
J. Fluid Mech. (2016), vol. 809, pp. 691–704. c© Cambridge University Press 2016
doi:10.1017/jfm.2016.696

691

Mixing efficiency in run-down gravity currents
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This paper presents measurements of mixing efficiency of the two counter-flowing
gravity currents created by symmetric lock exchange in a channel. The novel feature
of this work is that the buoyancy Reynolds number of the currents is higher than
in previous experiments, so that the mixing is not significantly affected by viscosity.
We find that the mixing efficiency asymptotes to 0.08 at high Reynolds numbers. We
present a model of the mixing based on the evolution of idealized mean profiles of
velocity and density at the interface between the two currents, the results of which
are in good agreement with the measurements of mixing efficiency.
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1. Introduction
The mixing efficiency of a stratified flow can be defined as the fraction of the total

energy supplied to the flow used to mix the density field irreversibly. Since irreversible
mixing is a molecular process occurring at very small scales – the Batchelor scale
(Batchelor 1958) – it is routinely parameterized in ocean models (Osborn 1980) in
terms of the mixing efficiency. In these models the value of the mixing efficiency is
usually taken to be a constant of approximately 0.15–0.2.

Over the past 35 years or so there have been numerous attempts to measure
the mixing efficiency in laboratory experiments and, more recently, in numerical
simulations. An early compilation of experiments (Linden 1979) showed that the
mixing efficiency was not constant but varied with both the stability of the system,
as measured by a bulk Richardson number, and with the type of flow. For example in
flows where the basic density field is statically stable, maximum values of the mixing
efficiency are approximately 0.2, while for flows in which at least some region of
the initial density profile is statically unstable mixing efficiencies can be above 0.5
(Lawrie & Dalziel 2011).

Further, recent scalings and numerical simulations (Billant & Chomaz 2001;
Lindborg 2006) show that turbulent mixing in a stratified fluid is dependent on
the buoyancy Reynolds number F2

hRe, where Fh = U/Nlh is a horizontal Froude
number based on the flow speed U, the buoyancy frequency N and an external
(horizontal) scale lh, and Re is the Reynolds number based on the horizontal scale
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692 G. O. Hughes and P. F. Linden

FIGURE 1. Schematic of the lock release experiment. Salty water of density ρH fills a
lock of length Llock, and fresher water of density ρL fills the remainder of the channel.
The depth HL >HH and is set so that the pressures on the two sides of the lock gate are
the same at mid-depth of the channel.

FIGURE 2. Visualization of the gravity current from Exp 6 – see table 1. The current is
dyed with food colouring and viewed against a translucent lined sheet.

lh, U and ν the kinematic viscosity. A smaller length scale characterizing the vertical
size of overturning eddies lv ≈U/N is implicit in this relation.

If, as would be the case in an unstratified flow, the dissipation ε is assumed to
scale with U3/lh, the buoyancy Reynolds number can be expressed as ReB= ε/νN2=
CU3/lhνN2 = CF2

hRe, where C is the constant of proportionality in the dissipation
scaling and estimated to be approximately 0.04 based on the value for a turbulent
shear layer (Wygnanski & Fielder 1970; Sreenivasan 1995). Early estimates suggest
that active mixing requires ε/νN2 & 30 (Gibson 1980, 1999), a result confirmed
in recent numerical simulations of stratified turbulence (Waite 2013). Unfortunately,
the majority of previous laboratory experiments on stratified turbulence have ε/νN2

significantly smaller than this value, and so the dynamics and the subsequent mixing
may well have been influenced significantly by viscosity.

In this paper we present measurements of mixing efficiency produced by a
lock-exchange flow. Dense fluid in a long channel is initially held behind a vertical
barrier separating it from a region of less dense fluid filling the remainder of the
channel (figure 1). Both fluids are initially at rest and the total initial energy of the
system is simply the potential energy. When the barrier is removed a dense gravity
current travels along the bottom of the channel (figure 2), a light current travels in the
opposite direction along the free surface, both currents reach and reflect from the far
end walls, and a complex set of motions continues until eventually all motion ceases
(figure 3). At this point only potential energy remains in the system. Measurements
of the density field before and after the experiment allow the energy used to mix the
fluid irreversibly to be calculated.

