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We study the sound generation mechanism of initially subsonic viscous vortex
reconnection at vortex Reynolds number Re (≡ circulation/kinematic viscosity) = 1500
through decomposition of Lighthill’s acoustic source term. The Laplacian of the kinetic
energy, flexion product, enstrophy and deviation from the isentropic condition provide
the dominant contributions to the acoustic source term. The overall (all time) extrema of
the total source term and its dominant hydrodynamic components scale linearly with the
reference Mach number Mo; the deviation from the isentropic condition shows a quadratic
scaling. The significant sound arising from the flexion product occurs due to the coiling
and uncoiling of the twisted vortex filaments wrapping around the bridges, when a rapid
strain is induced on the filaments by the repulsion of the bridges. The spatial distributions
of the various acoustic source terms reveal the importance of mutual cancellations among
most of the terms; this also highlights the importance of symmetry breaking in the sound
generation during reconnection. Compressibility acts to delay the start of the sequence of
reconnection events, as long as shocklets, if formed, are sufficiently weak to not affect
the reconnection. The delayed onset has direct ramifications for the sound generation by
enhancing the velocity of the entrained jet between the vortices and increasing the spatial
gradients of the acoustic source terms. Consistent with the near-field pressure, the overall
maximum instantaneous sound pressure level in the far field has a quadratic dependence
on Mo. Thus, reconnection becomes an even more dominant sound-generating event at
higher Mo.
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1. Introduction

The mechanism of aeroacoustic noise production and its relation to the far-field sound
propagation remain poorly understood, in spite of decades of dedicated theoretical,
numerical and experimental studies. Intuitively, we know that coherent vortical structures
and their self- and mutual interactions are significant aeroacoustic noise sources as they
are the sinews and muscles of turbulence. In fact, coherent structures and their interactions
have been often implicated as the main hydrodynamic source of jet noise (Hussain 1983;
Guj et al. 2003; Coiffet et al. 2006); however, the extent to which coherent structures are
important in sound generation (Bastin, Lafon & Candel 1997) and the types of vortical
interactions that generate noise are poorly understood.

The idea that aeroacoustic noise can be modulated through the control of vortical
structures has inspired many studies. Extending his earlier work (Zaman & Hussain
1981) on jet turbulence suppression, Zaman (1985) investigated noise suppression and
enhancement of a subsonic jet through controlled excitation of the vortical structures
(see also Hussain & Hasan 1985). A higher level of organization and mutual interaction
among the vortical structures in a laminar jet results in higher noise. However, controlled
excitation of a transitional low-speed jet can suppress growth rate of the near-exit shear
layer’s Kelvin–Helmholtz instability and produce weaker coherent structures downstream,
thus less noise. These experiments implied that not only the type, but the intensity of
the vortical interaction is influential in sound generation. Eldredge (2007) used direct
numerical simulation to investigate the sound generation of two-dimensional leapfrogging
vortices. He showed that the primary acoustic pulse does not originate from the elastic
deformation of the inner vortex cores but from the filamentary structures at the outer edges
which rotate about the cores – based on Möhring’s analogy (Möhring 1978), vorticity
stretching and acceleration emerge as an intense noise source. Eldredge deduced that the
sound is not necessarily caused by the explicit collision of the vortex cores.

A consensus on the dominant jet noise generation mechanism emerged in early studies
(Williams & Kempton 1978; Kibens 1980; Crighton 1981; Laufer & Yen 1983), where
acoustic sources were attributed to vortex pairing. Hussain & Zaman (1981) studied the
coherent structures in the near field of an axisymmetric free jet and argued, however, that
pairing is completed within four diameters from the jet exit, while most noise originates
farther downstream. They proposed that reconnection of the toroidal rings through the
evolution of azimuthal lobe structures produces most of the jet noise. Starting with the
first suggestion by Melander & Hussain (1988), vortical reconnection, which results in a
violent topological change of the vortex tubes, has long been hypothesized as a significant
contributor to aeroacoustic noise generation in broader classes of turbulent flows. Figure 1
shows the main stages of the reconnection process of two anti-parallel vortices including
inviscid induction, bridging, repulsion of bridges and threading. Given vorticity tilting,
i.e. rotation of vorticity vector from the axial direction towards the lateral direction (see
figure 1b), and the rapid repulsion of the bridges (see figure 1c), originating from the
self-induced recoil of accumulated reconnected, cusped vortex lines, reconnection could
indeed be a significant sound-generating event which has not been adequately explored.
For a detailed explanation of the reconnection process, the reader is referred to Melander
& Hussain (1988).

In spite of the recent advances in characterizing incompressible reconnection (Hussain
& Duraisamy 2011; Yao & Hussain 2020), relatively little is known about the
compressible case, which involves a more complicated evolution owing to the strong
dependence on the initial thermodynamic conditions (Virk & Hussain 1993) and additional
vorticity generation mechanisms through dilatation and baroclinicity (Virk, Hussain &
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Figure 1. Reconnection process of two anti-parallel vortices including (a) inviscid induction, (b) bridging,
(c) repulsion of bridges and (d) threading. Blue, green and red colours show negative, zero and positive axial
vorticity, respectively.

Kerr 1995). Presumably for these reasons, only a few works have considered compressible
reconnection (Kerr, Virk & Hussain 1989; Virk et al. 1995; Scheidegger 1998; Shivamoggi
2006; Peng & Yang 2018) – all of which are limited to low Re. In the transonic and
supersonic regimes, incipient shocklet-induced reconnection alters the vorticity field
causing earlier bridging but subsequent slowdown of the circulation transfer. Therefore,
at the same Re, the time scale of the compressible reconnection increases compared to
the incompressible case (Virk et al. 1995). It is known that compressibility also affects
the domain of influence of vortical structures impacting the level of turbulence anisotropy
in canonical flows (Pantano & Sarkar 2002; Hickey, Hussain & Wu 2016). In addition
to the hydrodynamic effects, shocklet formation during reconnection could represent an
additional aeroacoustic sound source.

Sound generation has been noted in the oblique collisions of vortex rings; the primary
acoustic source originates from the reconnection region of vortex lines (Kambe, Minota &
Takaoka 1993; Adachi, Ishh & Kambe 1997; Ishii, Adachi & Kambe 1998). Furthermore,
Nakashima (2008) showed that as the collision angle decreases, reconnection and its
contribution to the far-field sound intensify. On the other hand, using Lighthill’s analogy
(Lighthill 1952), Scheidegger (1998) failed to find a distinct far-field sound signal
during the reconnection of orthogonal vortices. He noted that many source points
in the reconnection region contribute to sound generation and the sound radiation is
sporadic. Recently, we showed that the reconnection of two anti-parallel vortices produces
significant far-field sound which is deterministic in the sound directivity pattern (Daryan,
Hussain & Hickey 2020). Our analysis shows that the main acoustic sources are located
at the contact region of the vortices at the start of the reconnection and then migrate
towards the bridges. In addition to viscous flow cases, sound generation during quantum
vortex reconnection becomes an appealing topic, recently identified as an energy exchange
and irreversibility mechanism (Proment & Krstulovic 2020; Villois, Proment & Krstulovic
2020).

Although vorticity evolution is qualitatively the same for all subsonic reconnections
(Daryan, Hussain & Hickey 2019), many aspects of compressible reconnection including
the detailed roles of the supplementary vorticity generation terms, sound production
mechanism and recognition and evolution of the dominant components of the acoustic
source term still remain unexplored. Also, very little is known about the formation and
features of shocklets near the sonic threshold and their dependence on Re.

In this paper, we aim to characterize the sound generation mechanism of compressible,
viscous vortex reconnection, which is conjectured to play a central role in aeroacoustic
noise generation in vortical flows. Our focus is on the dominant components of the acoustic
source term, their physical representation and the role of compressibility. We also study the
near-field pressure evolution which is closely tied to the sound production and propagation
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mechanisms (Coiffet et al. 2006; Mancinelli et al. 2017). Finally, we investigate the
dependence of the far-field sound pressure level (SPL) and directivity pattern on the Mach
number.

The paper is organized as follows. The acoustic source term and its decomposition are
described in § 2. Section 3 is dedicated to the numerical set-up. Section 4 addresses the
results and discussion, and finally conclusions are drawn in § 5.

