
J. Fluid Mech. (2015), vol. 777, pp. 68–96. c© Cambridge University Press 2015
doi:10.1017/jfm.2015.311

68

Degeneration of internal Kelvin waves in a
continuous two-layer stratification

Hugo N. Ulloa1,†, Kraig B. Winters2, Alberto de la Fuente1 and
Yarko Niño1,3

1Departamento de Ingeniera Civil, Universidad de Chile, Av. Blanco Encalada 2002,
CP 8370449, Santiago, Chile

2Scripps Institution of Oceanography and Mechanical and Aerospace Engineering,
University of California San Diego, La Jolla, CA 92093, USA

3Advanced Mining Technology Center, Universidad de Chile, Av. Tupper 2007,
CP 8370451, Santiago, Chile

(Received 2 December 2014; revised 27 May 2015; accepted 1 June 2015;
first published online 15 July 2015)

We explore the evolution of the gravest internal Kelvin wave in a two-layer
rotating cylindrical basin, using direct numerical simulations (DNS) with a hyper-
viscosity/diffusion approach to illustrate different dynamic and energetic regimes.
The initial condition is derived from Csanady’s (J. Geophys. Res., vol. 72, 1967,
pp. 4151–4162) conceptual model, which is adapted by allowing molecular diffusion
to smooth the discontinuous idealized solution over a transition scale, δi, taken to
be small compared to both layer thicknesses h`, ` = 1, 2. The different regimes are
obtained by varying the initial wave amplitude, η0, for the same stratification and
rotation. Increasing η0 increases both the tendency for wave steepening and the shear
in the vicinity of the density interface. We present results across several regimes:
from the damped, linear–laminar regime (DLR), for which η0 ∼ δi and the Kelvin
wave retains its linear character, to the nonlinear–turbulent transition regime (TR), for
which the amplitude η0 approaches the thickness of the (thinner) upper layer h1, and
nonlinearity and dispersion become significant, leading to hydrodynamic instabilities
at the interface. In the TR, localized turbulent patches are produced by Kelvin wave
breaking, i.e. shear and convective instabilities that occur at the front and tail of
energetic waves within an internal Rossby radius of deformation from the boundary.
The mixing and dissipation associated with the patches are characterized in terms
of dimensionless turbulence intensity parameters that quantify the locally elevated
dissipation rates of kinetic energy and buoyancy variance.

Key words: stratified flows, transition to turbulence, waves in rotating fluids

1. Introduction
Physical processes that control the degeneration of basin-scale internal gravity

waves (IGW) in stratified lakes affected by earth’s rotation have been subject of
considerable interest for several decades, owing to their impact on transport and water
quality (Wüest & Lorke 2003; Boehrer & Schultze 2008). In these aquatic systems,
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Transition from laminar to turbulent regime of an internal Kelvin wave 69

the fundamental IGWs are the known Poincaré and Kelvin waves (Lamb 1932;
Csanady 1967), where the latter IGW is usually the most energetic mode (Antenucci
& Imberger 2001; Stocker & Imberger 2003). Field measurements have shown
that the passage of internal Kelvin waves (IKWs) is correlated with high-frequency
internal waves (Boegman et al. 2003; Lorke, Peeters & Bäuerle 2006; de la Fuente
et al. 2010), shear instabilities and local overturns near the wave troughs in the
near-shore regions (Preusse, Peeters & Lorke 2010; Preusse, Freistühler & Peeters
2012a). These processes lead to significant localized turbulence and mixing in the
pelagic thermocline (Lorke 2007; Bouffard & Lemmin 2013). Over the course of
the stratified season, dynamical changes in the wave regime can alter the spatial and
temporal distribution of turbulent activity induced by Kelvin waves.

Previous numerical and laboratory studies have analysed the IKW evolution in
laminar and weakly nonlinear regimes, obtaining that the wave amplitude, stratification
and rotation play an important role in the degeneration and damping processes (de la
Fuente et al. 2008; Shimizu & Imberger 2009; Sakai & Redekopp 2010; Rozas et al.
2014; Ulloa, de la Fuente & Niño 2014). Here we extend the study of the IKWs to
nonlinear regimes at which turbulence starts to emerge, using continuous and smooth
solutions that allow control the wavefront steepening and the interfacial shear flow
through the initial wave amplitude.

In this study we analyse the degeneration of the ‘gravest internal Kelvin wave’
(hereinafter IKW) in a two-layer stratified basin under different dynamic regimes;
from a laminar, linear flow to a nonlinear regime characterized by the transition
to turbulence. To this end, we have performed three-dimensional direct numerical
simulations (DNS) of the governing equations in a cylindrical domain. The governing
equations are the standard three-dimensional Boussinesq equations with m-order
hyper-viscosity/diffusion operators (Winters & D’Asaro 1997; Waite & Bartello 2004).
The use of a hyper-viscosity/diffusion approach enabled us to increase the scale
separation between the forcing and dissipation length scales, producing a larger
inertial subrange in the model while confining the dissipation length scales as close
as possible to the grid spacing (Spyksma, Magcalas & Campbell 2012). The use of
a cylindrical domain permits the derivation of the linear modal structure of IKWs
for a discontinuous two-layer stratification (Csanady 1967). This solution was then
allowed to diffuse vertically via Laplacian diffusion and molecular diffusivities for
mass and momentum for a finite time interval producing slightly smoothed versions
of linear normal modes in a continuous, nearly two-layer stratification. The length
scale δi defines the thickness of the sharp pycnocline, which is constrained to be
smaller than the thinner upper layer thickness h1. The advantage of this approach is
twofold. First, continuous representations of the model solutions are required for the
initialization of the numerical model. Second, in calculating the modal solutions, the
amplitude of the interface displacement can be taken as a significant fraction of the
upper layer thickness without introducing density overturns, whereas if the equations
are first linearized about a smooth but sharp density interface, modal amplitudes are
restricted to values significantly smaller than the interface scale δi.

Figure 1 shows a schematic of the conceptual model, where the subscripts 1 and 2
indicate the upper and lower layer, respectively. The horizontal and vertical length
scales are the diameter D, equal to twice the radius R, and the sum of the two layer
thicknesses H= h1+ h2, respectively; ρ` denotes the density of the `th layer. Rotation
is characterized by the inertial frequency f , which, together with the linear internal
celerity, ci =√g′h1h2/H, define the internal Rossby radius of deformation, Ri = ci/f ,
from the boundary to the interior, where g′ = g1ρ/ρ1 is the reduced gravity and
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FIGURE 1. (Colour online) Schematic of the conceptual model. (a) Three-dimensional
view of the domain, a two-layer rotating cylindrical basin of radius R and total depth
H. (b) Two-dimensional plane across a diameter of the basin. (c) Vertical density profile
at the centre of the basin (the continuous line denotes a smooth two-layer stratification).

1ρ = ρ2 − ρ1. The vertical displacement of the density interface is defined as ηi,
whose maximum initial amplitude is hereinafter denoted by η0 = max{ηi(t = 0, x)}.
Note that because of the spatial structure of IKWs, η0 occurs at the shoreline (Csanady
1967), i.e. near the vertical sidewalls in our experiments. Our experiments consist of
initializing the flow with instantaneous snapshots of smoothed IKW modal solutions
at various initial amplitudes η0 and allowing these initial conditions to evolve under
the nonlinear, non-hydrostatic equation of motion.

The outline of the paper is as follows. In § 2 we introduce the equations of motion,
dimensionless parameters and the set of numerical experiments. In § 3 the IKW
response is described in terms of dynamic regimes, while in § 4 we analyse the
spatiotemporal distribution of the turbulent activity, focusing on those IKWs in the
laminar–turbulent transition regime. Finally, we summarize and discuss our results
in § 5.