This study is notable for the large Reynolds numbers used to examine stratified
mixing in gravity currents. Values of Re based on the speed and depth of the
current reach 70 000, and the buoyancy Reynolds number ReB & 800. (Note that the
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Mixing efficiency in run-down gravity currents 693

FIGURE 3. Visualization of the impact of the gravity current from Exp 6 – see table 1 –
with the end wall of the channel and the subsequent internal bore that is generated. Note
that the turbulence levels are significantly reduced from those for the current shown in
figure 2.

current depth is chosen as the appropriate external length scale to characterize lh on
the grounds that the motion in the vicinity of the current head must have similar
horizontal and vertical length scales). In contrast, most previous studies of laboratory
gravity currents have been conducted at Reynolds numbers typically up to a few
thousand, while those attaining Reynolds numbers of a similar order to the present
study have focussed on different characteristics of the current (e.g. propagation speed
and current height; Keulegan 1958; Shin, Dalziel & Linden 2004; Marino, Thomas
& Linden 2005; Adduce, Sciortino & Proietti 2012) or on mixing in a different
flow regime (when the governing dynamics evolves in time; Fragoso, Patterson
& Wettlaufer 2013; Sher & Woods 2015). State-of-the-art numerical simulations of
gravity current mixing are limited currently to short domains (or times) or to relatively
small Reynolds numbers (e.g. Özgökmen, Iliescu & Fischer 2009; Ilıcak 2014). Our
approach has enabled measurement of the efficiency of stratified mixing unaffected
by viscosity in a gravity current, and we describe the laboratory experiments in § 2
and the results in § 3. Energetic considerations are used in § 4 to develop a model for
the mixing associated with the gravity current, and we present our conclusions in § 5.

2. Experiments
The experiments were conducted in a rectangular channel 9.6 m long, 0.25 m wide

and 0.5 m depth. A thin barrier was placed half-way along the channel, i.e. Llock =
4.8 ± 0.1 m, and one partition was filled with salt solution. The rest of the channel
was filled with fresh water. The free-surface heights (HL and HH) were adjusted such
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694 G. O. Hughes and P. F. Linden

Exp (ρH − ρL)/ρ0 UM (m s−1) Ui (m s−1) RiO α Re ReB

1 0.171 0.350± 0.013 0.396 1.28± 0.11 0.102± 0.005 70 000 760
2 0.086 0.273± 0.008 0.287 1.10± 0.07 0.106± 0.006 54 600 680
3 0.043 0.189± 0.004 0.204 1.17± 0.05 0.109± 0.007 37 800 440
4 0.012 0.101± 0.001 0.110 1.20± 0.02 0.099± 0.007 20 200 230
5 0.002 0.037± 0.0002 0.043 1.35± 0.02 0.097± 0.006 7 400 70
6 0.172 0.360± 0.013 0.397 1.22± 0.11 0.106± 0.006 72 000 840

TABLE 1. Values of the dimensionless density difference (ρH − ρL)/ρ0, the speeds
of gravity current propagation UM and Ui measured along the bottom and predicted
from (4.2), respectively, the overall Richardson number RiO ≡ (g(ρH − ρL)H/4ρ0U2

M), the
dimensionless mass anomaly α transported from one layer into the other by mixing
(see (3.1)), the Reynolds number Re ≡ (UMH/2ν) and the buoyancy Reynolds number
ReB≡ (Cρ0U3

Mδ/g(ρH − ρL)ν(H/2)) (where this expression uses an estimate of N2 based on
the interface thickness δ and C=0.04 is the constant in the assumed scaling for dissipation
ε =CU3

M/(H/2)). The reference density ρ0 is taken to be the average of ρL and ρH , and
the uncertainties in UM and RiO are based on the finite time taken to withdraw the barrier
at the start of the experiment.

that the pressures on each side of the barrier were equalized at approximately mid-
depth. The experiment started by removing the barrier vertically, and ended when all
perceptible motion in the channel had ceased.

