colim B exists and the canonical

map P
p
→ R induced by this colimit yields an object of A ↓ R, giving a cocone to B in

A ↓ R. It remains to prove that R = colimD – more precisely, that the canonical cocone

p: D(P
p
→ R) → R is a colimit cocone in [L → K]. Let p: P → R be another cocone.

That is, for each morphism p: P → R, a morphism p: P → R is given with

pt = pt for all t: P ′ → P in A. (1)

We are to prove that there exists a unique r: R → R such that p = r · p for all p. Let

us first turn to the uniqueness: it is sufficient to show that rL is uniquely determined for

each L ∈ Lfp (since [L →K] is equivalent to KLfp ). Since K is finitely accessible, RL

is a canonical colimit of the diagram DRL:Kfp ↓ RL → K assigning to each K
k→ RL,

K ∈ Kfp, the value K . Thus, it is sufficient to show how rL · k: K → RL is determined.

Consider the morphism k∗: PL,K → R of the Yoneda lemma (∗) above. It yields a morphism

k∗: PL,K → R for which there exists a unique map k: K → RL in K with k
∗

= k∗. From
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r · k∗ = k∗ = k
∗

it follows that

rL · k = k for each k: K → RL,K ∈ Kfp.

This proves the uniqueness. Now let us show that, conversely, the last property defines

rL: RL→ RL, in other words, that the morphisms k form a cocone of the diagram DRL:

K K'
t

k k'

RL

k'

K K'
t

k

RL

ffffgffffgffffg

ffffg
ffffg

ffffg

From k′ · t = k, we are to derive k′ · t = k. We use t̃: PLK → PLK ′ to denote the natural

transformation determined by coproducts of copies of t. Then, obviously, k′ · t = k implies

(k′)∗ · t̃ = k∗. Thus, by (1), (k′)∗ · t̃ = k∗ or, equivalently, k′
∗ · t̃ = k

∗
: PLK → R. By applying

this to X = L and considering the idL-component, we obtain the desired equations

k′ · t = k. Therefore, the above equations rL · k = k define rL: RL→ RL for each L ∈Lfp.

It remains to prove the naturality, that is, Rf · rL = rL′ ·Rf for every f: L→ L′ in Lfp. We

use the finite accessibility of K again: it is sufficient to prove that (Rf · rL) ·k = (rL′ ·Rf) ·k
for all k: K → RL with K ∈ Kfp. In fact, the morphism f: L → L′ yields a natural

transformation f̂: PL,K → PL′ ,K where f̂X:
∐

hom(L′ ,X) K →
∐

hom(L,X) K is given by the

maps hom(L′, X) → hom(L,X) of composition with f. Obviously, k∗ · f̂ = (Rf · k)∗, and

thus, by (1), we get k∗ · f̂ = (Rf · k)∗, that is, k
∗ · f̂ = Rf · k∗. This implies Rf · k = Rf · k,

and consequently

rL′ · Rf · k = Rf · k = Rf · k = Rf · rL · k.
Let us now prove that the above natural transformation r: R → R fulfils

r · p = p for all p: P → R with P ∈A.

When P = PL,K , this is obvious: we have, again by the above Yoneda lemma (∗), a map

k: K → RL with p = k∗, and then

r · p = r · k∗ = k∗ = p.

Next, the set C of all functors P such that r · p = p holds for all p: P → R is, obviously,

closed under existing finite colimits: given a colimit cocone (Pi
pi→ P )i∈I , we only have

to prove r · p · pi = p · pi for each i, assuming r · p · pi = p · pi – from (1) we get

r · p · pi = p · pi = p · pi. Since C contains all step-functors PL,K , it contains all of A, and

the proof is concluded.

4. Embedding-projection adjunctions

An important property of CPOs is the coincidence of directed limits with directed colimits

in the category CPOe of CPOs and embedding-projection pairs. We will now show that

the category SCCe of Scott-complete categories and embedding-projection adjunctions
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also has this property. From a categorical point of view, an embedding-projection pair

K
e


p

L

between CPOs is a pair of adjoint functors (i.e., order-preserving maps with pe(x) 6 x

and ep(y) 6 y for all x ∈ K, y ∈ L) that are continuous and have their unit of

adjunction formed by the identity-transformation (that is, pe(x) = x). Analogously, given

Scott-complete (or, more generally, finitely accessible) categories K and L, we can define

an embedding-projection adjunction

K
E


P

L

as a pair of adjoint continuous functors E a P whose unit of adjunction is η = id: IdK →
PE = IdK. There is a technical difficulty here: if we want the category SCCe to have

directed colimits, we should not distinguish between functors which are naturally iso-

morphic (because if we do distinguish, we only obtain weaker concepts of directed

bicolimit, known from 2-category theory, which we want to ‘escape’ here). Thus, given an

embedding-projection pair

K
E


P

L

and given a functor E ′: K → L naturally isomorphic to E, we identify the given pair

with

K
E′



P

L;

analogously with P ′ ∼= P . This makes the definition of the category SCCe more technical,

but the reward is that

(1) the embedding E uniquely determines the embedding-projection adjunction, and

(2) SCCe has directed limits and directed colimits and they canonically coincide.

