
Proceedings of the Edinburgh Mathematical Society (2018) 61, 201–214

doi:10.1017/S0013091517000190

AN ELLIPTIC PDE WITH CONVEX SOLUTIONS

JON WARREN

Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
(j.warren@warwick.ac.uk)

(Received 5 January 2017)
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solutions to the elliptic partial differential equation associated with a certain generalized Ornstein–
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1. Introduction and results

We study solutions to the elliptic partial differential equation

1
2

d∑
i,j=1

(δij + xixj)
∂2u

∂xi∂xj
= c, x ∈ Rd, (1.1)

c being an arbitrary constant, and δij denoting Kronecker’s delta. This equation arose
in a probabilistic context, that of an advection-diffusion model, motivated by the work
of Gawȩdzki and Horvai [4], in which particles are carried by a stochastic flow but with
each particle experiencing an independent Brownian perturbation. The generator of the
diffusion process describing the motion of such a system of particles (in a certain limiting
regime) is the operator, which we will denote by A, appearing on the left-hand side of
(1.1). The purpose of this paper is to prove the convexity of certain solutions to (1.1).
This convexity property plays an essential part in [14], where it is used to prove the
convergence in law of the particle motions in the advection-diffusion model to a family
of sticky Brownian motions.

The operator A is associated with a linear stochastic differential equation, and con-
sequently is related to a random evolution on (a subgroup of) the affine group of Rd.
Random walks on the affine group, and particularly their invariant measures, have been
studied in considerable detail, and are important in a variety of applications; see the
recent book [1] and the references therein. However, it seems that, with the exception of
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the classical Ornstein–Uhlenbeck (OU) processes, the corresponding diffusions have not
received much attention.

We will consider solutions of (1.1) that grow linearly as |x| → ∞ and admit ‘boundary
values’

u(x)
|x| → g(x/|x|) as |x| → ∞, (1.2)

where function g defined on the sphere Sd−1 = {x ∈ Rd : |x| = 1} satisfies
∫

g(θ) dθ =
c/γd, where c is the constant appearing on the right-hand side of (1.1), and

γd =
1√
π

Γ((d + 1)/2)
Γ(d/2)

. (1.3)

We will assume that the dimension d ≥ 2. Here, the integral over the sphere is taken with
respect to Lebesgue measure normalized so

∫
1 dθ = 1.

Our first result is that the ‘Dirichlet problem’ is solvable for continuous boundary data,
with convergence to the boundary values occurring uniformly.

Theorem 1.1. Suppose that g ∈ C(Sd−1) and let c = γd

∫
g(θ) dθ, then there exists a

unique solution to the partial differential equation (1.1), with u(0) = 0 and such that

lim
r→∞ sup

θ∈Sd−1
|u(rθ)/r − g(θ)| = 0.

Taking the constant c to be zero, this result looks at first sight as if it might be related to
a Martin boundary result for the operator A. In fact, the corresponding diffusion process
is recurrent, and the only positive solutions to Au = 0 on Rd are the constant solutions.
Thus, the theory of Martin boundaries as usually developed for transient processes, see,
for example [12], is not directly applicable.

It seems plausible that one could transform (1.1) into an elliptic equation on the ball
Ω = {x ∈ Rd : |x| ≤ 1} with g becoming the boundary data on ∂Ω, and then deduce
Theorem 1 from standard results on the Dirichlet boundary problem for such equations,
as described in [5]. However if this approach were to work, then there would have to
be some solution corresponding to g being identically a non-zero constant, and no such
solution to (1.1) and (1.2) with c = 0 exists. Instead, our strategy for proving Theorem
1 is to take advantage of the spherical symmetry of the operator A to write a series
expansion for solutions involving spherical harmonic functions. This evidently associates
to any function g defined on the sphere the appropriate solution of (1.1). Then, the
more delicate part of the argument proves the uniform convergence of the solution to the
boundary data, making use of an appropriate analogue of the maximum principle in the
context of linear growth at infinity.

Convexity of the solutions to elliptic partial differential equations has been studied a
great deal in the literature, see, for example [7,8]. Here we will follow one of the estab-
lished approaches to proving convexity: making use of the fact the corresponding parabolic
equation is convexity preserving. General conditions are known [6,9] that ensure this.
However, in our problem we can see directly that the semigroup generated by A pre-
serves convexity because the associated diffusion process can be extended to a stochastic
flow of affine maps. Then to complete the argument for proving the following result, we
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must show convergence of the solution to the parabolic equation to that of the elliptic
boundary value problem.