Measurements were made of the densities and depths on both sides of the barrier
initially and of the vertical density profile and total depth H at the end of the
experiment. Great care was needed to measure the change in free-surface height,
which was determined to within 0.1 mm using a micrometer. The density profile at
the end of the experiment was measured by withdrawing samples at predetermined
depths. All density samples were measured with an Anton Paar densitometer, accurate
to 10−3 kg m−3.

Six experiments were run and the values of the experimental parameters are given
in table 1. In each case the final depth of the fluid was 0.4± 0.01 m (the values of
HL and HH ranging from 0.402 m and 0.398 m, respectively, at the smallest density
difference, to 0.438 m and 0.376 m at the largest density difference), and the only
parameter that was varied was the initial density difference (ρH − ρL). The range
covered gave measured gravity current speeds 0.037 < UM < 0.360 m s−1 along the
tank base, with Reynolds numbers Re≡ (UMH/2ν) between 7400 and 72 000.

2.1. Calculation of mixing efficiency
To calculate the mixing efficiency we first calculate the initial potential energy. The
initial density distribution is

ρ =
{
ρL, 0 6 x< L− Llock, 0 6 z 6 HL,

ρH, L− Llock < x 6 L, 0 6 z 6 HH.
(2.1)

Hence the initial potential energy PEi is

PEi = g
∫ L

0

∫ Hi

0
ρ(x, z)z dx dz= 1

2
gL[ρL(1− γ )H2

L + ρHγH2
H], (2.2)
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where γ ≡ (Llock/L) (≈0.5 in our case) and Hi is the initial depth, HL or HH , from
(2.1). Now consider the final state after the gravity current and all subsequent motion
in the channel has ceased. Conservation of volume implies the initial and final free
surface heights are related by H = (1− γ )HL + γHH .

If there is no mixing and ρL <ρR, the final stratification is

ρ =
{
ρH, 0 6 x 6 L, 0 6 z 6 HHγ ,

ρL, 0 6 x 6 L,HHγ < z 6 H.
(2.3)

The final potential energy PEnm in this no-mixing case is

PEnm = 1
2 gH2LρL + 1

2 gHH
2L(ρH − ρL)γ

2. (2.4)

Thus the maximum potential energy that can be released in this flow, the available
potential energy APE= PEi − PEnm, is

APE = 1
2 gL(1− γ ) [ρL(H2

L −H2)+ (ρL − ρH)γ
2HH

2
]

+ 1
2 gLγ

[
ρH(HH

2 −H2)+ (ρH − ρL)(H2 − γ 2HH
2)
]
, (2.5)

where the first and third terms on the right-hand side are associated with changes in
free-surface height, and the second and fourth terms are associated with changes in
density between the initial and ‘non-mixed’ states.

For a general final stratification with potential energy PEf the mixing efficiency M
is defined as

M≡ PEf − PEnm

APE
, (2.6)

and can be calculated from the final density field in the channel after all motion has
ceased. Note that if the mixing is complete so that the final density ρf = ρL(1 −
γ )HL/H + ρHγHH/H is uniform throughout the channel, the final potential energy
approaches PEi given by (2.2) and the mixing efficiency M→1 in the limit where the
initial differential of free-surface height across the barrier vanishes, i.e. H=HL =HH .

3. Results
An image of a gravity current (Exp 6 – see table 1) is shown in figure 2. This

current has Re = 72 000 and ReB = 840, and exhibits large scale billow structures
on the interface between the current and the counter-flowing current above. These
structures are common to all the currents, although the intensity of the turbulence
along the interface was noticeably reduced for the current with the lowest Reynolds
number (Exp 5, Re = 7400). As is usual for a full-depth lock release, the current
occupies approximately half the depth of the channel and initially travels at a
constant speed. In the present experiments, this constant speed persists to the end of
the channel because the channel length L� 10Llock, which is the distance at which
a gravity current enters the similarity phase and begins to decelerate (Rottman &
Simpson 1983). Values of the measured speeds UM along the bottom are given in
table 1 (note that the current speeds along the free surface were marginally faster).