2. Formulation
2.1. Governing equations and boundary conditions

We study the IKW flow via the numerical solution of the Boussinesq equations of
motion for a rotating stratified fluid on an f -plane with a m-order viscosity/diffusion
operator, written as

Dv
Dt
+ (f k̂)× v+ ρ

ρ0
gk̂=− 1

ρ0
∇p+Dm(v),

Dρ
Dt
=Dm(ρ), ∇ · v= 0 (2.1a−c)

where D/Dt is the material derivative, v = (u, v, w) is the velocity vector, ρ0 and
ρ are the ambient reference density and the Boussinesq density difference from ρ0.
Further, p is the pressure field, k̂ is the unit vertical vector (positive upward), whilst
Dm represents an m-order viscosity/diffusion operator acting on the momentum and
the mass transport, defined as follows (Winters & D’Asaro 1997):

Dm(·)≡
{
νm,j∂

2m
j dissipation,

κm,j∂
2m
j diffusion,

with νm,j= κm,j≡ 1
TD

(
Lj

πnj

)2m

, j∈ {x, y, z}, (2.2)

where νm,j and κm,j are the m-order viscosity/diffusivity coefficient, respectively, whose
physical dimensions are [L2m/T]. The operator ∂2m

j corresponds to the 2m-order partial
derivative with respect to the spatial coordinate j (with j= x, y, z). Lj and nj are the
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computational domain size and the number of equally spaced grid points in the jth
direction. TD is a time scale chosen by trial and error to minimize the range of
damped scales while maintaining numerical stability (Winters & D’Asaro 1997). The
choice m= 1 results in the standard Navier–Stokes equations, which should be solved
down to the Kolmogorov length scale which is barely possible given the available
computing power. Alternatively, for example, the viscosity could be chosen by trial
and error to be just large enough to damp the downscale energy transfer for a given
problem resolved over a fixed number of grid points. However, if the goal is to
allow the inertial subrange to be as broad as possible for a given grid resolution,
then larger values of viscosity are inefficient and smaller values require finer grids
to resolve the dissipative scales and maintain stability. Similar arguments apply for
the m-order operators. We use m= 3 for this study and note that the use of this type
of closure implicitly assumes a downscale energy cascade with the rate of energy
transfer controlled by the nearly inviscid processes in the inertial subrange. This
rate can then be measured at small scales by directly evaluating the kinetic energy
dissipation rate whose mathematical form depends on the value of m chosen as shown
in appendix A.

We impose no-flux and free-slip boundary conditions on the top, bottom and
sidewalls of the cylindrical domain to avoid having to resolve small viscous boundary
layers. The initial condition of the IKW is constructed from the linear normal mode
solution derived by Csanady (1967) for a discontinuous two-layer stratification in a
cylindrical domain. This solution is written as

ηi(t, r, θ)/η0 = I1(β1 r) cos(θ −ω1t− φ), (2.3)

where ηi(t, r, θ) is the modal structure of the interface displacement and β1 =
R−1

i

√
1− σ 2

1 . The radial shape of the solution is characterized by the first-kind
modified Bessel function of the azimuthal gravest mode, I1 (Abramowitz & Stegun
1965), while the temporal and azimuthal components are given by the cosine periodic
function. The wave frequency, ω1, and dimensionless frequency, σ1 = ω1/f , of the
IKW are obtained by solving the dispersion relation derived from the boundary
condition for ηi at r= R (Csanady 1967; Stocker & Imberger 2003):

1− σ 2
1 M2 = 0, with M2 ≡ β1R

I0(β1R)
I1(β1R)

− 1. (2.4)

From the linearized inviscid governing equations and solution (2.3), we obtain
the density and velocity field for a discontinuous two-layer stratification (Csanady
1981; Antenucci & Imberger 2001). However, solution (2.3) cannot be directly
used to specify the initial condition of an IKW in a smooth two-layer stratified
fluid. Moreover, a derivation of continuous eigenfunctions after introducing a small
transition scale δi into the density profile is also inconvenient because such solutions
are both formally and practically restricted to have displacement amplitudes much
smaller than δi. Here we wish to study the nonlinear transition regime, and waves in
this regime have initial amplitudes substantially larger than δi.

For a given δi � hj, j = 1, 2, the linear, discontinuous solution (2.3) can be
specified with an amplitude η0 significantly larger than δi. We prescribe such a
solution, expecting that its subsequent evolution will be nonlinear. We then smooth
out the discontinuities by allowing the density and momentum to diffuse over a finite
time scale such that the interface thickness is of O(δi). In contrast, solving the linear
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equations for a continuously varying but sharply transitioning stratification produces
overturns in the density field when η0 approaches or exceeds δi (see e.g. Kundu &
Cohen (2004), Chapter 13, on normal modes in a continuously stratified layer).

The equations of motion (2.1), with the smoothed version of the initial condition
(2.3), are numerically solved using the three-dimensional spectral model flow_solve
(Winters & de la Fuente 2012). The model is based on expansions in terms of
trigonometric functions of the dependent variables over regular meshes in a cubic
domain (Lx, Ly, Lz), inside which a cylindrical domain (R, H) is immersed. The
variables are expanded in cosine or sine series in each spatial component, depending
on the boundary conditions to be satisfied. For example, in the vertical direction, the
horizontal velocity components, u and v, and the density field, ρ, are expanded in
cosine series while the vertical velocity component, w, is expanded in sine series
to satisfy the free-slip wall and no-flux condition on the top and bottom boundaries.
The boundary conditions on the curved sidewall are implemented using an immersed
boundary approach introduced by Winters & de la Fuente (2012).

2.2. Dimensionless numbers
The initial dynamics of the IKW are parametrized by four dimensionless parameters:

Bi ≡ Ri

R
, Tsk ≡ λk

1ciTk
, Tνk ≡ η2m

0

νmTk
, J ≡ N 2

S2
. (2.5a−d)

Here Bi is the Burger number (Antenucci & Imberger 2001) that characterizes the
influence of rotation. If Bi > 1, rotation is weak, while if Bi < 1, rotational effects
are important. In the IKW case, as Bi→ 0, the wave energy becomes concentrated
near the boundary with the fluid motions parallel to the shoreline. Notice that Bi

corresponds to the positive root of the classic Burger number, S, defined by Pedlosky
(1987, see § 1.3, equation 1.3.1).
Tsk is the steepening parameter and it is interpreted as the rate at which the

spatial differences of the internal wave celerity induced by η0 lead to wavefronts and
nonlinearities, Ts∼ λk/1ci, over an IKW period Tk. Therefore, Tsk quantifies how fast
an IKW with amplitude η0 tends to produce a nonlinear wavefront (Boegman, Ivey
& Imberger 2005; de la Fuente et al. 2008) and thus to concentrate energy at smaller
length scales in the near-shore region.

