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A note on Mosco convergence in CAT(0)
spaces

A. Bërdëllima

Abstract. In this note, we show that in a complete CAT(0) space pointwise convergence of proximal
mappings under a certain normalization condition implies Mosco convergence.

1 Introduction

A classical result of [2] establishes a set of equivalences between Mosco conver-
gence, convergence of proximal mappings and of Moreau–Yosida approximates for
a sequence of proper closed convex functions defined on a smooth reflexive Banach
space. This result has a natural extension to any metric space equipped with a convex
structure that allows for an appropriate notion of weak convergence. We consider
these equivalences in the setting of a complete CAT(0) space. A CAT(0) space is a
uniquely geodesic metric space that is endowed with a canonical convex structure and
allows for a suitable notion of weak convergence. The main feature that distinguishes
CAT(0) spaces from other geodesic metric spaces is the fact that every geodesic
triangle in a CAT(0) space is at least as thin as its comparison triangle in the Euclidean
plane. These spaces were formally introduced by Gromov [11] in recognition of the
seminal work of Alexandrov [1] and are often referred to as spaces of nonpositive
curvature, e.g., [6, 8]. The main motivation for studying Mosco convergence in a
CAT(0) space is the implications it has in the theory of the gradient flow initiated by
Mayer [15] and Jost [13]. More recently, Mosco convergence is applied in numerical
schemes for the so called metamorphosis models on Hadamard manifolds [10]. In
relation to the theory of the gradient flow, Bačak [3] proved that Mosco convergence
implies pointwise convergence of Moreau approximates and of proximal mappings,
and in turn convergence of proximal mappings yields pointwise convergence of the
gradient flow semigroup. Later in [5], Bačak et al. showed that pointwise convergence
of Moreau approximates yields Mosco convergence. However, it is not known whether
pointwise convergence of the proximal mappings implies Mosco convergence. That
convergence of proximal mappings alone is not enough was known to Bačak [4].
Indeed, consider a sequence of constant functions 0, 1, 0, 1, . . . defined onR. These are
closed and convex functions but they do not converge in the sense of Mosco to any
function f, however, their proximal mappings x ↦ Jλ x equal the identity for all λ > 0.
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A note on Mosco convergence 995

It is the purpose of this note to establish a suitable condition under which convergenve
of proximal mappings guarantees Mosco convergence for a sequence of proper closed
convex functions.

2 Preliminaries

We follow standard terminology from metric geometry theory about CAT(0) spaces,
e.g., [8, 9]. By (X , d) we denote a complete CAT(0) space, unless otherwise stated.
Given x ∈ X let

�x(X) ∶= {γ ∶ [0, 1] → X ∣ γ(0) = x}
denote the set of all geodesic segments emanating from x. A convex combination
of two elements x , y ∈ X with parameter t ∈ [0, 1] is an element xt ∈ [x , y] satis-
fying d(x , xt) = td(x , y). We write xt ∶= (1 − t)x ⊕ ty. Such a convex combination
is uniquely determined. We often denote by [x , y] the unique geodesic segment
connecting x with y. A set C ⊆ X is a convex set if for every x , y ∈ C and t ∈ [0, 1]
it holds that (1 − t)x ⊕ ty ∈ C. A set C is closed if its complement X/C is open in the
usual metric topology. In particular, geodesic segments are closed and convex. Let
d(x , C) ∶= inf{d(x , y) ∣ y ∈ C} and PC x ∶= {z ∈ C ∣ d(x , z) = d(x , C)}. We use the
following definition for weak convergence in a CAT(0) space which is due to [12].

Definition 2.1 A sequence (xn) weakly converges to x and we write xn
w→ x if and

only if limn→+∞ Pγ xn = x for every γ ∈ �x(X).