Concerning (1), one can say that an embedding-projection pair K
L is nothing other

than a choice of a coreflective full subcategory of L that is finitely accessible and whose

coreflector L→K is continuous.

Definition 3.

(1) Let K and L be finitely accessible categories. An embedding-projection adjunction is

a pair

E: K→L and P : L→K

of continuous functors with PE = IdK, together with a natural transformation

τ: EP → IdL

satisfying

Pτ = idP and τE = idE .

In other words, an adjoint pair E a P of continuous functors with a unit of adjunction

id: IdK → PE and counit of adjunction τ: EP → IdL.
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(2) Two embedding-projection adjunctions (E, P , τ) and (E′, P ′, τ′) from K to L are

called isomorphic, notation

(E, P , τ) ≡ (E ′, P ′, τ′),

provided that there exist natural isomorphisms

e: E → E ′ and p: P → P ′

with

τ = τ′ · E ′p · EP .
Notation 3. We denote by

SCCe

the category whose objects are Scott-complete categories and whose morphisms from K

to L are all isomorphism-classes [E, P , τ]: K→L of embedding-projection adjunctions

E: K → L; P : L → K; τ: EP → IdL. Composition is defined by [E ′, P ′, τ′][E, P , τ] =

[E ′E, PP ′, τ′ · (E ′τP ′)]

(E ′E)(PP ′)
E′τP ′→ E ′P ′

τ′→ Id

and the identity arrows are [IdK, IdK, id].

(We have to verify that the composition is independent of the choice of representatives,

that is, if (E, P , τ) is isomorphic to (Ê, P̂ , τ̂), then also

(E ′E, PP ′, τ′ · (E ′τP ′)) and (E ′Ê, P̂ P ′, τ′ · (E ′τ̂P ′))

are isomorphic. This is an easy and straightforward computation, which we omit. Anal-

ogously, below we also omit the appropriate easy verifications concerning the choice of

representatives for embedding-projection adjunctions.)

Remark 2. We will now prove that directed colimits of embedding-projection adjunctions

can be computed from directed limits of projections (in the ‘category’ of all categories).

This is quite analogous to directed colimits in CPOe, see Theorem 2 of (Smyth and Plotkin

1982).

Let D be a directed diagram in SCCe indexed by an (up-)directed poset I . That is, for

each i ∈ I , a Scott-complete category Ki is given, and for all i 6 j in I , morphisms

[Eij , Pij , τij]: Ki → Kj in SCCe are given with the obvious compatibility condition. We

form a limit

Pi: L→Ki i ∈ I
of the directed diagram of the categories Ki and the projection functors Pij: Ki → Kj

(i 6 j). (The category L can be described in the expected way: objects are collections

(Ki)i∈I of objects Ki ∈Kobj
i such that for all i 6 j we have Pj(Kj) = Kj; morphisms are

collections (fi)i∈I of morphisms fi ∈ Kmor
i such that for all i 6 j we have Pij(fj) = fi.

And Pi is the i-th projection.) We claim that

(i) L is a Scott-complete category and Pi are continuous functors.

(ii) The universal property of the limit yields for each i ∈ I a unique functor Ei: Ki →L

with PjEi = Eij for all j > i and a unique natural transformation τi: EiPi → IdL

with Pjτi = τijPj for all j > i.
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(iii) [Ei, Pi, τi]: Ki →L are morphisms forming a cocone of the given diagram D.

(iv) A colimit of the directed diagram of all functors EiPi: L → L (i ∈ I) and all

natural transformations EjτijPj: EiPi → EjPj (i 6 j) in the category LL is IdL with

colimit maps τi: EiPi → IdL (i ∈ I).
(v) Property (iv) implies that the cocone (iii) is a limit of D in SCCe.

Theorem 4. (Directed colimits in SCCe). For each directed diagram D in SCCe a directed

limit of projections coincides with a directed colimit of embedding (both in CAT). A cone

[Ei, Pi, τi] of D is a colimit in SCCe iff colimEiPi = Id (more precisely: (iv) above holds).

Remark 3. The proof consists of two parts, the first of which has nothing to do with Scott-

completeness (and proceeds analogously to Theorem 2 of Smyth and Plotkin (1982) for

CPOs): let FACe denote the category of all finitely accessible categories and isomorphism

classes of embedding-projection adjunctions. We first prove Theorem 4 for this larger

category, and at the end we show that if the given diagram lives in SCCe, the colimit

remains in SCCe.

Proof.

Part I. Directed colimits in FACe.

Let (I,6) be a directed poset, let Ki (i ∈ I) be finitely accessible categories, and let

[Eij , Pij , τij]: Ki → Kj be a compatible system of embedding-projection adjunctions for

all i 6 j in I .

We first prove all the claims made in Remark 2.

(a) For each i ∈ I we can define Ei: Ki → L by PjEi = Eij for all j > i. In other

words, all Eij , j > i, form a cone of the diagram of projections Pjk for all k > j > i.
In fact, from PjkEjk = Id we get

Eij = PjkEjkEij = PjkEik .

(b) For each i ∈ I we can define τi: EiPi → IdL by

Pjτi = τijPj for all j > i .