Theorem 1.2. Suppose that g ∈ C(Sd−1) and u ∈ C2(Rd) is the solution to elliptic
boundary problem (1.1) and (1.2) with u(0) = 0. Then u is convex if and only if v ∈
C(Rd), given by

v(x) = |x|g(x/|x|) x ∈ Rd,

is convex also.

2. Separation of variables and properties of the radial equation

We may rewrite the operator A in spherical coordinates as

A =
r2

2
∂2

∂r2
+

1
2
∇2 =

1
2
(1 + r2)

∂2

∂r2
+

(d − 1)
2r

∂

∂r
+

1
2r2

ΔSd−1 = AR +
1

2r2
ΔSd−1 ,

(2.1)

where ΔSd−1 is the Laplace–Beltrami operator on the sphere Sd−1. The evident spherical
symmetry suggests a solution by the separation of variables, taking the form

u(x) = u(rθ) =
∑
l≥0

fl(r)gl(θ). (2.2)

Suppose that g ∈ L2(Sd−1) and take gl to be the projection in L2(Sd−1) of g onto the
space of spherical harmonic functions of degree l, see [11]. Then gl satisfies

ΔSd−1gl = −l(l + d − 2)gl, (2.3)

and consequently for l ≥ 1, we would like fl to solve

ARfl − l(l + d − 2)
2r2

fl = 0 (2.4)

with fl(r)/r → 1 as r → ∞ and fl(0+) = 0. In fact, such fl may be expressed in terms
of hypergeometric functions, see Lemma 2.1.

For l = 0 we define fl differently, one reason for this being that non-constant solutions
to (2.4) with l = 0 all have a singularity at the origin. Instead, we take f0 to solve

ARf0 = γd (2.5)

with f0(r)/r → 1 as r → ∞ and f0(0+) = 0. This has a solution

f0(r) = 2γd

∫ r

0

(
u2

1 + u2

)−(d−1)/2 ∫ u

0

vd−1

(1 + v2)(d+1)/2
dv du (2.6)

which may be verified by simple calculus, noting that∫ ∞

0

vd−1

(1 + v2)(d+1)/2
dv =

1
2γd

.

Using Euler’s integral representation of the hypergeometric function it is straightfor-
ward to check (see Lemma 2.1) that fl(r) decays to 0 geometrically fast for r in compact
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sets as l tends to infinity. On the other hand, gl(θ) grows at most polynomially as l tends
to infinity, as can be seen from the integral representation for gl [11, p. 42]. In conjunc-
tion, these facts guarantee that the series (2.2) converges uniformly on compact sets of
Rd and does indeed define a smooth solution to Au = c, except possibly at the origin.
However, since {0} is a polar set for the diffusion process associated with A, any bounded
solution to Au = c in a punctured ball {x ∈ Rd : 0 < |x| < r} extends to a solution on
the entire ball, and so (2.2) defines a solution on all of Rd. To see that this is so, first
note that by classical partial differential equation results the Dirichlet problem Au = c
in a ball {x ∈ Rd : |x| < r} with continuous boundary data possesses a solution. So by
linearity it is enough to know that any bounded solution to Aw = 0 in the punctured ball
which extends continuously to the outer boundary with w(x) = 0 on that boundary, is
in fact identically zero in the whole ball. This is a consequence of {0} being polar, which
implies that the Poisson kernel for the punctured ball, that is, the exit distribution of the
associated diffusion process, does not charge {0}.

Lemma 2.1. The solution to

ARf − l(l + d − 2)
2r2

f = 0,

satisfying boundary conditions f(0) = 0 and f(r)/r → 1 as r → ∞ is

f(r) = fl(r) = rl Γ((l + d + 1)/2)Γ(l/2)
Γ(l + d/2)Γ(1/2) 2F1(l/2, (l − 1)/2; l + d/2;−r2).

Moreover, for each R > 0, there exists δR ∈ (0, 1) so that

sup
r≤R

fl(r) ≤ δl
R for all sufficiently large l.