This notion of convergence is well defined since projection onto a closed convex
set always exists and is unique. On bounded sets, weak convergence coincides with
the so-called Δ-convergence introduced by Lim [14] and shares with it the desirable
properties of Opial and Kadec–Klee. Moreover, every bounded sequence has a weakly
convergent subsequence [7, Chapter 3]. Moreover, weak limits are unique. Indeed if
xn

w→ x and xn
w→ y then for γ ∶= [x , y] and γ̃ ∶= [y, x]we obtain x = limn→+∞ Pγ xn =

limn→+∞ Pγ̃ xn = y.

Definition 2.2 A sequence of functions f n ∶ X → (−∞,+∞] is said to be Mosco
convergent to f ∶ X → (−∞,+∞] and we write M − limn→+∞ f n = f if for each x ∈ X:

(1) f (x) ≤ lim inf n→+∞ f n(xn) whenever xn
w→ x and

(2) there exists some sequence (yn) ⊂ X such that yn → x and f (x) ≥ lim supn→+∞
f n(yn).

One of the difficulties in Attouch’s theorem is that it involves the dual space in
its formulation. This is problematic in the setting of a CAT(0) space since a proper
dual space corresponding to the weak convergence in Definition 2.1 is not yet fully
understood. However the following concept becomes helpful and plays the role of a
“subgradient.”1

1Refer to [16] for this and related concepts in convex analysis.
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996 A. Bërdëllima

Definition 2.3 Let f ∶ X → (−∞,+∞] be some (extended) real-valued function and
let x ∈ dom f ∶= {x ∈ X ∣ f (x) < +∞}. The absolute slope of f at x is defined as

∣∂ f ∣(x) ∶= lim sup
y→x

max{ f (x) − f (y), 0}
d(x , y) .(2.1)

If f (x) = +∞ we set ∣∂ f ∣(x) ∶= +∞.

To this end, we assume that our functions are real valued and satisfy:
(1) (proper) there exists no x ∈ X such that f (x) = −∞ and f /≡ +∞.
(2) (convex) f ((1 − t)x ⊕ ty) ≤ (1 − t) f (x) + t(y) for all x , y ∈ X and t ∈ [0, 1].
(3) (closed) f (x) ≤ lim inf y→x f (y) for every x ∈ X.

Lemma 2.1 [3, Lemma 5.1.2] Let f ∶ X → (−∞,+∞] be a closed convex function.
Then

∣∂ f ∣(x) = sup
y∈H/{x}

max{ f (x) − f (y), 0}
d(x , y) , x ∈ dom f .(2.2)

Given x ∈ X and a geodesic segment γ containing x, we define the function
sign( ⋅ ; γ) ∶ γ → {−1, 1} as sign(y; γ) = 1 if y ∈ (x , γ(1)] and sign(y; γ) = −1 if y ∈
[γ(0), x]. Another notion for the slope of a function f is that of the geodesic
derivative.

Definition 2.4 Let f ∶ X → (−∞,+∞]. The geodesic lower derivative of f at x ∈ X
along a geodesic γ containing x is defined as2

f ′−(x; γ) ∶= lim inf
y

γ
→x

f (y) − f (x)
sign(y; γ) d(y, x) .(2.3)

Analogously, the geodesic upper derivative, denoted by f ′+(x; γ), is defined with
lim inf replaced by lim sup. If both limits exist and coincide then we say that f is
geodesically differentiable at x along γ and denote it by f ′(x; γ).

For a given closed convex function f ∶ X → (−∞,+∞] and parameter λ > 0 the
Moreau approximate fλ of f is defined as

fλ(x) ∶= inf
y∈X

{ f (y) + 1
2λ

d(y, x)2}, for each x ∈ X(2.4)

and the proximal mapping of f

Jλ x ∶= arg min
y∈X

{ f (y) + 1
2λ

d(y, x)2}, for each x ∈ X .(2.5)

In general, Jλ x can be a multivalued operator if X is some arbitrary metric space,
however, in a CAT(0) space Jλ x exists and is always unique (see [3]). We use also the
following two results for complete CAT(0) spaces.

