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Abstract. We present a theoretical model for the generation of coherent gamma
rays by a free electron laser, where a high-energy electron beam interacts with an
electromagnetic wiggler. By replacing the static undulator with a 1-μm laser wiggler,
the resulting radiation would go from X-rays currently observed in experiments,
to gamma rays. Coherent light in the gamma-ray range would have wide-ranging
applications in the probing of matter on sub-atomic scales.

1. Introduction
Free electron lasers now produce coherent X-ray laser
light in the Ångstrom range (Hand 2009; Ishikawa et al.
2012), which can be used to probe matter on atomic and
molecular scales. On the other hand, narrow-band X-
rays are used to investigate collective oscillations in solid
density matter (Glenzer et al. 2007; Glenzer and Redmer
2009; Neumayer et al. 2010). There also exist theoretical
suggestions for producing coherent light in the gamma-
ray range, but which yet has to be realized in exper-
iments (Baldwin and Solem 1997; Rivlin 2007; Rivlin
and Zadernovsky 2010; Tkalya 2011; Son and Moon
2012). A functioning gamma-ray laser would have wide-
ranging applications in experiments where matter could
be investigated on sub-atomic scales. In the free electron
laser (Madey 1971; Robertson and Sprangle 1985), an
energetic electron beam is injected into an undulator
consisting of a periodic array of magnets, resulting in
micro-bunching of the electrons and the generation of
coherent laser light. In the frame of the electron beam,
the electrons see an electromagnetic wave propagating
in the opposite direction, giving rise to relativistic para-
metric instabilities (e.g. Stenflo 1976; Shukla et al. 1986).
For static wigglers, the wavelength of the laser radiation
is decreased by a factor 2γ2

0 compared with the wiggler
wavelength, where γ0 is the relativistic gamma factor of
the electrons. Hence, to convert a wiggler wavelength
of a few centimeters to X-rays with wavelengths in the
Ångstrom range, the beam electrons need to have a
gamma factor of the order of 104 and a kinetic energy of
several GeV. Also, the wiggler has to be several hundreds
of meters long so that the micro-bunching of electrons
can have time to take place. To further decrease the
radiation wavelength to the gamma-ray range of about
0.024 Å would require a significant increase of the energy
of the electron beam and of the size of the wiggler,
with a corresponding increase of the costs to build the
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experiment. An attractive idea to shrink the size of the
experiment is to replace the static wiggler by an electro-
magnetic wave (e.g. Bonifacio et al. 2007; Sprangle et al.
2009). For the electromagnetic wiggler, the radiation
wavelength is decreased by a factor 4γ2

0 compared with
the wiggler wavelength. Hence, using a 1-μm laser as a
wiggler would require an electron beam with γ0 ≈ 300
to achieve a radiation wavelength comparable to the
Compton wavelength 0.024 Å. The short wavelengths
of the laser radiation and beam oscillations require a
relativistic quantum mechanical treatment of the elec-
tron beam. While the original treatment by Madey
(1971) of the free electron laser was quantum mechan-
ical, the final result was classical. Models for quantum
free electron lasers have been developed and discussed
by Preparata (1988), Bonifacio et al. (2005b), Piovella
et al. (2008), Serbeto et al. (2009), Eliasson and Shukla
(2012a,b) and others. We shall use a collective Klein–
Gordon equation to derive a dynamic model for the
electromagnetic gamma-ray free electron laser. In our
model, we assume that the wave function ψ represents
an ensemble of electrons, so that the resulting charge
and current densities act as sources (Takabayasi 1953;
Kuzelev 2011; Eliasson and Shukla 2011, 2012a,b) for
the self-consistent electromagnetic fields. The governing
equations will be used to derive a formula for the growth
rate of the backscattering instability for the electron
beam and the corresponding gain length of the laser.