Tνk ∼ η2m
0 /νm is the dissipation time scale for motions of vertical scale ηo and

Tνk gives the ratio of this time scale to the Kelvin wave period. To quantify the
relative importance of viscous to nonlinear effects in the context of this flow, we
have defined a dimensionless number that is the ratio of the (hyper-)viscous time
scale to the nonlinear steepening time of the primary Kelvin wave:

Tνk

Tsk
≡ 1ciη

2m−1
0

νm

(
η0

λk

)
. (2.6)

In this sense, this ratio is similar to the standard Reynolds number that relates inertial
to viscous forces. The definition of the m-order hyper-viscous Reynolds number is
(Lamorgese, Caughey & Pope 2005; Spyksma et al. 2012)

Rem ≡ 1ciη
2m−1
0

νm
, (2.7)
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which formally reduces to the classic viscous Reynolds number when m= 1:

Re≡ 1ciη0

νm
. (2.8)

High values of Rem imply energetic regimes, dominated by inertial forces, whereas low
values of Rem imply flow regimes dominated by (hyper-)viscous forces. The parameter
Tνk/Tsk can be written in terms of the hyper-viscous Reynolds number as follows:

Tνk

Tsk
≡ Rem

(
η0

λk

)
. (2.9)

Note that η0/λk is the aspect ratio of the Kelvin wave and it is a measure of its
hydrostaticity. Steeper, non-hydrostatic waves are more nonlinear and enhance the
energy transfer to small scales.
J is the gradient Richardson number, with N the buoyancy frequency and S

the vertical shear in the horizontal velocity (Miles 1961). In our problem, both N
and S have maxima at the height of the density interface but the magnitude and
spatial distribution of J will depend both on η0 and Bi. The maximal shear S , for
example, occurs in the shore region, near the maximum vertical displacement of the
interface. For a fixed rotation regime, the initial minimum value of J decreases as
η0 is increased.

The dissipation and mixing involved in the IKW evolution are characterized in terms
of dimensionless turbulence activity parameters that quantify the dissipation rates of
kinetic energy and buoyancy variance given by

Im ≡ 1
N 2

{
(εm)

m

νm

}2/(3m−1)

, Km ≡ |∇mb|2
∣∣∣∣
dmb
dzm∗

∣∣∣∣
−2

(2.10a,b)

where Im denotes the turbulence intensity parameter expressed in terms of the hyper-
viscosity approach of the kinetic energy dissipation rate, εm, and derived from the
ratio of the Ozmidov and Kolmogorov scales (see appendix A). This parameter can be
interpreted as the destabilizing effects of turbulent stirring compared to the stabilizing
effects produced by the combined action of hyper-viscosity and buoyancy. Finally,
Km is the ratio of the diapycnal flux and a reference laminar diffusive flux, both in
terms of the hyper-diffusion approach and the buoyancy, b. This diffusivity parameter
measures the increase in diffusive flux due to turbulent stirring and straining relative
to the laminar, diffusive flux with the same background buoyancy that is not stirred
or strained (see appendix B).

2.3. Set of numerical experiments
We consider a single rotation regime, Bi = 0.25, and a range of dimensionless
amplitudes η0/h1 ∈ [0.07, 0.60] and aspect ratios η0/λk ∈ [8.8 × 10−4, 7.5 × 10−3]
that allow Tsk ∈ [3.6, 34.6], Tνk ∈ [10−1, 4 × 104] and initial minimum values of J
between min{J0} = 31.86, for η0/h1 = 0.07, and min{J0} = 0.13, for η0/h1 = 0.60.
With these parameters, we have performed six numerical experiments using spatial
and temporal scales similar to those used in recent laboratory experiments carried
out in a rotating table by Ulloa et al. (2014). The dimensions of the domain are
Lx × Ly × Lz = 1.95 × 1.95 × 0.2 m3, and in its interior there is a circumscribed
cylinder of radius R = 0.9 m and depth H = h1 + h2 = 0.07 m + 0.13 m = 0.2 m.
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FIGURE 2. Density, ρ(z)/ρ, and buoyancy frequency, N (z)/max(N ), profiles in the initial
condition of a discontinuous two-layer stratification δi = 0 (grey line) and a smooth two-
layer stratification δi > 0 (red line) after a vertical diffusion over a time interval tδi . The
blue circles denote the equidistant grid points along the transition layer.

The difference of densities is 1ρ = ρ2 − ρ1 = 15 kg m−3, the effective thickness
of the interfacial transition is δi ≈ 0.02 m, and the inertial frequency f = 0.361 Hz,
with an IKW period of Tk = 60.45 s and a total simulation time Tns = 3Tk = 182 s.
Figure 2 shows that the initial transition layer is resolved by about 12–14 grid points.
The horizontal wavelength of the most unstable mode for a smooth, sheared density
transition is about π times the interface thickness (see e.g. Kundu & Cohen 2004,
§ 11.7, p. 506). This corresponds to about 10–11 times our horizontal grid spacing
and so the most unstable mode is resolved on our spatial grid, though significantly
smaller motions are not. Table 2 summarizes the parameters used in the numerical
experiments.

3. Dynamic regimes
Figure 3 illustrates the time series of a density profile at r/R=0.98 and θ =0 where

ηi(t= 0, 0.98 R, 0)≈ η0, and the power spectral density (PSD) of the density interface
displacement ηi(t, 0.98 xR, 0). The IKW response is classified into four distinct
regimes: the damped linear (DLR), nonlinear (NLR), nonlinear/non-hydrostatic (NHR)
and laminar–turbulent transition regime (TR). The regimes have been defined in terms
of their dynamical characteristics (Tsk, Tνk,J ) and via visual inspection of the density
field evolution, similar to the terms in which Horn, Imberger & Ivey (2001) classified
the degeneration of large-scale internal waves in a non-rotating basin. We examine
each regime in the following subsections.

3.1. Damped linear regime (DLR)
The DLR is characterized by the evolution of an IKW that retains most of its
initial linear features, with negligible nonlinear steepening and strongly controlled by
viscosity. This regime describes the results of experiment 1 shown in figure 3(a,b);
in this case, η0/h1 = 0.07 (η0/δi ≈ 1.0), Tνk/Tsk ≈ 3× 10−3 < 1 and min{J0} ≈ 31.86,
which suggests an extremely viscous flow with a negligible steepening capacity and a
strong hydrodynamic stability in the density interface. Therefore a linear and damped
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FIGURE 3. (a,c,e,g,i,k) Time series of density field along the vertical profile where the
maximum wave amplitude is achieved. (b,d,f,h,k,l) PSD of vertical displacement of density
interface ηi: s, Kelvin wave frequency; – · – · –, inertial frequency (f /ωk); – – –, initial
buoyancy frequency (N0/ωK); TR, transition regime. (a,b) Exp. 1, η0/h1 = 0.07; (c,d)
exp. 2, η0/h1 = 0.18; (e,f ) exp. 3, η0/h1 = 0.38; (g,h) exp. 4, η0/h1 = 0.47; (i,j) exp. 5,
η0/h1 = 0.54; (k,l) exp. 6, η0/h1 = 0.60.

Exp. η0/δi η0/h1 η0/λk Bi Tsk Tνk Tνk/Tsk min
z∼zi
{J0} nx ny nz

1 1.0 0.07 8.8× 10−4 0.25 3.5× 101 10−1 3× 10−3 31.86 321 321 129
2 2.5 0.18 2.2× 10−3 0.25 1.4× 101 2.7× 101 2× 100 3.04 321 321 129
3 5.3 0.38 4.7× 10−3 0.25 6.2× 100 2.5× 103 4× 102 0.58 321 321 129
4 6.6 0.47 5.8× 10−3 0.25 4.9× 100 8.8× 103 2× 103 0.30 321 321 129
5 7.5 0.54 6.7× 10−3 0.25 4.2× 100 2.0× 104 5× 103 0.19 321 321 129
6 8.4 0.60 7.5× 10−3 0.25 3.6× 100 4.0× 104 104 0.13 513 513 129

TABLE 2. Summary of the dimensionless parameters of the experimental sets.

