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POWERS OF BINOMIAL EDGE IDEALS WITH QUADRATIC
GRÖBNER BASES

VIVIANA ENE , GIANCARLO RINALDO and NAOKI TERAI

Abstract. We study powers of binomial edge ideals associated with closed and

block graphs.

§1. Introduction

Binomial edge ideals generalize in a natural way the determinantal ideals generated by

the two-minors of a generic matrix of type 2×n. They were independently introduced a

decade ago in the papers [22] and [34]. Since then, they have been intensively studied and

there exists a rich recent literature on this subject. Fundamental results on their Gröbner

bases, primary decomposition, and their resolutions are presented in the monograph [23].

Binomial edge ideals with quadratic Gröbner basis are of particular interest since their

initial ideals are monomial edge ideals associated with bipartite graphs. Therefore, the

theory of monomial edge ideals can be employed in deriving information about binomial

edge ideals.

While many questions regarding binomial edge ideals have been already answered, much

less is known about their powers. In [28], first steps in studying the regularity of powers

of binomial edge ideals have been done. By using quadratic sequences, the authors obtain

bounds for the regularity of powers of binomial edge ideals which are almost complete

intersection. For the same class of ideals, in the paper [29], the Rees rings are considered.

Another direction of research was pursued in [13]. Here, it is shown that binomial edge

ideals with quadratic Gröbner basis have the nice property that their ordinary and symbolic

powers coincide.

LetG be a simple graph (i.e., an undirected graph with no multiple edges and no loops) on

the vertex set [n] = {1,2, . . . ,n} and let S =K[x1,x2, . . . ,xn,y1,y2, . . . ,yn] be the polynomial

ring in 2n variables over the field K. For 1≤ i < j ≤ n, we set fij = xiyj−xjyi. The binomial

edge ideal of the graph G is

JG = (fij : i < j,{i, j} is an edge of G).

We consider the polynomial ring S endowed with the lexicographic order induced by the

natural order of the variables, namely x1 > x2 > · · · > xn > y1 > y2 · · · > yn. The Gröbner

basis of JG with respect to this order was computed in [22]. The graphs G with the property

that JG has a quadratic Gröbner basis were characterized in the same paper and they were

called closed. Later on, it turned out that closed graphs coincide with the proper interval

graphs, see [10], which have a history of about 50 years in combinatorics. In Section 2, we

survey various combinatorial characterizations of closed graphs which are very useful in

working with their associated binomial edge ideals. Closed graphs with Cohen–Macaulay
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binomial edge ideals are classified in [14, Th. 3.1]. Roughly speaking, they are “chains” of

cliques (i.e., complete graphs) with the property that every two consecutive cliques intersect

in one vertex. For Cohen–Macaulay binomial edge ideals of closed graphs, we compute the

depth function in Theorem 3.1 and Proposition 3.6. For this class of ideals, we show that

depth
S

J i
G

= depth
S

in<(J i
G)

and this common value depends on the cardinality of the maximal cliques of G. The proof

of Theorem 3.1 follows from several technical lemmas. The basic idea of the proof is the

following. Starting with a closed graph G whose binomial edge ideal is Cohen–Macaulay,

we consider a disconnected graph G′ whose connected components are complete graphs of

the same size as the maximal cliques of G. By using the techniques developed in [19] for

computing the depth of powers of sums of ideals, we are able to calculate the depth of the

powers of JG′ . Next, by using a regular sequence of linear forms, we can recover the powers

of JG from the powers of JG′ , and, finally we can compute the depth of the powers of JG.

Similar arguments are used to compute the depth for the powers of in<(JG).

In addition, Proposition 3.6 implies that the depth function of JG and in<(JG) is

nonincreasing. We expect the same behavior for every closed graph, not only for those

whose binomial edge ideal is Cohen–Macaulay; see Question 6.1. However, we are able to

show that for every closed graph G, the limit depth for JG and in<(JG) coincide and we

compute this value in Theorem 3.10. On the other hand, in Proposition 3.12, we show that

the initial ideal in<(JG) has a nonincreasing depth function. An important step in deriving

Theorem 3.10 is Proposition 3.9 where we prove that the Rees rings R(JG) and R(in<(JG))

are Cohen–Macaulay. This reduces the proof of the equality

lim
k→∞

depth
S

Jk
G

= lim
k→∞

depth
S

(in<(JG))k

by showing that JG and in<(JG) have the same analytic spread. This is shown by using

the Sagbi basis theory.

One of the problems that we have considered at the beginning of this project was to

characterize the graphs G such that Jk
G is Cohen–Macaulay for (some) k ≥ 2. We still

do not have a complete solution for this problem which is probably very difficult in the

largest generality, but we can solve it if we restrict to closed or connected block graphs; see

Proposition 3.7 and Proposition 5.2. In the last part of Section 3, we show that binomial

edge ideals of closed graphs have the strong persistence property, as their initial ideals do.

In Section 4, we compute the regularity of the powers of JG, when G is closed. In

Theorem 4.1, we prove that if G is connected, then, for every k ≥ 1,

reg
S

Jk
G

= reg
S

in<(Jk
G)

= �+2(k−1),

where � is the length of the longest induced path in G. The inequality regS/Jk
G ≥ �+2(k−1)

follows from a result in [28]. For the rest of the proof, we combine various known facts about

the regularity of the powers of edge ideals of bipartite graphs. The statement is extended

to disconnected closed graphs in Proposition 4.2.

In Section 5, we consider block graphs. These are chordal graphs with the property that

every two maximal cliques intersect in at most one vertex. For the block graphs whose
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binomial edge ideal is Cohen–Macaulay, in Theorem 5.1, we show that the symbolic powers

coincide with the ordinary ones if and only if the graph is closed. This theorem shows, in

particular, that the equality between the symbolic and ordinary powers of binomial edge

ideals does not hold for all chordal graphs. Finally, in Proposition 5.2, we show that for

every connected block graph G which is not a path, Jk
G is not Cohen–Macaulay for k ≥ 2.

In the last section of the paper, we discuss a few open questions. The most intriguing

is related to a conjecture which appeared in [14] and which is still open. This conjecture

states that for every closed graph G, we have βij(JG) = βij(in<(JG)). While doing some

calculations with the computer, we observed an interesting phenomenon, namely that the

graded Betti numbers are the same also for powers of JG and in<(JG). Moreover, as we

explain in Section 6, the equalities between the graded Betti numbers are true for complete

and path graphs. Taking into account also our results on the regularity and depth of the

powers of JG and in<(JG), we were tempted to conjecture that for every closed graph G

and every k ≥ 1, we have βij(J
k
G) = βij((in<(JG))

k).

Another interesting question concerns block graphs. By computer calculation, we

observed that the net graph N (Figure 2) which plays an important role in Theorem 5.1

has the property that J
(2)
N is Cohen–Macaulay, but J2

N is not Cohen–Macaulay. It would

be of interest to classify all the block graphs with the property that the second symbolic

power of the associated binomial edge ideal is Cohen–Macaulay.

§2. Preliminaries

Let G be a graph1 on the vertex set V (G) = [n] and edge set E(G). Let S =

K[x1, . . . ,xn,y1, . . . ,yn] be the polynomial ring in 2n variables over the field K. The binomial

edge ideal JG associated with G is generated by the binomials fij = xiyj −xjyi ∈ S where

{i, j} ∈E(G). In other words, JG is generated by the maximal minors of the generic 2×n-

matrix X =

(
x1 x2 · · · xn

y1 y2 · · · yn

)
whose column indices correspond to the edges of G. Two

simple examples of binomial edge ideals are the ideal I2(X) generated by all the maximal

minors of X which in our notation is denoted by JKn where Kn is the complete graph on

the vertex set [n], and the ideal generated by the adjacent minors of X which coincides

with JPn , where Pn is the path graph with edges {i, i+1},1≤ i≤ n−1.

We consider the polynomial ring S endowed with the lexicographic order induced by

the natural order of the variables. Let in<(JG) be the initial ideal of JG with respect to

this monomial order. By [22, Cor. 2.2], JG is a radical ideal. In the same paper, it was

shown that the minimal prime ideals can be characterized in terms of the combinatorics of

the graph G. In order to recall this characterization, we introduce the following notation.

