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Classical ergodic theory for integer-group actions uses entropy as a complete invariant

for isomorphism of IID (independent, identically distributed) processes (a.k.a. product

measures). This theory holds for amenable groups as well. Despite recent spectacular

progress of Bowen, the situation for non-amenable groups, including free groups, is still

largely mysterious. We present some illustrative results and open questions on free groups,

which are particularly interesting in combinatorics, statistical physics and probability. Our

results include bounds on minimum and maximum bisection for random cubic graphs that

improve on all past bounds.
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1. Introduction

Let Γ be a group and X and Y be two sets on which Γ acts. A map φ : X → Y is called

Γ-equivariant if φ intertwines the actions of Γ:

φ(γx) = γ(φ(x)) (γ ∈ Γ, x ∈ X).

If X and Y are both measurable spaces, then a Γ-equivariant measurable φ is called a

Γ-factor. Let μ be a measure on X. If φ is a Γ-factor, then the push-forward measure φ∗μ

is called a Γ-factor of μ. The measure μ is Γ-invariant if

μ(γB) = μ(B) (γ ∈ Γ, B ⊆ X measurable).

If ν is a measure on Y , then a ν-a.e.-invertible Γ-factor φ such that ν = φ∗μ is called an

isomorphism from (X, μ,Γ) to (Y , ν,Γ). Classical ergodic theory is concerned with the case

that Γ = Z. In probability theory, we often have that X and Y are product spaces of the
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form AΓ or, more generally, AW , where A is a measurable space, called the base, and W

is a countable set on which Γ acts. Note that in this case, Γ acts on AW by

(γω)(x) := ω(γ−1x) (ω ∈ AW , x ∈ W, γ ∈ Γ).

When A is finite, λ is the uniform measure on A, and Γ is denumerable, then (AΓ, λΓ,Γ)

is called the |A|-shift over Γ. When μ and ν are more general product measures with finite

base spaces and Γ = Z, the problem of whether (AΓ, μ,Γ) and (AΓ, ν,Γ) are isomorphic is

very old. It was solved through the introduction of entropy by Kolmogorov [33, 34] and

Sinaı̆ [50], and the work of Ornstein [40]. In particular, the entropy of a k-shift is log k.

Factors play a key role in this and other aspects of ergodic theory.

The theory of entropy and its applications was extended to amenable groups by Ornstein

and Weiss [45]. One important feature is that the entropy of a factor of an invariant

probability measure μ is at most the entropy of μ. Ornstein and Weiss [45] noted that

no reasonable definition of entropy on free groups of rank at least 2 has this property,

since, as they showed, the 4-shift is a factor of the 2-shift over such groups. Clearly the

2-shift is also a factor of the 4-shift. The problem of whether the 2-shift and the 4-shift,

for example, are isomorphic was finally solved by Bowen [9], who introduced a notion

of entropy for free-group actions that is invariant under isomorphism. His notion of

entropy again assigns the value log k to a k-shift over any free group. Bowen’s work is the

analogue of that of Kolmogorov and Sinaı̆. However, most of Ornstein theory remains

terra incognita.

One reason, therefore, to study factors over free groups, and especially factors of

product measures, is to understand how to extend Ornstein theory. Other reasons arise

from questions in probability theory, combinatorics and computer science, as well as the

ergodic theory of equivalence relations. We shall discuss questions from most of these

areas here, providing some results and highlighting some particularly interesting open

questions.

Recent papers concerning factors (generally of IID processes or their continuous

analogue, Poisson point processes) that involve a mix of probability and combinatorics

include Holroyd and Peres [28], Timár [54], Ball [7], Holroyd, Pemantle, Peres and

Schramm [27], Chatterjee, Peled, Peres and Romik [13], Soo [53], Holroyd [25], Holroyd,

Lyons and Soo [26], Timár [55], Mester [38], Lyons and Nazarov [37], Angel, Benjamini,

Gurel-Gurevich, Meyerovitch and Peled [4], Csóka and Lippner [17], Gamarnik and

Sudan [22], Csóka, Gerencsér, Harangi and Virág [16], Harangi and Virág [24], Backhausz,

Szegedy and Virág [5], Conley [15], Kun [35], Quas and Soo [48] and Gurel-Gurevich

and Peled [23].

The utility of factors of IID processes on non-amenable groups has been shown

in various ways. For example, see Popa [47], Chifan and Ioana [14], Houdayer [29],

Lyons [36], Abért and Weiss [1] and Kun [35].

