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Abstract

Having no fundamental difficulties with Woodbury and Burrow’s article, I explore some implications of their work
based on my experience, and that of PhD students advised by me, with developing design support systems. I suggest
that such systems need a distinct task layer on top of the computational layer, where the power of a system rests. I also
express unease with some details of the article under review, in the hope of contributing to a wider discussion.
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1. INTRODUCTION

Over the last decade, and strictly from the sidelines, I have
had several occasions to catch glimpses of Woodbury and
Burrow’s work. Each time, I have been impressed by their
determination, their clarity of purpose, and the formal rigor
with which they were proceeding. The same can be said
about Woodbury and Burrow’s Keynote: its authors are well
aware of the implications of their work and know what still
has to be done before success can be declared ~end of their
section 4!. I also very much share the intuition on which
their work is based, namely, a belief in the potential of
computers to support design exploration. As Woodbury and
Burrow state, this capability is not offered at all by com-
mercial computer-aided design ~CAD! software, and there-
fore an obvious candidate for academic research. That is
not to say that I do not have quibbles here and there, which
should come as no surprise, given the scope of Woodbury
and Burrow’s enterprise. However, I would be perfectly
content with discussing these issues over a beer next time
we meet, and as far as Woodbury and Burrow’s paper is
concerned, make some encouraging noises and go back to
work in the garden.

However, I am on record with my opinion that our field
needs lively discussions of the issues we face more than
anything else ~Flemming, 2004!, and it is in this spirit that
I will pick up in the following a few of the quibbles I have.
With this, I wish to contribute to the discussion that I hope
will be triggered by this Special Issue ~kudos to the editors
for coming up with the idea! and, in the best case, to pro-
vide comments that Woodbury and Burrow themselves may
find interesting with respect to the work ahead of them.

2. WHITHER THE KNOWLEDGE LEVEL?

The first issue I would like to pick up is the one raised by
Woodbury and Burrow’s comments in Section 2.1 about the
knowledge level in general and about researchers in the
SEED ~Software to Support the Early Phases of Build-
ing Design! project who, they claim, early on confused
knowledge-level concepts like functional units, design units,
and technologies with the underlying computations that could
support them. This is not the first time I have heard this
remark, and I have always been uncomfortable with it. This
unease betrayed, I am sure, an instinctive reaction of self-
defense on my part because I am as responsible as anybody
else for introducing these concepts into the SEED project.
However, I also think that my reaction had a more rational
base because I knew from my own work with SEED-
Layout, a component of SEED ~Flemming & Chien, 1995!,
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how useful these concepts were at the symbol level, that is,
when they were explicitly represented inside the program.
Woodbury and Burrow’s paper finally motivated me to get
at the bottom of this, and I went back to the original address
to the American Association for Artificial Intelligence in
which Allen Newell introduced the notion of a knowledge
level of a system distinct from and above the symbol level
~Newell, 1981!. After rereading the speech, I am convinced
that my unease was justified. Moreover, I now believe that
Woodbury and Burrow’s eagerness not to confuse the knowl-
edge level with the symbol level may turn into a red her-
ring, getting in the way of the work they plan to do in the
future.

Let me explain. Newell ~1981! introduces the notion of a
knowledge level in a very specific context, that of artificial
intelligence agents pursuing goals ~like winning a game of
chess! by using knowledge about the task environment at
hand, where this knowledge is represented in some form
inside the program that physically realizes the agent, which
Newell calls the symbol level. Newell claims it is useful to
talk about this knowledge as such, that is, independently of
how it is represented, and to be able to do this, he says, we
need a more abstract level at which we can describe what
this knowledge is in the first place. He gives a general def-
inition of knowledge at the knowledge level in strictly func-
tional terms, namely those of goal-directed rationality.