Let W ⊂ [n] be a (possibly empty) subset of [n], and let G1, . . . ,Gc(W ) be the connected

components of G[n]\W where G[n]\W is the induced subgraph of G on the vertex set [n]\W,

and c(W ) denotes the number of connected components of G[n]\W . For 1 ≤ i ≤ c(W ), let

G̃i be the complete graph on the vertex set V (Gi). Let

PW (G) = ({xi,yi}i∈W )+J
˜G1

+ · · ·+J
˜Gc(W )

.

1 In this paper, by a graph we always mean a simple graph, that is, an undirected graph with no multiple
edges and no loops.
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Then PW (G) is a prime ideal of height equal to n− c(W )+ |W | for every W ⊂ [n], [22,

Lem. 3.1].

By [22, Th. 3.2], JG =
⋂

W⊂[n]PW (G). In particular, the minimal primes of JG are among

the prime ideals PW (G) with W ⊂ [n].

Proposition 2.1. [22, Cor. 3.9] PW (G) is a minimal prime of JG if and only if either

W = ∅ or W is nonempty and for each i ∈W,c(W \{i})< c(W ).

In graph theoretical terms, PW (G) is a minimal prime ideal of JG if and only if W is

empty or W is nonempty and is a cut-point set of G, that is, i is a cut point of the induced

subgraph G([n]\W )∪{i} for every i ∈ W. Let C(G) be the set of all sets W ⊂ [n] such that

PW (G) ∈Min(JG), where Min(JG) is the set of minimal prime ideals of JG.

In particular, it follows that

dimS/JG =max{n+ c(W )−|W | :W ∈ C(G)}.(1)

For W = ∅, c= c(∅) is the number of connected components G1, . . . ,Gc of G. In addition,

one can easily see that P∅(G) = J
˜G1

+ · · ·+J
˜Gc

is a minimal prime of JG. Therefore, if JG
is unmixed (which is the case, for instance, if JG is Cohen–Macaulay), then all the minimal

primes of JG have dimension equal to n+ c. In particular, if G is connected, then JG is

unmixed if and only if, for every minimal prime PW (G) ofG, we have n+c(W )−|W |=n+1,

that is, c(W )−|W |= 1.

By [6, Th. 3.1] and [6, Cor. 2.12], we have

in<(JG) =
⋂

W∈C(G)

in<PW (G).(2)

In what follows, we are mainly interested in binomial edge ideals with quadratic Gröbner

bases. We recall the following result from [22, Th. 1.1].

Theorem 2.2 [22]. Let G be a graph on the vertex set [n] with the edge set E(G), and

let < be the lexicographic order on S induced by x1 > · · · > xn > y1 > · · · > yn. Then the

following conditions are equivalent:

(a) The generators fij of JG form a quadratic Gröbner basis.

(b) For all edges {i, j} and {i,k} with j > i < k or j < i > k one has {j,k} ∈ E(G).

According to [22], a graph G endowed with a labeling which satisfies condition (b) in the

above theorem is called closed with respect to the given labeling. Therefore, the generators

of JG form a Gröbner basis with respect to the lexicographic order if and only if G is closed

with respect to its given labeling. Moreover, a graph G is called closed if there exists a

labeling of its vertices such that G is closed with respect to it. Later on, Crupi and Rinaldo

proved in [10] that closed graphs coincide with the so-called proper interval graphs, a class

of graphs with a rich history in combinatorics. However, in this paper, we will call them

closed graphs. There are several characterizations of closed graphs. Before discussing them,

let us recall some notions of graph theory. A graph is called chordal if it has no induced

cycle of length greater than or equal to 4. A graph is called claw-free if it has no induced

subgraph isomorphic to the one displayed in Figure 1. A clique of a graph G is a complete

subgraph of G. The cliques of G form a simplicial complex Δ(G) which is called the clique

complex of G.
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Figure 1.

Claw graph

N : Net graph T : Tent graph

Figure 2.

Net and tent

The equivalences of the following theorem collects several results proved in

[3], [9], [10], [14], [22].

Theorem 2.3. Let G be a graph on the vertex set [n]. The following statements are

equivalent:

(i) G is a closed graph with respect to the given labeling, or equivalently, the generators of

JG form a Gröbner basis with respect to the lexicographic order induced by x1 > · · · >
xn > y1 > · · ·> yn;

(ii) for all {i, j},{k,�} ∈ E(G) with i < j and k < �, one has {j,�} ∈ E(G) if i = k,j �= �,

and {i,k} ∈ E(G) if j = �, i �= k;

(iii) The facets, say F1, . . . ,Fr, of the clique complex Δ(G) of G are intervals of the form

Fi = [ai, bi] which can be ordered such that 1 = a1 < · · ·< ar < br = n;

(iv) for any 1≤ i < j < k ≤ n, if {i,k} ∈ E(G), then {i, j},{j,k} ∈ E(G);and

(v) G is a chordal and claw-free graph which does not contain any subgraph isomorphic to

the graphs displayed in Figure 2.

The connected closed graphs with Cohen–Macaulay binomial edge ideals were character-

ized in [14].

Theorem 2.4. [14, Th. 3.1] Let G be a connected graph on [n] which is closed with

respect to the given labeling. Then the following conditions are equivalent:

(a) JG is unmixed;

(b) JG is Cohen–Macaulay;

(c) in<(JG) is Cohen–Macaulay;

(d) G satisfies the following condition: if {i, j+1},{j,k+1} ∈ E(G) with i < j < k, then

{i,k+1} ∈ E(G); and
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(e) there exist integers 1 = a1 < a2 < · · · < ar < ar+1 = n and a leaf order of the facets

F1, . . . ,Fr of Δ(G) such that Fi = [ai,ai+1] for all i= 1, . . . , r.

Let us remark that if G is closed and has the connected components G1,G2, . . . , ,Gc, then

S

JG
∼= S1

JG1

⊗ S2

JG2

⊗·· ·⊗ Sc

JGc

,

where Si =K[{xj ,yj : j ∈ V (Gi)}] for 1≤ i≤ c. Thus, JG is Cohen–Macaulay if and only if

each Si/JGi is Cohen–Macaulay.

Let G be a closed graph. Then the generators of JG form a reduced Gröbner basis with

respect to the lexicographic order. This implies that in<(JG) = (xiyj : i < j,{i, j} ∈ E(G)).

Thus, in<(JG) is the monomial edge ideal of a bipartite graph, let us call it H, on the vertex

set {x1,x2, . . . ,xn}∪{y1,y2, . . . ,yn} whose edges are {xi,yj} where {i, j} ∈E(G). Since H is

bipartite, it follows that the edge ideal I(H) = in<(JG) has the property that its ordinary

powers coincide with the symbolic ones [36, Th. 5.9]. Combining (2) with the proof of [13,

Lem. 3.1], it follows that if G is closed, then

in<(J
i
G) = (in<(JG))

i, for every i≥ 1.(3)

In other words, if G is closed, then the generators of J i
G form a Gröbner basis of J i

G for

i≥ 1. Moreover, with the same assumption on the graph G, by [13, Cor. 3.4, Prop. 2.5], we

have

J i
G = J

(i)
G for every i≥ 1,(4)

where J
(i)
G denotes the ith symbolic power of JG. In other words, for a closed graph G,

the symbolic powers of the binomial edge ideal JG coincide with the ordinary powers. We

recall the notion of symbolic power. Let I ⊂R be an ideal in a Noetherian ring R, and let

Min(I) be the set of the minimal prime ideals of I. For an integer k ≥ 1, one defines the kth

symbolic power of I as follows:

I(k) =
⋂

p∈Min(I)

(IkRp∩R).

By the definition of the symbolic power, we have Ik ⊆ I(k) for k ≥ 1. Symbolic powers do

not, in general, coincide with the ordinary powers.

§3. Depth of powers

The first main result of this section is the following.