Because in many situations one has the natural Cayley graph of a free group, that is,

a regular tree, one also is often interested in processes that are invariant under the full

automorphism group of the tree and, similarly, in factors that are equivariant with respect

to the full automorphism group. Thus, let Td be a d-regular tree with d � 3. When d is

https://doi.org/10.1017/S096354831600033X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831600033X


Factors of IID on Trees 287

even, this is a Cayley graph of the free group Fd/2 on d/2 generators. In all cases, it is a

Cayley graph of the free product of d copies of Z2.

Our greatest interest in this paper is Aut(Td)-factors

φ : ([0, 1]V(Td),LV(Td)) → {0, 1}V(Td),

where L is Lebesgue measure on [0, 1]. We shall often leave off the prefix Aut(Td) from

the word ‘factor’. Since the domain space is product measure, or IID, such a φ is called a

factor of IID, or FIID for short. The elements of the domain space are sometimes called

labels. The push-forward measure φ∗LV(Td) is also called an FIID. Under the same rubric

we shall consider other product measures over either V(Td) or E(Td), with the codomain

also being other product measurable spaces over either V(Td) or E(Td).

Extending the fundamental example of Ornstein and Weiss [45], Ball [6] showed that

the 4-shift is an Aut(Td)-factor of the 2-shift, as is LV(Td). For this reason, it matters little

which product measure is used as the domain of a factor.

Our contributions in this area are to exhibit weak* limits of FIID processes that are

not themselves FIID, and to use FIID processes in order to improve on existing bounds

for minimum and maximum bisection of random regular graphs. For example, Monien

and Preis [39] showed that random 3-regular graphs asymptotically have bisection width

at most 1/6, which we improve to 0.1623.

2. Factors on trees

Let o denote a fixed vertex, the root, of Td. There is a correspondence between Aut(Td)-

factors of IID, φ, and spherically symmetric measurable functions F : [0, 1]V(Td) → {0, 1},
namely,

F(ω) = (φ(ω))(o) (ω ∈ [0, 1]V) (2.1)

in one direction and

(φ(ω))(γ−1o) = F(γω) (ω ∈ [0, 1]V, γ ∈ Aut(Td)) (2.2)

in the other.

For a measurable space A, write πx : AV → A for the natural coordinate projections

(x ∈ V). For K ⊆ V, write F (K) for the σ-field on AV generated the maps πx for x ∈ K .

Let Br := Br(o) be the graph induced on the set of vertices within graph distance r

of o. We may approximate F as in (2.1) by spherically symmetric measurable maps

Fr : [0, 1]V(Br(o)) → {0, 1} that converge to F a.s. For example, the conditional expectations

Fr := E
[
F | F (Br(o))

]
converge to F by Lévy’s 0-1 Law. These maps Fr determine FIIDs

φr via (2.2), called block factors of IID or local rules. We have that φr converges to φ a.s.

(in the product topology) and therefore (φr)∗LV converges to φ∗LV in Ornstein’s d̄-metric.

This metric is defined as follows. Let μ1 and μ2 be two Γ-invariant probability measures

on AW , where Γ acts quasi-transitively on W and A is a finite set. Let W ′ be a section of

Γ\W . Then

d̄(μ1, μ2) := min

{ ∑
w∈W ′

P
[
X1(w) �= X2(w)

]
; X1 ∼ μ1, X2 ∼ μ2, (X1, X2) is Γ-invariant

}
.
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The tail σ-field is defined to be
⋂

r F (V \ Br). For x ∈ V, let Dx denote the set of vertices

separated from o by x. If (x1, x2, . . .) is a simple path of vertices in Td, the corresponding

1-ended tail σ-field is
⋂

n F (D(xn)). Let Aut+(Td) denote the parity-preserving subgroup

of Aut(Td), that is, Aut+(Td) := {γ ∈ Aut(Td) ; ∀x ∈ V(Td) d(x, γx) ∈ 2N}, where d(x, y) is

the graph distance between x and y. Every Aut(Td)-invariant Aut(Td)-ergodic probability

measure on AV is an equal mixture of two Aut+(Td)-invariant Aut+(Td)-ergodic probability

measures, and the latter have trivial 1-ended tail σ-fields, as shown by Pemantle [46]. By

virtue of being Aut+(Td)-ergodic, every FIID has trivial 1-ended tails.

A probability measure μ on AV is called m-dependent if F (K1), . . . ,F (Kp) are inde-

pendent whenever the sets Ki are pairwise separated by graph distance > m. We say that

μ is finitely dependent if it is m-dependent for some m < ∞. For example, a block FIID

that depends on the ball of radius r is 2r-dependent.

According to the Kolmogorov 0-1 Law, the tail σ-field is trivial for every IID probability

measure. Reasoning similar to its proof shows the second of the following implications

for Aut(Td)-invariant processes:

block FIID =⇒ finitely dependent =⇒ trivial tail.