2. Theoretical framework

The conservative form of the governing equations for compressible, Newtonian fluid flow
in an inertial frame of reference without external forces can be written as

∂ρ

∂t
+ ∂

∂xj
(ρvj) = 0, (2.1)

∂ρvi

∂t
+ ∂

∂xj
(ρvivj) = ∂σij

∂xj
, (2.2)

∂ρeT

∂t
+ ∂

∂xj
(ρeTvj) = ∂viσij

∂xj
− ∂qj

∂xj
, (2.3)

where ρ is density, t is time and vj is the velocity component in the xj direction. Here σij
is the stress tensor and is given as

σij = −Pδij + τij = −Pδij + 2μSij + λSmmδij, (2.4)

where P is the static pressure, δij is the Kronecker delta tensor, τij = 2μSij + λSmmδij is the
fluid-dynamic contribution to the stress tensor and is called the deviatoric stress tensor,
μ is the shear viscosity coefficient, Sij = 1

2 (∂vi/∂xj + ∂vj/∂xi) is the strain rate tensor,
λ = μν − 2μ/3 is the second viscosity coefficient and μν is the bulk viscosity coefficient
which is often assumed to be zero, μν = 0, based on the Stokes assumption.

In the conservation of energy equation (2.3), eT = e + 1
2vivi is the total energy per unit

mass, e is the internal energy per unit mass and qj is the heat flux component in the xj
direction. We neglect radiation and assume that the heat transfer follows Fourier’s law
of heat conduction, q = −k∇T , where q is the heat flux, k is the thermal conductivity
of the fluid and T is temperature. Considering a calorically perfect gas relation, e = CvT
and P = ρRT , where Cv is the specific heat capacity at constant volume and R is the gas
constant, the above conservation equations can be solved.

By combining the continuity and momentum equations, Lighthill’s inhomogeneous
wave equation is derived (Lighthill 1952). The homogeneous part of this partial differential
equation describes acoustic wave propagation within an inviscid, stationary fluid whereas
the inhomogeneous contribution represents the summation of all source terms driving the
wave. The equation can be written as follows:

∂2ρ

∂t2
− c2

0∇2ρ = ∇ ·
[
ρ(v · ∇)v − v

∂ρ

∂t
+ (∇P − c2

0∇ρ) − ∇ · τ

]
︸ ︷︷ ︸

S

, (2.5)

where the left-hand side is the wave operator with c0 as the constant speed of sound of
the stationary medium and ρ, density, as the dependent variable. The right-hand side
is the source term (S) where v is the velocity vector. The acoustic source term can be
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reformulated to delineate the physical interpretation of the mechanisms causing the sound
generation as

∂2ρ

∂t2
− c2

0∇2ρ = ∇ · [ρ(ω × v)]︸ ︷︷ ︸
A

+∇ ·
[
ρ

∇|v|2
2

]
︸ ︷︷ ︸

B

+∇ · [(∇ · (ρv))v]︸ ︷︷ ︸
C

+ (∇2P − c2
0∇2ρ)︸ ︷︷ ︸

D

−∇ · [∇ · τ ]︸ ︷︷ ︸
E

, (2.6)

where ω = ∇ × v is the vorticity vector. This reformulation of the Navier–Stokes
equations, (2.6), is exact and, unlike standard aeroacoustic analogies, all acoustic source
terms are preserved. The wave operator can also be written in terms of pressure as the
dependent variable; however, since it is computationally inefficient, we proceed with the
above form of Lighthill’s equation. The decomposed terms in (2.6) are tractable and
amenable to a physical interpretation. Term A denotes the role of the divergence of the
Lamb vector, ω × v, term B is related to the spatial variation of the kinetic energy, term C
contains interactions involving the gradient of density and the dilatation field, term D is the
deviation from the isentropic condition and term E contains the viscous effects. Through
a further expansion of each of these terms, the individual contribution of the velocity,
vorticity, dilatation and density and their mutual interactions can be delineated even more:

∇ · [ρ(ω × v)]︸ ︷︷ ︸
A

= (ρv) · (∇ × ω)︸ ︷︷ ︸
A1

+ v · (∇ρ × ω)︸ ︷︷ ︸
A2

−ρ(ω · ω)︸ ︷︷ ︸
A3

, (2.7)

∇ ·
[
ρ

∇|v|2
2

]
︸ ︷︷ ︸

B

= ρ∇2
( |v|2

2

)
︸ ︷︷ ︸

B1

+∇ρ · ∇ |v|2
2︸ ︷︷ ︸

B2

, (2.8)

∇ · [(∇ · (ρv))v]︸ ︷︷ ︸
C

= ρv · ∇(∇ · v)︸ ︷︷ ︸
C1

+ ρ(∇ · v)2︸ ︷︷ ︸
C2

+ 2(∇ · v)v · ∇ρ︸ ︷︷ ︸
C3

+ v · (v · ∇∇ρ)︸ ︷︷ ︸
C4

+ v · (∇ρ.∇v)︸ ︷︷ ︸
C5

, (2.9)

(∇2P − c2
0∇2ρ)︸ ︷︷ ︸

D

= ∇2P︸︷︷︸
D1

−c2
0∇2ρ︸ ︷︷ ︸
D2

, (2.10)

−∇ · [∇ · τ ]︸ ︷︷ ︸
E

= −4
3
μ∇2(∇ · v)︸ ︷︷ ︸

E1

−∇μ ·
[

4
3
∇(∇ · v) − ∇ × ω

]
− ∇ · ξ

︸ ︷︷ ︸
E2

, (2.11)

where μ is the dynamic viscosity, ξ = 2S � ∇μ − 2/3(∇ · v)∇μ with S as the strain rate
tensor and term E2 shows the effect of the viscosity variation.

Let us consider the terms in the above reformulation. If the flow is assumed to be
inviscid, incompressible and isentropic, only terms A1, A3 and B1 remain. Term A1 is the
flexion product and is primarily positive since it represents a dissipative mechanism with
a minus sign in the kinetic energy transport equation of incompressible flow (Hamman,
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ω

ω

v

v

∇ × ω ∇ × ω

(a) (b)

Figure 2. Qualitative orientation of the velocity and flexion vectors (a) at the edge of a vortex tube with
Gaussian vorticity distribution and (b) in the core of a twisted vortex tube, resulting in an unwinding of the
vortex line.

Klewicki & Kirby 2008):

1
2

∂|v|2
∂t

= −v · ∇φ − νv · (∇ × ω), (2.12)

where φ = P/ρ + |v|2/2 and ν are the Bernoulli function and kinematic viscosity,
respectively. The flexion product has been also considered as an unwinding term,
converting the angular momentum in a vortex into linear momentum, thus attenuating
the low pressure in the vortex core (Hamman et al. 2008). Further, it can be related to
the Laplacian of the solenoidal velocity vector by v · (∇ × ω) = −v · ∇2v; see figure 2
for a qualitative orientation of the velocity and flexion (curl of vorticity) vectors at the
edge of a vortex tube with Gaussian vorticity distribution and in the core of a twisted
vortex tube. Term A3 is enstrophy and its contribution to the source term is always
negative. Term B1 is the Laplacian of the kinetic energy highlighting the role of the kinetic
energy deviation from its local average in the sound production. Given the satisfactory
results of the low-Mach-number approximation in sound predictions (Golanski, Fortuné
& Lamballais 2005), it is natural to conjecture that terms A1, A3 and B1 are the
dominant hydrodynamic sources of sound. In this regard, Cabana, Fortuné & Jordan
(2008) solved a one-dimensional wave equation for each of the decomposed source terms
(except the viscous terms) and showed that terms A2 and B2 are also important in sound
production in a mixing layer. They categorized terms A and B as production terms,
and term C – involving interactions of density, velocity and dilatation fields – as the
acoustic term responsible for the sound propagation. Furthermore, vortex sound analogies
consider only terms A and B providing suitable sound predictions (Powell 1964) – in
high-Re, low-Mach-number flows, term B is often neglected. Although the aeroacoustic
analogies (e.g. Möhring’s or Lighthill’s) hinge on an ad hoc simplification of the acoustic
source term and the decoupling of the sound production and propagation mechanisms,
elimination of any physical subtleties in the acoustic–hydrodynamic interactions could
affect accurate assessment of the propagated sound (Coiffet et al. 2006). In this study, we
analyse the evolution of the entire source term and its dominant components during vortex
reconnection.