Now, a system like SEED-Layout, or more generally, the
“mixed-initiative” design support systems envisioned by
Woodbury and Burrow, do not pursue goals on their own,
rationally or otherwise. Such a system is meant to support
designers in pursuing whatever goals they have, and it does
not have to have knowledge about these goals. As a result,
Newell’s concept of a knowledge level does not extend, in a
strict sense, to a mixed-initiative system ~although it may
be applicable to parts of it, like that portion of SEED-
Layout that sizes and resizes, after the action of a designer,
the spaces in a layout subject to explicitly represented con-
straints!. Of course, the notion of a knowledge level does
not arise in connection with the typed feature structure spaces
Woodbury and Burrow developed, which comes as no sur-
prise, given their intent not to confuse knowledge and sym-
bol levels.

However, the flip side is that their space is also not a
design space, unless Woodbury and Burrow have discov-
ered specializations of typed feature structures that make
the resulting space uniquely applicable to design and design
only. I have seen no indications of this and must assume
that their space could support any domain that could ben-
efit from the capabilities they provide. There’s the rub: if
Woodbury and Burrow want to develop “effective, medium-
scale demonstrations” and later on “serious industrial ap-
plications,” they must give designers something that is
manifestly a design space and allows designers to interact
with constructs with which they are familiar from their daily
practice or which, at least, make sense to them, given that
background. These constructs are likely to include design

briefs or architectural program specifications, spatial or phys-
ical building components, constraints on the shape and place-
ment of these, and so forth, all of which are semantically
very distinct from each other. I cannot imagine that a designer
could handle all of these by acting directly on syntactically
uniform typed feature structures.

How can a typed feature structure space be turned into a
design space in that sense? I see only one possibility: by
adding to the program above the typed feature structures a
layer that represents aspects of the task environment under-
standable to designers. For the sake of brevity, I call this
layer the task layer in the following. Note that this layer is
a genuine and necessary part of the symbol level: it is not
part of a more abstract knowledge level ~although it may be
interesting to talk about the knowledge embedded in these
symbolic representations at that higher level!. As I will show
below, the task layer is also not identical, and should not be
confused with the user interface.

Let me explain this notion of a symbol level consisting in
itself of a task layer and a computational layer below it, so
called because it is the place where the essential computa-
tions happen. The software a bank uses to manage client
accounts needs symbolic structures that are able to capture
the salient attributes of such accounts ~client name, address,
current balance, etc.!. It may be able to execute all of its
operations directly on structures representing these attributes;
that is, in this type of application, there is no need for a
computational layer below the task layer.

A different case is presented by RaBBiT, a program that
aims to support architectural programmers independently
of the terminology and methods they prefer to use ~Erhan,
2003; Erhan & Flemming, 2004!. RaBBiT is able to do this
because its internal representation and the operations it per-
forms on it generalize and unify the various programming
methods Erhan encountered in practice or in the literature.
He found that all approaches essentially entail stepwise infor-
mation refinement that can be entirely realized through what
he calls constructs and their attributes, with the addition of
dependencies showing how constructs can be refined into
other constructs. Users of RaBBiT can interact directly with
these objects or, if they wish, superimpose a classification
hierarchy over them that captures the terminology they, or
the firm they work for, use for programming tasks. In other
words, RaBBiT “raw” operates entirely at the symbol level,
but it also allows users to create a task layer ~in minimal
form! if they wish. This is possible because the relation
between constructs and classified objects is strictly one to
one, and can be implemented simply by adding a classifi-
cation label to constructs that may or may not have a value.