It is open whether finitely dependent implies FIID and whether trivial tail implies FIID.

These questions are resolved on Z: finitely dependent implies FIID by using the VWB

condition of Ornstein [43] and trivial tail does not imply FIID (even for finite A) by

Ornstein [42] and Kalikow [30]. It is also known that for finite A, FIID implies trivial

1-ended tail σ-fields, as proved by Rohlin and Sinaı̆ [49]. This latter implication is false

for A = [0, 1]. We note, however, that Smorodinsky [52] proved that Gaussian processes

on Z with trivial 1-ended tail are FIID.

The following question is due to Bowen [10].

Question 1. Is every FIID process isomorphic to an IID process?

Ornstein [41] proved that this holds on Z. It does not suffice on Td to have factor maps

each way, since this holds for the 2-shift and 4-shift, but these are not, by Bowen [9],

isomorphic. Note that Popa [47] proved that there exist non-amenable groups where

FIIDs are not necessarily isomorphic to IIDs.

Many of the above questions can be asked about invariant processes on non-amenable

groups more generally, not just free groups.

Question 2. Is every finitely dependent process an FIID?

This holds in the amenable case again by using the VWB condition, here defined by

Adams [2].

We now present an example of an FIID on Td with finite A whose tail σ-field is full

(everything). Such examples on Z were given by Ornstein and Weiss [44] (who proved

that every process is isomorphic to one whose tail σ-field is full), Burton, Denker and

Smorodinsky [11] and Burton and Steif [12].
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Proposition 2.1. There exists a unique Aut(Td)-invariant probability measure, μpm, on the

set of perfect matchings of Td; it is an FIID whose tail σ-field is full.

Proof. Since the stabilizer Γ of o in Aut(Td) acts transitively on the set of perfect

matchings of Td, there is a unique Γ-invariant probability measure, μpm, on the set of

perfect matchings. This measure is easy to construct by starting at o, choosing uniformly

at random one of its d incident edges to be in the matching, and then working outwards

independently, where every time there is a choice between d − 1 edges, they are equally

likely to be in the matching. Using the independence, it is not hard to see that μpm is

actually Aut(Td)-invariant. Although it is far from obvious, μpm is an FIID, as shown by

Lyons and Nazarov [37].

To see that the tail is full, consider any event A of perfect matchings and any radius

r � 0. Let Ar be the event consisting of all perfect matchings that agree with some element

of A when restricted to the complement of E(Br(o)). We claim that A = Ar for all r, which

will imply that the tail of μpm is full. We prove this by induction on r. It is clear that

A0 = A. Now let ω ∈ A and r � 0. By definition, there exists some ω′ ∈ Ar+1 that agrees

with ω outside Br+1(o). Consider an edge e ∈ Br+1(o) \ Br(o). Let F be the set of d − 1

edges incident to e that do not lie in Br+1(o). Since ω(e) = 1 if and only if ω(f) = 0 for

all f ∈ F , and likewise for ω′, it follows that ω(e) = ω′(e), whence that ω agrees with ω′

outside Br(o), that is, ω′ ∈ Ar . Therefore, A = Ar implies that A = Ar+1, which completes

the induction.

For similar reasons, there is a unique Aut(Td)-invariant probability measure, μcol, on the

set of proper d-colourings of E(Td). This measure is again easy to construct by working

outwards from o. Proper d-colourings can also be regarded as Cayley diagrams of the

free product, Z
∗d
2 , of d copies of Z2.

Question 3. Is μcol an FIID?

This is open. A positive answer would imply that the set of Aut(Td)-factors is equal

to the set of Aut(Td)-invariant Z
∗d
2 -factors. Note that every Z

∗d
2 -invariant probability

measure induces an Aut(Td)-invariant probability measure by averaging with respect to

the stabilizer of o in Aut(Td).

Let 1, . . . , d be the d colours we use. It is also open whether μcol = φ∗μ
pm for some

Aut(Td)-factor φ that colours every edge in the perfect matching by colour 1, that is,

(φ(ω))(e) = 1 for all e with ω(e) = 1.