3. Numerical set-up

Although reconnection has been studied for different configurations, e.g. vortex rings
(Kida, Takaoka & Hussain 1991) and orthogonal vortices (Boratav, Pelz & Zabusky
1992), many studies focus on anti-parallel vortices with a localized perturbation (Melander
& Hussain 1988). It has been shown that mutual induction between two approaching

933 A34-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
88

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1088


Sound generation mechanism of vortex reconnection

Collision plane (y = 0)

Symmetric plane (z = 0)

Bridge plane (z = zb)

Probing points

Boundary plane (z = –π)

x
z

y

X X

YY

d

R
=

4.8 d
θ

θ

x

y z

(a) (b) (c)

Figure 3. (a) Initial configuration. (b) Bridge plane. (c) Probing points on symmetric and boundary planes.
Modified version of figure 1 of Daryan et al. (2020).

vortex filaments leads to local anti-parallel orientation (Siggia 1985; Kida & Takaoka
1987, 1994), and as a result, the anti-parallel configuration could be considered as the
representative canonical flow of reconnection revealing the underlying physics of this
phenomenon. Also, this simple set-up, which can be thought of as an abstraction of a Crow
instability (Crow 1970), isolates the reconnection enabling high-resolution simulations and
emergence of the fundamental features.

Using the same numerical set-up as Daryan et al. (2020), initial anti-parallel vortex
tubes with a sinusoidal perturbation are simulated in a large computational domain.
Initial vorticity field follows the compact Gaussian vorticity distribution (Virk et al. 1995;
Melander & Hussain 1988) given by

ω(x) = ω(r)(−A sin(α) sin(z)i + A cos(α) sin(z)j + k),

ω(r) =
{

10[1 − f (r/rc)], r < rc,

0, r � rc,

r2 = (x − xc − A sin(α) cos(z))2 + ( y − yc + A cos(α) cos(z))2,

f (η) = exp[−Kη−1 exp(1/(η − 1))], K = 1
2 exp(2) log(2),

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

where A is the sinusoidal perturbation amplitude, α is the inclination angle (the angle of
each vortex axis, projected on the x–y plane, with the negative direction of the y axis), rc
is the radius and (xc + A sin(α) cos(z), yc − A cos(α) cos(z), z) is the centre of the vortex
tube ((xc, yc) is the centre of each vortex tube on the z = π/2 plane). In the current study
these parameters are set as: A = 0.2, α1 = π/3, α2 = 2π/3, rc = 0.65, xc1 = xc2 = 0,
yc1 = 0.75 and yc2 = −0.75, leading to two anti-parallel perturbed vortices at the middle
of a large computational domain; see figure 3(a). The perturbation without a gap between
the compact vortex cores in the kink section localizes the reconnection event. Figure 3(a)
also shows characteristic planes, i.e. symmetric plane (z = 0), boundary plane (z = −π)
and collision plane (y = 0). Also, the bridge plane is defined at z = zb, where zb locates
the maximum ωy on the collision plane and −π < zb < 0; see figure 3(b).

To analyse the far-field sound, two sets of 192 equidistant probing points with
circular layout are considered on symmetric and boundary planes; the centres of the
circles are respectively at (xs, 0, 0) and (xs, 0, −π), where xs = 1.38 is the x with the
maximum absolute value of the source term at the beginning of the circulation transfer
at the reference Mach number of Mo = 0.5 – the location is the same for all Mo
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under consideration. The probing points are located on a circle of radius R = 4.8d, where
d = 2rc is the diameter of the initial vortex tubes; see figure 3(c).

We implement periodic boundary conditions in all three directions. To avoid polluting
the data collected at the probing points by information across the periodic boundaries,
the computational domain is well extended in the advection (x) and lateral (y) directions.
Considering the higher relative speed of sound at lower Mach number, the domain size
is set to 66π × 66π × 2π for Mo = 0.1 and 28π × 28π × 2π for all other Mo. The mesh
size of the inner (2π)3 domain is 3843, which is consistent with our mesh independence
at Re = 1500 (Daryan et al. 2020). By applying expansion growth ratio = 1.01 for the
surrounding domain, the final resolution becomes 1212 × 1212 × 384 for Mo = 0.1 and
1036 × 1036 × 384 for all other Mo.

To minimize the initial acoustic transients and capture the salient features at early
stages of compressible reconnection, we use the polytropic initial condition proposed by
Virk & Hussain (1993). Using the initial vorticity distribution (3.1), the velocity field is
determined by solving the Poisson equation: ∇2v = −∇ × ω. The velocity field is then
normalized by the maximum velocity (the point with the maximum velocity is considered
as the reference point and is denoted by the subscript o). Imposing incompressible and
inviscid flow assumptions, the Poisson equation for the pressure term can be derived by
taking the divergence of the momentum equation, i.e. ∇ · (∇P/ρ) = −∇ · [(v · ∇)v].
Density is substituted by a polytropic relation, i.e. ρ = (P/Po)

1/γ , where Po = 1/γ M2
o

is the pressure at the reference point, γ = 1.4 is the ratio of the specific heats and
Mo is the Mach number at the reference point. The Poisson equation provides the
pressure difference; the pressure field is updated such that pressure at the reference point
becomes Po. Finally, density is calculated by the polytropic relation satisfying ρo = 1.
Thermodynamic variables follow the ideal gas equation, P = ρRT , where R = Po is
the gas constant, implying To = 1. The initial velocity field is the same for all cases
studied in this paper; to get different reference Mach numbers, Mo, we change Po leading
to the modification of the speed of sound at the reference point, i.e. co = Vo/Mo =√

γ Po/ρo, where Vo = 1 is the velocity at the reference point. In the current study,
we consider five different subsonic reference Mach numbers: Mo = 0.1, 0.3, 0.5, 0.7
and 0.9.

The vortex Reynolds number is defined as Re = Γ0/νo, with Γ0 the initial circulation of
either vortex and νo the kinematic viscosity at the reference point. The dynamic viscosity
obeys the power-law relation μ = μo(T/To)

3/4, where μo = ρoνo. In the current study,
the Reynolds number is fixed at Re = 1500.

The reference length and time are taken to be unity. Time t0 represents the time just
before the beginning of the circulation transfer. Start time, tS, and end time, tE, are defined
as the times when the circulation on half of the symmetric plane (z = 0, y > 0) becomes
Γ = 0.95Γ0 and Γ = 0.05Γ0, respectively. The reconnection time, tR, is the time required
for the reduction of the circulation on half of the symmetric plane from Γ = 0.95Γ0
to Γ = 0.50Γ0. Furthermore, the maximum time, tM , is defined as the moment when
the absolute value of the acoustic source term becomes maximal (after the start of
reconnection tM > tS) within the computational domain.

Direct simulation of the compressible Navier–Stokes equations is performed using the
Hybrid solver (Bermejo-Moreno et al. 2013). The solver uses a fourth-order Runge–Kutta
scheme for time integration and a sixth-order finite-difference scheme for spatial
derivatives combined with a high-order filtering following Ducros et al. (2000). The code
has been used and validated for shock–turbulence interaction (Larsson, Bermejo-Moreno
& Lele 2013), turbulent channel flows (Trettel & Larsson 2016) and other canonical
flows.
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Characteristic moments Characteristic intervals

Mo t0 tS tS + 1.5tR tE tM tE + 2tR tE + 4tR tR tE − tS tM − tE

0.1 6.34 7.16 9.14 9.62 9.91 12.62 15.62 1.50 2.46 0.29
0.3 6.41 7.26 9.24 9.71 10.01 12.69 15.67 1.49 2.45 0.30
0.5 6.56 7.44 9.42 9.88 10.25 12.88 15.88 1.50 2.44 0.37
0.7 6.75 7.70 9.69 10.13 10.90 13.15 16.17 1.51 2.43 0.77
0.9 4.29 7.83 10.16 10.58 11.57 14.26 17.94 1.84 2.75 0.99

Table 1. Characteristic times for different Mo.

4. Results and discussion

Table 1 shows the characteristic times for the different Mo. An increase of Mo postpones
reconnection in these initially subsonic cases. More precisely, tS and tE increase as
Mo increases. Yet, with the exception of the Mo = 0.9 case, the time required for the
circulation transfer during subsonic reconnection (tR and tE − tS) is independent of Mo;
however, tM − tE increases with Mo.