On impact with the end of the channel, a large-amplitude wave with bore-like
characteristics is generated (figure 3). This feature propagates back towards the other
end of the channel, where it reflects again at a lower amplitude. This series of
reflections from the ends of the channel continues until viscosity damps out the
motion. Qualitative comparison of figures 2 and 3 indicates that the turbulent mixing,
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FIGURE 4. Final density profiles for the experiments in table 1 normalized by the initial
density difference. The profiles were measured by withdrawing samples at different depths
and the profiles are drawn with linear segments between the data points. Also shown is the
assumed linear variation of density corresponding to an interfacial region of dimensionless
thickness r= 0.33 (see (4.3)).

even in the first reflection, is significantly less than that during the gravity current
phase. Although we have no quantitative measures of the mixing at intermediate
stages of the experiment, we will assume that the mixing after the gravity current
first reflects from the end wall is negligible, compared with that during the gravity
current propagation.

Figure 4 shows the final density profiles after all motion in the channel has ceased.
The profiles are approximately self-similar when normalized by the initial density
difference, with a final interfacial region that is symmetrical about mid-depth (defined
as z′ = 0) and significant mixing evident in the region −0.2 . z′/H . 0.2. A weak
departure from this self-similar form is suggested at the two lowest Reynolds numbers
(Exps 4 and 5) by a larger density gradient at the centre of the interface. Despite
fairly large density differences (the maximum (ρH − ρL)/ρ0 ∼ 0.17) in Exps 1 and 6,
the symmetry about z′ = 0 implies that non-Boussinesq effects are small (in keeping
with only minor differences expected for density ratios ρL/ρH > 0.85; Birman, Martin
& Meiburg 2005; Lowe, Rottman & Linden 2005). The symmetry about z′ = 0 is
further confirmed by measurements of the anomalous mass that appears in each layer
as a result of mixing across the interface. The proportions of the less dense and more
dense initial fluid volume that are mixed by the current into the other volume,

αL =

∫ γHH

0
(ρH − ρ)L dz

(1− γ )HLL(ρH − ρL)
and αH =

∫ H

γHH

(ρ − ρL)L dz

γHHL(ρH − ρL)
, (3.1a,b)

respectively, are found to be almost identical (which would be expected by
conservation of mass if non-Boussinesq effects are small), with αL ≈ αH ≡ α≈ 0.1 in
all experiments (table 1).
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FIGURE 5. Mixing efficiency results plotted as a function of the Reynolds number Re.
Error bars are calculated for each experiment and are determined mainly by the relative
accuracy with which the changes in free-surface height HL−H and HH−H in (2.5) can be
measured. The error bars exceed the symbol size only for the lowest two Re experiments.

The mixing efficiency determined from the initial and final density fields as
described in § 2.1 is shown in figure 5. The values range from 0.05 to 0.08, and
suggest a slight increase with Re to an asymptote at high Re. Unfortunately, we were
unable to reach higher Re values with our laboratory facilities and so the asymptotic
value cannot be confirmed. However, we have reason to believe this is the high Re
limit as we discuss below.

4. Lock-exchange gravity current model

In this section, we develop a model of a lock-exchange gravity current that accounts
for dissipation and stratified mixing. First, we define general conventions applicable to
both (idealized) non-dissipative and dissipative currents, and then proceed to use these
to characterize the properties and energy budget of the dissipative lock-exchange flow.

We assign (figure 1) the reservoir of relatively light (heavy) fluid of density ρL (ρH)
to be initially to the left (right) of the lock. Consider the (coupled) evolution of a
column of fluid from each reservoir of height H and length 1L, such that its volume
(per unit spanwise width) is 1Q=H1L. We denote the volume exchanged (i.e. that
carried in each layer) in a time 1t as the exchange volume flux Q̇=1Q/1t.

In the idealized limit of inviscid flow (a situation denoted by the subscript i),
conservation of energy can be used to predict the flow speed Ui, which is assumed
uniform in each layer. Symmetry of the flow about the lock position implies that
each layer in the exchange has depth H/2, and Q̇i= (1/2)UiH. Following Yih (1947),
Yih (1965) we equate the rate of release of potential energy Ė (which corresponds
physically to a raising (lowering) of the height of the centre of mass of the dense
(light) fluid by H/4) with the rate at which kinetic energy is generated in the
flow, i.e.