We mention a partial result towards answering Question 3. A proper d-colouring is the

same as a list (P1, . . . , Pd) of d disjoint perfect matchings. It is possible to obtain as an

FIID a probability measure on lists (P1, . . . , Pd−2, {Q1, Q2}), where Pi and Qj are disjoint

perfect matchings, but {Q1, Q2} is unordered. Indeed, choose P1 via the FIID μpm. Note

that ([0, 1],L) is isomorphic to ([0, 1]N,LN), so that when we create P1 as an FIID, we

may use only the first coordinates of the labels, reserving the later coordinates for further

use. Deleting the edges of P1 decomposes Td into a forest of copies of Td−1. Provided

d − 1 � 3, we may choose perfect matchings in each copy by using the second coordinates
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of the labels and let P2 be their union. This procedure may be continued until we are

left with trees of degree 2. Each such tree is decomposed uniquely as a set of 2 perfect

matchings. We must decide, given a perfect matching P of a tree T of degree 2 and a

perfect matching P ′ of another tree T ′ of degree 2, whether P and P ′ belong to the same

Qi or not. In order to make this decision for all perfect matchings and all trees, it suffices

to make the decision for pairs of trees that are at distance 1 from each other in Td. In

such a case, there is a unique edge e that is incident to both trees. Let e1 and e2 be the

two edges in T that are adjacent to e, and let e′
1 and e′

2 be the two edges in T ′ that are

adjacent to e. Let Ui and U ′
i be the corresponding labels of these edges (i = 1, 2). Then

let the perfect matching containing e1 belong to the same Qi as the perfect matching

containing e′
1 if and only if (U1 − U2)(U

′
1 − U ′

2) > 0.

3. Tree-indexed Markov chains and Ising measures

Next we consider the simplest types of invariant processes after IID, namely, 2-state

symmetric Td-indexed Markov chains. Let |θ| � 1 and consider the transition matrix

⎛
⎜⎝

1 + θ

2

1 − θ

2
1 − θ

2

1 + θ

2

⎞
⎟⎠.

For θ � 0, another way to think of this transition matrix, which explains this paramet-

rization, is to keep the same state with probability θ and to choose uniformly among

the two states independently of the current state with probability 1 − θ. For θ � 0, the

interpretation is slightly different: change to the opposite state with probability |θ| and to

choose uniformly among the two states independently of the current state with probability

1 − |θ|. The tree-indexed Markov chain μmc
θ is obtained by assigning to the root one of

the two states with equal probability, then proceeding to the neighbours of the root by

using an independent transition from the above matrix, etc. When the two states are ±1,

this is known as the free Ising measure on Td, ferromagnetic when θ � 0. In this case, the

states are known as spins. We shall use this terminology for convenience.

The description of μmc
θ does not make it apparent that μmc

θ is an invariant measure,

but it is not hard to check that it is indeed invariant. However, an important alternative

description makes this invariance obvious. Namely, consider the clusters of Bernoulli(|θ|)
bond percolation on Td. If θ � 0, then for each cluster, assign all vertices the same

spin, with probability 1/2 for each spin, independently for different clusters. If θ � 0,

then assign each cluster one of its two proper ±1-colourings, with probability 1/2 each,

independently for different clusters. It is easy to see that this gives μmc
θ .

It is known that μmc
θ has a trivial tail if and only if |θ| � 1/

√
d − 1. It is also known

that μmc
θ is an FIID if |θ| � 1/(d − 1), but is not an FIID if |θ| > 1/

√
d − 1. It is open

whether μmc
θ is an FIID for 1/(d − 1) < |θ| � 1/

√
d − 1. It is also open whether there is a

critical θ0 such that μmc
θ is an FIID for 0 � θ < θ0 and not an FIID for θ0 < θ � 1; the

analogous question is also open for θ < 0. The history of the result for tail triviality is

reviewed in Section 2.2 of Evans, Kenyon, Peres and Schulman [21].
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The fact that μmc
θ is an FIID for |θ| � 1/(d − 1) is easy to see. In this regime, all

|θ|-clusters are finite a.s. Let U(e) and Ui(x) be IID uniform [0, 1] random variables

for e ∈ E(Td), i ∈ {1, 2}, and x ∈ V(Td). Choose the |θ|-clusters by using the edges with

U(e) � |θ|. Given a cluster C , let its vertex with the minimum U1(x) be xC and let the

spins in C equal sgn(U2(xC) − 1/2) if θ � 0, while if θ < 0, let the spins in C equal the

proper ±1-colouring whose spin at xC equals sgn(U2(xC ) − 1/2).

In unpublished work, this author and later Lewis Bowen gave values θd such that

for |θ| > θd, the measure μmc
d is not an FIID. This was improved to θd = 1/

√
d − 1 by

Sly [51], but his proof was not published. We give that proof here because we shall adapt

it to prove other results as well. This value of θd can also be established by using a

result of Backhausz, Szegedy and Virág [5], which characterizes the rate of decay of the

correlation of σ(o) and σ(x) as the distance between o and x tends to infinity, where σ is

any FIID whose values at the vertices are real-valued and square-integrable. In particular,

the correlation is at most (n(d − 2)/d + 1)/(d − 1)n/2 in absolute value when the distance

is n. Of course, this holds as well for weak* limits of FIID processes. In particular, weak*

limits of FIID are strongly mixing, while on Z, they need not even be ergodic. Note that

μmc
θ has trivial 1-ended tails for all |θ| < 1.