2A related notion directional derivative is found in [17].
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Theorem 2.2 [3, Theorem 5.2.4] Let f n ∶ X → (−∞,+∞] a sequence of closed con-
vex functions. If M − limn→+∞ f n(x) = f (x), then it holds limn→+∞ f n

λ (x) = fλ(x)
and limn→+∞ Jn

λ x = Jλ x for each x ∈ X.

Theorem 2.3 [5, Theorem 3.2] Let f , f n ∶ X → (−∞,+∞] be a sequence of closed
convex functions. If limn→+∞ f n

λ (x) = fλ(x) then M − limn→+∞ f n(x) = f (x) for all
x ∈ X.

3 Main result

3.1 A normalization condition

Definition 3.1 A sequence of functions ( f n)n∈N , f satisfies the normalization condi-
tion if there exists some sequence (xn)n∈N ⊂ X and x ∈ X such that xn → x , f n(xn) →
f (x) and ∣∂ f n ∣(xn) → ∣∂ f ∣(x) as n → +∞.

Lemma 3.1 A sequence of closed convex functions ( f n)n∈N , f ∶ X → (−∞,+∞] sat-
isfies the normalization condition whenever M − limn→+∞ f n = f .

Proof Let x0 ∈ X and M − limn→+∞ f n = f . Then by Theorem 2.2, we have
limn→+∞ Jn

λ x0 = Jλ x0 for any λ > 0. Take xn ∶= Jn
λ x0 and x ∶= Jλ x0. By definition

of Jλ we have

f n(xn) +
1

2λ
d(x0 , xn)2 ≤ f n(y) + 1

2λ
d(x0 , y)2 , ∀y ∈ X .

Let (ξn)n∈N ⊂ X be a sequence strongly converging to x. From the last inequality, we
obtain in particular that

f n(xn) +
1

2λ
d(x0 , xn)2 ≤ f n(ξn) +

1
2λ

d(x0 , ξn)2 , ∀n ∈ N

implying lim supn→+∞ f n(xn) ≤ lim supn→+∞ f n(ξn)n∈N. On the other hand,
by definition of Mosco convergence there exists a sequence (ξn)n∈N such that
lim supn→+∞ f n(ξn) ≤ f (x). Hence, lim supn→+∞ f n(xn) ≤ f (x). Moreover,
limn→+∞ xn = x implies, in particular, that xn

w→ x. Again by definition of Mosco con-
vergence, we obtain f (x) ≤ lim inf n→+∞ f n(xn). Therefore, f (x) = limn→+∞ f n(xn)
as desired. Next, we need to show the property about the slopes. Note that by Lemma
2.1, we have

max{ f n(xn) − f n(y), 0}
d(xn , y) ≤ ∣∂ f n ∣(xn), ∀y ∈ X/{xn},∀n ∈ N.

Again by Mosco convergence for each y ∈ X there is a sequence (ξn)n∈N strongly
converging to y such that lim supn→+∞ f n(ξn) ≤ f (y). Applying the last inequality
for ξn , we have

max{ f n(xn) − f n(ξn), 0}
d(xn , y) ≤ ∣∂ f n ∣(xn), ∀n ∈ N,
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which in turn yields

max{ f (x) − lim supn→+∞ f n(ξn), 0}
d(x , y) ≤ lim inf

n→+∞
∣∂ f n ∣(xn).

Using lim supn→+∞ f n(ξn) ≤ f (y), we get

max{ f (x) − f (y), 0}
d(x , y) ≤ lim inf

n→+∞
∣∂ f n ∣(xn).