Proof. Substituting f(r) = rly(−r2) and x = −r2 into

1
2
(1 + r2)f ′′ +

d − 1
2

f ′ − l(l + d − 2)
2r2

f = 0

gives

x(1 − x)y′′ +
{

l +
d

2
− x

(
l +

1
2

)}
y′ − l(l − 1)

4
y = 0,

which is the standard form of the hypergeometric equation with parameters a = l/2,
b = (l − 1)/2 and c = l + d/2. The boundary condition f(0) = 0 is satisfied by taking
y(x) proportional to 2F1(a, b; c;x). Now, to choose the constant of proportionality to get
the behaviour as r → ∞ correct we combine Pfaff’s transformation with Gauss’s formula
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for 2F1(a, b; c; 1) to deduce that

lim
x→−∞(1 − x)b

2F1(a, b; c;x) = 2F1(c − a, b; c; 1) =
Γ(c)Γ(a − b)
Γ(c − b)Γ(a)

.

Next, using Euler’s integral representation for the hypergeometric function

fl(r) = rl Γ(l/2)
Γ((l − 1)/2)Γ(1/2)

∫ 1

0

t(l−3)/2(1 − t)(d+l−1)/2(1 + r2t)−l/2 dt.

Now the ratio of gamma functions appearing here grows sublinearly with l, whereas we
can estimate the integral as being less than

sup
0≤t≤1

(
1 − t

1 + r2t

)l/2

≤
(

1
1 + r2

)l/2

.

Consequently, the statement of the lemma holds choosing δR > R/
√

1 + R2. �

3. The associated diffusion process

Associated with the operator A is a diffusion process. We will make use of this to study
solutions of (1.1). In fact, the stochastic differential equation corresponding to A is linear,
and consequently the diffusion process can be constructed explicitly as in the follow-
ing lemma. Of particular importance is that this representation of the diffusion process
actually defines a stochastic flow of affine maps of Rd.

Lemma 3.1. Let B be a standard one-dimensional Brownian motion, and W a
standard Brownian motion in Rd starting from 0 and independent of B. For x ∈ Rd,
let

Xx(t) = x exp{B(t) − t/2} +
∫ t

0

exp{(B(t) − B(s)) − (t − s)/2}dW (s) (3.1)

then
(
Xx(t); t ≥ 0) is a diffusion process with generator A starting from x.

Proof. This follows by applying Itô’s formula to Xx, which shows that

Xx(t) = x + W (t) +
∫ t

0

Xx(s) dB(s).

This is an example of a linear stochastic differential equation; see Proposition 2.3 of
Chapter IX of [13]. Since W and B are independent, the quadratic covariation of the ith
and jth components of Xx(t) is given by

〈Xx
i (t),Xx

j (t)〉 =
∫ t

0

(
δij + Xx

i (s)Xx
j (s)

)
ds,

and accordingly Xx is a diffusion process with generator A. �
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It is easy to see from this lemma that the diffusion process is recurrent rather than
transient. Indeed, we have for every x ∈ Rd, as t → ∞,

Xx(t) = x exp{B(t) − t/2} +
∫ t

0

exp{(B(t) − B(s)) − (t − s)/2}dW (s)

law= x exp{B(t) − t/2} +
∫ t

0

exp{B(s) − s/2}dW (s)

a.s.→
∫ ∞

0

exp{B(s) − s/2}dW (s), (3.2)

where the last stochastic integral is almost surely convergent because its quadratic varia-
tion is almost surely finite. The above convergence in distribution is plainly inconsistent
with transience, and by the usual dichotomy between transience and recurrence [12] we
deduce that our diffusion process is recurrent. Indeed, the fact that the right-hand side
of (3.2) gives an invariant distribution follows directly from writing the decomposition

∫ ∞

0

exp{B(s) − s/2}dW (s)

= exp{B(t) − t/2}
∫ ∞

t

exp{(B(u) − B(t)) − (u − t)/2}dW (s)

+
∫ t

0

exp{B(s) − s/2}dW (s) (3.3)

and comparing with (3.1) with the integral
∫∞

t
exp{(B(u) − B(t)) − (u − t)/2}dW (s)

playing the part of a random starting point x.
The process Xx defined by (3.1) is an example of a generalized OU process. See [2]

for a general discussion of these processes and in particular their invariant measures.
The particular case of the generalized OU process constructed from two one-dimensional
Brownian motions, which corresponds to (3.1) with d = 1, was studied in [15]. There is
a close relationship between the generalized OU processes and exponential functionals
of Lévy processes, in our case, exponential functionals of Brownian motion. These have
been extensively studied, see the survey article [10]. In particular, we will have need of
the following observations. The invariant measure given at (3.2) can be re-written in the
form ∫ ∞