The reduction of t0 at Mo = 0.9 is due to the formation of shocklets which lead to
an earlier circulation transfer; Virk et al. (1995) observed the initial circulation transfer
due to shock formation in the supersonic regime. However, these shocklets (at the current
Re) are not strong enough to modify the reconnection process. The shocklet formation
stems from the jet flow on the collision plane which is intensified as the two vortices
approach each other by self-induction. Intensification of the maximum local Mach number,
Mmax, during reconnection can be seen in figure 4(a). For Mo = 0.9, prior to the start of
reconnection, Mmax crosses the sonic threshold and rises up to Mmax ≈ 1.6; the extremum
of other cases takes place just after tS. Once reconnection begins, the reversed flow
induced by the reconnected vortex lines, which are accumulated at the bridges, slows
down the jet flow and impedes further growth of the local Mach number (while also
slowing down the tenting phenomenon of the vortex pair, hence slowing their collision
and also the circulation transfer rate). By only considering the states after the start of
reconnection, figure 4(b) shows a linear scaling of the overall maximum local Mach
number, Moverall max ≈ 1.5Mo, at Re = 1500; ‘overall max’ refers to the maximum over
the time period of [tS, tE + 4tR]. Mach number Mmax does not necessarily always occur
at the same location. Figure 5 shows the evolution of the regions with a high local Mach
number for the Mo = 0.5 case. Initially located at the contact point between the vortices,
they gradually migrate towards the bridges; owing to the initial jet flow followed by the
sharp cusp-induced rapid repulsion of the bridges, high velocity is expected at theses areas.
Note that due to the qualitative similarities in all the initially subsonic reconnection cases
at Re = 1500, we observe the same general local Mach number distribution at other cases
after tS (discussed later).

We expect that shocklets become stronger at higher Re as the jet flow between
the two vortices intensifies before the start of reconnection – this complex issue is a
focus of a separate investigation. We speculate that these shocklets may be a defining
feature of the reconnection mechanism at high Re, which not only alter the reconnection
dynamics, but can also play a significant role in sound generation; near shocklets, we
expect magnification of the gradient of density, the dilatation and their interactions
which appeared in source term C in (2.9). Clearly, despite a subsonic Mo, reconnection
would affect shock formation which in turn modifies the circulation transfer process
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Figure 4. (a) Evolution of Mmax. Markers represent tS, tE and tM . (b) Scaling of Moverall max.

(a)

(e) ( f )
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Figure 5. Local Mach number isosurface (red colour) of Mo = 0.5 set at 80 % of its maximum value at
(a) tS, (b) tS + 1.5tR, (c) tE, (d) tM , (e) tE + 2tR and ( f ) tE + 4tR. Grey transparent colour shows the enstrophy
isosurface set at 2 % of the overall maximum enstrophy. A magnified view is presented in (e, f ).

(Virk et al. 1995). In the following sections, we limit our discussion to the period after
the start of the reconnection, i.e. after tS.

4.1. Source term evolution
The order of magnitude of the convective term in the wave operator of Lighthill’s equation
(left-hand side of (2.5)) depends on the square of the reference speed of sound. As a result,
in all scale analyses, we consider the relative source term, divided by c2

o. The evolution
of the extrema (minimum and maximum at each time) of the source term in (2.5) at
different Mo is presented in figure 6(a). Apart from the initial oscillations at Mo = 0.9
which are tied to the formation of shocklets, the most obvious commonality among all
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Figure 6. (a) Evolution of the minimum (solid line) and maximum (dashed line) of the source term. Markers
represent tS, tE and tM . (b) Magnified view.
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Figure 7. Scaling of the overall extrema and maximum amplitude of the source term.

cases is the amplification of the source strength during reconnection; see the magnified
plot of figure 6(b).

Just after tE, once circulation transfer is complete, the accumulation of the cusped
reconnected vortex lines reinforces the self-induced rapid repulsion of the fully developed
bridges, culminating in the maximum absolute value of the source term at tM . Linear
growth of the overall extrema and maximum amplitude (largest difference between the
local minimum and maximum) of the source term with respect to Mo is evident in figure 7.

To identify the dominant components of the source term, we examine the respective
contribution of each term on the right-hand side of (2.6) through an order-of-magnitude
analysis. The extrema evolution of these terms at Mo = 0.1 and Mo = 0.9 is provided in
figure 8; similar to the source term (S), the amplifications of the individual components
during reconnection are quite different. Term A, the divergence of the Lamb vector,
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Figure 8. Evolution of the minimum (solid line) and maximum (dashed line) of the components of the source
term at (a) Mo = 0.1 and (b) Mo = 0.9. Markers represent the overall extrema.

and term B, chiefly related to the Laplacian of the kinetic energy, are the dominant
hydrodynamic components – these terms are also considered as the main sound production
mechanisms in the vortex sound analogy (Powell 1964). Term D, the deviation from the
isentropic condition, also has a notable contribution; this term is generally neglected in
aeroacoustic analogies (Powell 1964). Terms C and E, respectively containing dilatation
and viscous effects, become negligible after the start of reconnection (tS). Nonetheless,
by virtue of the sharp velocity changes through the shocklets, we expect term C to play
an inevitable role prior to the start of reconnection for the Mo = 0.9 case. The detailed
study of the shocklet formation during viscous vortex reconnection and its impact on the
far-field noise will be left to future work.

Figure 8 shows that compressibility leads to smoother changes of the extrema of
the source term and its components during the time interval [tE, tM]. In figure 8(a), at
Mo = 0.1, sharp repulsion and large temporal variations of the extrema of the source terms
are clear near tE. On the other hand, smoother variations can be seen in figure 8(b) at
Mo = 0.9. Also, the overall extrema of terms A and B at Mo = 0.1 take place in the time
interval of tE < t < tM , which is not always true for Mo = 0.9.

Using (2.7) and (2.8), we can further decompose terms A and B. Figure 9 shows the
evolution of the extrema of the decomposed components of the source term, while terms
C and E are excluded for clarity. Terms A2 and B2 do not play a considerable role. The
flexion product, term A1, enstrophy, term A3, and the Laplacian of the kinetic energy,
term B1, are dominant. The maximum of flexion product is always more than its absolute
minimum value. Also, whereas the overall extrema of the dominant terms generally occur
close to the end of reconnection, flexion product takes its overall minimum with a delay
after tM , when the bridges are recoiling from each other. As also revealed in figure 8, sharp
and smooth variations near tE can be observed in figures 9(a) and 9(b) at low and high Mo,
respectively.

Let us examine each of these dominant decomposed components individually. The
evolution of the bounds of terms A1, A3, B1 and D with respect to Mo is presented in
figure 10. Compressibility intensifies all of these terms. Except for the overall minimum
of term A1 which occurs after tM , the overall extrema take place close to tE, generally
for tE < t < tM – note that at Mo = 0.7, 0.9, the overall minimum of term B1 occurs just
before tE. The effect of Mo is more obvious on the evolution of term D extrema – the
overall extrema occur before and after tM at high and low Mo, respectively. As depicted in
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Figure 10. Evolution of the minimum (solid line) and maximum (dashed line) of (a) term A1, (b) term A3,
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figure 10, the contribution of the flexion product to the source term is mainly positive. Of
course, the enstrophy term is always negative. The Laplacian of the kinetic energy and the
deviation from the isentropic condition have both positive and negative effects (discussed
later).

Similar to the source term (figure 7), the overall extrema and maximum amplitude of the
dominant terms are linearly scaled by Mo as depicted in figure 11(a–c). Although many of
these terms contain a second-order dependence on the velocity perturbation, the scaling
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Figure 11. Scaling of the overall extrema and maximum amplitude of (a) term A1, (b) term A3, (c) term B1
and (d) term D.

of the overall maximum of these terms is linear, suggesting that the higher compressibility
dampens the maximum velocity during reconnection. This is further supported by the
scaling of term D. Term D, which contains the Laplacian of pressure and density, follows
a quadratic scaling relation; see figure 11(d). Such second-order dependency of term D on
compressibility implies significant deviation from the isentropic condition at higher Mo.
As vortex reconnection gives rise to important thermodynamic changes it is expected that
we observe a departure from the isentropic condition, especially at higher Mo. It should
be noted that the effect of entropic inhomogeneities on sound generation may actually be
larger in other right-hand-side terms (see e.g. Yang, Guzmán-Iñigo & Morgans 2020).

Correspondingly, the aeroacoustic analogies, which generally neglect this term at low
Mach number, appear to incorrectly estimate the acoustic source term (discussed later).
Relatively little is known about the role of the deviation from the isentropic condition
in sound production. At the end of our order-of-magnitude analysis, by comparing the
magnitude of the overall extrema and maximum amplitude shown in figures 10 and 11,
we can conclude that the Laplacian of the kinetic energy, flexion product, enstrophy and
deviation from the isentropic condition are, successively in decreasing magnitude, the
dominant components of the source term during reconnection. Note that such an analysis
only highlights the pointwise significance of these terms; of course, a high value of a term
at a single point in the domain does not necessarily imply the integrated importance of
that term.