Ė= 1
4 gρHHQ̇i − 1

4 gρLHQ̇i = 2Q̇i
1
2ρ0U2

i . (4.1)
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698 G. O. Hughes and P. F. Linden

This recovers the usual result (e.g. Benjamin (1968), Simpson (1997)) for the speed
of an inviscid lock-exchange gravity current,

Ui = 1
2

√
g′H, (4.2)

where g′ = g(ρH − ρL)/ρ0 is the reduced gravity.
The idealized two-layer inviscid lock-exchange flow (which requires a step change

in the density and velocity profiles) is unstable to shear at the interface. We assume
that instability arises in the vicinity of each gravity current head, and then develops
and saturates at some distance behind the head (a few current depths, consistent
with recent observations by Sher & Woods (2015) and Cenedese et al. (personal
communication)). Thus in a lock-exchange flow with dissipation, we expect instability
and turbulent mixing at a given location to be associated with the passage of
the gravity current. We also assume that turbulence with sufficient intensity to
support mixing is suppressed once the instability has run its course and left behind
a stabilized interfacial structure in the wake of the current, consistent with our
qualitative observations, previous studies (Thorpe 1973; Smyth & Moum 2000) and
the subsequent predictions of this model.

For simplicity we adopt mean velocity and density profiles in the wake of the
current that (have evolved via instability from idealized step profiles to) vary linearly
with height through the stabilized interfacial region (of thickness δ) in order to match
the free stream flow velocities and densities in the layers above and below (figure 6).
We define the dimensionless thickness r of the stabilized interface in a dissipative
current to be

r≡ δ

H
. (4.3)

4.1. Volume and mass transport
In the dissipative lock-exchange flow we assume that each layer will evolve to
consist of a region of depth (1/2)H(1 − r) of unmixed reservoir fluid moving at
the free stream speed U, with reduced flow in the interfacial layer sandwiched
between (figure 6). Thus the exchange volume transport in the flow with dissipation,
Q̇d =1Qd/1t (< Q̇i), is

Q̇d = 1
2

HU(1− r)+
∫ δ/2

0

2Uz′

δ
dz′ = 1

2

(
1− r

2

)
HU. (4.4)

The volume transport in the upper layer can be related to the supply of unmixed fluid
originating from the reservoirs by decomposing Q̇d into the sum of three components
(figure 6):

(i) an unmodified component from the left reservoir

Q̇u
L = 1

2 HU(1− r), (4.5)

(ii) a component Q̇mlr
L from the left reservoir that is mixed as it flows to the right (in

the same direction as Q̇u
L)

Q̇mlr
L =

∫ δ/2

0

2Uz′

δ
cρL(z

′) dz′ = 5
24

rHU, (4.6)
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U

ba(a)

(b) (c)

FIGURE 6. Schematic diagram of the flow model: (a) indicates the overall flow structure
and (b) and (c) show the assumed (piecewise linear) velocity and density profiles,
respectively. Panel (a) indicates development of shear instability in the vicinity of each
gravity current head, with intense turbulent eddies depicted by the swirls. Far enough
behind each head, the interface between the counter-flowing currents has stabilized. The
darkest grey shading denotes fluid of density ρH , with fluid of intermediate density
indicated by lighter shading in the interfacial region between the two currents. We
decompose the volume transport in the exchange flow into a number of components
denoted by the general symbol Q: the subscript denotes fluid that originated from the
light (L) or heavy (H) reservoir (to the left and right, respectively), the first superscript
character denotes fluid that is unmodified (u) or modified (m) by mixing with respect to its
source reservoir density and the second and third superscript characters (if present) denote
the direction of flow as either left to right (lr) or right to left (rl). Only the component
transports originating from the light reservoir, Q̇u

L, Q̇mlr
L and Q̇mrl

L , are indicated in (a) for
the sake of clarity. However, as we assume anti-symmetry in the flow at vertical section
b about z′ = 0 (4.9), the corresponding components that have originated from the heavy
reservoir, Q̇u

H , Q̇mrl
H and Q̇mlr

H , respectively, are equal and oppositely directed. Note that
the transport components Q̇mrl