Because the last inequality holds for any y ∈ X/{xn} then ∣∂ f ∣(x) ≤ lim inf n→+∞
∣∂ f n ∣(xn). Now by Definition 2.3, we obtain

∣∂ f n ∣(xn) ≤
max{ f n(xn) − f n(yn), 0}

d(xn , yn)
+ εn , ∀n ∈ N

for sufficiently small εn > 0 and yn sufficiently close to xn . Note that strong conver-
gence of xn to x implies that for any δ > 0, all but finitely many of the terms yn ∈
B(x , δ). In particular, (yn) is a bounded sequence, hence it has a weakly convergent
subsequence (ynk). But clB(x , δ) is a closed convex set and since weak convergence
coincides on bounded sets with the Δ-convergence then by [3, Lemma 3.2.1] ynk

w→
y ∈ clB(x , δ). One can choose (εn) such that limk→+∞ εnk = 0. Moreover, d(x , ⋅) is
weakly lsc [3, Corollary 3.2.4] implying

lim sup
k→+∞

∣∂ f nk ∣(xnk) ≤
max{ f (x) − lim inf k f nk(ynk), 0}

d(x , y) .

By definition of Mosco convergence, it follows that lim inf k→+∞ f nk(ynk) ≥ f (y).
Hence,

lim sup
n→+∞

∣∂ f n ∣(xn) ≤ lim sup
k→+∞

∣∂ f nk ∣(xnk) ≤
max{ f (x) − f (y), 0}

d(x , y) .

The last inequality implies lim supn→+∞ ∣∂ f n ∣(xn) ≤ ∣∂ f ∣(x). ∎

Definition 3.2 A family of functions f n ∶ X → (−∞,+∞] is said to be equi locally
Lipschitz if for any bounded set K ⊆ X, there is a constant CK > 0 such that

∣ f n(x) − f n(y)∣ ≤ CK d(x , y), ∀x , y ∈ K ,∀n ∈ N.(3.1)

Lemma 3.2 Let f n ∶ X → (−∞,+∞] be a sequence of closed convex functions such
that limn→+∞ f n

λ (x0) = α0 ∈ R for some x0 ∈ X and some λ > 0. Then ( f n
λ )n∈N are equi

locally Lipschitz functions.

Proof By virtue of [2, Theorem 2.64 (ii)], it suffices to show that there is r > 0 and
x0 ∈ X such that f n(x) + r(d(x , x0)2 + 1) ≥ 0 for all x ∈ X and all n ∈ N. Let x0 ∈ X
be such that limn→+∞ f n

λ (x0) = α0 ∈ R. Notice that by definition of Moreau envelope,
we have

f n(x) ≥ f n
λ (x0) −

1
2λ

d(x0 , x)2 ≥ α0 − δ − 1
2λ

d(x0 , x)2
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for some δ > 0 and sufficiently large n. If one takes δ = α0 + 1/2λ, then one gets

f n(x) ≥ − 1
2λ
(d(x0 , x)2 + 1), ∀x ∈ X .

For any r ≥ 1/2λ, we obtain f n(x) + r(d(x0 , x)2 + 1) ≥ 0 for all x ∈ X and all n ∈ N.

3.2 Attouch’s theorem for complete CAT(0) spaces

Theorem 3.3 Let f n , f ∶ X → (−∞,+∞] be proper closed convex functions such that
(1) ∀λ > 0,∀x ∈ X it holds limn→+∞ Jn

λ x = Jλ x.
(2) ( f n)n∈N satisfies the normalization condition.
(3) limn→+∞( f n

λ )′(x; γ) = f ′λ(x; γ) for all γ ∈ �x0(X) and x ∈ γ.
Then limn→+∞ f n

λ (x) = fλ(x) for any λ > 0, x ∈ X.