As mentioned above, the flexion product, represented by term A1, is one of the dominant
sources of aeroacoustic noise associated with the hydrodynamics of reconnection.
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Figure 12. (a) Position of the overall minimum flexion product at Mo = 0.5. (b) Orientation of the velocity,
vorticity and flexion vectors. (c) Twist of vortex lines (small light-coloured lines) around the central vortex
tube.

Figure 2(a) shows that in a prototypical vortex tube, the flexion (∇ × ω) and local velocity
are co-aligned in the azimuthal direction. As a result, at a given radial distance from
the axis of a vortex tube, the flexion product v · (∇ × ω) is constant and always has a
positive value. Alternatively, if the vortex tube is twisted (as in a polarized vortex, i.e. a
vortex with axial flow), as shown in figure 2(b), and has a self-induced core or advective
velocity along the tube, the flexion and local velocity vectors will be aligned with the
twisted vortex tube, thus yielding a large flexion product. These two scenarios, shown in
figure 2(a,b), are means of flexion product generation in prototypical vortices. Following
Hamman et al. (2008), we also speculate that the largest flexion product will result in
coiling (negative flexion product) or uncoiling (positive flexion product) of the twisted
vortex tube. Results in figure 10(a) show that the overall maximum and minimum of the
flexion product occur after tE and physically correspond to an axial advection of a twisted
vortex tube. The uncoiling motion is intensified near tE by the repulsion of the highly
curved vortex lines at the top of the bridges. The maximum coiling (or the flexion product
overall minimum) occurs at the region where twisted filaments wrap around the bridges.
The coiling mechanism is visualized at Mo = 0.5 in figure 12; the location of the overall
minimum flexion product is shown in figure 12(a) and the orientations of the velocity,
vorticity and flexion vectors about this point are shown in figure 12(b,c). In figure 12(b),
the velocity and flexion vectors form a very large obtuse angle, thus yielding the maximum
negative value of the flexion product. The orientation of the flexion vector at this location is
the result of the twisting of the vortex lines bundle about the vortex tube axis, whereas the
velocity vector (which is dominated by the repulsion of the bridges) is nearly aligned with
the flexion vector, albeit in the opposite direction. Interestingly, as illustrated in figure 2(a)
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Figure 13. Positive and negative isosurface and contour (on the half of the bridge plane) of (a) flexion product
and (b) helicity density for Mo = 0.5 at the time of the overall minimum of the flexion product. Blue and red
isosurface levels equal the negative and positive 1 % of the overall maximum absolute value of each variable.
Grey transparent colour shows the enstrophy isosurface set at 2 % of the overall maximum enstrophy. Limits
of the global linear legend equal the negative and positive 5 % of the overall maximum absolute value of each
variable. The solid line depicts the enstrophy contour set at 2 % of the overall maximum enstrophy.

(also shown in the rightmost portion of figure 12c), when the bundle of vortex lines is
not twisted, the flexion line wraps around the vortex tube. With the twisting of the vortex
tube (hence increasing the flexion product), the flexion lines are aligned in the direction
of the vortex tube axis, as seen in figure 2(b) (also shown at the middle of figure 12c).
Furthermore, core dynamics is inherent to coherent structures and vortex dynamics where
non-uniform tube diameter along a vortex coils vortex lines which then propagate as waves
along vortices. Such core dynamics, elucidated first and extensively studied by Melander &
Hussain (1994), presumably can be useful in explaining the phenomenon of vortex bursting
(E. Stout, personal communication).

Therefore, coiling and uncoiling of vortex lines in a twisted vortex tube represent one
of the most dominant sources of aeroacoustic noise in vortex reconnection, i.e. flexion
product term. As discussed above, being a purely hydrodynamic source term, the flexion
product presumably plays a decisive role in the incompressible vortex reconnection.
Furthermore, this term scales linearly with Mo (figure 11a); a detailed explanation of the
role of compressibility in this term is outside the scope of the present work. To better
understand the spatial distribution, we show the positive and negative isosurfaces of the
flexion product along with the helicity density (h = v · ω) in figure 13; contours on the half
of the bridge plane are also given. As in figure 12, these isosurfaces are for Mo = 0.5 at the
time when the flexion product reaches its overall minimum. The large region of positive
flexion product is predominantly caused by the typical alignment of the induced velocity
and flexion vectors in a prototypical (or twisted) vortex tube. The negative flexion product
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Figure 14. Evolution of the minimum (solid line) and maximum (dashed line) of term A + B, term D and the
source term at (a) Mo = 0.1 and (b) Mo = 0.9. Markers represent the overall extrema.

can only arise due to the coiling of twisted vortex tube; thus the negative isosurfaces of the
flexion product are localized at specific points in and around the bridges (blue colour in
figure 13a). The isosurface of helicity density (figure 13b) provides insight into the local
alignment of the velocity and vorticity vectors at this specific time instant.

As depicted in figures 8 and 9, the amplification of the source term during reconnection
is not as intense as those of its dominant components – which implies spatial cancellations
between the source term’s constituents. For instance, positive and negative contributions of
the Laplacian of the kinetic energy neutralize the negative and positive contributions of the
enstrophy and flexion product, respectively. Such mutual cancellation mechanisms have
been observed in the sound generation in a mixing layer through vortex pairing (Colonius,
Lele & Moin 1997; Cabana et al. 2008). Extrema evolution of the term A + B (the sum of
terms A and B), term D and the source term is compared in figure 14. The amplification
of A + B is less than that of its components, highlighting the cancellation between A and
B. Another interesting point in figure 14 is the higher relative contribution of term D as
Mo increases; compare figures 14(a) and 14(b). This conclusion could also be drawn by
observing the linear and quadratic scalings of the source term and term D, respectively, in
figures 7 and 11(d).

Let us explore the spatial distribution of the source term. Considering the moderate Re
of the cases, the spatial evolution of the source term is nearly symmetric. As a result, we
only present the contours on the half of the characteristic planes in the following figures.
Figure 15 shows the source term contour on the collision plane at six times and for different
Mo. The spatial distribution of the source term and the vorticity field evolution, visualized
by the enstrophy line contour, remain essentially the same during the reconnection with
subsonic initial conditions, although we note an intensification of the localized source
term at higher Mo. Our results on the symmetric and bridge planes (not shown) also agree
with this observation. Hereafter, we focus on the spatial distribution of the source term at
Mo = 0.5, representing the general behaviour of the subsonic reconnection process at an
average Mo.

The spatial distributions of the dominant components and the source term are compared
on the collision, symmetric and bridge planes respectively in figures 16, 17 and 18. Positive
regions of term A, which are primarily due to the flexion product (term A2 is negligible),
nearly overlap the negative regions of term B. The same situation occurs for negative
regions of term A, mainly originating from the enstrophy, and the positive regions of
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Figure 15. Source term contour on the collision plane. Limits of the global linear legend equal the negative
and positive 5 % of the overall maximum absolute value of the source term. The solid line depicts the enstrophy
contour set at 2 % of the overall maximum enstrophy.

term B. The importance of A over B is manifested by the qualitative resemblance between
A and A + B. These contours also exhibit the inevitable role of term D which could be
considered as a reinforcement of term A + B especially in the cores of the bridges and
threads.

The flexion product is remarkably positive on the collision plane which implies high
magnitudes of the velocity and flexion vectors and the acute angle between them.
High-velocity plane jet on the collision plane is rooted in the induced velocity between
the anti-parallel vortices. The high flexion magnitude on the collision plane originates
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Figure 16. Source term contour and those of its dominant components on the collision plane at Mo = 0.5.
The legend is the same as in figure 15.

from the rotation of the vorticity vector from the axial towards the lateral direction during
reconnection. Indeed, the positive contribution of the flexion product is due to the acute
angle between the velocity and flexion vectors. Further studies are required to characterize
the evolution of these vectors in canonical vortical flows. Except at the vortex cores where
the enstrophy is dominant, term A shows a positive contribution at other regions; see
figures 16–18.

Considering the high velocity of the jet flow, the Laplacian of the kinetic energy, which
is the dominant contributor to term B, becomes highly negative on the collision plane; see
figure 16. The same explanation can be used around the vortex cores – because there is
high velocity around the core of vortex. On the other hand, the low velocity gradient at the
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Figure 17. Source term contour and those of its dominant components on the symmetric plane at Mo = 0.5.
The legend is the same as in figure 15.

vortex axis leads to positive values of term B; see figures 16–18. Thus, terms A and B are
intense but mutually cancelling.