In more complex cases, the relation between the task and
computational layers is more intricate and must be man-
aged by the ~computer! programmer. A case in point is SEED-
Layout, which offers designers the opportunity to define
explicit constraints so that the program has something to
work with when it tries to size the spaces in a layout. An
example is adjacency constraints, which are among the most
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common constraints at work in layouts. To define such a
constraint, a designer has to indicate which spaces are to be
adjacent and specify the minimum length of their common
boundary. Internally, the system translates such a specifica-
tion into one equality and two inequalities in the corner
coordinates of the spaces concerned, which, if they are sat-
isfied simultaneously, guarantee the desired relation. The
designer, of course, does not specify directly these alge-
braic expressions. SEED-Layout provides an interface for
the interactive specification of adjacency ~and other! con-
straints, and this information is captured internally in symbol-
level structures like an adjacency constraint class that is
instantiated whenever a designer creates such a constraint
and captures the parameters characteristic for this instance.
Note that this construct is more permanent than the dialog
boxes used to elicit or edit the constraint parameters, which
are created and discarded on the fly as needed and never
survive the end of a program session. However, adjacency
constraints have to be available during an entire program
session because they may be applied at different times to
alternative layouts containing the same spaces; the con-
straints also may have to be saved persistently for reuse
across design sessions. In other words, the adjaceny con-
straint, and the functional units collecting all constraints
applying to a space, are a genuine and very useful part of
SEED-Layout’s symbol level, albeit one that manifestly rep-
resents directly an aspect of the task environment; and
because they are used by SEED-Layout in a seemingly goal-
directed fashion, it may even be instructive to talk about
them at the knowledge level in Newell’s sense, for instance,
in a user manual or tutorial.

Before I indicate some of the implications of the above
for Woodbury and Burrow’s future work, I would like to
make a proposal for resolving ~as the third leg in the classic
dialectical triad thesis, antithesis, and synthesis! our seem-
ing disagreements about the knowledge level. Let us agree
to the following:

• design systems of any complexity typically need
symbol-level representations of aspects of the task envi-
ronment, which may form a program layer above the
computational one at the symbol level. This task layer
is distinct from and should not be confused with any
more abstract knowledge level above the symbol level;
and

• the need for a symbol-level representation of aspects
of the task environment should not blind us to the fact
that for the sake of generality, rigor, computational
efficiency, and so forth, a design support system should
perform its actual computations on a formal represen-
tation at a computational layer below the task layer. It
is this layer that typically gives the system its compu-
tational power and “punch.”

The latter point is important particularly for software
developers using the use case approach, of which I am a fan

~Flemming et al., 2004!, or the Uniform Modeling Lan-
guage, about which I am more ambivalent. The use case
approach leads to a systematic discovery of the task-
specific concepts that have to be represented internally by a
piece of software and of promising ways for “actors” to
interact with these concepts through the user interface. How-
ever, the approach does not provide any formal or informal
tools that would help developers in discovering the need for
an underlying more formal computational layer, let alone
tools to develop that layer; the approach is totally silent on
this issue.

Let me add an observation to this point. I find it striking
that whenever researchers develop a formal computational
layer to support some design tasks, the resulting represen-
tation and algorithms seem to be of interest and applicable
also to tasks that are not design or at least not building
design related. This is true for both RaBBiT’s constructs
and Woodbury and Burrow’s typed feature structures. Con-
versely, researchers may find existing methods or software
well suited for their task, as is the case with SEED-Layout,
which uses established methods of constraint propagation.
It appears that aspects unique to architectural design get
stripped away when we move from the task to the compu-
tational level, which leads me to formulate, as an aside, the
following conjecture: those aspects of architectural design
that are unique to it and distinguish architecture, as an art
able to provoke unique sensual, emotional, and intellectual
responses, from other purposefully created artefacts are pre-
cisely those that do not lend themselves to computational
treatment in the deeper sense, as opposed to the “light-
weight” treatment they find in the user interface and at the
task level, whose main purpose is to mediate between the
user and the computational layer, not to execute complex
computations.

3. CHALLENGES OF THE TASK LAYER

To create a task layer that would encourage designers to
explore a design space is a challenge no less formidable
than that posed by the development of an efficient and for-
mally rigorous computational layer. My own experience
~largely with SEED-Layout! suggests that it is, in a way,
more arduous because we do not have the deductive rea-
soning of mathematics available to us when we want to
evaluate the validity of certain decisions. When it comes to
the task layer, we have to face the contingencies of design
practice and the idiosyncrasies of individual designers, which
we cannot predict at the outset and may discover only after
the fact.