0

exp{B(s) − s/2}dW (s) law= W
(
A∞

) law=
√

A∞W (1), (3.4)

where A∞ denotes the exponential functional
∫∞
0

exp{2B(s) − s}ds. The first of these
equalities in law is (a special case of) Knight’s theorem on orthogonal martingales, see
Theorem 1.9 of Chapter 5 of [13], and the second is the Brownian scaling property,
noting that W and B are independent. The distribution of A∞ is known to be a stable
distribution of index 1/2, see [3], also Theorem 6.2 of [10]. Consequently we recognize
(3.4) as the exit distribution for Brownian motion from a half space, given by the Poisson
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kernel. Thus the invariant measure has an explicit density

ρ(x) =
Γ((d + 1)/2)

π(d+1)/2

1
(1 + |x|2)(d+1)/2

. (3.5)

In fact, one may verify easily that A∗ρ = 0 where A∗ is the formal adjoint with respect
to the Lebesgue measure of A. Moreover, with respect to the measure with density ρ, A
is formally self-adjoint.

It follows from (3.5) or (3.4) that if X(∞) is a Rd valued random variable whose
distribution is the invariant measure at (3.2), then,

E[|X(∞)|p] < ∞ for p < 1 and E[|X(∞)|] = ∞. (3.6)

Moreover, the convergence at (3.2) occurs in Lp for every p < 1. On the other hand, the
random variable

∫ t

0
exp{B(s) − s/2}ds has finite first moment, and so for every finite

time t < ∞ we have

E[|Xx(t)|2] < ∞. (3.7)

4. Proof of Theorem 1

In order to prove Theorem 1.1, we must show that the solution u, given by the series
(2.2), has the correct boundary behaviour. If g is a finite linear combination of spherical
harmonic functions, then this follows immediately from the asymptotic behaviour of fl.
However, in general it is more difficult to verify the limit behaviour of u. The key tool we
use is the following result, which plays the part of a maximum principle in our setting.

Lemma 4.1. There exists a constant K such that for every g ∈ C(Sd−1) satisfying∫
Sd−1 g dθ = 0 the function u given by (2.2) and corresponding to g satisfies

|u(x)| ≤ K(1 + |x|) sup
θ∈Sd−1

|g(θ)| for all x ∈ Rd.

Admitting this result, we can prove the convergence statement of Theorem 1.1 as
follows. Fix an arbitrary g ∈ C(Sd−1). Finite linear combinations of spherical harmonics
are dense in C(Sd−1) by the Stone–Weierstrass theorem, and hence given any ε > 0 we
can find gε, a finite linear combination of spherical harmonics, satisfying

∫
Sd−1 gε dθ =∫

Sd−1 g dθ and with

||gε − g||∞ ≤ ε.

But then if uε is the solution to (1.1), which corresponds to gε given by a finite series of
the form (2.2), as we have remarked already,

lim
r→∞ sup

θ∈Sd−1
|uε(rθ)/r − gε(θ)| = 0.

Now u − uε corresponds to g − gε, which has mean 0, and applying the previous lemma
to this we obtain

|u(x) − uε(x)| ≤ Kε(1 + |x|),
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and hence
lim sup

r→∞
sup

θ∈Sd−1
|u(rθ)/r − g(θ)| ≤ (K + 1)ε.

Since ε is arbitrary, this proves the desired uniform convergence.

Proof of Lemma 4.1. We begin by solving the equation ARh = 0. By elementary
means we find that the general solution is a linear combination of a constant and the
function

h(r) =
∫ r

1

(
1 + u2

u2

)(d−1)/2

du. (4.1)

Notice that h(r)/r → 1 as r → ∞. Now, for R > |x| > r, let

τr,R = inf{t > 0 : Xx
t �∈ (r,R)}.