The deviation from the isentropic condition denotes a difference between the Laplacian
of pressure and density while the latter has been multiplied by c2

0; see (2.10). Where
the pressure and density evolve isentropically, this term is exactly zero. Considering the
equation of state and small temperature variations, the evolutions of pressure and density
are similar. Low pressure and density in the vortex cores yield positive Laplacian in terms
D1, ∇2P, and D2, −c2

0∇2ρ. The results show that term D2 is dominant. Term D, identical
to term A + B, becomes negative in the vortex cores, i.e. cores of bridges and threads; see
figures 16–18. Note that the contribution of term D is more evident at the attachment of
symmetric head–tail structures on the centreline, clearly shown by blue areas at the middle
of the contours on the collision plane in figure 16. Despite similarities in the evolution as
depicted in figure 19, the absolute minimum value of D2 is more than the maximum of
D1, justifying the negative contribution of D in the vortex cores. Also, the relative effect of
D2 including the Laplacian of density increases with Mo; compare the range of different
terms in figure 19(a,b).

The evolution of the isosurface of the positive and negative source terms is presented in
figure 20. At the start of reconnection, the negative source term is mainly located in the
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Figure 18. Source term contour and those of its dominant components on the bridge plane at Mo = 0.5. The
legend is the same as in figure 15.

vortex cores, while the positive part, due to the flexion product, extends on the collision
plane and bends over the vortices. Halfway through the reconnection event, due to the
deviation from the isentropic condition and the enstrophy term at the stretched tail of
the well-known head–tail structure appearing as vortex sheets, the negative source term
extends on both sides of the collision plane; compare figures 17 and 20(b) at tS + 1.5tR.

Because of the sign-changing characteristic of the Laplacian of pressure and density,
a succession of negative and positive regions of term D is expected. Constructed by the
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(a) Mo = 0.1 and (b) Mo = 0.9. Markers represent the overall extrema.
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Figure 20. Source term isosurface of Mo = 0.5 at (a) tS, (b) tS + 1.5tR, (c) tE, (d) tM , (e) tE + 2tR and
( f ) tE + 4tR. Blue and red isosurface levels equal the negative and positive 1 % of the overall maximum
absolute value of the source term. Grey transparent colour shows the enstrophy isosurface set at 2 % of the
overall maximum enstrophy.

flexion product and the deviation from the isentropic condition, the positive isosurface
of the source term emerges as parallel layers around the vortex sheets. Note that
despite identical sheet-like structures, the red isosurfaces parallel to the collision plane
do not represent regions of concentrated vorticity. Resorting to the same analysis, the
development of the positive isosurface around the bridges and heads of the threads can
be explained.

As time advances, vortex sheets extend in the axial and advection directions, as do
positive layers of the source term; see figures 20(c) and 20(d). Once reconnection is
complete and the bridges recoil from each other, entangled positive and negative source
term isosurfaces are accumulated at bridges and threads while the cores of the vortices
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have negative contributions; see figures 20(d) and 20(e). Due to the global isosurface level
used in figure 20, red positive layers may not be visualized enveloping the blue isosurfaces
in vortex cores of the separated tails; however, a weak positive source term is still around
the cores as demonstrated in the last two panels of figure 17. As stated earlier, the main
positive source term is rooted in the flexion product and the angle between the velocity and
the flexion vectors is critical in the sign of the contribution. The flexion vector evolution
and its relation to the velocity vector in canonical vortical flows have not been studied yet.

4.2. Near-field pressure evolution
Consistent with the statements of Cabana et al. (2008), a non-zero source term – which is
the essence of the sound production – is the result of subtle imbalances perturbing inherent
spatiotemporal symmetry among components of the source term. However, the conversion
mechanism of near-field energy into acoustic energy is not clear yet. It has been often
acknowledged that the near-field pressure evolution could be critical in discerning the
causality between the hydrodynamic effects and acoustic far-field pressure (Coiffet et al.
2006; Mancinelli et al. 2017). The pressure contour on the collision plane for different
Mo is presented in figure 21. High pressure below the vortices can be observed at tS. As
time advances, vortex lines reconnect alongside the axial direction leading to the vorticity
generation in the lateral direction; see the extended low-pressure region at tS + 1.5tR and
tE showing the concentrated vorticity region in the lateral direction. Accumulation of the
reconnected vortex lines in the bridges constructs the cores of reconnected vortex tubes
manifested by dark blue colour at tM . Note that, in addition to the twisted vortex line
bundles (Virk et al. 1995), high pressure at the reconnection region could also affect the
axial flow along the vortex core. Once the bridges are complete, the intensity of low core
pressure decreases; see fading blue colour at tE + 2tR and tE + 4tR.

Although the qualitative evolution is the same, spatial distribution of near-field low
pressure is clearer at higher Mo; compare distribution of orange colour at low and high
Mo in figure 21. More specifically, the rise of the near-field low pressure at tE (Daryan
et al. 2020), delimited by a dashed line, becomes more intense as Mo increases; follow the
dashed line evolution at Mo = 0.9. Figure 22 shows the pressure contour on the symmetric
plane. Although the low-pressure spatial distribution and sharp rise are obvious at higher
Mo, the intensity of low pressure at the cores of threads always decreases as the lowest
pressure is associated with the initial vortex tubes before reconnection. Low-pressure
spatial distribution and sharp rise at higher Mo can be also seen in the near-field pressure
evolution on the bridge plane; see figure 23. Owing to the repulsion of the bridges which
reduces the high curvature of the reconnected, cusped vortex lines, the bridges extend in
the lateral direction; see low-pressure extension at tE + 2tR.

The scaling of the overall extrema and maximum amplitude of pressure, which is
normalized by γ Po, Mo is shown in figure 24. The overall extrema and the maximum
amplitude of pressure follow a quadratic behaviour with Mo. In other words, not only
the low-pressure spatial distribution, but also the pressure amplitude increases with Mo
during reconnection. Note that at Mo = 0.9 the pressure amplitude is 92 % of the reference
pressure. We do not expect this scaling to be maintained far into the supersonic regime.

4.3. Far-field sound evolution
Reconnection is a continuous process: anti-parallel vortex lines approach each other
by self- and mutual induction, reconnect and recoil from each other by self-induction.
Therefore, characteristic times are defined based on an integral quantity, i.e. circulation.
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Figure 21. Pressure contours on the collision plane. Limits of the global linear legend equal the pressure
overall extrema. The black solid line shows the enstrophy contour set at 2 % of the overall maximum enstrophy.
The grey dashed line shows the pressure contour set at 84.5 % of the pressure range.

Assuming that reconnection of two anti-parallel vortex lines generates a sound pulse,
we do not expect to capture a clear signal in the far field as reconnection occurs
over a finite time and each vortex line reconnects at a slightly different stage during
reconnection – some vortex lines are not yet reconnected while others are recoiling from
each other. Localized acoustic source terms in the reconnection region could result in
intermittent acoustic radiation (Scheidegger 1998). Although some clear instantaneous
quadrupole patterns during reconnection of anti-parallel vortex tubes have been found
(Daryan et al. 2020), we believe that reconnection of vortex filaments provides a more
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Figure 22. Pressure contours on the symmetric plane. The description is the same as in figure 21.

exact sound pattern and scaling relations. Also, the comparison of the scaling relations
of energy exchange in quantum reconnection could be a pivotal foundation in revealing
complexities of the impulsive stochasticity and the dissipative feature of turbulent flows
(Proment & Krstulovic 2020; Villois et al. 2020).

Figure 25 shows the maximum SPL evolution at different Mo on the symmetric and
boundary planes. We assume that the sound source is located at the point with the
maximum source term at each time. Then, the corresponding far-field sound is determined
by considering a constant speed of sound, co; indeed, we offset the time of the far-field
sound accordingly. Except for Mo = 0.1, a high level of far-field sound is captured during
the time interval t = [tS, tM]. Note that the maximum sound does not necessarily occur
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Figure 23. Pressure contours on the bridge plane. The description is the same as in figure 21.

at tM , implying cancellation of acoustic waves is an important feature. As discussed, the
finite time of the viscous reconnection process impedes the emergence of a clear sound
pulse; however, the effect of reconnection on far-field sound level, especially at high Mo,
can be observed.

Instantaneous sound directivity patterns of Mo = 0.1, 0.5, 0.9 at tS and tE are shown
in figure 26. Although the quadrupole pattern is dominant, more complicated directivity
patterns also appear during reconnection; see pattern of Mo = 0.9 at tE on the boundary
plane in figure 26(d). In our previous work (Daryan et al. 2020), the point with the
maximum lateral vorticity is considered as the sound source location; therefore, the slight
difference between the current results and previous instantaneous directivity patterns of

933 A34-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
88

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1088


Sound generation mechanism of vortex reconnection

1.2

1.0

0.8

0.6
P

re
ss

u
re

0.4

0.2

0.1 0.3 0.5

Mo

0.7 0.9
0

Minimum

Maximum
Maximum amplitude

0.7M
2
o+

0.1M o

–0.2M 2
o –0.2M

o + 0.7

0.5M2
o–

0.1Mo +
 0.7

Figure 24. Scaling of the overall extrema and maximum amplitude of pressure.