Theorem 3.1. Let G be a connected closed graph on the vertex set [n] such that JG is

Cohen–Macaulay. Let F1,F2, . . . ,Fr be the maximal cliques of G and di = dimFi =#Fi−1

for 1≤ i≤ r. Assume that d1 ≥ d2 ≥ ·· · ≥ dr ≥ 1.2 Then the following equalities hold:

(a) depth S
Ji
G
= depth S

in<(Ji
G)

= n−
∑i−1

j=1 dj + i for 1≤ i≤ r,

(b) depth S
Ji
G
= depth S

in<(Ji
G)

= r+2 for i≥ r+1.

For the proof of this theorem, we need a few lemmas. The proof of the first preparatory

lemma is a straightforward extension of the proof of [26, Th. 4.4].

2 Note that this is not necessarily the order of the facets of Δ(G) from Theorem 2.3.
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Lemma 3.2. Let G be a complete graph on the vertex set [n] and JG its binomial edge

ideal. Then yn−2−xn−1,yn−1−xn,yn is a maximal regular sequence on S/J i
G for all i≥ 2.

In particular, depthS/J i
G = 3 for i≥ 2.

Proof. Let R= S/(yn−2−xn−1,yn−1−xn,yn) =K[x1, . . . ,xn−2,y1, . . . ,yn−1]. The image

of JG in R is the ideal J ′ generated by all the 2–minors of the matrix

X ′ =

(
x1 . . . xn−2 yn−2 yn−1

y1 . . . yn−2 yn−1 0

)
.

In order to prove our claim, it is enough to show that m, that is, the maximal ideal of

R is associated to (J ′)i for i ≥ 2. If we show that ((J ′)i : y2i−1
n−1 ) is m–primary, then m ∈

Ass(R/(J ′)i), which implies that depth(R/(J ′)i) = 0 and the claim follows.

Set y= yn−1. Then y2i−1 /∈ (J ′)i since (J ′)i is generated in degree 2i. But y ·y2i−1 =(y2)i ∈
(J ′)i since y2 ∈ J ′. Therefore, y ∈ (J ′)i : y2i−1. For 1 ≤ j ≤ n− 2, we have yjy ∈ J ′. Then

y2i−1
j y2i−1 ∈ (J ′)2i−1 ⊆ (J ′)i, thus y2i−1

j ∈ (J ′)i : y2i−1 for 1≤ j ≤ n−2. Finally, since xjy−
yjyn−2 ∈ J ′ for 1≤ j ≤ n−2, we get that for i≥ 2,y2i−2(xjy−yjyn−2) ∈ (J ′)i−1 ·J ′ = (J ′)i,

since y2i−2 = (y2)i−1 ∈ (J ′)i−1. On the other hand, yjyn−2y
2i−2 = (yjy)(yn−2y)(y

2)i−2 ∈
(J ′)i. It follows that xjy

2i−1 ∈ (J ′)i, which implies that xj ∈ (J ′)i : y2i−1 for 1≤ j ≤ n−2.

Lemma 3.3. Under the same assumption of Lemma 3.2, we have

depth
S

in<(J i
G)

= 3,

for all i≥ 2.

Proof. By (3), we have in<(J
i
G) = (in<(JG))

i for i≥ 1. Since y1 and xn form a regular

sequence on in<(JG) and using Lemma 3.2, we get the following relations:

depth
S

(in<(JG))i
+2 = depth

S

(in<(JG))i
= depth

S

in<(J i
G)

≤ depth
S

J i
G

= 3,

where S =K[{xi,yj : 1≤ i≤ n−1,2≤ j ≤ n}]. By [37, Th. 4.4], depthS/(in<(JG))
i ≥ 1 for

i≥ 1. Therefore, we get the desired equality.

In the following lemma, we use the following notation. If H is a graph on some vertex set

V (H), then we denote by S(H) the polynomial ring over K in the variables xk,yk, where

k ∈ V (H).

Lemma 3.4. Let G be a closed graph on the vertex set [n] with maximal cliques

[a1,a2], [a2,a3], . . . , [ar,ar+1] where 1 = a1 < a2 < · · · < ar < ar+1 = n. Let G′ be the graph

whose connected components are the mutually disjoint cliques

[a1,a2], [a2+1,a3+1], . . . , [ar+(r−1),ar+1+(r−1)].

Then the following hold:

(a) The sequence of linear forms

� : �y1 = ya2 −ya2+1, �
x
1 = xa2 −xa2+1, �

y
2 = ya3+1−ya3+2, �

x
2 = xa3+1−xa3+2,

. . . , �yr−1 = yar+(r−2)−yar+(r−1), �
x
r−1 = xar+(r−2)−xar+(r−1)
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is regular on S(G′)/Jj
G′ and

S(G′)

Jj

G′

(�)S(G′)

Jj

G′

∼= S

Jj
G

,

for every j ≥ 1.

(b) The sequence of variables μ :xa2 ,ya2+1,xa3+1, . . . ,yar+(r−1) is regular on S(G′)/ in<(J
j
G′)

and

S(G′)

in<(Jj

G′)

(μ) S(G′)

in<(Jj

G′)

∼= S

in<(J
j
G)

,

for every j ≥ 1.

Proof. (a) Let j ≥ 1 be an integer. We prove by induction on 2≤ i≤ r that the sequence

�i−1 : �y1, �
x
1 , . . . , �

y
i−1, �

x
i−1 is regular on S(G′)/Jj

G′ and

S(G′)

Jj

G′

(�i−1)
S(G′)

Jj

G′

∼= S(G̃i−1)

Jj
˜Gi−1

.

where, after relabeling the vertices, G̃i−1 is a closed graph with maximal cliques

[a1,a2], [a2,a3], . . . , [ai,ai+1], [ai+1+1,ai+2+1], . . . , [ar+(r− i),ar+1+(r− i)].

Let us first check the claim for i= 2. We have to show that �y1, �
x
1 is regular on S(G′)/Jj

G′ .

Note that JG′ is a prime ideal since it is the sum of r prime ideals in pairwise disjoint sets

of variables corresponding to the r connected components of G′; see [23, Lem. 7.14].

Let h ∈ S(G′) such that �y1h ∈ Jj
G′ . Since �

y
1 /∈ JG′ , because J ′

G is generated in degree 2, it

follows that h ∈ J
(j)
G′ = Jj

G′ , thus �
y
1 is regular on S(G′)/Jj

G′ . Now we show that �x1 is regular

on S(G′)/(Jj
G′ +(�y1)). We have

S(G′)

Jj
G′ +(�y1)

∼= S(G′)

J +(�y1)
,

where J is the ideal in S(G′) generated by the polynomials g1, . . . ,gm obtained from the

generators g1, . . . ,gm of Jj
G′ as follows. If gk is a generator which contains the variable

ya2+1, we replace it by ya2 and denote the new binomial by gk. If gk contains the variable

ya2 , we replace it by ya2+1, and denote the new binomial by gk. If a generator gk of Jj
G′

contains both variables ya2 and ya2+1, then we exchange these variables and denote the

new binomial by gk. Finally, if gk is a generator of Jj
G′ which does not contain any of the

variables ya2 ,ya2+1, we simply set gk = gk. Then g1, . . . ,gm are the generators of the j th

power of the binomial edge ideal associated with the graph G′ and the matrix

X ′ =

(
x1 · · · xa2−1 xa2 xa2+1 xa2+2 · · · xar+1+r−1

y1 · · · ya2−1 ya2+1 ya2 ya2+2 · · · yar+1+r−1

)
.

Since G′ consists of r complete graphs, by (3) it follows that in<(J) is generated by the

monomials in<(g1), . . . , in<(gm) where < is the lexicographic order on S(G′). Note that

in<(gk) differs from in<(gk) if and only if ya2 | in<(gk) and, in this case, in<(gk) is obtained
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from in<(gk) by replacing the variable ya2 with ya2+1. Then it follows that none of the

generators of the initial ideal of J + (�y1) is divisible by xa2 since {a2,a2 +1} is not an

edge in G′. Therefore, xa2 is regular on in<(J+(�y1)) and further, xa2 −xa2+1 is regular on

S(G′)/(Jj
G′ +(�y1)). Moreover, we get

S(G′)

Jj
G′ +(�y1, �

x
1)

∼= S(G̃1)

Jj
˜G1

,

where G̃1 is obtained from G′ by identifying the vertices a2 and a2+1 and by relabeling

the vertices k with k−1 for k ≥ a2+2. Thus, G̃1 has the maximal cliques

[a1,a2], [a2,a3], [a3+1,a4+1], . . . , [ar+(r−2),ar+1+(r−2)].