It all starts with terminology. Architectural design, as a
discipline, has not developed, despite its long history, an
agreed upon set of terms for conducting a discourse about
its central concerns, even something as basic as the names
of building components has not been generally codified.
However, when designing the task layer for a design sup-
port system, developers have to commit to a basic termi-
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nology and face the danger that it will turn certain users
off from the outset ~in my past work as a member of
various research teams, I have observed repeatedly how
difficult it is even for people sympathetic to each other’s
goals to agree on a common set of terms!. Should a col-
lection of design requirements be called a “design brief,”
an “architectural program,” a “problem statement,” or a
“requirements specification”? We do not know and will
find out ~if we get that far! only at some future time. Note
that the choices we have may reflect different attitudes
about the task at hand. If we select in the above example
architectural program, we indicate that we want to appeal
to design practitioners in general. However, if we select
problem statement, we may be indicating to users that the
activities supported by the system should be viewed as a
form of problem solving.

This brings up a related issue: to which degree should the
underlying computational layer be transparent to users.1 For
people like me, or Woodbury and Burrow I assume, who
believe that the tools and media used in design have a pro-
found impact on both its products and the processes used,
there is the temptation to make novel representations and
procedures transparent to users to some degree in the hope
that we may observe changes in their way of doing design.
For example, the operations by which users can add spaces
to a layout in SEED-Layout are the production rules I devel-
oped for wall representation adapted to generate what I
have called “loosely packed” arrangements of rectangles
~Flemming, 1989!. These operations are formally well under-
stood, and are the basis, for example, for SEED-Layout’s
capabilities to size layouts correctly on its own ~because it
understands the underlying spatial structure and is able to
take it into account to avoid overlap between areas without
additional computation!. The same operations are reflected
in the user interface, which “tricks” users into defining
implicitly the left-hand side of a production over the cur-
rent layout, after which the generation of the new layout
itself can be left completely to the system. As a conse-
quence, SEED-Layout’s user interface does not offer direct
manipulation ~plans I had in this regard were never real-
ized!. Anecdotal evidence suggests that this feature was
perceived by novice users not familiar with my prior work
as strange, if not directly off-putting: they were looking for
the type of direct manipulation they were accustomed to
from work with commercial CAD systems. I had hoped that
careful training could overcome this hurdle and make users
appreciate the advantages of the novel approach, but the

project never reached a stage of user testing needed to val-
idate this.

In Woodbury and Burrow’s case, the design space could,
and should, let designers create and manipulate anything
that could conceivably be called a design state, which
includes not only descriptions of physical aspects, but also
design briefs, requirements, and constraints on the one hand
and the results of design evaluations against these on the
other hand: if you have a formal representation powerful
enough to represent all of these, use it! However, to which
degree should the uniformity of the underlying representa-
tion be transparent to users, for whom, for example, an
architectural program for a building is fundamentally dif-
ferent from a building that satisfies it.

Chien describes the five orthogonal dimensions of the
design space created and maintained by SEED-Layout along
which users may trace the generation path of individual
layouts: the derivation path of a specific layout, alternative
layouts corresponding to the same problem formulation,
the derivation path of a specific problem formulation, alter-
native problem formulations, and hierarchical part-of rela-
tions between layouts or problem formulations ~Chien, 1998;
Chien & Flemming, 2002!. It is true that the concept of the
SEED-Layout design space evolved over several years of
working with the system, in distinction to Woodbury and
Burrow, who start from this notion, which I view as true
progress. It is also true that at any time, a user of SEED-
Layout is “located” at and views only a single design state.
However, this is strictly a feature of the user interface intro-
duced to ease the already formidable cognitive burden
imposed on the user. It is not really the case that the design
space itself is considered strictly from this perspective. Chien
provides views of larger portions of that space ~as space,
not as individual layouts!, possibly simultaneously along
several dimensions, and it would be trivial from a program-
ming standpoint to allow the user to work on more than one
state simultaneously. The reason for this is that SEED-
Layout explicitly represents the relations between all objects
in that space along all dimensions, however ad hoc the rep-
resentation itself may be. I would suggest that Chien’s work
provides, at the very least, an initial sense of the potential
complexity of design spaces that can be explored ~see also
session 3 in Flemming & Chien, 1999!.