55

50

45

40

35

30

25

20

15

10
7 8

Symmetric plane Boundary plane

9 10 11 12 13 14

55

50

45

40

35

30

25

20

15

10
7 8 9 10 11 12 13 14

Time Time

Mo = 0.1

Mo = 0.3

Mo = 0.5

Mo = 0.7

Mo = 0.9

M
ax

im
u
m

 S
P

L
 (

d
B

)

(a) (b)

Figure 25. Maximum SPL evolution on the (a) symmetric and (b) boundary planes. Markers represent tS, tE
and tM .

Mo = 0.5 presented by Daryan et al. (2020) is acceptable. As another note, the increase in
the SPL with Mo is clear in figure 26.

Figure 27 shows the time-averaged (taken over the time interval [t0, tE + 4tR])
far-field sound directivity pattern on the symmetric and boundary planes. At low Mo, a
quadrupole-like pattern can be observed. With an increase in Mo, not only does the sound
level intensify, but the directivity pattern becomes elongated in the advection direction.
Thus, compressibility plays a key role in the sound directivity of the reconnection process.

The scaling of the maximum instantaneous and time-averaged SPL on the symmetric
and boundary planes is provided in figure 28. Despite the linear dependence of the
maximum time-averaged SPL on Mo, instantaneous SPL follows a quadratic relation,
consistent with near-field pressure scaling. There is a small change in the maximum
instantaneous SPL for Mo < 0.3; see figure 28(a). Note that reconnection at Re =
1500 and Mo = 0.9 produces up to 52.7 dB far-field sound, reinforcing the claim that
reconnection is one of the vortical interactions producing the most sound.
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Figure 27. Time-averaged far-field sound directivity pattern of the reconnection process on the (a) symmetric
and (b) boundary planes. Markers represent the advection direction.

5. Conclusion

We address the sound generation mechanism of viscous vortex reconnection via the
analysis of the dominant components of Lighthill’s source term. We study the initially
subsonic, anti-parallel vortex pair reconnecting at Re = 1500 for reference Mach numbers
of Mo = 0.1, 0.3, 0.5, 0.7 and 0.9. Although the time required for the circulation transfer
is independent of compressibility, an increase of Mo postpones the onset of reconnection.
Compressibility effects are the greatest initially at the entrained jet flow between the
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approaching vortices preceding reconnection. Soon after the start of reconnection, the
regions of high local Mach number migrate towards the bridges. By considering only the
time after the start of reconnection, tS, the overall maximum local Mach number linearly
scales as Moverall max ≈ 1.5Mo.

The acoustic source strength is amplified during reconnection and emerges as a jump
in the extrema evolution of the source term. Linear scaling of the overall extrema
and maximum amplitude of the source term versus Mo manifests the direct effect of
compressibility on the source term. To identify the dominant physical mechanisms of
sound generation, the source term is decomposed into 14 physically meaningful terms
and an order-of-magnitude analysis of each is performed. It is shown that dilatation effects
and terms containing density gradient can be neglected in the absence of shocklets. Also,
at the current Reynolds number, viscous effects do not contribute significantly to the
acoustic source term. The Laplacian of the kinetic energy, flexion product, enstrophy, and
deviation from the isentropic condition are found to be the dominant components of the
source term. The first three, which are hydrodynamic, scale linearly with Mo; the departure
from the isentropic condition follows a quadratic scaling, revealing the importance of the
thermodynamic changes during reconnection at high Mo.

The flexion product is a hydrodynamic source term relating the velocity and flexion (curl
of vorticity) vectors, and is intensified when these vectors are co-aligned. It is dominant
when a twisted vortex tube undergoes a coiling or uncoiling motion. Physically, this arises
as the pair of vortical threads are wrapped around the bridges after the end of reconnection,
once a rapid strain is applied to the threads by the repulsion of the bridges. This purely
hydrodynamic term scales linearly with the reference Mach number of the flow, suggesting
an increasing importance of the hydrodynamically induced noise source as Mo increases.

The spatial distribution of the source term and the vorticity field evolution remain
essentially the same during the reconnection at subsonic initial conditions. Exploring the
spatial distribution, mutual cancellation of terms A and B becomes apparent (recall that the
source terms are defined in (2.6)); unlike term B, term A is negative in vortex cores (due
to the enstrophy term) and primarily positive at other regions (due to the flexion product
term). Qualitative resemblance between terms A and A + B implies the importance of A
over B in vorticity-concentrated regions. Term D (deviation from isentropic conditions)
reinforces term A + B; ascendancy of term D2 (−c2

0∇2ρ) over D1 (∇2P) leads to the
negative contribution of term D in the vortex cores at the bridges and threads.
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At the start of reconnection, the negative source term, due to the enstrophy term, is
mainly located at the vortex cores, while the positive part, due to the flexion product,
stretches on the collision plane in both axial and advection directions and also bends
over the vortices. At later time, due to the deviation from isentropic condition and the
enstrophy term at the stretched tail of the well-known head–tail structure appearing as
vortex sheets, the negative source term extends on both sides of the collision plane. Once
bridge formation is complete, entangled domains of positive and negative source term can
be observed at bridges and threads.

Compressibility intensifies the spatial distribution and sharp rise of the near-field low
pressure which fade away in time. Also, the overall extrema and the maximum amplitude
of pressure are quadratically proportional to Mo. A high level of far-field sound is captured
during the circulation transfer. At low Mo, the time-averaged sound directivity takes a
quadrupole-like pattern. By increase of Mo, not only does the sound level intensify, but
the directivity pattern becomes elongated in the advection direction. Consistent with the
near-field pressure, the overall maximum instantaneous SPL follows a quadratic relation
with Mo; however, the maximum time-averaged SPL shows a linear behaviour. Therefore,
reconnection plays a key role in sound generation, especially as compressibility increases.

Acknowledgements. We thank Dr A. Atoufi for providing insightful comments. We also thank
Professor J. Larsson for providing us the Hybrid code.

Funding. This research was supported in part by SciNet, Sharcnet and Compute Canada. F.H. was supported
by the TTU President’s Distinguished Chair Funds.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Hamid Daryan https://orcid.org/0000-0003-2803-4096;
Fazle Hussain https://orcid.org/0000-0002-2209-9270;
Jean-Pierre Hickey https://orcid.org/0000-0002-6944-3964.

REFERENCES

ADACHI, S., ISHH, K. & KAMBE, T. 1997 Vortex sound associated with vortexline reconnection in oblique
collision of two vortex rings. Z. Angew. Math. Mech. 77 (9), 716–719.

BASTIN, F., LAFON, P. & CANDEL, S. 1997 Computation of jet mixing noise due to coherent structures: the
plane jet case. J. Fluid Mech. 335, 261–304.

BERMEJO-MORENO, I., BODART, J., LARSSON, J., BARNEY, B.M., NICHOLS, J.W. & JONES, S. 2013
Solving the compressible Navier–Stokes equations on up to 1.97 million cores and 4.1 trillion grid points. In
SC’13: Proceedings of the International Conference on High Performance Computing, Networking, Storage
and Analysis, pp. 1–10. IEEE.

BORATAV, O.N., PELZ, R.B. & ZABUSKY, N.J. 1992 Reconnection in orthogonally interacting vortex tubes:
direct numerical simulations and quantifications. Phys. Fluids 4 (3), 581–605.

CABANA, M., FORTUNÉ, V. & JORDAN, P. 2008 Identifying the radiating core of Lighthill’s source term.
Theor. Comput. Fluid Dyn. 22 (2), 87–106.

COIFFET, F., JORDAN, P., DELVILLE, J., GERVAIS, Y. & RICAUD, F. 2006 Coherent structures in subsonic
jets: a quasi-irrotational source mechanism? Intl J. Aeroacoust. 5 (1), 67–89.

COLONIUS, T., LELE, S.K. & MOIN, P. 1997 Sound generation in a mixing layer. J. Fluid Mech. 330,
375–409.