In particular, G̃1 is a closed graph which has r−1 connected components.

Assume that the sequence �i−1 : �y1, �
x
1 , . . . , �

y
i−1, �

x
i−1 is a regular sequence on S(G′)/Jj

G′

and

S(G′)

Jj

G′

(�i−1)
S(G′)

Jj

G′

∼= S(G̃i−1)

Jj
˜Gi−1

,

where the graph G̃i−1 has the first connected component consisting of the maximal cliques

[a1,a2], [a2,a3], . . . , [ai,ai+1] and the other connected components are pairwise disjoint

cliques. We have to show that �yi , �
x
i is a regular sequence on S(G̃i−1)/J

j
˜Gi−1

. In the closed

graph G̃i−1, the vertices ai+1 and ai+1+1 are free, thus �yi does not belong to any minimal

prime ideal of G̃i−1 by [35, Prop. 2.1] or [23, Prop. 7.22]. This implies that �yi is regular on

S(G̃i−1)/J
j
˜Gi−1

since Jj
˜Gi−1

has no embedded component by (4). It remains to show that �xi

is regular on S(G̃i−1)/(J
j
˜Gi−1

+(�yi )). The argument is very similar to the induction basis.

We observe that Jj
˜Gi−1

+(�yi ) = J+(�yi ) where J is obtained as follows. Let g1, . . . ,gm be the

generators of Jj
˜Gi−1

and denote by g1, . . . ,gm the polynomials obtained in the following way.

If gk contains the variable yai+1 , (respectively yai+1+1) we replace it by yai+1+1 (respectively

by yai+1), and define gk to be this new binomial. If gk contains both variables yai+1 and

yai+1+1, then we exchange these variables and denote the new binomial by gk. Finally, if

gk does not contain any of the variables yai+1 ,yai+1+1, we simply define gk = gk. Then

J = (g1, . . . ,gm) is the j th power of the binomial edge ideal corresponding to the closed

graph G̃i−1 and the matrix

X ′ =

(
x1 · · · xai+1−1 xai+1 xai+1+1 xai+1+2 · · · xar+1+r−i

y1 · · · yai+1−1 yai+1+1 yai+1 yai+1+2 · · · yar+1+r−i

)
.

It follows that the initial ideal of J is minimally generated by the monomial generators

of in<(J
j
˜Gi−1

) in which we replaced the variable yai+1 with yai+1+1. Hence g1, . . . ,gm, �yi

is a Gröbner basis of J +(�yi ). This implies that all the monomial minimal generators of

in<(J +(�yi )) are not divisible by xai+1 . Therefore, xai+1 is regular on in<(J +(�y1)) and,
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consequently, �xi is regular on S/(J +(�yi )). Moreover, we get the following isomorphism:

S(G̃i−1)

Jj
˜Gi−1

+(�xi , �
y
i )

∼= S(G̃i)

Jj
˜Gi

,

where G̃i is a closed graph which is obtained from G̃i−1 by identifying the vertex ai+1+1

with ai+1 and by relabeling the vertex k with k−1 for k ≥ ai+1+2. Thus, the new graph

G̃i has the maximal cliques

[a1,a2], . . . , [ai,ai+1], [ai+1,ai+2], [ai+2+1,ai+3+1], . . . , [ar+(r− i−1),ar+1+(r− i−1)].

(b) Since the variables from μ do not appear in the support of the minimal generators

of in<(JG′), it obviously follows that μ is a regular sequence on S(G′)/(in<(JG′))j =

S(G′)/ in<(J
j
G′) and the desired conclusion follows.

Lemma 3.5. Let G′ be the graph with the connected components H1,H2, . . . ,Hr, where

each Hi is a complete graph with di+1 ≥ 2 vertices. Assume that d1 ≥ d2 ≥ ·· · ≥ dr ≥ 1.

Let JG′ be the binomial edge ideal of G′ in the polynomial ring S′ =K[{xi,yi : i ∈ V (G′)}].
Then:

(a) depth S′

Ji
G′

= depth S′

in<(Ji
G′)

= di+di+1+ · · ·+dr+2r+ i−1, for 1≤ i≤ r and

(b) depth S′

Ji
G′

= depth S′

in<(Ji
G′)

= 3r, for i≥ r+1.

Proof. We proceed by induction on i. To simplify the notation, we set Jk = JHk
for

1≤ k ≤ r. For i= 1, we have

depth
S′

JG′
= depth

S1

J1
+ · · ·+depth

Sr

Jr

and

depth
S′

in<(JG′)
= depth

S1

in<(J1)
+ · · ·+depth

Sr

in<(Jr)
,

where Sk =K[{xj ,yj : j ∈ V (Hk)}] for 1≤ k ≤ r.

Since Jk and in<(Jk) are Cohen–Macaulay for all k and depthSk/ in<(Jk) = dk+2, we

get

depth
S′

JG′
= depth

S′

in<(JG′)
= (d1+2)+(d2+2)+ · · ·+(dr+2) = d1+d2+ · · ·+dr+2r.

The inductive step follows from the same argument for depthS′/J i
G′ and for

depthS′/ in<(J
i
G′). We will explain in detail the proof for depthS′/J i

G′ and, in the final

part we will point out the difference in the proof for depthS′/ in<(J
i
G′).

Let us assume that

depth
S′

J i
G′

= di+di+1+ · · ·+dr+2r+ i−1

and

depth
S′

in<(J i
G′)

= depth
S′

in<(JG′)i
= di+di+1+ · · ·+dr+2r+ i−1

for i≤ r−1.
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By [19, Th. 3.3], we have

depth
J i
G′

J i+1
G′

= min
j1+j2+···+jr=i

{
depth

Jj1
1

Jj1+1
1

+depth
Jj2
2

Jj2+1
2

+ · · ·+depth
Jjr
r

Jjr+1
r

}
.(5)

We know that depth Si

Ji
= di+2≥ 3 since Ji is Cohen–Macaulay, and by Lemma 3.2 and

the Depth Lemma, depth Ji

J2
i
= 3 and depth

Jj
i

Jj+1
i

≥ 3 for j ≥ 2.

If i≤ r−1, in the equality j1+ j2+ · · ·+ jr = i, at most i exponents among j1, j2, . . . , jr
are not 0. Since d1 ≥ d2 ≥ ·· · ≥ dr, we get

r∑
s=1

depth
(Ji)

js

(Ji)js+1
≥ 3i+(di+1+2)+ · · ·+(dr+2) = di+1+ · · ·+dr+2r+ i.

Moreover, the minimal value di+1 + · · ·+ dr +2r+ i is achieved for j1 = · · · = ji = 1 and

ji+1 = · · ·= jr = 0. Hence, equality (5) implies that

depth
J i
G′

J i+1
G′

= di+1+ · · ·+dr+2r+ i.

We have the exact sequence of S′-modules:

0→ J i
G′

J i+1
G′

→ S′

J i+1
G′

→ S′

J i
G′

→ 0.

By the inductive hypothesis, since i≤ r−1, we have depth S′

Ji
G′

= di+di+1+ · · ·+dr+2r+

(i−1). As di+1+ · · ·+dr +2r+ i ≤ di+di+1+ · · ·+dr +2r+(i−1), by the Depth Lemma

applied to the above exact sequence, it follows that depth S′

Ji+1

G′
= di+1 + · · ·+ dr +2r+ i.

Therefore, we proved part (a) of the statement. In particular, for i = r, we have depth
S′

Jr
G′

= dr +3r− 1. To prove part (b), we apply again induction on i ≥ r+1. We have the

exact sequence of S′–modules:

0→ Jr
G′

Jr+1
G′

→ S′

Jr+1
G′

→ S′

Jr
G′

→ 0.