Taking expectations of the martingale h(|Xx
t∧τr,R

|), we obtain,

P(|Xx
τr,R

| = R) =
h(|x|) − h(r)
h(R) − h(r)

. (4.2)

Now note that for each x, u(x) varies continuously with g ∈ C(Sd−1). In fact, there
exist constants KR so that

sup
|x|≤R

|u(x)| ≤ KR sup
θ∈Sd−1

|g(θ)| (4.3)

as can be seen by estimating the terms in the series (2.2) using Lemma 2.1. Consequently,
it is enough to prove the inequality for g belonging to the dense subset consisting of g ∈
C(Sd−1) formed of finite linear combinations of spherical harmonics with

∫
Sd−1 g dθ = 0.

Fix such a g and let u be the corresponding solution of Au = 0. Considering the martingale
u(Xx

t∧τ1,R
), where 1 < |x| < R, we obtain

u(x) = E[u(Xx
τ1,R

)],

whence, using (4.2),

|u(x)| ≤ sup
|y|=1

|u(y)| + h(|x|)
h(R)

sup
|y|=R

|u(y)|. (4.4)

Recall that, as we have observed previously, since u is formed from a finite linear
combination of spherical harmonics,

lim
r→∞ sup

θ∈Sd−1
|u(rθ)/r − g(θ)| = 0.

Consequently, letting R → ∞ in (4.6) we obtain,

|u(x)| ≤ sup
|y|=1

|u(y)| + h(|x|) sup
θ∈Sd−1

|g(θ)|.

Now we apply the estimate (4.3) to the first of these terms, and we deduce that the
statement of the lemma holds if K is chosen greater than both supr≥1 h(r)/r and K1. �
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It remains to prove the uniqueness assertion of the theorem. This we can do adapting
the argument just used in the proof of the lemma. Suppose that u1 and u2 are two
solutions to Au = 0 satisfying

lim
r→∞ sup

θ∈Sd−1
|ui(rθ)/r − g(θ)| = 0

for the same choice of g. Then u = u1 − u2 solves Au = 0 with

lim
r→∞ sup

θ∈Sd−1
|u(rθ)/r| = 0. (4.5)

Considering the martingale u(Xx
t∧τr,R

) we obtain

u(x) = E[u(Xx
τr,R

)],

whence, using (4.2),

|u(x)| ≤ sup
|y|=r

|u(y)| + h(|x|) − h(r)
h(R) − h(r)

sup
|y|=R

|u(y)|. (4.6)

Now letting R → ∞, holding r fixed, and using (4.5) gives

|u(x)| ≤ sup
|y|=r

|u(y)|.

But then letting r ↓ 0 and noting u(0) = 0, we deduce that u is identically zero.

5. Proof of Theorem 2

We now define the semigroup (Pt; t ≥ 0) via Ptu(x) = E[u(Xx(t))] whenever u is such
that the random variable u(Xx(t)) is integrable for all x ∈ Rd. Recall, in particular, (3.7)
stating that E[|Xx(t)|2] < ∞.

Each random map x 
→ Xx(t) is affine and, consequently, if u is a convex function
then the random function x 
→ u(Xx(t)) is also convex with probability one. Taking
expectations we have, for any x, y ∈ Rd and α ∈ [0, 1],

Ptu(αx + (1 − α)y) = E[u(αXx(t) + (1 − α)Xy(t))]

≤ E[αu(Xx(t)) + (1 − α)u(Xy(t))] = αPtu(x) + (1 − α)Ptu(y),

and thus Pt preserves convexity. This will be a key ingredient in the proof of our sec-
ond theorem. We note in passing that the semigroup of any generalized OU process is
convexity preserving.

Our strategy for the proof of Theorem 2 is to study the behaviour of Ptv as t → ∞
where v(x) = |x|g(x/|x|). To begin, first note that the probabilistic analogue of (2.1) is
the skew-product decomposition for the diffusion process (Xx(t); t ≥ 0)

Xx(t) = R(r)(t)Θ
(∫ t

0

ds

R(r)(s)2

)
(5.1)

where R(r)(t) = |Xx(t)| is a diffusion process on (0,∞) with generator AR starting from
r = |x| �= 0, and (Θ(t); t ≥ 0) an independent Brownian motion on the sphere Sd−1 start-
ing from x/|x|. An elegant argument for establishing this skew-product is to write Xx(t)
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as a time change

Xx(t) = eB(t)−t/2Ŵ

(∫ t

0

e−2B(s)+s ds

)
(5.2)

of a d-dimensional Brownian motion Ŵ satisfying Ŵ (0) = x, and then apply the usual
skew-product decomposition of d-dimensional Brownian motion to Ŵ ,

Ŵ (u) = |Ŵ (u)|Θ
(∫ u

0

dv

|Ŵ (v)|2

)
.