We posit the following questions to Woodbury and Bur-
row: what are distinctions between the typed feature struc-
tures populating their design space that are meaningful to
users? How can these distinctions be captured at the task
layer and made visible ~transparent!! through the user inter-
face? Which principles were used when decisions about
these issues were made?

The last point is important because we may reasonably
assume that even people as smart as Woodbury and Burrow
do not get everything right off the bat. However, we learn
from failure as much, if not more, as from success, and a
clear record of the principles at work would allow us to
understand better what we did, in fact, learn from a set of

1Here I use the term “transparent,” as it is commonly used to mean
“showing through” ~Latin trans for “through” and parere for “show”!,
“easily detected,” or “letting something show through,” “diaphanous” as
in “the motives of my opponent are perfectly transparent.” I am not using
the term in the database sense, where it means the opposite, namely, “hid-
den” or “invisible.” It took me some time to figure this out, and I have
never forgiven the database people.
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experiments. To close the loop: an elucidation of principles
may turn out to be a revealing ingredient of a knowledge-
level description of the system, if we stretch Newell’s notion
a bit.

4. THE STRUCTURE OF SHAPE RULES

Woodbury and Burrow describe the differences between
shape grammars and their representation as one between
operations and structure. However, if one has a closer look
at the shape grammar formalism itself, this distinction almost
disappears. In the typical formulation of a rule in terms of
left- and right-hand sides a and b, respectively,

ar b,

in which the arrow implies the following operation:

~g� a!� b,

where g is the current state ~of a design, say!, from which
the left-hand side is subtracted ~by computing the differ-
ence between the two!, and the result combined with the
right-hand side by shape union. ~I am omitting the role of
parameter assignment and transformation for the sake of
simplicity.!

A general-purpose shape grammar interpreter implement-
ing this notion of rule application directly would provide,
as general features, a difference operator and a union oper-
ator, each guaranteed to work for any pair of well-formed
shapes based on some common syntax ~if we abstract, again
for simplicity, from the possibility of pathological situa-
tions!. To define a shape rule in such an interpreter, one
would have to specify only the left- and right-hand sides,
that is, the definition could be done entirely in terms of
structure, not of operations. Except for parameterization,
the syntax used to represent a and b would be the same as
the one used to represent g. A test to establish that a and b
are, in fact, treated syntactically the same by the interpreter
would be its ability to execute a rule backwards without
further specifications on the part of the rule writer.

Such a shape grammar interpreter would be hard to build
indeed, and Woodbury and Burrow are correct when it comes
to shape grammar implementations using a standard pro-
duction system shell.2 In this case, the left-hand side typi-
cally consists of a conjunction of predicates asserting the
existence of certain objects with certain attributes ~which
can roughly be viewed as a declarative specification as
implied by the formalism!, while the right-hand side is a
procedure implementing the action implied by the rule, that
is, it is described clearly as an operation and syntactically
very different from the description of the left-hand side.

However, the fact remains that shape rules can be viewed
structurally in line with Woodbury and Burrow’s expressed
interest. I think this offers some promising avenues to pur-
sue for those portions of the task layer and user interface
that offer designers some form of customization when they
try to explore the potential of particular formal ideas in the
context of a specific project or to codify the way in which
certain design tasks should be handled across projects. One
of the great advantages of shape grammars I have found in
my own work with them ~aside from the fact that they are
able to handle geometry explicitly and directly! is the fact
that they look natural to designers ~after some initiation, to
be sure! who view a design ~practically or conceptually! as
the result of a series of transformations, and who under-
stand that the logic of these transformations can be expressed
succinctly in terms of shape rules.

Woodbury and Burrow state that shape grammars could
be written on top of their representation, and I would indeed
like to see them do this. On the one hand, I would like to
know how difficult this is or, conversely, if there are struc-
tural similarities between the two representations that can
be computationally exploited. On the other hand, I would
like to see if something akin to a shape grammar could help
bring the prima facie strange world of typed feature struc-
tures one step closer to being accepted, if not embraced, in
design practice.
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