In equality (5), if we consider j1+ j2+ · · ·+ jr = r, we derive that

r∑
s=1

depth
(Ji)

js

(Ji)js+1
≥ 3r

and the minimal value 3r is achieved for j1 = j2 = · · ·= jr = 1. Thus, depth
Jr
G′

Jr+1

G′
= 3r. Since

3r≤ dr+3r−1, the Depth Lemma applied to the above exact sequence yields depth S′

Jr+1

G′
=

3r. For the inductive step, we consider the exact sequence

0→ J i
G′

J i+1
G′

→ S′

J i+1
G′

→ S′

J i
G′

→ 0

for i ≥ r+1. By hypothesis we have depth S′

Ji
G′

= 3r, and we know from equality (5) that

depth
Ji
G′

Ji+1

G′
= 3r. Then, by the Depth Lemma, we obtain depth S′

Ji+1

G′
= 3r.
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As we have already mentioned, the inductive step for depthS′/ in<(J
i
G′) works in the

same way. The only difference is that we need to apply Lemma 3.3 in order to derive that

depthin<(Ji)/(in<(Ji))
2 = 3 and depth(in<(Ji))

j/(in<(Ji))
j+1 ≥ 3 for j ≥ 2.

Proof of Theorem 3.1. To begin with, we prove the formulas for the depth of S/J i
G.

Let [a1,a2], [a2,a3], . . . , [ar,ar+1] be the maximal cliques of G, where 1 = a1 < a2 < · · · <
ar < ar+1 = n. Note that this is not necessarily the order with respect to the dimensions of

the cliques. Let G′ be the graph on [n+r−1] with the connected components [a1,a2], [a2+

1,a3+1], . . . , [ar+(r−1),ar+1+(r−1)] and JG′ ⊂S′ =K[{xj ,yj : j ∈ V (G′)}] the associated
binomial edge ideal. By Lemma 3.5, we have

depth
S′

J i
G′

= depth
S′

in<(J i
G′)

=

{
di+di+1+ · · ·+dr+2r+(i−1), for 1≤ i≤ r,

3r, for i≥ r+1.

By Lemma 3.4, the sequence of 2(r−1) linear forms

� : �y1 = ya2 −ya2+1, �
x
1 = xa2 −xa2+1, �

y
2 = ya3+1−ya3+2, �

x
2 = xa3+1−xa3+2,

. . . , �yr−1 = yar+(r−2)−yar+(r−1), �
x
r−1 = xar+(r−2)−xar+(r−1)

is regular on S′/J i
G′ and S′/(J i

G′ +(�)) ∼= S/J i
G for all i ≥ 1. In addition, the sequence of

2(r−1) elements

μ : xa2 ,ya2+1,xa3+1, . . . ,yar+(r−1)

is regular on S(G′)/ in<(J
j
G′) and

S(G′)

in<(Jj

G′)

(μ) S(G′)

in<(Jj

G′)

∼= S

in<(J
j
G)

.

for every j ≥ 1. This implies that

depth
S

J i
G

= depth
S

in<(J
j
G)

= depth
S(G′)

J i
G′

−2(r−1) =

=

{ ∑r
j=i dj + i+1 = n−d1−d2 · · ·−di−1+ i, for 1≤ i≤ r,

r+2, for i≥ r+1,

where the second equality holds because n=
∑r

j=1(dj +1)− (r−1) =
∑r

j=1 dj +1.

With similar arguments as the ones we used for the connected case, we may derive the

depth function for the powers of JG and in<(JG) in the case that G has several connected

components, say G1, . . . ,Gc. The only difference is that we do not need to mod out by the

entire sequences � and μ of length 2(r− 1) but, instead, by sequences of length 2(r− 1)−
2(c−1) = 2(r− c). Consequently, we get the following.

Proposition 3.6. Let G be a closed graph on the vertex set [n] with the connected

components G1,G2, . . . ,Gc such that JG is Cohen–Macaulay. Let F1,F2, . . . ,Fr be the

maximal cliques of G and di = dimFi = #Fi − 1 for 1 ≤ i ≤ r. Assume that d1 ≥ d2 ≥
·· · ≥ dr ≥ 1. Then:
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(a) depth S
Ji
G
= depth S

in<(Ji
G)

= n−
∑i−1

j=1 dj + i+ c−1, for 1≤ i≤ rand

(b) depth S
Ji
G
= depth S

in<(Ji
G)

= r+2c, for i≥ r+1.

Proposition 3.7. Let G be a closed graph with the property that at least one of its

connected components is not a path. Then J i
G is not Cohen–Macaulay for i≥ 2.

Proof. If JG is Cohen–Macaulay, then, by Proposition 3.6, it follows that

depth(S/J i
G)< depth(S/JG) = dim(S/JG)

for i≥ 2 since G has cliques with at least three vertices. This implies that J i
G is not Cohen–

Macaulay.

If JG is not Cohen–Macaulay, then, by Theorem 2.4, JG is not unmixed. This implies

that J
(i)
G is not unmixed, thus it is not Cohen–Macaulay. But we know that J i

G = J
(i)
G for

all i≥ 1, therefore, J i
G is not Cohen–Macaulay for i≥ 1.

Since all the powers of a complete intersection ideal in a polynomial ring are Cohen–

Macaulay [1], [8], [38], we get the following consequence of the above proposition.

Corollary 3.8. Let G be a closed graph. Then the following are equivalent:

(a) Each connected component of G is a path graph,

(b) J i
G is Cohen–Macaulay for every i≥ 2,

(c) J i
G is Cohen–Macaulay for some i≥ 2,and

(d) J2
G is Cohen–Macaulay.

Proposition 3.9. Let G be a closed graph and let JG be the associated binomial edge

ideal. Then the Rees algebras R(JG) and R(in<(JG)) are Cohen–Macaulay and have the

same dimension. In particular, the graded rings of JG and in<(JG) are Cohen–Macaulay.

Proof. Since in<(JG) is normally torsion free (by (3) and [13, Lem. 3.1]), it follows

that R(in<(JG)) is Cohen–Macaulay by [25] and, by [7, Th. 2.7], we have R(in<(JG)) =

in<′(R(JG)). Here, in<′(R(JG)) is the initial algebra ofR(JG) with respect to the monomial

order <′ on S[t] which extends the lexicographic order < on S as follows: given two

monomials u,v ∈ S and two integers i, j ≥ 0, we have uti <′ vtj if and only if i < j or i= j

and u < v. Since R(in<(JG)) is Cohen–Macaulay, it follows that in<′(R(JG)) is Cohen–

Macaulay and this implies that R(JG) shares the same property [7, Cor. 2.3]. In addition,

as in<′(R(JG)) and R(JG) have the same Krull dimension [7, Prop. 2.4], it follows that

R(JG) and R(in<(JG)) have the same dimension.

The last part of the statement follows by [27, Prop. 1.1].

Theorem 3.1 shows that the depth function of Cohen–Macaulay binomial edge ideals

of closed graphs is nonincreasing. Moreover, it coincides with the depth function of their

initial ideals. We expect that this behavior holds for every closed graph, but we could not

prove it. Instead, in the next theorem we show that, for every closed graph G, the ideals JG
and in<(JG) have the same limit depth and we compute its value. Moreover, in Proposition

3.12, we will show that in<(JG) has a nonincreasing depth function.

Before stating the theorem, let us recall a few notions and results. A classical result of

Brodmann [4] states that if I is a homogeneous ideal in a polynomial ring R=K[x1, . . . ,xn],

then

lim
k→∞

depth
R

Ik
≤ n− �(I),(6)
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where �(I) = dimR(I)/mR(I) is the analytic spreadof I. Here m = (x1,x2, . . . ,xn) is the

maximal graded ideal of R and R(I) is the Rees algebra of the ideal I. For an alternative

proof of (6) we refer to [20, Th. 1.2]. In [11], it was shown that the equality holds in (6) if

the ring grI(R) is Cohen–Macaulay, which is the case if R(I) is Cohen–Macaulay [27]. We

should also recall that if I is generated by some polynomials, say f1, . . . ,fm, of the same

degree, then the fiber ring R(I)/mR(I) is isomorphic to K[f1, . . . ,fm] since we have the

following isomorphism:

R(I)

mR(I)
∼= R

m
⊕ I

mI
⊕ I2

mI2
⊕·· · .