2. Mathematical model
For the collective interactions between electromagnetic
waves and the electron beam, we will use a collect-
ive Klein–Gordon model (Takabayasi 1953), in which
a single wave function represents an ensemble of re-
lativistic electrons. The electromagnetic wave is treated
classically and the electrons quantum mechanically. This
cold plasma model incorporates the effects of special
relativity and quantum diffraction (or quantum recoil)
on an equal footing, but neglects electron spin, electron
degeneracy and kinetic effects in general. Kinetic effects

https://doi.org/10.1017/S0022377813000779 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377813000779


996 B. Eliasson and C. S. Liu

can be included using multi-stream (Haas et al. 2012)
or Wigner (e.g. Piovella et al. 2008; Mendonça 2011)
models. The Klein–Gordon equation in the presence of
the electrodynamic fields reads

W2ψ − c2P2ψ − m2
ec

4ψ = 0, (2.1)

where the energy and momentum operators are W =
i�∂/∂t+ eφ and P = −i�∇ + eA, respectively. Here, � is
Planck’s constant divided by 2π, e is the magnitude of
the electron charge, me is the electron rest mass, and c

is the speed of light in vacuum. The electrodynamic po-
tentials are obtained self-consistently from the Maxwell
equations

∂2A

∂t2
+ c2∇ × (∇ × A) + ∇∂φ

∂t
= μ0c

2je (2.2)

and

∇2φ+ ∇ · ∂A
∂t

= − 1

ε0
(ρe + ρi), (2.3)

where μ0 is the magnetic permeability, ε0 = 1/μ0c
2

is the electric permittivity in vacuum, and ρi = en0

is a neutralizing positive charge density due to ions,
where n0 is the equilibrium electron number density. The
electric charge and current densities of the electrons are
ρe = −e[ψ∗Wψ+ψ(Wψ)∗]/2mec

2 and je = −e[ψ∗Pψ+
ψ(Pψ)∗]/2me, respectively. They obey the continuity
equation ∂ρe/∂t+ ∇ · je = 0.

The interaction between the large-amplitude electro-
magnetic wave and plasma leads to collective oscillations
and parametric instabilities, where the electromagnetic
wave is scattered against plasma oscillations. The cal-
culations of the growth rates of the instabilities are
significantly simplified if they are carried out in the
beam frame, where the plasma is at rest, and the result
Lorentz transformed to the laboratory frame. Following
Eliasson and Shukla (2012a,b), we assume that the beam
is propagating in the negative z direction, in the opposite
direction of the laser wiggler beam. For simplicity, we
consider a circularly polarized laser wiggler of the form
A0 = (1/2)Â0 exp(−iω0t + ik0 · r)+ complex conjugate,

with Â0 = (x̂ + iŷ)Â0, where ω0 is the wave frequency
and k0 = k0ẑ is the wave vector, and x̂, ŷ and ẑ are the
unit vectors in the x, y and z directions, respectively.
Due to circular polarization, the oscillatory parts in the
terms proportional to A2 in the Klein–Gordon equa-
tion vanish. The growth rate for four-wave interactions,
where the pump electromagnetic wave decays into two
electromagnetic sidebands and one electrostatic wave, is
given by (Eliasson and Shukla 2011)

1 −
(ω′

pe)
2

4γ3
Am

2
ec

2

D′
A(Ω

′,K′)

D′
L(Ω

′,K′)

∑
+,−

e2|k′
± × Â′

0|2

(k′
±)2D′

A(ω
′
±, k

′
±)

= 0, (2.4)

where the electron plasma oscillations in the presence of
the EM field are represented by

D′
L(Ω

′,K′) =
(ω′

pe)
2

γA
−(Ω′)2+

[c2(K ′)2 − (Ω′)2]

4γ2
Aω

2
C

D′
A(Ω

′,K′),

(2.5)

with ωC = mec
2/�. Here, Ω′ and K′ are the frequency

and wave vector of the plasma oscillations, respectively,
γA = (1 + a2

0)
1/2 is the relativistic gamma factor due

to the large amplitude EM field, a0 = e|Â′
0|/mec is the

normalized amplitude of the EM wave (corresponding
to the wiggler parameter for a static wiggler), and
ω′
pe = (e2n′