Proof Let ( f n)n∈N , f satisfy the normalization condition. Then there exists
(xn), x0 ⊂ X such that limn→+∞ xn = x0 , limn→+∞ f n(xn) = f (x0) and limn→+∞
∣∂ f n ∣(xn) = ∣∂ f ∣(x0). Assume that λ > 0. First, we claim that limn→+∞ f n

λ (x0) =
fλ(x0). Introduce the variables un ∶= Jn

λ xn for each n ∈ N and u0 ∶= Jλ x0. Note that
by assumption (3.3) for each fixed m ∈ N, we have limn→+∞ Jn

λ xm = Jλ xm . Since
the mapping x ↦ Jλ x is nonexpansive and therefore continuous, then limm Jλ xm =
Jλ x0. By triangle inequality d(Jn

λ xn , Jλ x0) ≤ d(Jn
λ xn , Jn

λ xm) + d(Jn
λ xm , Jλ x0) and

nonexpansiveness of Jn
λ , we have

d(Jn
λ xn , Jλ x0) ≤ d(xn , xm) + d(Jn

λ xm , Jλ x0).

Passing in the limit as m, n → +∞, we get limn→+∞ un = limn→+∞ Jn
λ xn = Jλ x0 = u0.

On the other hand,

∣ f n(un) − f (u0)∣ ≤ ∣ f n(un) − f n(xn)∣ + ∣ f n(xn) − f (x0)∣ + ∣ f (x0) − f (u0)∣.

By normalization condition (3.3) and using limλ↓0 un = limλ↓0 Jn
λ xn = xn and

limλ↓0 u0 = limλ↓0 Jλ x0 = x0 together with the lsc of f n and f imply in the limit
as λ ↓ 0 and n → +∞ that limn→+∞ f n(un) = f (u0). Again by definition of Moreau
envelope as n → +∞

f n
λ (xn) = f n(un) +

1
2λ

d(xn , un)2 → f (u0) +
1

2λ
d(x0 , u0)2 ∶= fλ(x0).

Note that

f n
λ (x0) ≤ f n(xn) +

1
2λ

d(x0 , xn)2 → f (x0) as n → +∞.

On the other hand, we have

f n
λ (x0) ≥ f n(Jn

λ x0) ≥ f n(xn) − ∣∂ f n ∣(xn)d(Jn
λ x0 , xn)

→ f (x0) − ∣∂ f ∣(x0)d(Jλ x0 , x0) > −∞ as n → +∞.

In particular we get −∞ < lim inf n→+∞ f n
λ (x0) ≤ lim supn→+∞ f n

λ (x0) < +∞ (we can
assume wlog that x0 ∈ dom f ). By Lemma 3.2, we get that ( f n

λ )n∈N is equi locally
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Lipschitz in X. Then for any bounded domain K ⊆ X, there is CK > 0 such that

∣ f n
λ (x) − f n

λ (y)∣ ≤ CK d(x , y), ∀x , y ∈ K ,∀n ∈ N.

From this and the estimate

∣ f n
λ (x0) − fλ(x0)∣ ≤ ∣ f n

λ (x0) − f n
λ (xn)∣ + ∣ f n

λ (xn) − fλ(x0)∣
≤ CK d(xn , x0) + ∣ f n

λ (xn) − fλ(x0)∣
follows that limn→+∞ f n

λ (x0) = fλ(x0). Now define gn ,λ(t) ∶= f n
λ (xt) and gλ(t) ∶=

fλ(xt), where xt ∶= (1 − t)x0 ⊕ tx and x ∈ X is arbitrary. Consider

g′n ,λ(t) ∶= lim
s→0

gn ,λ(t + s) − gn ,λ(s)
s

, t ∈ (0, 1).

Since f n
λ is convex for each n ∈ N then it is absolutely continuous on every geodesic

segment. In particular, g′n ,λ(t) exists almost everywhere on [0, 1], it is Lebesgue
integrable on the interval [0, 1] and satifies

gn ,λ(1) = gn ,λ(0) + ∫
1

0
g′n ,λ(t) dt.(3.2)

On the other hand, g′n ,λ(t) = ( f n
λ )′(xt ; γ)d(x0 , x) where γ ∈ �x0(X) connects x0

with x and xt ∈ γ. Assumption (3.3) implies limn→+∞ g′n ,λ(t) = g′λ(t) for all t ∈ [0, 1].
Moreover equi locally Lipschitz property of ( f n