IKW dynamics along the 3Tk periods is expected. The PSD in figure 3(b) shows a
single strong energy peak at ω/ωk = 1, indicating that the initial IKW mode stored
the energy of the flow.
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3.2. Nonlinear regime (NLR)
The NLR is characterized by weak nonlinear degeneration, without dispersion of the
IKW (in the KdV theory sense). This regime starts with the IKW steepening, as
a consequence of a wave amplitude large enough to induce significant changes in
the wave celerity, leading the wavefront and the formation of a solitary-type wave
(Fedorov & Melville 1995; de la Fuente et al. 2008). This regime describes the results
of experiment 2 shown in figure 3(c,d); in this case η0/h1 = 0.18, Tνk/Tsk ≈ 1.9 > 1
and min{J0}≈ 3.04, and therefore we expect a weakly nonlinear steepening controlled
by viscosity and a stable flow around the density interface. In fact, figure 3(c) shows a
slightly steep wavefront after the first wave period and a solitary-type wave structure
around t/Tk ≈ 2.45. The PSD in figure 3(d) shows a wider energy cascade due to
transfer of energy involved in the weakly nonlinear degeneration, with a main energy
peak at ω/ωk = 1, and two lower peaks of sub-inertial frequencies attributed to sub-
azimuthal Kelvin waves (see the dot-dashed line).

3.3. Nonlinear and non-hydrostatic regime (NHR)
Nonlinear steepening and non-hydrostatic dispersion of the initial IKW (in the
KdV theory sense) characterize the NHR. As the wave steepens, its azimuthal
length scale decreases until the non-hydrostatic terms can be important enough to
balance the nonlinear steepening, avoiding the wave breaking (Helfrich & Melville
2006) and leading the degeneration of the IKW into a package of solitary-type
waves (Grimshaw 1985). This process induces an important energy cascade from
the basin scale to smaller scales. The NHR regime is identified in experiments
3–6 (see figures 3e–l). In these experiments the Reynolds number increases from
Tν/Ts ≈ 4 × 102, for η0/h1 = 0.38, to Tνk/Tsk ≈ 104, for η0/h1 = 0.60. Increasing
Tν/Ts corresponds to increasing nonlinearity and concentration of energy at smaller
scales. Experiments 3 and 4 show hydrodynamic stable flows in the density interface
region, with min{J0} ≈ 0.58 and min{J0} ≈ 0.30, respectively, whereas experiments 5
and 6 show evidence of the emergence of hydrodynamic interfacial instabilities, with
min{J0} ≈ 0.20 and min{J0} ≈ 0.13, respectively.

3.4. Laminar–turbulent transition regime (TR)
The TR is characterized by the growth and occurrence of interfacial instabilities.
Depending on how energetic the shear flow is, the instabilities can grow and generate
turbulent patches in the density interface region or can be damped. The hydrodynamic
stability of the IKW sheared flow can be studied via the gradient Richardson number,
J , whose critical value J = 0.25 (Miles 1961) is neither a necessary nor a sufficient
condition to trigger interfacial instabilities in our sheared-type flow, but it is still a
very useful criterion that can give us an order of magnitude. In our results only two
experiments show the presence of interfacial instabilities, experiments 5 and 6, with
min{J0} ≈ 0.20 and min{J0} ≈ 0.13, respectively. Only they have initial J < 0.25.
Both experiments exhibit the emergence of Kelvin–Helmholtz-type billows on the
wavefront of strongly nonlinear IKWs (Tνk/Tsk ∼ 5 × 103–104). However, the results
of experiment 5 show fast damping of the interfacial instabilities, while the results of
experiment 6 show a complex spatial and temporal dynamic, in which large scales,
attributed to the IKW and internal solitary-type waves, coexist and interplay with
turbulent small scales, associated with interfacial instabilities/breaking and turbulent
patches.
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FIGURE 4. Results of experiment 6: evolution in time t/Tk ∈ [0, 3] of the vertical velocity
w at the density interface region ρ(t, x)=1ρ/2. (a) t/Tk = 0, (b) t/Tk= 0.128, (c) t/Tk =
0.25, (d) t/Tk=0.5, (e) t/Tk=0.75, (f ) t/Tk=1.0, (g) t/Tk=1.5, (h) t/Tk=1.75, (i) t/Tk=
2.0, (j) t/Tk = 2.25, (k) t/Tk = 2.75, (l) t/Tk = 3.0.

The first three regimes have been analysed in previous numerical (de la Fuente et al.
2008; Sakai & Redekopp 2010) and experimental studies (Wake, Ivey & Imberger
2005; Ulloa et al. 2014), whereas the TR on IKWs has been observed only in field
data (Lorke 2007; Preusse et al. 2010) and to date in numerical experiments.

4. Internal Kelvin wave: transition from laminar to turbulent regime

Hereafter we focus on the spatial and temporal evolution of the IKW in the TR
(analysing results of experiment 6), aiming to link the dynamic wave response
with turbulent activity. Figure 4 shows the evolution of the vertical velocity,
w(t, r, θ, z), at the density interface zi to illustrate the strongly nonlinear dynamics
of the IKW in experiment 6. Here zi(t) is defined as the vertical position of the
ρ(t, x)=1ρ/2 iso-scalar surface. Figure 4(a) shows the initial condition of the IKW
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(t/Tk= 0). The degeneration of the IKW begins with the emergence of instabilities of
Kelvin–Helmholtz (KH) type on the wavefront that starts to steepen at t/Tk = 0.128
(see figure 4b); it is in this region where the minimum Richardson number, J ≈ 0.13,
is achieved. Figures 4(c) and 4(d) (t/Tk ∈[0.25,0.5]) show the formation of a turbulent
patch induced by the breakdown of the KH-type billows; this patch evidences a slight
spread along the azimuthal and radial axes. Figure 4(d) shows the formation of the
first solitary-type wave around t/Tk ∈ [0.5, 0.625], while figures 4(e) and 4(f ) show
a solitary wave train confined to the near-shore region around t/Tk ∈ [0.75, 1.0].
After the first IKW period (see figure 4f,g) the leading wave starts to interact with
the pre-existing turbulent patch. This interaction is accompanied by the regrowth
of interfacial instabilities upstream of the wavefront and a subsequent interfacial
turbulent wake on the solitary wave train (see figure 4g). The regrowth of interfacial
instabilities generate a new turbulent patch that holds the same azimuthal location
while it is vertically advected upward and downward by the solitary wave train (see
figure 4h). During and after the interaction between the large internal waves and the
turbulent patch, inertial waves of different scales are radiated to the offshore region
(see figure 4h–k). At t/Tk= 3 (see figure 4l) there is no longer evidence of the initial
IKW; the internal waves in the near-shore region have decayed in amplitude, whilst
a range of smaller length scales have been excited in the interior. During the first
three IKW periods we observe that different nonlinear processes coexist, enhancing
the degeneration of the initial long wave and promoting a forward energy cascade.

4.1. Spatiotemporal distribution of turbulence
Figure 5 shows the vertical average of the turbulence intensity parameter, 〈Im〉H; the
dashed line defines the radial position of the internal Rossby radius of deformation, Ri,
from the boundary to the interior. Figure 5(a) shows the initial distribution of 〈Im〉H
induced by the IKW itself. Kinetic energy dissipation is concentrated within Ri and
decays to low values towards the centre of the domain. The nonlinear dynamics of
the IKW induces distinct zones of elevated values in the near-shore region, associated
with turbulent patches produced by the breakdown of interfacial instabilities (see
figure 5b–d). As the initial IKW degenerates, the turbulence intensity increases at the
front of each solitary-type wave along the shore region (see figure 5d–f ) achieving
values of 〈Im〉H ∼ O(102), while most of the offshore region shows a low activity
with values of 〈Im〉H ∼O(10−1). However, after the first period, and particularly after
the strong reactivation of the pre-existing turbulent patch, there is a steady increase
of 〈Im〉H to the interior of Ri, with values in the range O(100)6 〈Im〉H 6O(101) (see
figure 5f –h). This process is again observed after the second period (see figure 5j).
After three periods elevated values of 〈Im〉H are distributed throughout the domain
(see figure 5k,l). Nevertheless, there are clear differences in the intensity between
the near-shore and interior regions, where the internal Rossby radius of deformation
(dashed line) seems to define a transition length scale of the turbulent activity along
the radial component.