In other words, we have the compatibility Pjk(τikPk) = τijPj for all k > j > i. This

follows from τik = τjk ·EjkτijPjk (see composition in SCCe), since Pjkτjk = id implies

PjkτjkPk = id. Thus,

PjkτjkPk = PjkEjkτijPjkPk = τijPj .

(c) (Ei, Pi, τi) is an embedding-projection adjunction for each i ∈ I . In fact, PiEi = Id

because Eii = Id. Also Piτi = id because τiiPi = id. The equality τiEi = id follows

from the fact that

Pj(τiEi) = τijPjEi = τijEij = id for all j > i .

(d) Consider the directed diagram of all EiPi (i ∈ I) and all

EiτijPj: EiPi → EjPj for i 6 j
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in LL. We prove that the cocone (EiPi
τi→ Id)i∈I forms a colimit of that diagram.

The cocone is compatible, that is,

τj · EjτijPj = τi for i 6 j

because for each k > j we have

Pk(τj · EjτijPj) = τjkPk · EjkτijPj
= τjkPk · EjkτijPjkPk
= (τjk · EjkτijPjk)
= τjkPk

= Pkτi.

To verify the universal property, it is sufficient to prove that for each k ∈ I , the

cocone (PkEiPi
Pkτi→ Pk)i∈I has the corresponding universal property (since colimits in

LL are formed object-wise). This is obvious, because for the upper-set {i ∈ I; i > k}
the Pk-image of the restriction of our diagram is the constant diagram with value

Pk:

Pk(EiPi) = PkiPiEiPi = PkiPi = Pk for all i > k

and

Pk(EjτijPj) = PkjτijPj

= Pki(Pijτij)Pj

= Pki idPj

= id for all j > i > k.

We also have Pkτi = idPk for all i > k.
(e) L has directed colimits, and Pi and Ei are continuous functors. In fact, since Ki

have directed colimits and the connecting functors preserve them, it follows that the

functors Pi (i ∈ I) preserve and, in fact, collectively create, directed colimits. The

functors Ei preserve all existing colimits, since Ei is a left adjoint of Pi.

(f) L is finitely accessible. In fact, the collection A of all objects EiX, where i ∈ I and

X is finitely presentable in Ki, is essentially small. Let us verify first that it consists

of finitely presentable objects of L. Given a directed colimit (Lt
at→ L)t∈I in L and

a morphism f: EiX → L for some finitely presentable object X of Ki, we have that

the morphism Pif: X → PiL = colimPiLt factors as

Pif = Piat · g for some g: PiX → PiLt, t ∈ T

and this proves that f factors through at:

f = f · (τi)EiX (τiEi = id)

= (τi)L · EiPif (naturality)

= (τi)L · EiPiat · Eig
= at · (τi)Lt · Eig (naturality).
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Moreover, if f = a′th
′ = a′′t h

′′ for some h′: EiX → Lt′ and h′′: EiX → Lt′′ , then from

the finite presentability of X and from Piat′ · Pih′ = Piat′′ · Pih′′ we conclude the

existence of t > t′, t > t′′ and k: X → PiLt with

k = PiLt′t · Pih′ = PiLt′′t · Pih′′

(where Lt′t: Lt′ → Lt denotes the connecting morphisms).

Then h = (τi)Lt · Eik: EiX → Lt fulfils

h = Lt′t · h′ = Lt′′t · h′′ .

This proves that EiX is finitely presentable in L. For each object L of L the

canonical diagram A ↓L→L is filtered: given a finite subcategory C of A ↓L,

we first find i ∈ I such that for each object EjX
f
→ L of C we have j > i; then

that object can be substituted with Ei(EijX)
f
→ L (the proof that EijX is finitely

presentable in Ki is analogous to the above proof that EiX is finitely presentable in

L), thus, we can assume that all the objects of C have form EiX
f
→ L for suitable

finitely presentable objects X of Ki. We obtain a corresponding finite category of

arrows X
Pif→ PiL in Ki, and since PiL is a directed colimit of finitely presentable

objects in Ki, there exists X0

g
→ PiL with X0 finitely presentable such that for each

EiX
f
→ L in C we have a factorization

in +i  and thus, a factorization

X
Pi f

Pi L

f '

X0

f
f

f
g

g

fffg
f

XLEi

Ei f '

f
f

f
g

(si)L · Ei g

Ei X0

ffffgffffffg

fffffg

To prove that L is a canonical colimit of the above canonical diagram, we use

the fact that (EiPiL
(τi)L→ L)i∈I is a colimit (see (d)). On the one hand, each arrow

EiX
f
→ L with EiX finitely presentable in L factorizes through some of the colimit

arrows (τi)L, j ∈ I , simply because that colimit is directed. On the other hand,

for each i ∈ I we know, since Ei preserves directed colimits and Ki is finitely

accessible, that EiPiL is a directed colimit (EiXs

fs→ EiPiL) of arrows with Xs finitely

presentable in Ki.
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(g) The morphisms [Ei, Pi, τi]: Ki →L form a compatible cocone of the given diagram,

that is, for i 6 j we have

Ej · Eij = Ei

(since, given k > j, Pk(EjEij) = EjkEij = Eik = PkEi),

Pij · Pj = Pi,

and

τj · EjτijPj = τi .