The following is at the heart of Sly’s proof, with the last observation about d̄2-closure

due to this author and Peres in 2013. Here, given two invariant probability measures μ1

and μ2 on R
V, we define

d̄2(μ1, μ2) := min{E
[
|X1(o) − X2(o)|2

]1/2
; X1 ∼ μ1, X2 ∼ μ2, (X1, X2) is Γ-invariant}.

Note that FIID processes whose one-dimensional marginals have finite second moments

are d̄2-limits of block factors.

Theorem 3.1. Let G be a graph for which there is some unimodular group Γ of automorph-

isms that acts transitively on V(G). Let o ∈ V(G). Write Sn for the set of vertices at distance

n from o. Suppose that x �→ σ(x) (x ∈ V(G)) is a Γ-invariant process with law μ on R
V(G).

Assume that 0 < Var(σ(o)) < ∞. Define Σn :=
∑

x∈Sn σ(x). If limn→∞ Var(Σn)/|Sn| = ∞ and

lim supn→∞ |Corr(σ(o),Σn)| > 0, then μ is not a Γ-equivariant FIID, nor is μ in the d̄2-closure

of the finitely dependent processes.

Note that the condition lim supn→∞ |Corr(σ(o),Σn)| > 0 alone implies that μ has a

non-trivial tail.

Proof. Without loss of generality, we may assume that E
[
σ(o)

]
= 0 and that SD(σ(o)) =

1. We shall show that if limn→∞ Var(Σn)/|Sn| = ∞ and μ lies in the d̄2-closure of the finitely

dependent processes, then limn→∞ Corr(σ(o),Σn) = 0.

Let ε > 0. Choose an invariant process (X,Y ) on R
V × R

V such that X ∼ μ, Y is

finitely dependent, and SD(X(o) − Y (o)) < ε. For simplicity of notation, we take X = σ.

Write ΣY
n :=

∑
x∈Sn Y (x). By the Mass-Transport Principle, we have that E

[
Y (o)Σn

]
=

E
[
σ(o)ΣY

n

]
. By finite dependence, we have Var(ΣY

n ) = O(|Sn|) = o(Var(Σn)), whence

E
[
Y (o)Σn/ SD(Σn)

]
= E

[
σ(o)ΣY

n / SD(Σn)
]

→ 0
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as n → ∞. By the Cauchy–Schwarz inequality, we have

|E
[
Y (o)Σn/ SD(Σn)

]
− E

[
σ(o)Σn/ SD(Σn)

]
| � SD(Y (o) − σ(o)) < ε.

Taking n → ∞, it follows that

lim sup
n→∞

|Corr(σ(o),Σn)| = lim sup
n→∞

|E
[
σ(o)Σn/ SD(Σn)

]
| < ε,

as desired.

The following is Sly’s result.

Corollary 3.2. For |θ| > 1/
√
d − 1, the Td-indexed Markov chain μmc

θ is not an FIID.

Proof. Let |θ| > 1/
√
d − 1 and σ ∼ μmc

θ . We verify the conditions of Theorem 3.1. Note

that

Corr(σ(x), σ(y)) = E
[
σ(x)σ(y)

]
= θn

when x and y are at distance n from each other. Also, |Sn| = d(d − 1)n−1. Therefore,

E
[
σ(o)Σn

]
= |Sn|θn

and

Var(Σn)/|Sn| = 1 +

n−1∑
k=1

(d − 2)(d − 1)k−1θ2k + (d − 1)nθ2n ∼ c|Sn|θ2n

for some constant c as n → ∞. Hence the conditions of Theorem 3.1 follow.

It is open whether discrete FIID processes are closed in the d̄-topology, as they are on

Z (see Ornstein [43]). We shall use Theorem 3.1 to show that the class of FIID processes

is not closed in the weak* topology, as is easy to show on Z. This was also shown

independently by Harangi and Virág [24] on all infinite finitely generated groups, but

their proof does not show the same for discrete processes.

Define ρd := 2
√
d − 1/d. The spectrum of the transition operator for simple random

walk on Td is the interval [−ρd, ρd], as shown by Kesten [32]. Let σ be the Gaussian wave

function of Csóka, Gerencsér, Harangi and Virág [16] with eigenvalue ρ for the transition

operator; this is a centred Gaussian field on Td whose covariances satisfy the recurrence

c0 = 1; c1 = ρ; (d − 1)ck+1 − dρck + ck−1 = 0 (k � 1),

where ck is the covariance between each pair of vertices at distance k.