L and Q̇mlr
H represent the rate at which volume is swapped

with the counter-flowing layer as a result of turbulent mixing. Further note that although
transport components from left to right are defined as positive, the arrows in the figure
indicate the physical direction of the transport. With this decomposition, Q̇d is seen to
be equal to the exchange volume transport (of mixed fluid; equation (4.8)) from left to
right through b, i.e. Q̇u

L + Q̇mlr
L + Q̇mlr

H , which is the sum of the horizontal and diagonal
striped regions (for 0 < z′ 6 H/2) in (b) (4.4). However, Q̇d must also be equal to the
rate at which volume leaves a specific reservoir (4.10), i.e. Q̇u

L + Q̇mlr
L + |Q̇mrl

L |. In (c), the
dashed line indicates the density of unmixed fluid entering the current from left to right
at section a and the effective current depth he corresponds to the height of the rectangle
in the upper layer with the same area as the horizontal striped region in the profile at
section b (i.e. the same total buoyancy anomaly with respect to the mid-point density ρ0).
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where cρL(z
′)= 1/2(1+ 2z′/δ) is the volume fraction of the ρL source component

in a water parcel at height z′ and (iii) a component Q̇mlr
H from the right reservoir

that is mixed and joins the upper layer flowing from left to right

Q̇mlr
H =

∫ δ/2

0

2Uz′

δ

(
1− cρL(z

′)
)

dz= 1
24

rHU. (4.7)

The volume transport in the lower layer can be decomposed similarly into an
unmodified component Q̇u

H from the right reservoir, a component Q̇mrl
H from the right

reservoir that is mixed as it flows to the left and a component Q̇mrl
L from the left

reservoir that is mixed and joins the lower layer flowing from right to left. Defining
volume transport from left to right as positive and invoking symmetry in the problem,
we can write

Q̇d = Q̇u
L + Q̇mlr

L + Q̇mlr
H = |Q̇u

H| + |Q̇mrl
H | + |Q̇mrl

L |, (4.8)

and
Q̇u

L =−Q̇u
H, Q̇mlr

L =−Q̇mrl
H , Q̇mlr

H =−Q̇mrl
L . (4.9a−c)

Equations (4.8) and (4.9) can be used to account for the volume transport of unmixed
fluid that originates from one of the reservoirs, e.g.

Q̇d = Q̇u
L + Q̇mlr

L + |Q̇mrl
L | (4.10)

for the left reservoir. Furthermore, it follows from (4.5)–(4.7) and (4.9) that the net
left to right transport of fluid that originated from the left reservoir is

Q̇u
L + Q̇mlr

L + Q̇mrl
L =

1
2

(
1− 2r

3

)
HU. (4.11)

We define the effective current depth he as the depth of unmixed fluid from the
appropriate reservoir that would accommodate the buoyancy anomaly present in a
layer of the assumed dissipative flow. Taking a layer to be either −H/2 6 z′ < 0 or
0< z′6H/2 and the buoyancy anomaly with respect to the mid-point density ρ0, we
find he = (1− r/2)H/2 (see figure 6c). We proceed by assuming that the free stream
speed U in each layer will be Ui on the physical basis that dissipation of energy along
streamlines outside the interfacial layer will be relatively small. This assumption is
supported by the recent measurements of Sher & Woods (2015).

Sher & Woods (2015) also show that mixing and recirculation of fluid in the current
head leads to a measured front speed UM that is somewhat less than Ui, thus we now
differentiate between a prediction for the front speed Ue and the free stream speed
U. We predict Ue by equating Uehe with (4.11) and setting U=Ui. In physical terms,
we expect the net rate of horizontal transport of fluid that has originated from each
reservoir to give the volume transport involved in extending each current (of effective
depth he) in the dissipative exchange flow, i.e. to the right in the upper layer and to
left in the lower layer. Hence

Ue

Ui
= 1− 2r/3

1− r/2
. (4.12)
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To enable comparison with the experimental measurements, we can predict the overall
Richardson number Rip

O for the current by using Ue in place of the measured front
speed UM in the expression for RiO from table 1, thus

Rip
O =

g′H
4U2

e

= U2
i

U2
e

= (1− r/2)2

(1− 2r/3)2
, (4.13)

upon substituting (4.2) and (4.12). (Note that the assumption that the front and free
stream speeds are the same and given by (4.2), as for an idealized inviscid gravity
current, (i.e. Ue =U =Ui) corresponds to Rip

O = 1.) Apart from a clear outlier at the
lowest Reynolds number (Exp 5), the measurements in table 1 are consistent with a
constant value for RiO = 1.18 (±0.08). Thus, equating the measured RiO with (4.13)
is consistent with r= 0.38 (±0.1); however, a more accurate determination (estimated
to within ±0.02) is given below.