In fact, given k > j

Pk(τj · EjτijPj) = τjkPk · PkEkEjkτijPjkPk
= (τjk · EjkτijPjk)Pk
= τikPk

= Pkτi.

(h) So far we verified (iii) and (iv) of Remark 2. We now prove that this implies that

[Ei, Pi, τi] is a colimit cocone of D in FACe. Let [E ′i , P
′
i , τ
′
i]: Ki → L′ (i ∈ I) be a

cocone of D in FACe.

We define a morphism

[E, P , τ]: L→L′

as follows:

(i) E: L′ → L is a directed colimit of the functors E′iPi (i ∈ I) and the natural

transformations

E ′jτijPi: E
′
iPi → E ′jPj(i 6 j)

in (L′)L. Let

γi: E
′
iPi → E (i ∈ I)

denote the colimit cocone. Since E ′iPi are continuous, so is E.

(ii) P : L→L′ is defined by Pi · P = P ′i (i ∈ I). Since P ′i are continuous, so is P .

Moreover, EP = colimE ′iP
′
i with colimit cocone γiP (i ∈ I).

(iii) τ: EP → Id is defined by τ = colim τ′i, that is, τ · γiP = τ′i (i ∈ I).

(h1) [E, P , τ] is a morphism: we have PE = Id because

Pk(PE) = P ′k colimi>k E
′
iPi

= colimi>k P
′
kE
′
iPi

= colimi>k PkiP
′
i E
′
iPi

= colimi>k PkiPi

= colimi>k Pk

= Pk.
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Further, Pτ = id because

Pk(Pτ) = P ′k colimi>k τi

= colimi>k P
′
kτi

= colimi>k Pki(P
′
i τi)

= colimi>k id

= id.

Finally, τE = colim τiE
′
iPi = colim idE′

i
Pi = idE .

(h2) The morphism of (h1) is a factorization of the given cocone, that is,

[E ′i , P
′
i , τ
′
i] = [E, P , τ] · [Ei, Pi, τi] (i ∈ I).

In fact, E ′i = E · Ei because

E · Ei = colimk>i E
′
kPkEi

= colimk>i E
′
kPkEkEik

= colimk>i E
′
kEik

= colimk>i E
′
i

= E ′i .

We clearly have P ′i = PiP , and to prove τ′i = τ · EτiP , we use τ = colimk>i τk and

E = colimk>i E
′
kPk , as well as

τi = τk · Ekτik · Pk and t′i = τ′k · E ′kτ′ik · P ′k
(from the compatibility) to get,

τ · EτiP = colimk>i τ
′
k · E ′kPkτiP

= colimk>i τ
′
k · E ′kPkτkP · E ′kPkEkτikPkP

= colimk>i τ
′
k · id · E ′kτikP ′k

= colimk>i τ
′
i

= τ′i.

(h3) The factorization of (h2) is unique, that is, if a morphism [E∗, P ∗, τ∗]: L → L′

fulfils

[E ′i , P
′
i , τ
′
i] = [E∗, P ∗, τ∗] · [Ei, Pi, τi] for all (i ∈ I),

then (E, P , τ) ≡ (E∗, P ∗, τ∗). In fact, we have natural isomorphisms

αi: E
′
i → E∗Ei

and

βi: P
′
i → PiP

∗

with

τ′i = (τ∗ · E∗τiP ∗)E∗Eiβi · αiP ′i (2)

for all i ∈ I . We define natural isomorphisms α: E → P ∗ and β: P → P ∗ as follows.

Since E∗ is continuous and (EiPi
τi→ Id)i∈I is a directed colimit in LL, we know that
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(E∗EiPi
E∗τi→ E∗)i∈I is a directed colimit in (L′)L, and thus compositions with the

natural isomorphisms αiPi also yield a colimit. Consequently, we have two colimits

of E ′iP
′
i s, and we obtain a unique natural isomorphism

α: E → E∗ with α · γi = E∗τi · αiPi (i ∈ I) . (3)

Analogously, since (EiP
′
i

τiP→ P ) is a directed colimit in LL′
, we have a unique

natural transformation

β: P → P ∗ with β · τiP = τiP
∗ · Eiβi (i ∈ I) . (4)

This is also a natural isomorphism, whose inverse is defined by β−1 · τiP ∗ =

τiP · Eiβ−1
i .

We only have to prove

τ = τ∗ · E∗β · αP ,
or equivalently,

τ′i = τ∗ · E∗β · αP · γiP (i ∈ I).
Because of (2), it is sufficient to show

E∗τiP
∗ · E∗Eiβi · αiP ′i = E∗β · αP · γiP

and because of (3) this follows from

E∗τiP
∗ · E∗Eiβi = E∗β · E∗τiP ,

and the latter follows from (4). This concludes the proof of (E, P , τ) ≡ (E∗, P ∗, τ∗).

Part II. Directed colimits in SCCe.