Corollary 3.3. There is a Gaussian process on Td that is not an FIID but is a weak* limit

of FIID processes. There is a {0, 1}-valued process that is not an FIID but is a weak* limit

of FIID processes.

Proof. Let σ be the Gaussian wave function with eigenvalue ρd for the transition

operator; Csóka, Gerencsér, Harangi and Virág [16] show that σ is a weak* limit of
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FIIDs. Induction shows that

Corr(σ(x), σ(y)) = (n(d − 2)/d + 1)(d − 1)−n/2

for x and y at distance n. Therefore, E
[
σ(o)Σn

]
∼ cn|Sn|1/2 and Var(Σn)/|Sn| ∼ c′n2 for

some positive constants c and c′ as n → ∞. Hence the conditions of Theorem 3.1 follow.

Now let τ := sgn σ. Since σ is a weak* limit of FIIDs, so is τ. Note that there exist

positive constants c1 and c2 such that if Z1 and Z2 are jointly normal random variables,

then

c1|Corr(sgnZ1, sgnZ2)| � |Corr(Z1, Z2)| � c2|Corr(sgnZ1, sgnZ2)|.

Hence the above calculations for σ hold (up to bounded factors) for τ as well.

4. Edge cuts in finite graphs

Weak* limits of FIID processes on Td can be used to bound combinatorial quantities

on random d-regular graphs or on d-regular graphs whose girth tends to infinity. More

generally, they can be used on finite graphs whose random weak limit is Td. To explain

this widely known idea, we first define ‘random weak limit’ (for this restricted case).

For a vertex x in a graph G, let Br(x;G) denote the subgraph induced by the vertices

in G whose distance from x is at most r. We consider this subgraph as rooted at x.

Let 〈Gn〉 be a sequence of finite graphs. For each r � 1, let pn,r denote the probability

that a uniformly random vertex x in Gn satisfies the property that Br(x;Gn) is rooted

isomorphic to Br(o; Td), that is, there is a graph isomorphism from Br(x;Gn) to Br(o; Td)

that sends x to o. We say that the random weak limit of 〈Gn〉 is Td if limn→∞ pn,r = 1 for

every r � 1. It is evident that every sequence of d-regular graphs whose girth tends to

infinity has this property. It is well known that if Gn is a uniformly random d-regular

graph on n vertices (or, if d is odd, on 2n vertices), then also 〈Gn〉 has this property with

probability 1. Other terms for this same concept are ‘Benjamini–Schramm convergence’

and ‘local weak convergence’.

Now, for the sake of concreteness, suppose that φ is a block FIID on Td associated

to the spherically symmetric measurable map F : [0, 1]V(Br(o;Td)) → {0, 1}. Given a graph

G, one may assign independent uniform [0, 1] random variables to its vertices and then

apply F at every vertex x for which Br(x;G) is rooted isomorphic to Br(o; Td). At other

vertices, assign the value 0. In this way, we obtain a probability measure on {0, 1}V(G) that

is ‘close’ to φ∗LV(Td) when G is ‘close’ to Td. In particular, the expected number of vertices

assigned the value 1 will be close to P[φ(•)(o) = 1]. Informally, we say that φ is emulated

on G.

If we want to bound the number of vertices assigned 1 under some constraint on the

set assigned 1, then exhibiting a random set obtained by emulating a block factor will

help. Moreover, since every FIID is a weak* limit of block FIIDs, it generally suffices to

find an FIID with the desired property on Td and to calculate P[φ(•)(o) = 1]. Indeed, we

may work with weak* limits of FIIDs.

We give two examples of this method that are inspired by Csóka, Gerencsér, Harangi

and Virág [16]. They were the first to use Gaussian factors for similar purposes.
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A bisection of a finite graph G is a subset S ⊂ V such that ||S | − |V \ S || � 1. In

particular, if |V| is even, then |S | = |V|/2. The size of a bisection S , written size(S), is

the number of edges E(S,V \ S) that join S to V \ S . The problems of minimizing or

maximizing the size of a bisection in a regular graph are known to be hard in various

senses and are of interest in computer science; see Dı́az, Do, Serna and Wormald [19].

For a sequence of graphs Gn, define

MinBi := lim sup
n→∞

min{size(S)/|V(Gn)| ; S is a bisection of Gn}

and

MaxBi := lim inf
n→∞

max{size(S)/|V(Gn)| ; S is a bisection of Gn}.