CRIGHTON, D.G. 1981 Acoustics as a branch of fluid mechanics. J. Fluid Mech. 106, 261–298.
CROW, S.C. 1970 Stability theory for a pair of trailing vortices. AIAA J. 8 (12), 2172–2179.
DARYAN, H.M.M., HUSSAIN, F. & HICKEY, J.-P. 2019 Aeroacoustic noise generation in compressible vortex

reconnection. In 11th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2019.
DARYAN, H., HUSSAIN, F. & HICKEY, J.-P. 2020 Aeroacoustic noise generation due to vortex reconnection.

Phys. Rev. Fluids 5 (6), 062702.

933 A34-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
88

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-2803-4096
https://orcid.org/0000-0003-2803-4096
https://orcid.org/0000-0002-2209-9270
https://orcid.org/0000-0002-2209-9270
https://orcid.org/0000-0002-6944-3964
https://orcid.org/0000-0002-6944-3964
https://doi.org/10.1017/jfm.2021.1088


Sound generation mechanism of vortex reconnection

DUCROS, F., LAPORTE, F., SOULÈRES, T., GUINOT, V., MOINAT, P. & CARUELLE, B. 2000 High-order
fluxes for conservative skew-symmetric-like schemes in structured meshes: application to compressible
flows. J. Comput. Phys. 161 (1), 114–139.

ELDREDGE, J.D. 2007 The dynamics and acoustics of viscous two-dimensional leapfrogging vortices.
J. Sound Vib. 301 (1–2), 74–92.

GOLANSKI, F., FORTUNÉ, V. & LAMBALLAIS, E. 2005 Noise radiated by a non-isothermal, temporal mixing
layer. Theor. Comput. Fluid Dyn. 19 (6), 391–416.

GUJ, G., CARLEY, M., CAMUSSI, R. & RAGNI, A. 2003 Acoustic identification of coherent structures in a
turbulent jet. J. Sound Vib. 259 (5), 1037–1065.

HAMMAN, C.W., KLEWICKI, J.C. & KIRBY, R.M. 2008 On the lamb vector divergence in Navier–Stokes
flows. J. Fluid Mech. 610, 261–284.

HICKEY, J.-P., HUSSAIN, F. & WU, X. 2016 Compressibility effects on the structural evolution of transitional
high-speed planar wakes. J. Fluid Mech. 796, 5–39.

HUSSAIN, A.K.M.F. 1983 Coherent structures–reality and myth. Phys. Fluids 26 (10), 2816–2850.
HUSSAIN, A.K.M.F. & HASAN, M.A.Z. 1985 Turbulence suppression in free turbulent shear flows under

controlled excitation. Part 2. Jet-noise reduction. J. Fluid Mech. 150, 159–168.
HUSSAIN, A.K.M.F. & ZAMAN, K.B.M.Q. 1981 The preferred mode of the axisymmetric jet. J. Fluid Mech.

110, 39–71.
HUSSAIN, F. & DURAISAMY, K. 2011 Mechanics of viscous vortex reconnection. Phys. Fluids 23 (2), 021701.
ISHII, K., ADACHI, S. & KAMBE, T. 1998 Sound generation in oblique collision of two vortex rings. J. Phys.

Soc. Japan 67 (7), 2306–2314.
KAMBE, T., MINOTA, T. & TAKAOKA, M. 1993 Oblique collision of two vortex rings and its acoustic

emission. Phys. Rev. E 48 (3), 1866.
KERR, R., VIRK, D. & HUSSAIN, F. 1989 Effects of incompressible and compressible vortex reconnection.

Topol. Fluid Mech. 500–514.
KIBENS, V. 1980 Discrete noise spectrum generated by acoustically excited jet. AIAA J. 18 (4), 434–441.
KIDA, S. & TAKAOKA, M. 1987 Bridging in vortex reconnection. Phys. Fluids 30 (10), 2911–2914.
KIDA, S. & TAKAOKA, M. 1994 Vortex reconnection. Annu. Rev. Fluid Mech. 26 (1), 169–177.
KIDA, S., TAKAOKA, M. & HUSSAIN, F. 1991 Collision of two vortex rings. J. Fluid Mech. 230, 583–646.
LARSSON, J., BERMEJO-MORENO, I. & LELE, S.K. 2013 Reynolds-and Mach-number effects in canonical

shock–turbulence interaction. J. Fluid Mech. 717, 293–321.
LAUFER, J. & YEN, T.-C. 1983 Noise generation by a low-Mach-number jet. J. Fluid Mech. 134, 1–31.
LIGHTHILL, M.J. 1952 On sound generated aerodynamically I. General theory. Proc. R. Soc. Lond. A 211

(1107), 564–587.
MANCINELLI, M., PAGLIAROLI, T., DI MARCO, A., CAMUSSI, R. & CASTELAIN, T. 2017 Wavelet

decomposition of hydrodynamic and acoustic pressures in the near field of the jet. J. Fluid Mech. 813,
716–749.

MELANDER, M.V. & HUSSAIN, F. 1988 Cut-and-connect of two antiparallel vortex tubes. In Studying
Turbulence Using Numerical Simulation Databases, Proceedings of the 1988 Summer Program (Stanford
University, Stanford, CA, 1988), pp. 257–286.

MELANDER, M.V. & HUSSAIN, F. 1994 Core dynamics on a vortex column. Fluid Dyn. Res. 13 (1), 1–37.
MÖHRING, W. 1978 On vortex sound at low mach number. J. Fluid Mech. 85 (4), 685–691.
NAKASHIMA, Y. 2008 Sound generation by head-on and oblique collisions of two vortex rings. Phys. Fluids

20 (5), 056102.
PANTANO, C. & SARKAR, S. 2002 A study of compressibility effects in the high-speed turbulent shear layer

using direct simulation. J. Fluid Mech. 451, 329–371.
PENG, N. & YANG, Y. 2018 Effects of the Mach number on the evolution of vortex-surface fields in

compressible Taylor–Green flows. Phys. Rev. Fluids 3 (1), 013401.
POWELL, A. 1964 Theory of vortex sound. J. Acoust. Soc. Am. 36 (1), 177–195.
PROMENT, D. & KRSTULOVIC, G. 2020 Matching theory to characterize sound emission during vortex

reconnection in quantum fluids. Phys. Rev. Fluids 5, 104701.
SCHEIDEGGER, T.E. 1998 On compressibility effects in two-and three-dimensional flows: vortex dipoles and

reconnection. PhD thesis, Rutgres University, New Brunswick, NJ.
SHIVAMOGGI, B.K. 2006 Vortex stretching and reconnection in a compressible fluid. Eur. Phys. J. (B) 49 (4),

483–490.
SIGGIA, E.D. 1985 Collapse and amplification of a vortex filament. Phys. Fluids 28 (3), 794–805.
TRETTEL, A. & LARSSON, J. 2016 Mean velocity scaling for compressible wall turbulence with heat transfer.

Phys. Fluids 28 (2), 026102.

933 A34-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
88

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1088


H. Daryan, F. Hussain and J.-P. Hickey

VILLOIS, A., PROMENT, D. & KRSTULOVIC, G. 2020 Irreversible dynamics of vortex reconnections in
quantum fluids. Phys. Rev. Lett. 125, 164501.

VIRK, D. & HUSSAIN, F. 1993 Influence of initial conditions on compressible vorticity dynamics. Theor.
Comput. Fluid Dyn. 5 (6), 309–334.

VIRK, D., HUSSAIN, F. & KERR, R.M. 1995 Compressible vortex reconnection. J. Fluid Mech. 304, 47–86.
WILLIAMS, J.E.F. & KEMPTON, A.J. 1978 The noise from the large-scale structure of a jet. J. Fluid Mech.

84 (4), 673–694.
YANG, D., GUZMÁN-IÑIGO, J. & MORGANS, A.S. 2020 Sound generation by entropy perturbations passing

through a sudden flow expansion. J. Fluid Mech. 905, R2.
YAO, J. & HUSSAIN, F. 2020 A physical model of turbulence cascade via vortex reconnection sequence and

avalanche. J. Fluid Mech. 883, A51.
ZAMAN, K.B.M.Q. 1985 Far-field noise of a subsonic jet under controlled excitation. J. Fluid Mech. 152,

83–111.
ZAMAN, K.B.M.Q. & HUSSAIN, A.K.M.F. 1981 Turbulence suppression in free shear flows by controlled

excitation. J. Fluid Mech. 103, 133–159.

933 A34-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
88

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1088

	1 Introduction
	2 Theoretical framework
	3 Numerical set-up
	4 Results and discussion
	4.1 Source term evolution
	4.2 Near-field pressure evolution
	4.3 Far-field sound evolution

	5 Conclusion
	References