We will prove that if each category Kiis Scott-complete, then so is L. Let D: D→L

be a diagram with a cocone in L. For each i ∈ I the diagram PiD has a cocone in Ki,

thus, it has colimit

colimPiD = (Dd
rdi→ Ri)i∈I (5)

Since Ei is a left adjoint, it preserves the above colimit, and we can define, for all i 6 j in

I , a morphism rij: EiRi → EjRj by

rij · Eirdi = Ejrdj · (EjτijPj)Dd for all d ∈ Dobj. (6)

This is well defined since the right-hand side is a cocone of EiPiD: given a morphism

δ: d→ d′, in D, we have

Ejrd′j · (EjτijPj)Dd′ · EiPiDδ = Ej(rd′j · (τij)PjDd′ · EijPijPjDδ)

= Ej(rd′j · PjDδ · (τij)PjDd)
= Ej(rd′j · (τij)PjDd)
= Ejrdj · (EjτijPj)Dd.

The morphisms rij: EiRi → EjRj form a directed diagram D∗ in L – denote by (EiRi
ri→

R)i∈I a colimit of D∗. We define, for each d ∈ Dobj, a morphism cd: Dd→ R, by using the
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above colimit Dd = colimEiPiDd:

cd · (τi)Dd = ri · Eirdi for all d ∈ Dobj, i ∈ I. (7)

This is well defined because the right-hand side is a cocone: for all i 6 j in I we have

ri · Eirdi = rj · rij · Eirdi = (rj · Ejrdj) · (EjτijPj)Dd by (3).

We will prove that the cocone (Dd
cd→ R)d∈Dobj is a colimit of D in L. First, this is indeed

a cocone because for each morphism δ: d → d′ in D we have cd = cd′ · Dδ, since for all

i ∈ I
cd · (τi)Dd = riEirdi by (4)

= riEi(rd′i · PiDδ) by compatibility of colimPiD

= cd′ · (τi)Dd′ · EiPiDδ by (4)

= cd′ · Dδ · (τi)Dd by naturality of τi.

Second, let (Dd
c′
d→ R′)d∈Dobj be another cocone of D in L. For each i there exists a unique

morphism fi: Ri → PiR
′ in Ki with

fi · rdi = Pic
′
d for all d ∈ Dobj. (8)

The morphisms (τi)R′ · Eifi: EiRi → R′ form a cone of the above diagram D∗, that is, for

all i 6 j we have

(τj)R′Ejfj · rij = (τi)R′ · Eifi: EiRi → R′.

To verify this, we use the fact that EiRi is a colimit of EiPiDd’s: for each d ∈ Dobj we have

(τj)R′Ejfj · rij · Eirdi = (τj)R′ · Ej(fjrdj · (τij)PjDd) by (6)

= (τj)R′ · EjPjc′d · (EjτijPj)Dd by (8)

= c′d · (τj)Dd · (EjτijPj)Dd by naturality of τj

= c′d · (τj)Dd · EjPj (τi)Dd by definition of τi

= c′d · (τi)Dd · (τj)EiPiDd by naturality of τj

= c′d · (τi)Dd since τjEi = id

= (τi)R′ · EiPic′d by naturality of τij

= (τi)R′ · Eifi · Eirdi by (6).

Consequently, we can define a morphism f: R → R′ by

f · ri = (τi)R′ · Eifi: EiRi → R′ for all i ∈ I. (9)

This is the desired factorisation of the given cocone of D, that is, f · cd = c′d for all

d ∈ Dobj: it is sufficient to observe that for each i ∈ I we have

c′d · (τi)Dd = (τi)R′ · EiPic′d by naturality of τi

= (τi)R′ · Ei(firdi) by (8)

= f · ri · Eirdi by (9)

= (f · cd) · (τi)Dd by (8).
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It remains to prove that f is unique. Given f: R → R′ with f · cd = c′d for all d ∈ Dobj, we

prove that f = f by showing that f · ri = f · ri for all i ∈ I . This follows from the fact

that Ei preserves the above colimit of PiD: for each object d in D we have

(f · ri) · Eirdi = f · cd · (τi)Dd by (8)

= f · cd · (τi)Dd
= (f · ri) · Eirdi by (8).

5. Recursive domain equations

In this section we will show how solutions of equations X ∼= T (X) can be obtained for

Scott-complete categories X. The idea is quite analogous to that of solving such equations

for CPOs, but we have to go one level deeper. In the case of CPOs the given rule T (X)

for objects is ‘somehow’ understood to be a functor, that is, we assume that a rule T (f)

for morphisms (continuous functions) f is also given. If, moreover, this rule is locally

continuous, that is, T (
⊔
n∈ω fn) =

⊔
n∈ω T (fn) for all ω-chains (fn) of continuous maps with

a given domain and codomain, we obtain a locally continuous functor T : CPO→ CPO,

which restricts to a continuous functor T e : CPOe → CPOe. The latter has a canonical

fixed point, which we declare as ‘the’ solution of X ∼= T (X).

Now for Scott-complete categories we have to extend T from the object part T (X)

in two levels: for continuous functors F: X → Y we need a rule to obtain continuous

functors T (F): T (X)→ T (Y ). In other words, we extend T to a functor T : SCC→ SCC.

But we also need a rule that, given continuous functors F1, F2: X → Y , assigns to each

natural transformation ϕ: F1 → F2 a natural transformation T (ϕ): T (F1) → T (F2). In

other words, we need a 2-functor (see, for example, Borceux (1994)) on the 2-category

SCC whose

— objects (0-cells) are Scott-complete categories,

— morphisms (1-cells) are all continuous functors,

and

— 2-cells are all natural transformations.