In our physical model, mixed fluid is created by the passage of each current at the
rate Q̇m= Q̇mlr

L + Q̇mlr
H (= Q̇mlr

L + |Q̇mrl
L |), which is the sum of the second and third terms

on the right-hand side of (4.8) and (4.10). Upon substituting (4.6) and (4.7) for Q̇mlr
L

and Q̇mlr
H , we find that the proportion of the exchange transport involved in mixing is

Q̇m

Q̇d
= rHUi/4
(1− r/2)HUi/2

= r
2− r

. (4.14)

Our model assumes that mixing will occur at a constant rate until each current first
reaches the end of the channel (and is zero thereafter). Hence we expect Q̇m/Q̇d to be
equal to αL+ αH ≈ 2α, which is calculated from (3.1) and is based on quantities that
are measured accurately in experiments. As α is found to take a value close to 0.1
(±0.007; table 1) in all experiments, equating (4.14) to 2α yields r = 0.33 (±0.02),
a value that is consistent with the final density gradient through the centre of the
interfacial region in the self-similar profiles – see figure 4.

It is worth remarking that the assumed piecewise linear density profile (figure 6c)
is fully consistent with the value of r = 0.33 above. This may be surprising given
r = 0.33 seems to neglect curvature in the density profile and underestimate the
volume of unmixed fluid that is passed to the other layer (as suggested by comparing
the areas enclosed between either the measured or piecewise linear profile and the
horizontal axis in figure 4). Indeed, evaluating (3.1) with the assumed piecewise
linear density profile suggests coefficients α∗L ≈ α∗H ≈ r/4< α for γ = 1/2 (i.e. for a
lock at the channel mid-point), where the asterisk is used to denote the calculation
with the assumed (rather than the measured) profile and (4.14) has been equated with
2α. However, we note that determination of r needs to take account of the rates
of volume transport and creation of mixed fluid. The amount of mixing in the final
density profiles is then associated with the exchange volume flux in the currents,
which, because of dissipation, is somewhat less than the maximum possible volume
flux for an idealized inviscid flow (i.e. Q̇d < Q̇i). In contrast, the calculation of α∗L and
α∗H corresponds physically to the proportion of each reservoir volume that has been
swapped to obtain the final state and, assuming the exchange flow is steady, would
be equal to Q̇m/Q̇i. Upon comparison with (4.14), we reason that α∗L and α∗H (and α∗)
will be a factor Q̇d/Q̇i = (1− r/2) smaller than αL and αH (and α), respectively. For
r= 0.33, we therefore expect α∗L ≈ α∗H ≈ α∗ = 0.83α ≈ 0.083, or approximately r/4.
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4.2. Energy budget for mixing
We now consider the energetic consequences of the interfacial mixing, assuming that
shear instability and turbulent mixing occur in the vicinity of each gravity current
head. The drag associated with the turbulence causes the exchange transport Q̇d
to be less than Q̇i and, for the same reasons discussed above, we must analyse the
energy budget by comparing the dissipative lock-exchange flow with an idealized
non-dissipative counterpart that has the same exchange transport Q̇d. Viewed in this
way, dissipation acts to ‘choke’ the rate of release of potential energy Ė driving the
flow,

Ė= 1
4ρ0g′HQ̇d, (4.15)

which is obtained in a similar manner to (4.1) (Q̇i being replaced by Q̇d). We can
calculate the rate of mixing that would be associated with the linear variation of
density through the interfacial layer, i.e. ρ(z)= ρ0− (ρH − ρL)z′/δ. The density profile
if no mixing occurred would be a step from ρL to ρR at z′= 0, thus the rate of change
of potential energy owing to mixing at an interface lengthening at a rate 2Ue is