The azimuthal distribution of the turbulence intensity parameter has features of
baroclinic instabilities. This is also observed in figure 6, which shows the relative
vertical vorticity, ω · k̂, normalized by f at z/H= 0.8 (horizontal plane) and the density
interface structure ρ(t, x)=1ρ/2 in purple. Initially we observe the formation of one
turbulent patch in the shore region around t/Tk = 0.25 (see figure 6c), which grows
and spreads along the shore until approximately the first period (see figure 6d–f ).
After the first period, the initial turbulent patch is separated into two (see figure 6d,h,i)
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FIGURE 5. Results of experiment 6: spatiotemporal distribution of the turbulence intensity,
〈Im〉H . (a) t/Tk = 0, (b) t/Tk = 0.128, (c) t/Tk = 0.25, (d) t/Tk = 0.5, (e) t/Tk = 0.75,
(f ) t/Tk= 1.0, (g) t/Tk= 1.5, (h) t/Tk= 1.75, (i) t/Tk= 2.0, (j) t/Tk= 2.25, (k) t/Tk= 2.75,
(l) t/Tk = 3.0.

that also remain trapped on the shore, and a third vortex structure grows on the shore
region during the second period (see figure 6k,l). It is observed that turbulent patches
tend to aggregate in large horizontal motions that scale with Ri. Figure 6(m) shows
a close-up of the vertical vorticity at t/Tk = 3, where three large-scale vortex-type
motions are identified in the near-shore region (see dashed ellipses). We can study the
existence of baroclinic instability via a simplified model. Pedlosky (1970) considered
a quasi-geostrophic two-layer model in an inviscid flow rotating on an f -plane, with
uniform velocities U1 and U2 in each layer (U1 6= U2). The flow is unstable to
disturbances with horizontal wavelengths, λ, larger than πRi (see e.g. Pedlosky 1987,
Chapter 7, p. 556). Then, considering the azimuthal wavelength of the IKW, λk= 2πR,
and the internal Rossby radius here adopted, it is obtained that the flow induced by
the IKW admits the growth of baroclinic instabilities because πRi/λk =Bi/2= 0.125.
In addition, the interaction between the vortex-type motions and the vertical shear
flow driven by the IGW could be supporting the emergence of baroclinic instabilities
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FIGURE 6. Results of experiment 6: spatiotemporal distribution of the vertical vorticity,
(ω/f ) · k̂, at z/H = 0.80. (a) t/Tk = 0, (b) t/Tk = 0.128, (c) t/Tk = 0.25, (d) t/Tk = 0.5,
(e) t/Tk=0.75, (f ) t/Tk=1.0, (g) t/Tk=1.5, (h) t/Tk=1.75, (i) t/Tk=2.0, (j) t/Tk=2.25,
(k) t/Tk = 2.75, (l) t/Tk = 3.0, (m) t/Tk = 3.0.

(Sakai 1989; Gula, Plougonven & Zeitlin 2009; Flór, Scolan & Gula 2011). Note that
these large-scale vortex motions are not observed in the interior of the basin.

Figure 7 shows the time series of extreme and bulk values of the turbulence
intensity parameter, within and outside Ri. The red vertical lines identify events
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FIGURE 7. Evolution in time (scaled by TK) of (a) the maximal and minimal values of
the turbulence intensity parameter, (b) the bulk turbulence intensity parameter within Ri,
〈Im〉Vin , and (c) the bulk turbulence intensity parameter outside Ri, 〈Im〉Vout . Legend: –•–,
exp. 6; –+–, exp. 5; –c–, exp. 4; –×–, exp. 3; –p–, exp. 2; –f–, exp. 1.

(ei) with high turbulent activity (local maxima) in the time series of experiment 6
(–•–), whose horizontal positions can be identified in figure 5(b,d,g,i,j). In figure 7(a)
the values of min{Im} are comparable for all experiments except experiments 1
and 2 (blue lines), with min{Im} ∼ O(103). Values of max{Im}, however, increase
with increasing nonlinearity, causing the separation of the time series between
O(10−1)6max{Im}6O(102) (red lines). In the case of experiment 6, peak turbulence
intensity values are O(105) times the background laminar value. These results show a
significant heterogeneity of Im in both time and space. We have divided the domain
into two volumes: Vin and Vout denote the volumes within and outside Ri, respectively,
and over these volumes bulk quantities of Im have been calculated. Within Ri (see
figure 7b), time series of 〈Im〉Vin show distinct differences between each experiments.
The highest values and the most interesting temporal fluctuations are observed in
experiment 6 (–•–). Outside Ri (see figure 7c), time series show that 〈Im〉Vout tends
to grow as a function of time, and shows only one peak at e2 attributed to the
formation of the first turbulent patch; figure 5(d) shows that this event (e2) affects
a small region outside Ri. Comparing both volumes, early in time, the distinction
between the turbulent activity within and outside Ri is quite important, but by the
later times in the experiments, Im is only about a factor of 3 higher (see figure 7b,c
for the most energetic case) and the tendency is to reduce the difference between
both regions.

4.2. Turbulence intensity and effective diffusivity
Figures 8(a) and 8(b) show time series of the bulk averages of the turbulence intensity
parameter, 〈Im〉V , and the diffusivity parameter, 〈Km〉V , respectively.

The temporal structure of 〈Im〉V (see figure 8a) is forced by the turbulent activity
in the near-shore region (see peaks denoted by vertical dashed lines) but with lower
magnitudes because of the low turbulent activity on the offshore region. Meanwhile,
the time series of 〈Km〉V can be clustered into three groups (see figure 8b): a first
group with experiments 1–3, a second group with experiments 4–5 and a third group
with experiment 6. The first group contains experiments with the lowest and almost
constant value of 〈Km〉V , the second includes experiments with weak fluctuations of
〈Km〉V , and the third group has the highest values and the strongest fluctuations of
〈Km〉V . Experiment 6 is unique in that it yields substantially increased values of 〈Km〉V
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FIGURE 8. Evolution in time (scaled by TK) of (a) the bulk turbulence intensity parameter,
〈Im〉V , and (b) the bulk diffusivity parameter, 〈Km〉V . Panel (c) exhibits 〈Km〉V,T versus
〈Im〉V,T . Legend: –•–, exp. 6; –+–, exp. 5; –c–, exp. 4; –×–, exp. 3; –p–, exp. 2; –f–,
exp. 1.

that are clearly correlated with individual breaking events (–•– and vertical dashed line
in figure 8b). The temporal structure of 〈Km〉V indicates that episodic increases of the
bulk diffusivity parameter are not directly correlated with the bulk-averaged turbulence
intensity.

Figure 8(c) shows the volumetric and temporal averages, 〈·〉V,T , of Im and Km.
Red symbols correspond to 〈Km〉V,T against 〈Im〉V,T while the clusters of symbols
around each red symbol correspond to 〈Km〉V(t) against 〈Im〉V(t) (data shown in
figure 8a,b). Further, the standard deviations (s.d.) of the bulk values 〈·〉V over time
are shown (bars in the red symbols). We only see significant temporal variability in
experiment 6, shown by –•– in figure 8(b) and the cluster of circles in figure 8(c).
The large deviations seen in experiment 6 are a consequence of having approximately
steady values of turbulence intensity (see figure 8a) but with very episodic elevated
mixing (see figure 8b), suggesting that an instantaneous and local sampling of
dissipation can be very misleading in terms of predicting the instantaneous mixing
rate. On the other hand, averaging over all the events we identify a simple relation
between 〈Km〉V,T and 〈Im〉V,T . For values of O(10−2)6 〈Im〉V,T 6O(10−1) we find that
〈Km〉V,T ∼ O(100), i.e. that the total diffusivity is not substantially elevated over that
expected by laminar diffusion. For O(10−1)6 〈Im〉V,T 6O(101), however, the observed
diffusivity is greater than that expected in a laminar flow and increases approximately
linearly with turbulence intensity. The data fit a power law 〈Km〉V,T ∼ a{〈Im〉V,T}b,
with parameters a= 12.2 and b= 1.1. In the next subsection we describe the Kelvin
wave evolution in the near-shore region and analyse the vertical distribution of Im

during the events e2 and e3.