That is, we now consider SCC as a sub-2-category of the usual 2-category of all

categories, all functors and all natural transformations.

Examples 2.

(1) −×K: for each Scott-complete category K we extend the object-rule X 7→ X ×K

to a 2-functor T : SCC→ SCC defined by

T (X) = X ×K on objects X

T (F) = F × IdK on morphisms F

T (ϕ) = ϕ× id on natural transformations ϕ

(2) Lifting ()⊥: we define a 2-functor as follows:

X⊥ is the category obtained from the Scott-complete category X by adding a new

initial object ⊥ and adding a unique morphism ⊥ → a for each a ∈ Xobj;

F⊥ is the functor extending F by F⊥(⊥) = ⊥;

ϕ⊥ is the natural transformation extending ϕ by the ⊥-component id⊥.
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(3) Product ×: we define a 2-bifunctor ×: SCC× SCC→ SCC by the rule

×(X,Y ) = X × Y for pairs of objects

×(F,G) = F × G for pairs of morphisms

and

×(ϕ, ψ) = ϕ× ψ for pairs of natural transformations.

(4) Sum ⊕. (This construction is not a categorical coproduct – in fact, SCC does not

have coproducts since SCC-objects are required to possess an initial object but

SCC-morphisms are not required to preserve initial objects.) We define a 2-bifunctor

⊕: SCC× SCC→ SCC

by the rule

X ⊕ Y = (X + Y )⊥, a lifting of the disjoint union of X and Y , for pairs of objects;

F ⊕ G = (F + G)⊥ for pairs of morphisms.

and

ϕ⊕ ψ = (ϕ+ ψ)⊥for pairs of natural transformations.

(5) Function-space→: we define a 2-bifunctor→ : SCCop×SCC→ SCC (contravariant

in the first variable and covariant in the second one) by

→(X,Y ) = [X → Y ], the Scott-complete category of all continuous functors from

X to Y (see Part 3), for pairs of objects,

→(F,G): [X → Y ] → [X ′ → Y ′], for continuous functors F: X ′ → X, G: Y → Y ′,

is given by K 7→ GKF on objects K: X → Y and k 7→ GkF on morphisms

k: K → K ′,

→(ϕ, ψ), for natural transformations ϕ: F1 → F2 and ψ: G1 → G2, has the K-com-

ponent ψ ∗Kϕ, the Godement-product of ψ and Kϕ.

Definition 4. A 2-functor T : SCC → SCC is said to be locally continuous provided the

derived functor from [K→L] to [T (K)→ T (L)], given by

F → T (F) on objects F: K→L

ϕ→ T (ϕ) on morphisms ϕ: F → F ′,

is continuous for each pair K, L of SCC-objects.

In other words, a 2-functor T is locally continuous iff for each directed collection of

continuous functors Fi: K→L (i ∈ I) we have T (colimFi) = colimT (Fi). Analogously,

a 2-bifunctor T : SCC× SCC→ SCC is locally continuous if for every directed collection

of continuous functors Fi: K1 →L1 and Gi: K2 →L2, we have T (colimFi, colimGi) =

colimT (Fi, Gi): more precisely, if the derived functors from [(K1,K2)→ (L1,L2)] to

[T (K1,K2)→ T (L1,L2)] are continuous. And, finally, a 2-bifunctor T : SCCop×SCC→
SCC is locally continuous if the derived functors from [(K1,K2)→ (L1,L2)] to

[T (L1,K2)→ T (K1,L2)] are continuous.

Example 3. All the 2-functors and 2-bifunctors in Examples 2(1)–(5) above are locally

continuous.

Observation 2. Every locally continuous 2-functor T : SCC → SCC defines a continuous

functor

T e: SCCe → SCCe
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as follows:

T eX = TX for all objects X

and

T e[E, P , τ] = [T (E), T (P ), T (τ)] for morphisms [E, P , τ] .

In fact, since 2-functors preserve (vertical and horizontal) composition, it is easy to see that

for each embedding-projection adjunction (E, P , τ), the image (T (E), T (P ), T (τ)) is also

an embedding-projection adjunction and two isomorphic adjunctions have isomorphic

images. Thus, T e is a well-defined functor. For each directed diagram D a colimit

satisfies (iv) of Remark 2. Since the derived functor from [L → L] to [T (L) → T (L)]

is continuous, from colimEiPi = IdL we conclude colimT (Ei)T (Pi) = IdT (L) – by

Theorem 4 this implies that T preserves the colimit of D.