On the other hand, we need to recall some graph theoretical terminology. A vertex v of a

graph G is called a free vertex if it belongs to exactly one maximal clique of G. A connected

graph G is called decomposable if there exist G1 and G2 induced subgraphs of G such that

G=G1∪G2 with V (G1)∩V (G2) = {v} and v is a free vertex in G1 and G2. A connected

graph G is indecomposable if it is not decomposable. Clearly, every graph G (not necessarily

connected) has a unique decomposition up to relabeling of the form G=G1∪G2∪· · ·∪Gr

where G1, . . . ,Gr are indecomposable graphs and for every 1 ≤ i < j ≤ r, we have either

V (Gi)∩V (Gj) = ∅ or V (Gi)∩V (Gj) = {v} where v is a free vertex in Gi and Gj . We call

G1, . . . ,Gr the indecomposable components of G.

Theorem 3.10. Let G be a closed graph and JG ⊂ S its binomial edge ideal. Let

g1, . . . ,gm be the generators of JG. Then the following hold:

(a) The set {g1, . . . ,gm} is a Sagbi basis of the K-algebra K[g1, . . . ,gm] with respect to the

lexicographic order on S, that is,

in<(K[g1, . . . ,gm]) =K[in< g1, . . . , in< gm].

(b) The ideals JG and in<(JG) have the same analytic spread.

(c) limk→∞depth S
Jk
G

= limk→∞depth S
(in<(JG))k

= r+2, where r is the number of indecom-

posable components of G.

Proof. Let A=K[g1, . . . ,gm] and B =K[in< g1, . . . , in< gm].

(a). In order to show that {g1, . . . ,gm} is a Sagbi basis of A, we apply a criterion which

plays a similar role to the Buchberger criterion in the Gröbner basis theory; see [12, Th.

6.43]. Let ϕ :K[t1, . . . , tm]→A and ψ :K[t1, . . . , tm]→B be the K -algebra homomorphisms

defined by ϕ(ti) = gi and ψ(ti) = in< gi for 1≤ i≤m. Let ta1 −tb1 , . . . ,tar −tbr be a system

of binomial generators for the toric ideal kerψ. Then {g1, . . . ,gm} is a Sagbi basis of A if

and only if there exist some coefficients c
(j)
a ∈K such that

gaj −gbj =
∑
a

c(j)a ga

with in<(g
a)< in<(g

aj ) for all a, where by ga we mean ga1
1 · · ·gam

m if a= (a1, . . . ,am). Thus,

we first need to find a set of binomial generators for kerψ. The K -algebra B is the edge ring

of the bipartite graph H on the vertex set V (H) = {x1, . . . ,xn}∪{y1, . . . ,yn} and edge set

E(H) = {{xi,yj} : i < j and {i, j} ∈E(G)}. By [16, Lem. 3.3], we know that every induced

cycle in H has length 4. By [33], the toric ideal of B is generated by the binomials βγ1 , . . . ,βγs

where γ1, . . . ,γs are the four-cycles of H. If γ is a four-cycle in H, say γ = (xi,yj ,xk,y�) with

i < k < j < �, and xiyj = in<(gi1),xiy� = in<(gi2),xkyj = in<(gi3),xky� = in<(gi4), then
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βγ = ti1ti4 − ti2ti3 . We have to lift the relations determined by the binomials βγ to A. But

this is very easy since

gi1gi4 −gi2gi3 = gi5gi6 ,

where gi5 = xiyk−xkyi and gi6 = xjy�−x�yj . Note that since i < k < j < �, and {i, �}∈E(G),

then {i,k} and {j,�} are edges in G as well, by Theorem 2.3 (iv). Moreover,

in<(gi5gi6) = xixjyky� < xixkyjy� = in<(gi1gi4)

since k < j.

(b) follows from (a) since dimA= dimin<(A) by [7, Prop. 2.4].

(c) By Proposition 3.9 and [11, Props. 3.1 and 3.3], we have

lim
k→∞

depth
S

Jk
G

= dimS− �(JG) and lim
k→∞

depth
S

(in<(JG))k
= dimS− �(in<(JG)).

Therefore, we get the equality of the two limits by (b).

Since y1 and xn are isolated vertices in the bipartite graph H whose edge ideal is equal

to in<(JG), we have

lim
k→∞

depth
S

(in<(JG))k
= lim

k→∞
depth

S′

I(H)k
+2,

where S′ is the polynomial ring in the variables xj ,1≤ j ≤ n−1 and yj ,2≤ j ≤ n. By [37,

Th. 4.4] or [21, Cor. 10.3.18],

lim
k→∞

depth
S′

I(H)k
= r,

where r is the number of connected components of H. But, taking into account the

characterization of closed graphs given in Theorem 2.3 (iii), it is easily seen that this is

exactly the number of indecomposable components of G.

Remark 3.11. By using [2, Th. 4.6 and Cor. 4.9], one may derive that the limit depth

of the so-called closed determinantal facet ideals and their initial ideals is the same. This

class of ideals was introduced in [15].

Proposition 3.12. Let G be a closed graph and JG its binomial edge ideal. Then

depth
S

(in<(JG))k+1
≤ depth

S

(in<(JG))k

for every k ≥ 1.

Proof. The inequalities follow by [31, Th. 5.2] since the bipartite graph H whose edge

ideal is equal to in<(JG) has at least one leaf, namely the vertex xn−1.

As we have seen in Section 2, for every closed graph G, we have J i
G = J

(i)
G for i≥ 1. This

equalities imply that Ass(J i
G) = Ass(J i+1

G ) for i ≥ 1, thus JG has the persistence property,

that is Ass(J i
G) ⊆ Ass(J i+1

G ) for i ≥ 1. But we can prove even more, namely, that JG has

the strong persistence property. Let us recall that an ideal I in a polynomial ring satisfies

the strong persistence property if and only if Ik+1 : I = Ik for all k; see [24]. We will derive

this property from a slightly more general statement.
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Proposition 3.13. Let I ⊂ R = K[x1,x2, . . . ,xn] be a homogeneous ideal and assume

that there exists a monomial order < on R such that the following conditions hold:

(a) in<(I) has the strong persistence property and

(b) in<(I
j) = (in<(I))

j for every j ≥ 1.

Then the ideal I has the strong persistence property. In particular, I has the persistence

property.

Proof. We have to prove that Ij+1 : I = Ij for j ≥ 1. Since Ij ⊆ Ij+1 : I, it is enough to

show that in<(I
j) = in<(I

j+1 : I). The inclusion in<(I
j)⊆ in<(I

j+1 : I) is obvious. For the

other inclusion, let us consider a monomial w ∈ in<(I
j+1 : I). Then there exists a polynomial

g ∈ Ij+1 : I such that w = in<(g). As gI ⊆ Ij+1, we get

w in<(I)⊆ in<(I
j+1) = (in<(I))

j+1,

which yields

w ∈ (in<(I))
j+1 : in<(I) = (in<(I))

j = in<(I
j).

Corollary 3.14. Let G be a closed graph. Then JG has the strong persistence property.

Proof. Let < be the lexicographic order on S. Then in<(JG) = (xiyj : {i, j} ∈E(G)) is an

edge ideal. Therefore, by [32, Lem. 2.12], it follows that in<(JG) has the strong persistence

property. Moreover, by (3), we also have in<(J
i
G) = (in<(JG))

i for every i ≥ 1. The claim

follows by Proposition 3.13.

§4. Regularity

In this section, we compute the regularity of the powers of binomial edge ideals of closed

graphs and of their initial ideals. First, we recall some notions and results from Graph

Theory.

A graph G is called co-chordal if its complement graph Gc is chordal. The co-chordal

cover number of G, denoted co-chord(G), is the smallest number m for which there exist

some co-chordal subgraphs G1, . . . ,Gm of G such that E(G) = ∪m
i=1E(Gi).

A graph G is weakly chordal if every induced cycle in G and in Gc has length at most 4.