4.3. Flow evolution in the near-shore region

Figure 9 shows a summary of the vertical stratification in experiment 6, N 2/N 2
0

(where N 2
0 ≡ max{N 2(t = 0)}), in the area Aθ defined by z/H ∈ [0, 1], θ ∈ [0, 2π]

and r/R = 0.98, for 12 different times t/Tk ∈ [0, 3]. The region Aθ allows us
to observe the IKW evolution near the boundary where the wave displacements
are maximal and where the maximal values of the turbulent activity are observed
(see figure 5). Figure 9(b) shows KH-type instabilities in the early stages of the
experiment (t/Tk ≈ 0.128) because of the strong initial shear near the crest of the
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FIGURE 9. Results of experiment 6: evolution in time t/Tk ∈ [0, 3] of the stratification,
N 2/N 2

0 , in the area θ ∈ [0, 2π], z/H ∈ [0, 1] at r/R= 0.98. (a) t/Tk = 0, (b) t/Tk = 0.128,
(c) t/Tk = 0.25, (d) t/Tk = 0.5, (e) t/Tk = 0.75, (f ) t/Tk = 1.0, (g) t/Tk = 1.128, (h) t/Tk =
1.5, (i) t/Tk = 2.0, (j) t/Tk = 2.25, (k) t/Tk = 2.75, (l) t/Tk = 3.0.

IKW. Figure 9(c) shows the collapse or breakdown of the shear instabilities at
t/Tk ≈ 0.25. This process induces the formation of a turbulent patch and a local
thickening of the density interface region that propagates along the shore region (see
figures 9d and 5c). Simultaneously, the IKW has begun to steepen and form a solitary
wave train (see figure 9d–f ). After the first period, the leading wave of the solitary
wave train interacts with the pre-existing stirred region (see figure 9g). The interaction
generates interfacial breaking near the trough of the leading wave and a turbulent
patch that subsequently spreads along the shore, over the solitary wave train (see
figure 9g,h). This sequence of events is also observed after the second period (see
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FIGURE 10. Results of experiment 6: evolution in time t/Tk ∈ [0.25, 0.75] of the
turbulence intensity parameter (in log scale) and radial vorticity in the region θ ∈ [0, π],
z/H ∈ [0, 1] at r/R= 0.98, during the peak of 〈Im〉V , denoted by e2 in figures 5(d), 7 and
8. (a) t/Tk = 0.25, (b,c) t/Tk = 0.31, (d,e) t/Tk = 0.38, (f,g) t/Tk = 0.44, (h,i) t/Tk = 0.50,
(j,k) t/Tk= 0.56, (l,m) t/Tk= 0.63, (n,o) t/Tk= 0.69, (p,q) t/Tk= 0.75. VE: vortex ejection.

figure 9j), where interfacial instabilities on the trough and tail of the leading wave
can be seen. After t/Tk ≈ 3, the initial IKW has evolved into a solitary wave train
that covers the area Aθ and a significant thickening and weakening of the density
interface as a consequence of vertical mixing is observed (see figure 9k,l).

4.3.1. Turbulent patch and detrainment of vortices
Figure 10 shows the turbulence intensity parameter, Im, and the radial vorticity

scaled by the initial maximum buoyancy frequency, (ω · r̂/|N0|), in the region Aθ ,
within the window time t/Tk ∈ [0.25, 0.75]. During this time the first two peaks
of 〈Im〉V are registered (see figure 7(a), ε1–ε2). Figure 10(a) shows the turbulent
activity during the breakdown of KH-type billows around t/Tk ≈ 0.25. The maximum
magnitudes of Im (∼ 101–102) are identified in the density interface and the upper

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

31
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.311


88 H. Ulloa, K. B. Winters, A. de la Fuente and Y. Niño

0 0.7854 1.5708 2.3562 3.1416

–1.0 –0.5 0 0.5 1.0 1.5 2.0 2.5 3.0

0

0.5

1.0

0.5

1.0
0

0.5

1.0
0

0.5

1.0
0

0.5

1.0
0

0.5

1.0
0

0.5

1.0

0.5

1.0
0

0.5

1.0
0

0.5

1.0
0

0.5

1.0
0

0.5

1.0

0 0.7854 1.5708 2.3562 3.1416

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(a)  (b)

(d )

(e) ( f )

(g) (h)

(i)

(c)

( j)

(k) (l)

FIGURE 11. Results of experiment 6: evolution in time t/Tk ∈ [1.12, 1.44] of the density
field and turbulence intensity parameter during the breaking wave process in the region
θ ∈ [0,π], z/H ∈ [0, 1] at r/R= 0.98. (a,b) t/Tk= 1.12, (c,d) t/Tk= 1.19, (e,f ) t/Tk= 1.25,
(g,h) t/Tk = 1.31, (i,j) t/Tk = 1.38, (k,l) t/Tk = 1.44.

layer, near the crest and over the wavefront. We identify high-intensity spots of Im (in
red) that are ejected from the interfacial turbulent patch towards the top layer (blue
arrow in figure 10a). Figure 10(b,d,f,h) illustrates the evolution (red arrows) of two
red spots with 102 6 Im 6 103. The radial vorticity field (see figure 10c,e,g,i) shows
that these spots correspond to a coherent pair of counter-rotating vortices escaping
from the interface region (blue arrow in figure 10c) by their mutual interaction,
carrying small-scale turbulent fluid within their circulating cores into the ambient,
non-turbulent water, thus enhancing the turbulent activity in the top layer (see figures
10j,l,n,p and 10k,m,o,q). This process is correlated with a local peak of the bulk
turbulence intensity (event e2 in figure 8a), but not with a local peak of the effective
diffusivity parameter (see figure 8b). In this event, most of the higher spots of
turbulence intensity are located near the top boundary, not in the mixing interface;
therefore we expect a weaker response of the effective diffusivity parameter.

4.3.2. Interfacial breaking and turbulent wake
Figure 11 shows the density field and the turbulence intensity during the highest

peaks of the turbulence activity parameters observed in experiment 6 (see events e3
in figure 8a,b). During this time interval the solitary-type waves encounter and interact
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FIGURE 12. Schematic of the breaking wave process.

with the pre-existing turbulent patch shown in figure 10. The leading solitary-type
wave induces a compression of the isopycnals in the density interface, increasing the
buoyancy effects in the wavefront N 2 ∼ |∂zρ|, but also enhancing the shear and the
turbulent activity, εm∼|∂m

z U|2, on the flat density region, upstream of the leading wave,
from where interfacial instabilities start to re-emerge (see figure 11a,b). As the leading
solitary wave crosses the sheared region, cores of interfacial fluid are ejected and
transported through the top layer flow (see figure 11c,d). These processes induce local
convection, which in turn enhances the turbulent activity on the internal face of the
leading wave. Figure 11(e,f ) shows a strong interfacial breaking on the trough of the
leading wave. The interaction between this new source of turbulence and the solitary
wave train induces an interfacial turbulent wake that is spread over the wave train. The
turbulent wake is characterized by the growth and collapse of Kelvin–Helmholtz-type
billows that lead to local unstable density conditions, which in turn trigger baroclinic-
type instabilities by free convection (Matsumoto & Hoshino 2004; van Haren 2015)
(see figure 11g–l). The wave breaking process and the subsequent turbulent wake is
schematized in 12; similar schematics have been previously introduced by Moum et al.
(2003) and Carr et al. (2008). The results suggest that the coupling of shear and
convective flows plays an important role in the emergence of interfacial instabilities
and breaking in steepened wavefronts (Preusse et al. 2012a,b).