Remark 4. We can now conclude that SCC is algebraically compact with respect to locally

continuous 2-functors in the sense of P. Freyd (Freyd 1991). Recall that if T : A → A

is a functor, a T -algebra is a pair (A, a) consisting of an object A and a morphism

a: T (A) → A; homomorphisms from a T -algebra (A, a) into a T -algebra (A′, a′) are A-

morphisms f: A → A′ with f · a = a′ · Tf. As proved in Lambek (1968), if (A, a) is an

initial T -algebra (initial object of the category of T -algebras and homomorphisms), a

is an isomorphism. Thus A solves X ∼= TX. Dually, a T -coalgebra is a pair (A, a) with

a: A → T (A). By a canonical solution of the recursive equation X ∼= T (X), we mean an

object A and an isomorphism i: T (X) → X such that both (X, i) is an initial T -algebra

and (X, i−1) is a final T -coalgebra. P. Freyd calls a category categorically compact if every

‘appropriate’ endofunctor T has a canonical solution of X ∼= T (X). For this, a trivial

necessary condition is that the category have a zero-object (one which is initial as well as

final) – this is not true in SCC, because morphisms are not supposed to preserve initial

objects. However, for the 2-category

SCC⊥

of all Scott-complete categories, all strict and continuous functors (i.e., continuous functors

preserving initial objects) and all natural transformations, we have the following theorem.

Theorem 5. SCC⊥ is an algebraically compact category with respect to locally continuous

2-functors. That is, every locally continuous 2-functor T : SCC⊥ → SCC⊥ has a canonical

solution of the equation X ∼= T (X).

Proof. The one-morphism trivial category ⊥ is an initial object of SCC⊥. For each

locally continuous 2-functor T , the corresponding functor T e is continuous, and thus, it

preserves the colimit of the ω-chain dn: Kn →Kn+1 defined as follows:

K0 = ⊥ and Kn+1 = T (Kn); (10)

d0 = [E0, P0, τ0]: ⊥ → T (⊥) is given by the constant functor P0, the functor E0 mapping

the unique object of ⊥ to an initial abject of T (⊥), and the obvious natural transformation

τ0; and dn+1 = T e(Dn): T (Kn)→ T (Kn+1).

It follows that, given a colimit cocone (E∗n , P
∗
n , τ
∗
n): Kn →L of that chain, we have

(a) P ∗n : L→Kn (n ∈ ω) is a limit of the co-chain K0 ←K1 ←K2 · · ·
and T preserves this limit;
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(b) E∗n : Kn →L (n ∈ ω) is a colimit of the chain K0 →K1 →K2 · · ·
and T preserves this colimit.

As proved in Adámek (1974), (b) implies that L is an initial T -algebra, and by duality,

it is a canonical T -algebra.

Corollary 6. For locally continuous 2-bifunctors T : SCC⊥
op×SCC⊥ → SCC⊥, the equation

X ∼= T (X,X) has a solution.

In fact, by a general procedure presented by P. Freyd (Freyd 1991), a minimal solution

of the equation X ∼= T (X,X) is obtained as follows: from the compactness of SCC⊥ it

follows that SCC⊥
op, and hence SCC⊥

op × SCC⊥, are algebraically compact. The mixed-

variance 2-functor T yields a covariant 2-functor T̂ : SCC⊥
op × SCC⊥ → SCC⊥

op × SCC

given by

T̂ (X,Y ) = (T (Y ,X), T (X,Y )) on objects

T̂ (F,G) = (T (G, F), T (F,G)) on morphisms

and

T̂ (ϕ, ψ) = (T (ψ, ϕ), T (ϕ, ψ)) on natural transformations.

which is locally continuous if T is. A canonical solution of (X,Y ) ∼= T̂ (X,Y ) then yields

a minimal solution of X ∼= T (X,X), that is, a solution having an embedding-projection

adjunction into any other solution.

Theorem 7. Every locally continuous endofunctor of SCC has a final coalgebra.

Proof. This is quite analogous to the proof of Theorem 5, here we do not get the initial

T -algebra, because, in (10), K0 fails to be initial in SCC.

6. How Scott-complete categories are sketched and axiomatized

Recall that a finite-limit sketch (or FL-sketch) S is a small category A in which a set of

finite diagrams with cones is selected. The category of models of S is the full subcategory

Mod S of SetA consisting of all set functors turning the selected cones to limit cones. It

has been shown by Gabriel and Ulmer (1971) that Mod S is a locally finitely presentable

category and, conversely, every locally finitely presentable category is sketchable by an

FL-sketch S (that is, is equivalent to Mod S).

We extend this to sketches for Scott-complete categories. Recall that a mixed sketch,

in general, selects cones of some diagrams (to become limit cones in Set) and cocones of

some diagrams (to become colimit cocones in Set). Here we restrict the cocones to the

empty ones, i.e., to the specification that some objects be mapped to the empty set.

Definition 5. By an FL⊥-sketch S is meant a small category A together with a choice of

(a) a set of finite diagrams with cones, and

(b) a set M of objects.

A model of S is a functor T : A→ Set that maps

(a) the selected cones to limit cones in Set, and

(b) each object of M to W.

We call a category sketchable by an FL⊥-sketch S if it is equivalent to the category

Mod S of all models and all natural transformations.
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Theorem 8. A category is Scott-complete iff it is sketchable by an FL⊥-sketch.

Proof.

Sufficiency.