0/ε0me)
1/2 is the plasma frequency with n′

0

being the electron number density in the beam frame.
The dispersion relation for the beam oscillations in the
presence of a large amplitude EM wave is given by
D′
L(Ω

′,K′) = 0. The EM sidebands are governed by

D′
A(ω

′
±, k

′
±) = c2(k′

±)2 − (ω′
±)2 + (ω′

pe)
2/γA, (2.6)

where ω′
± = ω′

0 ± Ω′ and k′
± = k′

0 ± K′, and ω′
0 and

k′
0 are related through the nonlinear dispersion relation

(ω′
0)

2 = c2(k′
0)

2 +(ω′
pe)

2/γA. We also denoted D′
A(Ω,K) =

c2(K ′)2 − (Ω′)2 + (ω′
pe)

2/γA.
To move from the beam frame to the laboratory frame,

the time and space variables are Lorentz transformed as
t′ = γ0(t − v0z/c

2), x′ = x, y′ = y and z′ = γ0(z −
v0t), where v0 = v0ẑ is the beam velocity and γ0 =

1/
√

1 − v20/c
2 is the gamma factor due to the relativ-

istic beam speed. The corresponding frequency and
wavenumber transformations, found from the relations
ω′t′ = ωt and k′ ·r′ = k ·r, are ω′ = γ0(ω−v0kz), k′

x = kx,
k′
y = ky , and k′

z = γ0(kz − v0ω/c
2). They apply to the

frequency and wave vector pairs (Ω, K), (ω0, k0) and (ω±,
k±). Hence, expressions such as (ω′)2−c2(k′)2 = ω2−c2k2

are Lorentz invariant. Due to spatial contraction, the
number density is transformed as n′

0 = n0/γ0 and the
plasma frequency as ω′

pe = ωpe/
√
γ0. The transverse

vector potential of the laser wiggler is unaffected by
the Lorentz transformation, hence Â′

0 = Â0. The total
gamma factor is γ = γAγ0 = (1 + p2

0/m
2
ec

2 + a2
0)

1/2, where
p0 = γmev0ẑ is the relativistic electron momentum along
the z axis. This yields D′

L(Ω
′,K′) = γ2

0DL(Ω,K), with

DL(Ω,K) =
ω2
peγ

2
A

γ3
− (Ω − v0Kz)

2

+
(c2K2 − Ω2)

4γ2ω2
C

DA(Ω,K), (2.7)

D′
A(ω

′
±, k

′
±) = DA(ω±, k±) ≡ c2k2

± − ω2
± + ω2

pe/γ, and
D′
A(Ω

′,K′) = DA(Ω,K). In the laboratory frame, (2.4) is
of the form

1 −
ω2
pe

4γ3m2
ec

2

DA(Ω,K)

DL(Ω,K)

∑
+,−

e2|k′
± × Â0|2

(k′
±)2DA(ω±, k±)

= 0. (2.8)

Using K = Kxx̂ + Ky ŷ + Kz ẑ, we have K2 = K2
z + K2

⊥
with K2

⊥ = K2
x +K2

y , so that |k′
± × Â0|2 = {2γ2

0[k0 ±Kz +

(v0/c
2)(ω0 ± Ω)]2 +K2

⊥}|Â0|2, and (k′
±)2 = γ2

0[k0 ± Kz +

(v0/c
2)(ω0 ± Ω)]2 +K2

⊥.
For the resonant backscattering instability, we have

|DA(ω+, k+)|�|DA(ω−, k−)|. Denoting ω− = ω and k− =
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k, (2.8) can then be written

DL(Ω,K)DA(ω, k) =
ω2
peDA(Ω,K)