For a graph G, we denote by im(G) the number of edges in a largest induced matching of

G. By an induced matching we mean an induced subgraph of G which consists of pairwise

disjoint edges. In other words, im(G) is the monomial grade of the edge ideal I(G), that

is, the maximum length of a regular sequence of monomials in I(G). In [5, Prop. 3] it is

proved that if G is weakly chordal, then im(G) = co-chord(G).

On the other hand, we will use [30, Th. 3.6] which states that if H is a bipartite graph

and I(H) is its edge ideal, then, for i≥ 1, we have

reg(I(H)i)≤ co-chord(H)+2i−1.(7)

Theorem 4.1. Let G be a connected closed graph. Then, for every i≥ 1, we have

reg
S

J i
G

= reg
S

in<(J i
G)

= �+2(i−1),

where � is the length of the longest induced path in G.
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Proof. The inequality regS/J i
G ≥ �+2(i−1) follows by [28, Cor. 3.4]. Hence, we have

reg
S

in<(J i
G)

≥ reg
S

J i
G

≥ �+2(i−1).

Thus, it is enough to prove that regS/ in<(J
i
G)≤ �+2(i−1). Since G is closed, by (3), we

have in<(J
i
G) = (in<(JG))

i. Therefore, we get

reg
S

in<(J i
G)

= reg
S

(in<(JG))i
.

As we have already mentioned in Section 2, the monomial ideal in<(JG) = (xiyj : {i, j} ∈
E(G)) is the edge ideal I(H) of a bipartite graph on {x1,x2, . . . ,xn}∪{y1,y2, . . . ,yn}. Then
inequality (7) implies that

reg
S

(in<(JG))i
≤ co-chord(H)+2(i−1).

In [16, Lem. 3.3] it was proved that H is a weakly chordal graph. This implies that

co-chord(H) = im(H). On the other hand, by [16, Prop. 3.5], it follows that im(H) = �,

which completes the proof.

The arguments of the above proof can be extended to disconnected closed graphs.

Proposition 4.2. Let G be a closed graph with connected components G1, . . . ,Gc. Let

�i be the length of the longest induced path in the component Gi for 1≤ i≤ c. Then, for all

i≥ 1, we have

reg
S

J i
G

= reg
S

in<(J i
G)

= �1+ �2+ · · ·+ �c+2(i−1).

Proof. The inequality regS/J i
G ≥ �1+ �2+ · · ·+ �c+2(i−1) follows from [28, Prop. 3.3]

and [28, Obser. 3.2] since the union of the longest induced paths in Gj ,1 ≤ j ≤ c, form

an induced subgraph in G, and the inequality regS/ in<(J
i
G) ≤ �1+ �2+ · · ·+ �c+2(i− 1)

holds since, obviously, in the bipartite graph H such that in<(JG) = I(H) we have im(H) =

�1+ �2+ · · ·+ �c.

§5. Powers of binomial edge ideals of block graphs

In this section, we discuss powers of binomial edge ideals of block graphs. We recall that

a graph G is called a block graph, if each block of G is a clique. A block of G is a connected

subgraph of G that has no cutpoint and is maximal with respect to this property. A vertex

v is a cutpoint of a graph H if the induced subgraph obtained by removing the vertex v

has more connected components than H. The block graphs whose binomial edge ideal is

Cohen–Macaulay are classified in [14, Th. 1.1]. It is shown that for a block graph G, the

following conditions are equivalent:

(a) JG is unmixed.

(b) JG is Cohen–Macaulay.

(c) Each vertex of G is the intersection of at most two maximal cliques.

The following theorem shows that the equality between symbolic and ordinary powers

does not hold, in general, for binomial edge ideals of block graphs.
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Theorem 5.1. Let G be a block graph such that JG is Cohen–Macaulay. Then, the

following statements are equivalent:

(a) G is closed,

(b) J i
G = J

(i)
G for all i≥ 2,

(c) J i
G = J

(i)
G for some i≥ 2,

(d) J2
G = J

(2)
G , and

(e) G is net-free, that is, it does not contain a net as an induced subgraph (see Figure 2).

Proof. (a) ⇒(b) follows by (4). The implications (b) ⇒(c) and (b) ⇒(d) are trivial.

Next, we prove (d) ⇒(e). Let us assume that G contains as an induced subgraph the net

N with the edge set E(N) = {{1,2},{3,4},{5,6},{2,3},{3,5},{2,5}}.
Set g = x3x5x6y1y2y4 − x1x5x6y2y3y4 − x3x4x5y1y2y6 + x1x2x5y3y4y6 + x1x3x4y2y5y6 −

x1x2x3y4y5y6. We show that g ∈ J
(2)
G \J2

G.

Since JG =
⋂

PW (G)∈Ass(JG)PW (G), we show that g ∈ (PW (G))2, for all W with the

property that PW (G) ∈Ass(JG). Then it follows that g ∈ J
(2)
G , because, as it was observed

in [13], PW (G)(i) = PW (G)i for all i ≥ 1 and all W ⊂ [n]. We consider the following cases.

Let W ⊆ [n].

Case 1. If W ∩ [6] ∈ {∅,{1},{4},{6}}, then g = x5y4(x6y2 − x2y6)(x3y1 − x1y3) +

x3y6(x4y2−x2y4)(x1y5−x5y1) ∈ (PW (G))2.

Case 2. W ∩ [6] = {2}. Then g = x1x2y4y6(x5y3 − x3y5) + x5x6y1y2(x3y4 − x4y3) +

x3x4y1y2(x6y5−x5y6)+x4x6y1y2(x5y3−x3y5)+x1x5y2y3(x4y6−x6y4)+x1x4y2y6(x3y5−
x5y3) ∈ (PW (G))2.

Case 3. W ∩ [6] = {3}. Then g = x1x5y3y4(x2y6 − x6y2) − x3x4y1y2(x5y6 − x6y5) +

x1x3y4y6(x5y2−x2y5)−x3x5y2y4(x1y6−x6y1)+x3x4y2y5(x1y6−x6y1) ∈ (PW (G))2.

Case 4. W ∩ [6] = {5}. Then g = x1x3y5y6(x4y2 − x2y4) + x5x6y2y4(x3y1 − x1y3) +

x2x5y3y6(x1y4−x4y1)+x4x5y1y6(x2y3−x3y2) ∈ (PW (G))2.

Next, we show that, if G contains N as an induced subgraph, then g �∈ J2
G. Since N

is an induced subgraph of G, by the proof of [28, Prop. 3.3], it follows that J i
N = J i

G ∩
K[x1, . . . ,x6,y1, . . . ,y6] for all i≥ 1. Therefore, it suffices to show that g �∈ J2

N .

Suppose g ∈ J2
N . Then we have x1x2x5y3y4y6 ∈ J2

N +(x3,y2). Since {x1,y4} is a regular

sequence on S/(J2
N +(x3,y2)), we have x2x5y3y6 ∈ J2

N +(x3,y2). Since any monomial of

degree 4 in J2
N +(x3,y2) which is not divided by neither x3 nor y2 is not divided by y6, it

follows x2x5y3y6 �∈ J2
N +(x3,y2), contradiction.

For (c) ⇒(e), we show that g(x2y3−x3y2)
i−2 ∈ J

(i)
G \J i

G. Taking into account the above

arguments, it is obvious that g(x2y3−x3y2)
i−2 ∈ (PW (G))i, for all W with the property

that PW (G) ∈ Ass(JG), thus g(x2y3 −x3y2)
i−2 ∈ J

(i)
G . We show that g(x2y3 −x3y2)

i−2 �∈
J i
N . Suppose g(x2y3−x3y2)

i−2 ∈ J i
N . Then we have x1x2x5y3y4y6(x2y3)

i−2 ∈ J i
N +(x3,y2).

Since {x1,y4} is a regular sequence on S/(J i
N + (x3,y2)), we have x2x5y3y6(x2y3)

i−2 ∈
J i
N + (x3,y2). Since any monomial of degree 2i in J i

N + (x3,y2) which is not divided by

neither x3 nor y2 is not divided by y6, it follows that x2x5y3y6(x2y3)
i−2 �∈ J i

N +(x3,y2),

contradiction.