For each FL⊥-sketch S we will show that Mod S is Scott-complete. Denote by S0 the

FL-sketch obtained from S by forgetting the selection of M. Then Mod S0 is a locally

finitely presentable category closed under directed colimits in SetA (because directed

colimits commute with finite limits in Set). It is obvious that Mod S is closed under

directed colimits in Mod S0: if T is a directed colimit of functors Ti, i ∈ I , in SetA and

if TiA = W for all A ∈ M and i ∈ I , then also TA = W for all A ∈ M. Further, for

each object X in A such that hom(X,A) = W for all A ∈ M, we see that hom(X,−) is

a model of S, and, in fact, hom(X,−) is a finitely presentable object of Mod S (since

it is finitely presentable in SetA and Mod S is closed under directed colimits in SetA).

Let B be the closure of the set of all these hom-functors under existing finite colimits in

Mod S. Then each object of B is finitely presentable in Mod S, and we will prove that

every object T of Mod S is a directed colimit of objects in B. In fact, T is a colimit of

the diagram D: D → Mod S, where D is the comma-category of T with respect to all

hom-functors in SetA; now whenever t: hom(X,−) → T is a map of SetA, we have for

each A ∈M from TA = W that it follows that hom(X,A) = W, and thus, hom(X,−) is a

model of S. Each finite subdiagram D/D0: D0 →Mod S of D has a colimit in Mod S0

(since Mod S0 is cocomplete) and this colimit has a map into T in Mod S0, from which

it, again, follows that colimD/D0 is a model of S. We thus obtain a directed diagram of

all colimD/D0 ∈ B and a colimit of this diagram is T . This proves that Mod S is finitely

accessible. Finally, to show that Mod S is consistently cocomplete, we observe that for

any diagram D in Mod S with a cocone having a codomain T ∈Mod S, we can form a

colimit in Mod S0 and the existence of an arrow from that colimit to T then guarantees

that the colimit is a model of S.

Necessity.

For each Scott-complete category K we will find an FL⊥-sketch. Recall here that, by

a result of Lair (1981), every finitely accessible category can be sketched by a mixed

sketch. That is, there exists a triple S = (A,L,C) consisting of a small category A, a

specification L of cones for some diagrams of A and a specification C of cocones for

some diagrams in A such that K is equivalent to Mod S, the category of all functors

in SetA mapping the specified (co-)cones to (co-)limits. A concrete description of S has

been presented in Adámek and Rosický (1994): start with a set C of finitely presentable

objects of K such that all objects are directed colimits of objects from C. We consider C

as a full subcategory of K and we form the Yoneda embedding

Y : Kop → SetC, Y K = hom(K,−)/C.

For each finite diagram D in K choose a limit of the diagram Y · Dop in SetC

MD = limY · Dop in SetC,

and let CD denote the canonical colimit cocone expressing MD as a colimit of hom-
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functors. The following sketch S = (A,L,C) sketches K:

A = Y (Cop) ∪ {MD;D finite diagram in A}

(a full subcategory of SetC), L are the cones expressing TD as a limit of D, and C are the

cocones CD . Now observe that whenever a finite diagram D has a colimit A = colimD

in K, we need not add MD because YA ∼= limY Dop. Since K is Scott-complete and has

⊥ = colim W, we only need to add MD for nonempty, inconsistent diagrams D. But for

each such D we have MD = MW, the constant functor of value W. (In fact, for each D

the set MDC consists of all cones of Y · Dop with the domain Y C , that is, all cocones of

D with the domain C in K). Thus, if K has no inconsistent nonempty diagrams, that is,

if it is locally finitely presentable, the above sketch is a limit sketch. If, on the other hand,

we just have

A = Y (Cop) ∪ {MW},

that is, we add (formally) an initial object MW to Y (Cop), and L consists, besides the FL

cones of Y (Cop), of the cones of nonempty, finite, inconsistent diagrams with the domain

MW, while in C we only have MW = colim W. Consequently, S is an FL⊥-sketch.

Remark 5. Let us recall from Coste (1979) that locally finitely presentable categories are

precisely those that can be axiomatized by a limit theory T of first-order logic (in some

S-sorted signature Σ), that is, that are equivalent to the category

ModT

of all models of T and all Σ-homomorphisms. A limit theory is a theory using limit

sentences only, that is, sentences of the form

(∀xi : si)[ϕ(x1, . . . , xn) =⇒ (∃yj : tj)ψ(x1, . . . , xn, y1, . . . , ym)]

where ϕ and ψ are conjunctions of atomic formulae, si and tj are sorts and xi and yj are

variables of the specified sorts.

Definition 6. A theory in first-order logic is called a limit-⊥ theory if each of its sentences

is either a limit sentence or a sentence of the form

(∀x : s)[(x : s) =⇒ false].

(The semantics of the latter sentence is: no element has sort s.)

Corollary 9. A category is Scott-complete iff it is axiomatizable by a limit-⊥ theory.

It is sufficient to show how each FL⊥-sketch is axiomatized: we choose sorts=objects

and operations=morphisms, where each morphism f: a→ b is a unary operation-symbol

with variable of sort a and result of sort b. The limit specifications of S can easily be

axiomatized by limit sentences, for example, for a discrete diagram with a cone (a → ai)
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(that is, a product-specification) the obvious sentence is

(∀x1 : a1, . . . , xn : an)(∃!y: a)(
∧
πi(y) = xi).

The set M of objects in S is axiomatized by the sentences

(∀x : s)[(x = x) =⇒ false]

for each s ∈M.
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