4γ3

e2|k′
− × Â0|2

m2
ec

2(k′
−)2

. (2.9)

In order to find approximate solutions of (2.9) for the
instability, we set Ω = Ω̃ + iΓ and K = K̃, where Ω̃

and K̃ simultaneously solve DL(Ω̃, K̃) = 0 and DA(ω0 −
Ω̃, k0 − K̃) = 0, and where Γ is the growth rate. We then
have

DA(ω, k) = 2iΓ (ω0 − Ω̃) + Γ 2 ≈ 2iΓ (ω0 − Ω̃) (2.10)

and

DL(Ω,K) =
(2iΓ Ω̃ − Γ 2)

4γ2ω2
C

×
(

2Ω̃2 − 2c2K̃2 −
ω2
pe

γ
+ 2iΓ Ω̃ − Γ 2

)
− 2iΓ (Ω − v0Kz) − Γ 2

≈ iΓ Ω̃

2γ2ω2
C

(
2Ω̃2 − 2c2K̃2 −

ω2
pe

γ

)
− 2iΓ (Ω̃ − v0K̃z). (2.11)

We assume here that the terms proportional to Γ 2 are
negligible in the expression for DL due to the quantum
recoil effects, and that the laser therefore operates in the
Raman regime. In the opposite case, if DL ≈ −Γ 2, we
have a reactive instability and the laser operates in the
Compton regime.

To solve approximately the resonance conditions
DA(ω0, k0) = 0, DA(ω, k) = 0 and DL(Ω̃, K̃) = 0 using
Ω̃ = ω0 − ω and K̃ = k0 − k, we assume that all
frequencies are much larger than ωpe/γ, i.e. the plasma
is strongly underdense. We then have

ω0 = ck0, (2.12)

ω = ck, (2.13)

and

Ω̃ = −γωC +

√
(γωC + v0K̃z)2 + c2

(
K̃2

⊥ + K̃2
z /γ

2
0

)
.

(2.14)

Eliminating ω0, ω, Ω̃ and K̃ in (2.14), we obtain the
resonance condition

c(k0 − k) = −γωC

+

√
[γωC + v0(k0 − kz)]2 + c2[k2

⊥ + (k0 − kz)2/γ
2
0]

(2.15)

for the scattering of a relativistically strong electromag-
netic wave off electrons. To put the resonance condition
in explicit form, we choose a coordinate system such
that k0 = k0ẑ, kz = k cos θ and k⊥ = kxx̂ + ky ŷ, k⊥ =
k sin θ, and θ is the angle between k and k0 = k0ẑ
(θ > π/2 corresponds to backscattered light). This gives
the resonance condition

k = k0R, (2.16)

where we denote

R =
1 − v0/c

1 − (v0/c) cos θ + (k0/γkC )(1 − cos θ)
(2.17)

and kC = ωC/c. For backscattered light with cos θ =
−1 and v0 ≈ −c, we have R ≈ 4γ2

0 = 4γ2/γ2
A for

k0/kC�γ/4γ2
0 , and R ≈ γkC/k0, giving the wavenumber

k ≈ γkC = γmec/�, for k0/kC > γ/4γ2
0 . Expressed in

terms of the wavelengths λ0 = 2π/k0 and λ = 2π/k,
(2.16) is equivalent to(

1− v0

c

)
λ−

(
1− v0

c
cos θ

)
λ0 =

2πc

γωC
(1−cos θ), (2.18)

which recovers Compton’s (1923) result for the scattering
of a photon off an electron at rest in the limit v0 = 0
and γ = 1.