Finally, we show that (e) ⇒(a). Since G is a block graph, it follows that G is chordal and

tent-free (see Figure 2). On the other hand, as JG is Cohen–Macaulay and, in particular,

unmixed, it follows that G is claw-free (see Figure 1). Therefore, the hypothesis implies

that G is closed by Theorem 2.3 (v).
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Proposition 5.2. Let G be a connected block graph which is not a path. Then J i
G is

not Cohen–Macaulay for every i≥ 2.

Proof. We analyze the following cases.

Case 1. Suppose that G is a net-free (see Figure 2) block graph which is not a path and

JG is Cohen–Macaulay. Then, by using Theorem 2.3 (v), it follows that G is a closed graph.

Then, Proposition 3.7 implies that J i
G is not Cohen–Macaulay for every i≥ 2.

Case 2. Let G be a block graph which contains a net as an induced subgraph and such

that JG is Cohen–Macaulay. Then, by Theorem 5.1, we have J i
G � J

(i)
G , for every i ≥ 2

and, in particular, it follows that J i
G has embedded components. Consequently, J i

G is not

unmixed, and, therefore, J i
G is not Cohen–Macaulay for i≥ 2.

Case 3. Suppose that G is a block graph and JG is not Cohen–Macaulay. Then JG is

not unmixed. It follows that J i
G is not unmixed for all i, thus J i

G is not Cohen–Macaulay

as well.

§6. Open problems

As we have seen in Section 3, the depth function of Cohen–Macaulay binomial edge ideals

of closed graphs is non-increasing. The depth function of in<(JG) is also nonincreasing for

every closed graph G. Therefore it is natural to ask the following.

Question 6.1. Is it true that the depth function of JG is nonincreasing for every closed

graph G?

Of course, taking into account Proposition 3.12, we can answer positively this question

by showing that if G is closed, then depthS/J i
G = depthS/ in<(J

i
G) for every i≥ 1.

A partial positive answer to this question is the following. Let G be a closed graph

with maximal cliques Fi = [ai, bi],1 ≤ i ≤ r, ordered as in Theorem 2.3 (iii). Assume that

F1 = [1,2], in other words, the vertex 1 is a leaf of G. We claim that

depth
S

Jk+1
G

≤ depth
S

Jk
G

,

for every k ≥ 1. In order to prove this inequality, we first observe that Jk+1
G : f12 = Jk

G for

all k. Indeed, since Jk
G ⊆ Jk+1

G : f12, it is enough to show that in<(J
k+1
G : f12) = in<(J

k
G).

Let us assume that in<(J
k+1
G : f12)� in<(J

k
G). Then there exists a monomial w ∈ in<(J

k+1
G :

f12) \ in<(Jk
G). Let h ∈ Jk+1

G : f12 such that in<(h) = w. We can write h = w+h1, where

in<(h1)<w. Then, f12h= f12(w+h1) ∈ Jk+1
G , which implies that

in<(f12)w = x1y2w ∈ in<(J
k+1
G ) = (in<(JG))

k+1 = ((x1y2)+ in<(JG−{1}))
k+1

= (x1y2)(in<(JG))
k+(in<(JG−{1}))

k+1.

Since x1 and y2 do not divide any of the minimal monomial generators of in<(JG−{1}) and

w /∈ (in<(JG))
k, thus w /∈ (in<(JG−{1}))

k+1, we get in<(f12)w ∈ (x1y2)(in<(JG))
k which

yields w ∈ (in<(JG))
k, a contradiction. Therefore, we have proved the equality Jk+1

G : f12 =

Jk
G. We consider the exact sequence of S -modules

0→ S

Jk+1
G : f12

=
S

Jk
G

→ S

Jk+1
G

→ S

(Jk+1
G ,f12)

→ 0.(8)
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Since Jk+1
G = (JG−{1}+f12)

k+1 = Jk+1
G−{1}+f12J

k
G, it follows that (J

k+1
G ,f12) = (Jk+1

G−{1},f12).

But f12 is obviously regular on S/Jk+1
G−{1}, thus

depth
S

(Jk+1
G ,f12)

= depth
S

(Jk+1
G−{1},f12)

= depth
S

Jk+1
G−{1}

−1.

As G−{1} is an induced subgraph of G, by [28, Prop. 3.3] it follows that depthS/Jk+1
G−{1} ≥

depthS/Jk+1
G . Therefore, we obtain

depth
S

(Jk+1
G ,f12)

≥ depth
S

Jk+1
G

−1.

The Depth Lemma applied to sequence (8) gives the desired inequality.

The following conjecture, which is still open, was formulated in [14]: if G is a closed

graph, then JG and in<(JG) have the same graded Betti numbers. On the other hand, from

several computer experiments, we noticed that the same equality holds for small powers of

JG. Therefore, we suggest the following conjecture which extends the one in [14].

Conjecture 6.2. Let G be a closed graph. Then, for every i≥ 1,J i
G and (in<(JG))

i =

in<(J
i
G) have the same graded Betti numbers.

Let us remark in support of our conjecture that in the previous sections we proved

that regJ i
G = reg(in<(JG))

i for G closed and depthJ i
G = depth(in<(JG))

i for G closed and

with JG Cohen–Macaulay. Of course, if the above conjecture is true, then it also answers

Question 6.1.

In addition, we note that Conjecture 6.2 is true in two “extremal” cases, namely when

G is a complete graph or a path.

Indeed, if G = Kn, then (in<(JG))
i has a linear resolution for every i ≥ 1. Since

(in<(JG))
i = in<(J

i
G), it follows that J i

G has a linear resolution for i ≥ 1. As the Hilbert

functions of J i
G and in<(J

i
G) coincide, we derive that the conjecture is true when G=Kn.

On the other hand, if G= Pn with the edges {i, i+1},1≤ i≤ n−1, then in<(JG) and JG
are complete intersections generated in degree 2 and the conjecture is true by [18, Cor. 1.3].

When G is a closed graph such that JG is Cohen–Macaulay, we have βij(S/JG) =

βij(S/ in<(JG)) for all i, j by [14, Prop. 3.2]. A possible strategy to prove Conjecture 6.2 in

this case is the following. We begin with the following nice consequence of Lemma 3.4.

Corollary 6.3. With the same notation of Lemma 3.4, we have

βS
ij

(
S

Jk
G

)
= β

S(G′)
ij

(
S(G′)

Jk
G′

)
and

βS
ij

(
S

in<(Jk
G)

)
= β

S(G′)
ij

(
S(G′)

in<(Jk
G′)

)
,

for all i, j, and k ≥ 1.

This corollary implies that Conjecture 6.2 holds for the closed graphs with Cohen–

Macaulay binomial edge ideal once we show that for every graph H whose connected
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components are complete graphs we have

β
S(H)
ij

(
S(H)

Jk
H

)
= β

S(H)
ij

(
S(H)

in<(Jk
H)

)
for all i, j, and k ≥ 1.

In Proposition 5.2, we proved that if G is a connected block graph, then J i
G is Cohen–

Macaulay for every i≥ 2 if and only if G is a path. Then we may ask the following.

Question 6.4. Let G be a connected (chordal) graph. Is it true that J i
G is Cohen–

Macaulay for every i≥ 2 if and only if G is a path?

The net graph N (see Figure 2) which plays an important role in Theorem 5.1 has the

nice property that J
(2)
N is Cohen–Macaulay. On the other hand, J2

N is not Cohen–Macaulay

(see proof of Proposition 5.2, Case 2). This naturally yields the following.

Problem 6.5. Classify all the block graphs with the property that the second symbolic

power of the associated binomial edge ideal is Cohen–Macaulay.

The last question is inspired by Theorem 5.1.

Question 6.6. Let G be a graph. Is it true that the following conditions are equivalent?

(a) J i
G = J

(i)
G for all i≥ 2,

(b) J i
G = J

(i)
G for some i≥ 2,

(c) J2
G = J

(2)
G ,and

(d) G is net-free.

Computer experiments showed that for every graph G with at most eight vertices the

equivalence (c) ⇔ (d) holds. Moreover, the implications (a) ⇒(c) ⇒(b) ⇒(d) hold and they

can be shown similarly to the proof of Theorem 5.1.
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