5. Summary and discussion

Direct numerical simulations of the Boussinesq equations with a hyper-viscosity/
diffusivity (H-VD) approach have been conducted to examine the transition from a
laminar to a turbulent regime in a flow induced by the gravest IKW in a continuous
two-layer cylindrical domain at laboratory scale.

A range of values of the steepening parameter Tsk, the damping parameter Tνk and
the Richardson number J , all related to the initial wave amplitude η0, have been
explored for a single Burger number Bi = 0.25. Under this rotating regime, the IKW
structure is strongly confined to the shore (Stocker & Imberger 2003). The results
show the existence of four dynamic regimes and two regimes of turbulent activity.

The first three dynamic regimes have been analysed in previous numerical studies
(de la Fuente et al. 2008; Sakai & Redekopp 2010), here called damped linear (DLR),
nonlinear (NLR) and non-hydrostatic (NHR) regimes. These three regimes can also
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Exp. Tνk/Tsk min
z∼zi
{J0} DLR NLR NHR TR i.i.a i.b.b 〈Im〉V 〈Km〉V

1 3× 10−3 31.86 X × × × 0 0 O(10−3–10−2) O(100)

2 2× 100 3.04 X X × × 0 0 O(10−2–10−1) O(100)

3 4× 102 0.58 X X X × 0 0 O(10−1) O(100)

4 2× 103 0.30 X X X × 0 0 O(10−1–100) O(100–101)

5 5× 103 0.19 X X X X 2 0 O(10−1–100) O(100–101)

6 104 0.13 X X X X 4 1 O(100–101) O(101–102)

TABLE 3. Regimes observed in the IKW evolution.
aNumber of interfacial instabilities observed.

bNumber of interfacial breaking observed.

be identified in laboratory experiments conducted by Ulloa et al. (2014), which
studied the evolution of internal wavefields composed by rotating, basin-scale IGW.
In particular, for similar dimensionless numbers, numerical and experimental results
show clear similarity (e.g. compare figure 5a in Ulloa et al. (2014) with figure 2(k) of
this paper). However, despite the similarities, our numerical results cannot be directly
contrasted with those laboratory results because they substantially differ in the initial
and boundary conditions. In the laboratory experiments the flow was induced by linear
tilting of the density interface, and energy damping was governed by wall-friction.
Here we present a fourth regime called the laminar–turbulent transition regime (TR).
The TR is characterized by the growth of interfacial instabilities and the formation
of turbulent patches as a consequence of the IKW degeneration. Observation of the
TR motivates the analysis of the turbulent activity involved in the IKW evolution.

The first regime of the turbulent activity is related to the linear and weakly
nonlinear dynamics of the IKW. Increasing η0 to transition from the LR to the
weakly nonlinear NHR produces only a moderate increase of the low values of the
bulk turbulence intensity parameter 〈Im〉V . It does not, however, significantly increase
the overall rate of fluid mixing measured by the bulk effective diffusivity parameter
〈Km〉V (see the results of experiments 1–3 in figure 8). In this regime the sheared flow
induced by the IKW and its weakly nonlinear degeneration is fully suppressed by
the buoyancy, thus avoiding the transition from laminar to turbulent flow. The second
regime of turbulent activity is related to the strong nonlinear dynamics of the IKW.
The results show a substantial increase in turbulent activity as the flow evolves from
the strong NHR to the TR (see the results of experiments 4–6 in figure 8). The strong
degeneration of the IKW and the intensification of the shear flow in the wavefront of
the leading wave destroy locally and intermittently the interface stability within the
Rossby radius from the boundary, triggering the formation of intermittent turbulent
patches from the growth and breakdown of Kelvin–Helmholtz-type billows. On the
other hand, buoyancy imposes stability in the interior regions, though the turbulent
activity there tends to increase as a consequence of the inertial gravity wave radiation
from the near-shore to the offshore region (see figures 4 and 5). In this second
regime, the nonlinear degeneration of the IKW and the turbulent episodes observed
in experiments 4–6 are directly correlated with increases in the turbulence activity
parameter, showing a power dependence between 〈Im〉V and 〈Km〉V (see figure 8c).
Table 3 summarizes the IKW regimes.

We have identified four sources of turbulence in the TR: (i) interfacial instabilities
driven by shear flows, (ii) the transport of vorticity from the interfacial region
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to well-mixed layers driven by the mutual interaction of vortex pairs (with opposite
sign), (iii) interfacial breakings, associated with the interaction of convective and shear
flows over steep solitary-type waves and (iv) baroclinic-type instabilities presumably
supported by the combination of vortex-type motions and shear flow in the near-shore
region. The analysis of the emergence of interfacial instabilities in internal solitary
waves (ISWs) has been addressed mainly via numerical study in a two-layer fluid,
in a two-dimensional channel (Barad & Fringer 2010; Carr, King & Dritschel 2011;
Almgren, Camassa & Tiron 2012; Preusse et al. 2012b). The numerical experiments
of Carr et al. (2011) and Almgren et al. (2012) have shown that the growth of
Kelvin–Helmholtz-type billows near the trough and tail of ISW amplitude (compare
figures 7 and 8 by Carr et al. (2011) and Almgren et al. (2012), respectively, with
our figure 9i,j) is close to the thickness of the top layer, η0/h1 ≈ 1. In addition, the
propagation of shear instabilities can disturb the tail and interact with a solitary wave
train, giving rise to a turbulent wake in the density interface region, as shown by
Barad & Fringer (2010) (see their figures 3 and 4 and our figures 9h and 11g,i,k).
Parts of these previous results have been supported by laboratory experiments (Grue
et al. 1999, 2000). Moreover, recent laboratory results have shown that convective
instabilities in ISWs due to small-scale overturns may aid shear-induced instabilities
on the wavefront (Carr et al. 2008; Fructus et al. 2009), giving feedback to the
unstable state of the flow and enhancing the turbulence and mixing in the wave
vicinity. In this context, our numerical study extends the analysis to nonlinear internal
waves in enclosed rotating water bodies, such as medium or large lakes.

Field studies in stratified medium or large lakes have identified important
sources of turbulence in the density interface attributed to shear instabilities
(Kelvin–Helmholtz-type billows) riding over the slope of IKWs (Lorke 2007; Preusse
et al. 2010). Furthermore, density inversion and interfacial breakings at the trough
of a solitary wave train of large amplitudes have also been associated with the
nonlinear degeneration of basin-scale IKWs (Preusse et al. 2010, 2012a,b). Both
nonlinear processes have been observed in the TR of experiment 6. However,
the interaction between interfacial turbulent patches and steep internal waves has
not been studied and detected in detail in stratified lakes. This process can be a
periodic source of turbulence and mixing in stratified lakes. In addition, the results
suggest that the turbulence intensity is linked to the internal Rossby radius, and
its horizontal distribution could be driven by the behaviour of the vertical vorticity
(mainly observed in the near-shore region) and radial vorticity (mainly generated in
the density interface region by shear flow), both processes as a consequence of the
evolution and degeneration of the IKW.