For random d-regular graphs, Bollobás [8] proved that

MinBi � d

4
−

√
d log 2

2
=

d

4
− 0.416+

√
d,

whereas Alon [3] proved that

MinBi � d

4
− 3

√
d

32
√

2
=

d

4
− 0.0663−√

d.

We improve the latter (upper) bound to d/4 − 0.32−√
d. Still in the context of random

d-regular graphs, Dembo, Montanari and Sen [18] establish the asymptotic values as

d → ∞

MinBi =
d

4
− P∗

√
d

4
+ o(

√
d)

and

MaxBi =
d

4
+ P∗

√
d

4
+ o(

√
d),

where P∗ ≈ 0.7632 is a certain known constant; for comparison with the previous bounds,

note that P∗/2 ≈ 0.3816. The best previous results on MinBi and MaxBi for random

d-regular graphs for specific d can be found in Monien and Preis [39], Dı́az, Do, Serna

and Wormald [19], and Dı́az, Serna and Wormald [20]. In the case of degrees d = 3, 4,

we improve those results here, which were that a.s. MinBi � 1/6 and MaxBi � 1.32595 for

d = 3 and MinBi � 1/3 and MaxBi � 5/3 for d = 4. We shall not actually need our finite

graphs to be regular.

Theorem 4.1. Let Gn be finite graphs whose random weak limit is Td and whose average

degree tends to d � 3. Then

MinBi <
d

2π
arccos

2
√
d − 1

d
<

d

4
−

√
d

π
(4.1)

and

MaxBi >
d

2π
arccos

−2
√
d − 1

d
>

d

4
+

√
d

π
. (4.2)
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For d = 3, this gives

MinBi <
3

2π
arccos

√
8

9
= 0.1622602−

and

MaxBi >
3

2π
arccos

(
−

√
8

9

)
= 1.3377398+.

For d = 4, it yields MinBi < 1/3 and MaxBi > 5/3.

Proof. We first make precise the connection of MinBi and MaxBi to weak* limits of

FIID processes on Td. Let WF be the class of weak* limits φ of FIID processes on Td

with values φ(•)(x) ∈ {0, 1} for x ∈ V(Td) and with P[φ(•)(o) = 1] = 1/2. Let MinBiFac

be the infimum of E
[
|{x ∼ o ; φ(•)(x) �= φ(•)(o)}|

]
/2 taken over φ ∈ WF; it is easily seen

that this infimum is a minimum. Similarly, let MaxBiFac be the supremum of E
[
|{x ∼

o ; φ(•)(x) �= φ(•)(o)}|
]
/2 taken over the same φ ∈ WF. We claim that

MinBi � MinBiFac and MaxBi � MaxBiFac . (4.3)

Indeed, let φ ∈ WF and ε > 0. There exists a block FIID φr ∈ WF such that

|E
[
|{x ∼ o ; φ(•)(x) �= φ(•)(o)}|

]
− E

[
|{x ∼ o ; φr(•)(x) �= φr(•)(o)}|

]
| < ε

2
.

Now emulate φr on Gn = (Vn,En). Let Sn ⊆ Vn be the subset of vertices assigned 1; this

need not be a bisection, as we know only that E
[
|Sn|

]
/|Vn| → 1/2 as n → ∞. However,

finite dependence of the block FIID φr implies that linear deviations from the mean of

|Sn| are exponentially unlikely as n → ∞. Furthermore, E
[
size(Sn)

]
/|Vn| tends, as n → ∞,

to E
[
|{x ∼ o ; φr(•)(x) �= φr(•)(o)}|

]
/2. We have similar exponentially fast convergence for

this proportion, size(Sn)/|Vn|. Thus, for large n, there exists Sn such that∣∣∣∣ |Sn|
Vn

− 1

2

∣∣∣∣ < ε

8d

and ∣∣∣∣size(Sn)

|Vn| − 1

2
E

[
|{x ∼ o ; φr(•)(x) �= φr(•)(o)}|

]∣∣∣∣ < ε

4
.

In addition, limn→∞ 2|En|/|Vn| = d.

Now, if |Sn| > |V(Gn) \ Sn| + 1, remove the smallest number needed of the smallest-

degree vertices in Sn to obtain a bisection S ′
n, while if |Sn| < |V(Gn) \ Sn| − 1, add the

smallest number needed of the smallest-degree vertices not in Sn to obtain a bisection

S ′
n. The vertices moved from one part to the other each have degree at most the median

degree, which is at most twice the mean degree, 4|En|/|Vn|, whence for large n, this new

bisection S ′
n satisfies∣∣∣∣size(S ′

n)

|Vn| − 1

2
E

[
|{x ∼ o ; φ(•)(x) �= φ(•)(o)}|

]∣∣∣∣ < ε,

which proves (4.3).
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(a) (b)

Figure 1.