The resonance condition (2.16) can be used to ex-
press the other quantities as functions of k0 and θ

via the relations ω = ck = ck0R, Ω̃ = ω0 − ck =
ck0(1 − R), K̃z = k0 − k cos θ = k0(1 − R cos θ) and
K̃⊥ = −k sin θ = −k0R sin θ, so that K̃2 = K̃2

z + K̃2
⊥ =

k2
0(1 + R2 − 2R cos θ). This gives DA(ω, k) ≈ 2iΓ ck0R,
DL(Ω,K) ≈ −2ick0Γ {(1 − R)[(k0/γkC )2R(1 − cos θ) +
1 + ω2

pe/(4γ
3ω2

C)] − (v0/c)(1 − R cos θ)} and DA(Ω,K) ≈
2c2k2

0R(1 − cos θ) + ω2
pe/γ. Furthermore, we evaluate

|A0 × k|2/k2 = 2|A0|2 for v0 ≈ −c and | sin(θ/2)| � 1/γ0.
Inserting these expressions into (2.9) gives, in the limit
ω2
pe/γ� c2k2

0R(1 − cos θ) and v0 ≈ −c, the growth rate

Γ

ωpe
= a0

/
21/2γ3/2R1/2

{(
v0

c
+

k0

γkC

)

×
[
k2

0

γ2k2
C

R(1 − cos θ) + 1

]
− v0

c

(
1 +

k0

γkC

)}1/2

.

(2.19)

3. Numerical examples and discussion
Figure 1 shows resonant radiation wave vectors and
corresponding growth rates for different gamma factors
of the electron beam and using a laser wiggler with a
wavelength of 1μm (k0 = 6.28×106 m−1) and amplitude
a0 = 1. As an example, we will use possible electron
densities for free electron lasers (Piovella et al. 2008),
n0 = 2.2×1022 m−1, corresponding to a plasma frequency
of ωpe = 8.4 × 1012 s−1. In general, the backscattered ra-
diation have wave vectors with much larger parallel than
perpendicular components. Using an electron beam with
a gamma factor of about 300, the radiation wavelength
for backscattered light (i.e. for large negative kz in
Fig. 1a) approaches the Compton wavenumber kC ≈
2.6×1012 m−1 corresponding to a photon energy of about
0.5 MeV. The corresponding growth rate for backs-
cattered light (cf. Fig. 1b) is Γ ≈ 10a0ωpe/γ

3/2 ≈ 1010 s−1.
The gain length is Lg = c/Γ ≈ 0.035m and an expected
interaction length of the order of 10Lg = 0.35m. In-
creasing the gamma factor to about 104 (corresponding
to an electron energy of about 2.5 GeV), which is used
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Figure 1. (Colour online) The resonant radiation wave vectors (top row) and the corresponding growth rates (bottom row) for a
laser wiggler with 1-μm wavelength (k0 = 6.28 × 106 m−1) and amplitude a0 = 1, and for different gamma factors of the electron
beam: γ0 = 320 (left column), γ0 = 0.71 × 104 (middle column) and γ0 = 0.71 × 106 (right column).

in today’s free electron lasers with static wigglers, the
radiation goes into the hard gamma-ray regime with
photon energies of the order of 100 MeV (cf. Fig.
1c). The growth rate for backscattered light, seen in
Fig. 1(d), is Γ ≈ 2a0ωpe/γ

3/2 = 1.7×107 s−1. In this case,
the gain length would be Lg ≈ 20m and an expected
interaction length of the order of 200m. This could
potentially be realized in experiments by replacing the
static wigglers with electromagnetic wigglers. Finally,
if the electron beam would have gamma factors of
about 106 (corresponding to an electron energy of about
250 GeV), the radiation photons would have energies
of about 200 GeV (cf. Fig. 1e). In this case, since the
photons and relativistic electrons have energies of the
same order, one has to take into account Compton shifts
in the radiation. The growth rate of the interaction
(cf. Fig. 1f) would be Γ ≈ 1.5a0ωpe/γ

3/2 ≈ 104 s−1,
corresponding to a gain length of Lg ≈ 3 × 104 m. This
is probably outside the possibilities of experiments, but
similar processes could potentially take place in the
extreme environments of astrophysical objects.
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