The classification of the ‘dynamic regimes’ can be adopted for further use, but it
is important to note that the regimes were established for a particular configuration
of stratification (h1/H = 0.35) and rotation (Bi = 0.25) and, indeed, the conditions to
achieve them (LR, NL, NHR, TR) can change in terms of h1/H and Bi (see e.g. Horn
et al. 2001; Boegman et al. 2005; Ulloa et al. 2014).

To analyse the effect of rotation in the spatial distribution of turbulence as a
consequence of the IKW degeneration, further studies are required. However, if the
rotating regime changes (e.g. due to seasonal variations), for example to higher
Burger numbers (larger Ri), the radial velocity component plays a more active role in
the IKW propagation and the IKW can store more available potential energy within
Ri. Therefore, variations in the rotating regime could change both the thresholds of
dynamics regimes and the spatial distribution of turbulence induced by the IKW
evolution.
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As in Thomson (1879) and Csanady (1967), our study adopts the simplest
representation possible for a rotating, stratified lake: a cylindrical basin with
uniform depth. Moreover, to highlight the processes that promote wave steepening,
degeneration and instability, we have excluded the effects of bottom friction. Real
lakes, of course, have irregular shapes, frictional bottom boundary layers and shoaling
bathymetry. How these features influence and modify the wave dynamics discussed
here are important practical issues (see e.g. Beletsky et al. 1997; Boegman et al.
2003; Sakai & Redekopp 2010) that warrant further work.
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Appendix A. Derivation of the turbulence activity parameter

We can derive the equation of the kinetic energy budget by taking the scalar product
of the velocity field v with the momentum equation (see (2.1)). Then

∂tEk + (v · ∇)Ek =− v
ρ0
· (∇p+ ρgk̂)+ νmv ·∇2m(v), (A 1)

where Ek ≡ (v · v)/2 is the kinetic energy per mass unit. Rearranging terms, the local
time rate of change of kinetic energy can be expressed as follows:

∂tEk =−∇ ·
{

v
(

Ek + p
ρ0

)
− νm∇h−1(v ·∇mv)

}
− ρ

ρ0
gw− νm|∇mv|2. (A 2)

The first term of the right-hand side of (A 2) gives the rate change of the kinetic
energy resulting from advection, pressure and hyper-viscous diffusion of energy,
the second term gives the reversible rate of exchange with potential energy due to
buoyancy flux, while the third term gives the irreversible rate of hyper-viscous kinetic
energy dissipation. Averaging (A 2) over a closed volume V , we obtain the following
kinetic energy budget:

∂t〈Ek〉V =− 1
V

∫

V

{
gw

ρ

ρ0

}
dV − 1

V

∫

V
{νm|∇mv|2} dV. (A 3)

We are interested in the second term of (A 3):

εm = νm|∇mv|2. (A 4)
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From εm and νm, the hyper-viscous Kolmogorov length scale can be calculated using
the same arguments that set the ordinary (m= 1) Kolmogorov scale, resulting in

`K ≡
{
ν3

m

εm

}1/(6m−2)

. (A 5)

This scale defines where viscous forces balance inertial forces and the cascade is
ultimately dissipated. The activity parameter is fundamentally the ratio of the Ozmidov
scale and the Kolmogorov scale. The Ozmidov scale depends on the kinetic energy
dissipation and the buoyancy frequency, and it is defined as follows:

`O ≡
{ εm

N 3

}1/2
. (A 6)

This is the buoyancy scale at which the buoyant forces balance the inertial forces. A
turbulence activity parameter will be a ratio, to some power (p) for convenience, of
these two scales, i.e. a measure of how much bandwidth there is in the flow between
the Ozmidov scale and the Kolmogorov scale (Barry et al. 2001):

Im,p ≡
{
`O

`K

}p

=
{
εm

ν3
m

}p/(6m−2) { εm

N 3

}p/2
. (A 7)

In the viscous case (m= 1), the turbulence activity parameter has been defined using
p= 4/3. Thus

Im ≡
{
`O

`K

}4/3

= ε

N 2ν
. (A 8)

If we keep the power p= 4/3 for the hyper-viscous version of the turbulence intensity
parameter, we obtain the following expression:

Im ≡ 1
N 2

{
(εm)

m

νm

}2/(3m−1)

. (A 9)

Appendix B. Derivation of the diffusivity parameter

We are interested in estimating how the mass diffusivity changes as a consequence
of the evolution of an IKW in a two-layer flow. For this we will study the scales
associated with the fluid mixing due to the flow and molecular action. We can analyse
the fluid mixing via the time rate of change of the background potential energy per
mass unit, Eb = ρgz∗/ρ0:

∂tEb = g
ρ0
∂t{z∗(x, t)ρ(x, t)} = g

ρ0
{z∗∂tρ + ρ∂tz∗}, (B 1)

where z∗ is the reference height in the minimum potential energy state of a fluid
parcel at position (x, t) (Winters et al. 1995; Winters & D’Asaro 1996). From the
mass transport equation (see (2.1)), we can obtain the term ∂tρ and replace it in (B 1),
yielding

∂tEb =− g
ρ0

z∗{∇(vρ)− κm∇2mρ} + gρ
ρ0
∂tz∗. (B 2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

31
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.311


94 H. Ulloa, K. B. Winters, A. de la Fuente and Y. Niño

Because the z∗ vertical coordinate depends implicitly on the density distribution ρ(x, t),
we can write

z∗∇ρ =∇ξ where ξ =
∫ ρ

z∗(ρ̂) dρ̂, (B 3)

noting that ∇z∗ = (dz∗/dρ)∇ρ. Using (B 3) and rearranging terms, the background
potential energy budget can be written as follows:

∂tEb =− g
ρ0
∇{vξ − κm∇(z∗∇2m−1ρ)} − g

ρ0
κm

(
dρ
dz∗

)−1

|∇mρ|2 + gρ
ρ0

∂z∗
∂t
. (B 4)

Averaging ∂tEb over a closed volume V , the first and third terms of the right-hand
side of (B 4) are zero due to the no-flux boundary conditions and the mathematical
construction of z∗, respectively (Winters et al. 1995). Hence, the background potential
energy budget in a closed domain is reduced to the following expression:

∂t〈Eb〉V = 1
V

∫

V
−
{

g
ρ0
κm

(
dρ
dz∗

)−1

|∇mρ|2
}

dV. (B 5)

Notice that the background density gradient, dρ/dz∗, is a negative or null quantity,
therefore −dρ/dz∗ is a null or positive quantity, and therefore ∂t〈Eb〉V is always
positive. The expression integrated in (B 5) corresponds to the diapycnal flux given
our m operators, φhd, which can be expressed in terms of the ‘buoyancy’, b, writing
the density as ρ = ρ0(1− g−1b):

φhd = κm
|∇mb|2
db/dz∗

. (B 6)

When the flow is turbulent, the buoyancy field is stirred and filamented and the
numerator greatly exceeds the denominator. If we move to the laminar limit and
imagine that the fluid is not at all stirred or filamented, but rather exists in its
minimum potential energy state, then we can define a reference laminar diffusive flux
for comparison. We call this flux φ∗, where

φ∗ = κm
|dmb/dzm

∗ |2
db/dz∗

. (B 7)

We can now define an ‘enhancement’ parameter, measuring the increase in diffusive
flux, due to turbulent stirring and straining, relative to the laminar, diffusive flux in a
fluid with the same background buoyancy profile that is not stirred or strained:

Km ≡ φhd

φ∗
= |∇mb|2
∣∣dmb/dzm∗

∣∣2 . (B 8)

Note that this reduces to the Cox number when m= 1 and always represents a ratio
of turbulent diffusive flux to laminar diffusive flux for the same collection of fluid
parcels, i.e. for a fluid with the same buoyancy profile state.
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