It remains to prove the asserted bounds but for MinBiFac and MaxBiFac.

Let σ± be the Gaussian wave functions of Csóka, Gerencsér, Harangi and Virág [16]

with eigenvalues ±ρd for the transition operator. These are weak* limits of FIID

processes, and thus so are sgn σ±. (The two wave functions are also related to each

other via the distributional equality σ+
D
= f∗σ−, where f : R

V → R
V is the map (f(ω))(x) =

(−1)d(o,x)ω(x).) Consider the bisections {x ∈ V ; σ±(x) > 0}. Now for jointly normal

centred random variables (Z1, Z2), we have

P[sgnZ1 �= sgnZ2] = P[Z1Z2 < 0] =
1

π
arccos Corr(Z1, Z2). (4.4)

Since Corr(σ±(x), σ±(y)) = ±ρd for neighbours x and y, we obtain that

MinBiFac � d

2π
arccos ρd

and

MaxBiFac � d

2π
arccos(−ρd).

Local improvements lead to strict inequalities. That is, consider a vertex x such as the

heavily circled one in Figure 1, where part (a) applies to sgnσ+ and part (b) to sgn σ−.

Only the case of d = 3 is drawn, but all degrees are similar. It is easily checked that

such configurations have positive probability by using the Markov property established

in the proof of Theorem 3 of Csóka, Gerencsér, Harangi and Virág [16]. When such a

configuration occurs, change the value at x to its opposite; likewise for configurations

that are all opposite to those drawn. Note that the lower neighbour of x may change as

well, but the upper neighbours of x will not. Thus, the number of edges incident to x

with the opposite sign strictly decreases on the left and strictly increases on the right.

Finally, to prove the last inequalities in (4.1) and (4.2) that involve an estimate of the

arccos function, a little algebra reveals that they are equivalent to the inequality

sin
2√
d
<

2
√
d − 1

d

https://doi.org/10.1017/S096354831600033X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831600033X


Factors of IID on Trees 297

for d � 3. Substituting x := 2/
√
d shows that this is the same as sin x < x(1 − x2/4)1/2.

Indeed, sin x < x − x3/6 + x5/120 for 0 < x2 < 6, whereas x(1 − x2/4)1/2 > x(1 − x2/7)

for 0 < x2 < 7/4, and this leads to the desired inequality.

Finally, we improve on Kardoš, Král’ and Volec [31], who showed that if G is a finite

graph of maximum degree 3 and girth at least 637,789, then there is a probability measure

on edge cuts of G such that each edge belongs to a random cut with probability at

least 0.88672, whence (by taking expected size of edge cuts) G contains an edge cut of

cardinality at least 0.88672|E(G)|. For numerical comparison, note that this translates

to the following result when G is 3-regular: 3-regular n-vertex graphs of girth tending

to infinity possess subsets S such that |E(S,V \ S)| � (1.33008 − o(1))n for even n → ∞.

Theorem 4.1 already improved this by increasing the constant and by requiring S to be a

bisection.

Theorem 4.2. If G is a finite graph of maximum degree d and girth at least 2n + 1, then

there is a random edge cut Π of G such that

P[e ∈ Π] � 1

π
arccos

−ρd

1 + (d − 1)/(d(n − 1))

for all e ∈ E(G).

For d = 3, this says, for example, that if G has girth at least 655, then there is a random

edge cut Π such that P[e ∈ Π] � 0.89 for all e ∈ E(G).

Proof. It suffices to prove the analogous result on Td via a block FIID of radius n. We

can then adjoin trees to G in order to create a (possibly infinite) d-regular graph G′. The

block FIID can be applied to G′ to obtain a random cut Π′ of G′; then we may let

Π := Π′ ∩ E(G).

To this end, let m be standard Gaussian measure on R. Then the coordinate projections

Zx : (RV(Td),mV(Td)) → R

are independent standard normal random variables for x ∈ V(Td). Put

F :=
1√

1 + (n − 1)d/(d − 1)

∑
d(o,x)<n

Zx

(−
√
d − 1)d(o,x)

.

Then F defines a block FIID σ of radius n with single marginal equal to standard

Gaussian. Since

Corr(σ(x), σ(y)) = − 1

1 + ((n − 1)d)/(d − 1)

n−2∑
k=0

2(d − 1)k

√
d − 1

2k+1
= − ρd

1 + (d − 1)/(d(n − 1))

for x ∼ y, the result follows by (4.4).
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