On making the time change u =
∫ t

0
e−2B(s)+s ds, this yields a representation for the radial

part of Xx(t),

R(r)(t) = eB(t)−t/2|Ŵ |
(∫ t

0

e−2B(s)+s ds

)
,

and then noting that ∫ t

0

ds

R(r)(s)2
=
∫ u

0

dv

|Ŵ (v)|2 ,

we obtain (5.1).
Equations (2.4) and (2.5) imply that the processes

fl

(
R(r)(t)

)
exp

(
− l(l + d − 2)

2

∫ t

0

ds

R(r)(s)2

)
(5.3)

for l ≥ 1, and

f0

(
R(r)(t)

)− γdt (5.4)

are local martingales. In fact, they are true martingales because f ′
l being bounded together

with (3.7) implies that their quadratic variations are square integrable.
Now define fl(t, r) by,

fl(t, r) = E
[
R(r)(t) exp

(
− l(l + d − 2)

2

∫ t

0

ds

R(r)(s)2

)]
. (5.5)

Lemma 5.1. For l ≥ 1 we have for all r ≥ 0,

lim
t→∞ fl(t, r) = fl(r).

Moreover, we have fl(r) ≤ fl(t, r) ≤ r for all t ≥ 0 and l ≥ 1. The case l = 0 satisfies

lim
t→∞

(
f0(t, r) − γdt

)
= f0(r) + λd

for all r ≥ 0, where λd is a constant not depending on r.
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Proof. Fix l ≥ 1. Since fl(r)/r → 1 as r → ∞, for any ε > 0 there exists a K so that
for all r ≥ 0,

(1 − ε)fl(r) − K ≤ r ≤ (1 + ε)fl(r) + K.

Replacing r by R(r)(t), multiplying by

exp
(
− l(l + d − 2)

2

∫ t

0

ds

R(r)(s)2

)

and taking expectations, we deduce that

(1 − ε)fl(r) − Kδl(t, r) ≤ fl(t, r) ≤ (1 + ε)fl(r) + Kδl(t, r), (5.6)

where

δl(t, r) = E
[
exp

(
− l(l + d − 2)

2

∫ t

0

ds

R(r)(s)2

)]
.

Now the diffusion process Xx(t) being recurrent implies that
∫∞
0

(ds/R(r)(s)2) = ∞
with probability one, and hence δl(t, r) → 0 as t → ∞. Thus, in (5.6), if we let t → ∞
and then ε ↓ 0, we deduce that limt→∞ fl(t, r) = fl(r) as desired.

For l ≥ 1 applying Itô’s formula to

R(r)(t) exp
(
− l(l + d − 2)

2

∫ t

0

ds

R(r)(s)2

)

shows this process to be a supermartingale, and hence fl(t, r) is a decreasing function of
t. This shows that fl(r) ≤ fl(t, r) ≤ fl(0, r) = r.

Set f̂0(r) = r − f0(r). Using (2.6), it is easy to check that there exists constants A and
B so that

|f̂0(r)| ≤ A + B log(1 + r). (5.7)

Now

E
[
f̂0(R(r)(t))

]
= E

[
f̂0(|Xx(t)|)]

= E
[
f̂0

(∣∣∣∣x exp{B(t) − t/2} +
∫ t

0

exp{(B(t) − B(s)) − (t − s)/2}dW (s)
∣∣∣∣
)]

(5.8)

= E
[
f̂0

(∣∣∣∣x exp{B(t) − t/2} +
∫ t

0

exp{B(s) − s/2}dW (s)
∣∣∣∣
)]

→ E
[
f̂0

(∣∣∣∣
∫ ∞

0

exp{B(s) − s/2}dW (s)
∣∣∣∣
)]

.