λ )n∈N implies that supn ∣g′n ,λ(t)∣ ≤
CK d(x0 , x) for any bounded domain K around x0 and x ∈ K. Upon replacing gn ,λ(1)
with f n

λ (x) and gn ,λ(0) with f n
λ (x0) in (3.2), by Lebesgue dominated convergence

theorem we obtain in the limit

lim
n→+∞

f n
λ (x) = fλ(x0) + ∫

1

0
lim

n→+∞
g′n ,λ(t) dt = fλ(x0) + ∫

1

0
g′λ(t) dt = fλ(x).

Example 3.4 Consider again the sequence of functions f n ∶ [0, 1] → R given by

f n(x) = { 0 n odd,
1 n even, ∀x ∈ [0, 1].

Let f (x) = 1/2 for all x ∈ [0, 1]. Then ( f n)n∈N , f is a family of proper closed convex
functions satisfying limn→+∞ Jn

λ x = Jλ x for any λ > 0 and every x ∈ [0, 1]. However,
assumption (2) is not fulfilled since for any sequence (xn)n∈N ⊂ X and for any
x0 ∈ X such that limn→+∞ xn = x0 we have lim inf n→+∞ f n(xn) = 0 < 1/2 = f (x0).
Moreover, for any x ∈ [0, 1] it holds that lim inf n→+∞ f n(x) = 0 < 1/2 = f (x)
consequently since f n

λ (x) = f n(x) and fλ(x) = f (x) for all λ > 0 it follows that
limn→+∞ f n

λ (x) ≠ fλ(x). Note that in this case, ( f n
λ )′(x; γ) = ( f n)′(x; γ) = 0 and

( fλ)′(x; γ) = f ′(x; γ) = 0 i.e., limn→+∞( f n
λ )′(x; γ) = f ′(x; γ) = 0 for all γ ∈ �x0(X)

and x ∈ γ. This example shows that condition (2) cannot be removed.

Example 3.5 Let (H, ∥ ⋅ ∥) be a separable Hilbert space equipped with the canonical
norm ∥ ⋅ ∥. Let {ek}k∈N be the usual orthonormal basis in H. Denote by X = ⋃

k∈N
Xk

where

Xk = {x ∈H ∶ x = t ek , 0 ≤ t ≤ 1}.
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When X is equipped with the length metric, that we denote by d�, then (X , d�)
is a complete CAT(0) space. Let f n ∶ X → R be defined by the formula f n(x) =
d�(0, x)/n for all x ∈ X and n ∈ N. Here, 0 is the usual origin in H, i.e., {0} = ⋂

k∈N
Xk .

Let f ∶ X → R be the identical zero function i.e., f (x) = 0 for all x ∈ X. Two elements
x , y ∈ X are equivalent whenever x , y ∈ Xk for some k ∈ N, and we write x ∼ y. Note
that

d�(x , y) = { ∥x − y∥ x ∼ y,
∥x∥ + ∥y∥ else.

In particular, we obtain f n(x) = ∥x∥/n for all x ∈ X and n ∈ N. Then

f n(y) + 1
2 λ

d2
�(x , y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∥y∥
n

+ 1
2λ

∥x − y∥2 x ∼ y,

∥y∥
n

+ 1
2λ

(∥x∥ + ∥y∥)2 else.

By virtue of triangle inquality ∥x − y∥ ≤ ∥x∥ + ∥y∥, we obtain that

inf
y∈X

{ f n(y) + 1
2 λ

d2
�(x , y)} = inf

y∼x
{ f n(y) + 1

2 λ
d2

�(x , y)}, ∀x ∈ X .

Consequently

f n
λ (x) = inf

y∼x
{ f n(y) + 1

2 λ
∥x − y∥2}.