Ėp = 2Ue

∫ δ/2

−δ/2
ρ0

g′

2

(
sgn(z′)− 2z′

δ

)
z′ dz′ = 1

6
(1− 2r/3)
(1− r/2)2

ρ0g′HQ̇d

(
δ

H

)2

, (4.16)

where (4.4) and (4.12) have been used.
The energy budget can be used to characterize the mixing in terms of a mixing

efficiency, and the proportion of total energy released and used for mixing is predicted
to be

M= Ėp

Ė
= 2r2

3
(1− 2r/3)
(1− r/2)2

, (4.17)

which is dependent only upon the parameter r characterizing the self-similar behaviour.
The mixing efficiency M predicted for r= 0.33 is 0.081, which corresponds well with
the measured asymptotic value (figure 5).

5. Conclusions
The conceptually simple experiments presented here yield a range of insights into

mixing caused by a gravity current. The qualitative observations and measurements
are consistent with development of stratified shear instability associated with the
passage of the gravity current head. The ensuing turbulence and mixing redistributes
momentum and density in the vertical until the interface above or below the current
is stabilized. At sufficiently high Reynolds number (of O(30 000) based on the
current depth), we find that the resulting density profile becomes self-similar; the
thickness of the stabilized interface normalized by the total flow depth r is close
to a third. Interestingly, the interfacial signatures resulting from fully developed
Kelvin–Helmholtz instability and mixing are essentially identical (Thorpe 1973;
Corcos & Sherman 1976; Koop & Browand 1979; Smyth & Moum 2000).

Simple arguments suggest that the dimensionless interface thickness is a direct
indication of the gradient Richardson number that evolves across the interface between
the two currents (i.e. r = Rig ≡ g′δ/4U2, from (4.3) and with Ue in (4.13) replaced
by U = Ui). Thus r ≈ 0.33 is consistent with establishment of an interfacial region
that is stable to shear instability (Rig ∼ 0.3). This dimensionless thickness is further
consistent with current speed Ue ≈ 0.92Ui (see (4.12)), and thus a Froude number
Fr=Ue/(g′H)1/2 ≈ 0.46 as found in full-depth lock-exchange experiments at high Re
(Keulegan 1958; Shin et al. 2004).
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We find that up to approximately 0.08 of the energy supplied to the flow is
consumed by irreversible mixing. At first glance, this value represents a mixing
efficiency that is small compared to values of 0.15–0.2 that are thought to characterize
the mixing owing to shear instability. However, it is important to recognise that these
efficiencies measure physically different quantities. In this study we include in the
energy budget the amount required to sustain the mean flow (i.e. the gravity currents),
whereas a variety of measures are instead based on the proportion of energy supplied
to turbulence that is consumed by mixing. Furthermore, these measures may rely
on some form of averaging (e.g. in a volume, temporal or ensemble sense) or
may be applicable at a specific position in the flow. Given that the turbulence in
a lock-exchange gravity current is neither homogeneous nor statistically steady, we
have chosen to characterize the flow by a bulk mixing efficiency measure that is
unambiguous. The results highlight the importance of this consideration in a situation
where the mean flow is integral to the location and characteristics of the turbulent
mixing.

We have further shown here that the mixing associated with a gravity current only
attains a self-similar asymptotic state at Reynolds numbers in excess of approximately
50 000 – well above the range typically considered in previous studies. The results
suggest that the stratified turbulence is characterized by buoyancy Reynolds numbers
ReB approaching 700 in this state. If the Ozmidov and Kolmogorov scales,

Lo =
( ε

N3

)1/2
and Lk =

(
ν3

ε

)1/4

, (5.1a,b)

respectively, characterize the turbulence spectrum in the lock-exchange gravity current,
then the range of scales is given by

Lo

Lk
=
( ε

νN2

)3/4 = ReB
3/4. (5.2)

Hence, our experiments span the range 20. Lo/Lk . 150, and suggest that asymptotic
mixing behaviour owing to shear instability could require a separation of scales
Lo/Lk & 130.
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