This convergence of expectations is justified by the uniform integrability of the random
variables which follows from the bound (5.7) and the fact that the convergence at (3.2)
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occurs in Lp for any 0 < p < 1. Now define the constant λd to be the value of the limit
at (5.8), which does not depend on r. Then we have

f0(t, r) = E
[
R(r)(t)

]
= E

[
f0(R(r)(t)) + f̂0(R(r)(t))

]
= f0(r) + γdt + E

[
f̂0(R(r)(t))

]→ f0(r) + γdt + λd. (5.9)

�

In the following lemma we establish the convergence of (a shift of) Ptv to the solution
u of the elliptic equation. We expect this convergence to be locally uniform, but it is
enough for our purposes to prove it in a weaker L2 sense.

Lemma 5.2. Suppose that g ∈ C(Sd−1), and let c = γd

∫
g(θ) dθ and b = λd

∫
g(θ) dθ.

Let v(x) = |x|g(x/|x|) for x ∈ Rd and let u be the solution of (1.1) corresponding to g.
Then, as t → ∞, ∫

Sd−1
(Ptv(rθ) − u(rθ) − ct − b)2dθ → 0,

for every r > 0.

Proof. Letting gl be the projection of g into the subspace of spherical harmonics of
degree l as usual, we claim we can expand Ptv as a series,

Ptv(rθ) =
∞∑

l=0

fl(t, r)gl(θ), (5.10)

with the series converging in L2(Sd−1(r)) for each r > 0. This convergence is guaranteed
by the inequality 0 ≤ fl(t, r) ≤ r.

To verify the claim that (5.10) is valid, first note that it holds for g that are a finite
linear combination of spherical harmonics, by virtue of the skew product (5.1), the fact
that gl is an eigenfunction of the Laplacian on the sphere, and the definition (5.5) of
fl(t, r). In more detail, suppose that g = gl for some l, then

E
[
v(Xx(t))

]
= E

[|Xx(t)|gl

(
Xx(t)/|Xx(t)|)] = E

[
R(r)(t)gl

(
Θ
(∫ t

0

ds

R(r)(s)2

))]

= E
[
R(r)(t) exp

(
− l(l + d − 2)

2

∫ t

0

ds

R(r)(s)2

)
gl(θ)

]

= fl(t, r)gl(θ),

where we use the independence of Θ and R(r) to compute the expectation in two steps.
Now consider, for a fixed r > 0 and t > 0, the applications

g ∈ C(Sd−1) 
→ Ptv(r·) ∈ L2(Sd−1),
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and

g ∈ C(Sd−1) 
→
∞∑

l=0

fl(t, r)gl(·) ∈ L2(Sd−1).

Both are continuous (equipping C(Sd−1) with the uniform norm) and they agree on the
dense subspace of finite linear combinations of spherical harmonics. Thus (5.10) holds for
any g ∈ C(Sd−1).

With the help of (5.10), we can now compute, noting that g0 =
∫

Sd−1 g(θ) dθ,∫
Sd−1

(Ptv(rθ) − u(rθ) − ct − b)2 dθ

= (f0(t, r)g0 − f0(r)g0 − ct − b)2 +
∞∑

l=1

(fl(t, r) − fl(r))2||gl||2Sd−1 ,

which tends to 0 as t → ∞ using Lemma 5.1 and the dominated convergence theorem. �

Proof of Theorem 2. Recall that v being convex implies that Ptv is also convex for
every t ≥ 0. Because L2 convergence implies almost everywhere convergence along some
subsequence, it follows from Lemma 5.2 that, for all but a null set of x, y ∈ Rd and
α ∈ [0, 1],

u(αx + (1 − α)y) ≤ αu(x) + (1 − α)u(y).

But u is continuous, so this inequality extends to all x, y ∈ Rd and α ∈ [0, 1].
To prove the converse implication, consider arbitrary x, y ∈ Rd \ {0} and α ∈ [0, 1] with

αx + (1 − α)y �= 0. Then u being convex implies that, for every r > 0,

αu(rx) + (1 − α)u(ry) ≥ u(αrx + (1 − α)ry).

Dividing through by r, and then letting r → ∞, we obtain from (1.2) that

α|x|g(x/|x|) + (1 − α)|y|g(y/|y|) ≥ |αx + (1 − α)y|g
(

αx + (1 − α)y
|αx + (1 − α)y|

)

which in view of the definition of v implies that it is convex. �

References

1. D. Buraczewski, E. Damek and T. Mikosch, Stochastic models with power-law tails
(Springer, 2016).

2. P. Carmona, F. Petit and M. Yor, Exponential functionals of Lévy Processes, in
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