Since x ∼ y then there are s, t ∈ [0, 1] such that x = tek and y = sek for some k ∈ N.
Hence, in terms of the variables s, t we can write

g(t) = f n
λ (tek) = inf

s∈[0,1]
{ s

n
+ 1

2 λ
(s − t)2}

minimum of which is achieved for sn = t − λ/n. Hence, Jn
λ x = Jn

λ (t ek) = (t −
λ/n) ek → tek = x as n → +∞. On the other hand, Jλ x = x since trivially f (x) = 0
for all x ∈ X. This means that limn→+∞ Jn

λ x = Jλ x for all x ∈ X and for all λ >
0. Consequently condition (1) is satisfied. Now let xn = en/n for n ∈ N. Then
limn→+∞ xn = 0 and limn→+∞ f n(xn) = limn→+∞ 1/n2 = 0 = f (0). Moreover, by
virtue of Lemma 2.1, we have

∣∂ f n ∣(xn) = sup
y∈X/{xn}

max{∥xn∥/n − ∥y∥/n, 0}
d�(xn , y)

≤ sup
y∈X/{xn}

max{∥xn∥/n − ∥y∥/n, 0}
∥xn − y∥ ≤ 1

n
→ 0, as n → +∞.

Also ∣∂ f ∣(0) = 0, hence limn→+∞ ∣∂ f n ∣(xn) = ∣∂ f ∣(0). Therefore, condition (2) is also
satisfied. Now let γ ∈ �0(X) and x ∈ γ. From the above calculations, we obtain that

f n
λ (x) = f n(Jn

λ x) + 1
2λ

∥x − Jn
λ x∥2 = ∣t − λ/n∣

n
+ λ

2 n2 ∶= gn ,λ(t).(3.3)
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For sufficiently large n we get g′n ,λ(t) = 1/n2 → 0 as n → +∞. The relation g′n ,λ(t) =
( f n

λ )′(x; γ) d�(0, γ(1)) yields ( f n
λ )′(x; γ) → 0 as n → +∞. On the other side, fλ(x) =

0 for all x ∈ X implies ( fλ)′(x; γ) = 0 for every γ ∈ �0(X) and all x ∈ X. Consequently,
we get limn→+∞( f n

λ )′(x; γ) = ( fλ)′(x; γ). This confirms condition (3). By Theorem
3.3, limn→+∞ f n

λ (x) = fλ(x) for all x ∈ X and λ > 0. Last conclusion can be easily
verified directly from (3.3).

Theorem 3.6 Let ( f n), f ∶ X → (−∞,+∞] be proper closed and convex functions
such that for some x0 ∈ X it holds that limn→+∞( f n

λ )′(x; γ) = f ′λ(x; γ) for all γ ∈
�x0(X) and x ∈ γ. Then the following statements are equivalent:
(1) M − limn→+∞ f n = f .
(2) ∀λ > 0,∀x ∈ X it holds limn→+∞ Jn

λ x = Jλ x and ( f n)n∈N satisfies the normaliza-
tion condition with some (xn)n∈N converging to x0.

(3) limn→+∞ f n
λ (x) = fλ(x) for any λ > 0,∀x ∈ X.

Proof Follows from Theorems 2.2, 2.3, and 3.3. ∎

Acknowledgment I am grateful to my advisor Prof. D. R. Luke for his helpful
comments in improving the quality of this work. I would like to thank as well
the anonymous referee for their qualitative suggestions. The author was supported
by Deutscher Akademischer Austauschdienst (DAAD) and partially by Germany’s
Excellence Strategy–The Berlin Mathematics Research Center MATH+ (EXC-2046/1,
Projektnummer: 390685689).

References

[1] A. D. Alexandrov, A theorem on triangles in a metric space and some of its applications. Trudy
Mat. Inst. Steklova 38(1951), 5–23.

[2] H. Attouch, Variational convergence for functions and operators. Applicable Mathematics Series,
Pitman (Advanced Publishing Program), Boston, MA, 1984.
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