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Ecologist Richard Levins argues population biologists must trade-off the generality, realism,

and precision of their models since biological systems are complex and our limitations are

severe. Steven Orzack and Elliott Sober argue that there are cases where these model prop-

erties cannot be varied independently of one another. If this is correct, then Levins’s thesis

that there is a necessary trade-off between generality, precision, and realism in mathematical

models in biology is false. I argue that Orzack and Sober’s arguments fail since Levins’s

thesis concerns the pragmatic features of model building not just the formal properties of

models.

1. Introduction. Ecologist Richard Levins (1966, 1968) argues that biol-
ogists must choose between building mathematical models that trade-off
generality, precision, or realism because of the complexity of biological
systems. He also argues that there are several strategies by evolutionists for
theoretically coping with complex systems in evolutionary biology and
ecology. Levins’s claims have not gone unchallenged. Biologist Steven
Orzack and philosopher Elliott Sober (1993) attempt to provide a clear ac-
count of what generality, precision, and realism are with respect to math-
ematical models. On the basis of their account, they argue that these model
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desiderata cannot always be traded off in ecology and evolutionary biol-
ogy.

I present Levins’s views on model building in their historical setting and
explicate his arguments for the necessary trade-offs therein. I then present
Orzack and Sober’s analysis of the concepts of generality, precision, and
realism, and their counterarguments against Levins’s claims. Orzack and
Sober argue that given their analysis, there are some cases where these
model properties cannot be varied independently of one another. They
show that if a model is a limiting case of another model, then the latter is at
least as general, precise, and realistic as the former. In those cases where a
model is a limiting case of another, then Levins’s thesis—that there is a
necessary trade-off between generality, precision, and realism in mathe-
matical models in biology—is false. I argue that Orzack and Sober’s argu-
ments fail. Levins’s thesis concerns the pragmatic features of model build-
ing rather than the formal properties of models. The trade-offs are neces-
sary in light of our limitations and not as the result of the semantics of the
models themselves.

2. Complex Systems, Models, and Trade-Offs. Theoretical population
biology is composed of relatively distinct sciences such as population
ecology, population genetics, behavioral ecology, and biogeography. For
example, population ecological models typically concern multispecies sys-
tems, which are described in terms of their demographics and densities. The
environment of the community is allowed to vary over time and, especially
in more recent work, space. However, change in gene frequencies, or what
is commonly considered evolutionary change, is largely ignored. Likewise,
models of population genetics look at the frequency of genotypes in a single
species and how they change as the result of natural selection, inbreeding,
mutation, migration, and genetic drift. The environment in which a species
finds itself is assumed to be relatively unchanging.1

In the 1960s, ecologist Richard Levins and other biologists such as
Richard Lewontin, Robert MacArthur, and E. O. Wilson were concerned
with integrating these disparate areas of theoretical biology. At the time,
there was increasing evidence that ecological and evolutionary processes
are temporally commensurate. For example, significant evolutionary
changes in beak size occur seasonally in Darwin’s finches as the result
of severe draught. Likewise, ecological processes like forest succession
can occur over centuries. If ecological and evolutionary processes are tem-
porally commensurate, then these different processes may interact with one
another dynamically. One cannot simply separate the ‘‘evolutionary play’’
from the ‘‘ecological theatre’’ in the customary temporal way (Hutchinson
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1978). Moreover, if one is concerned with jointly modeling ecological and
evolutionary systems, then evolutionists and ecologists must devise mod-
els with common state variables and parameters such as fitnesses, intrinsic
rates of growth, and carrying capacities. Mathematical modelers must
somehow deal with multispecies systems that change demographically and
that are evolving in temporally and spatially heterogeneous environments.

A second important concern of Levins was a competing methodological
school, systems ecology (Palladino 1990). Levins was explicitly worried
with the rise of general ecological models that are designed to be what he
calls ‘‘photographically exact’’ (1969, 304). For Levins, the ideas of the
ecologist Kenneth Watt, especially in his book Ecology and Resource
Management, typified this research program. Watt and his coworkers
attempted to design universally applicable models that could be simulated
on computers and where the only thing that needed to be altered for dif-
ferent systems were the values of the parameters (see Watt 1968, 113).
Levins, in his review of Watt’s book, called this method ‘‘FORTRAN ecol-
ogy’’ (1969, 304).

A ‘‘photographically exact’’ and universally applicable approach to
representing ecological and evolutionary systems would consist in writing
down a set of equations that contain all of the necessary state variables.
Moreover, one must also provide the appropriate parameters including the
relevant genotypic fitnesses, interaction coefficients, and other demographic
parameters, such as intrinsic rates of growth and carrying capacities. Some
of these evolutionary and ecological processes would also involve time lags
since their effects are rarely instantaneous. Thus, according to Levins, the
model would be an enormous set of coupled partial differential equations
with hundreds of parameters. What could one do with such a model? Levins
argues that the applications are severely limited.

There are several problems with using such a model. First, the equations
would not have any empirical meaning for scientists. The terms of the
equations would be in the form of quotients of the sums of products of
various parameters. Biologists would have to interpret these equations,
which is difficult to do even with relatively simple models (Levins 1968,
5). As an example, consider the amount of conceptual work that has been
expended to provide a reasonable interpretation of what the competition
coefficient aij of the Lotka-Volterra interspecific competition model repre-
sents. Traditionally, two species are said to compete when each exhibits a
negative per capita effect on the other. This leads to reduced abundances or
a decrease in fitness or some component of fitness.

There are several worries with this account of interspecific competition,
and hence, with what the associated parameter designates. First, this
account is extremely phenomenological since there are many different
mechanisms of interspecific competition that can generate the negative
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pairwise interactions (Schoener 1983). Second, predation by one species on
two others can generate apparent competition (Holt 1977). If a predator
species preys on two resource species in a way that depends on which
resource species is most common, then there can exist a pairwise negative
per capita effect between the resource species even when they do not
physically interact. Thus, interpreting a relatively simple parameter is often
a difficult affair. If it is difficult to determine the precise meaning of ‘‘x
competes with y’’ and thus interpret the competition coefficient, then con-
sider how much more difficult it would be to interpret a model of coupled
partial differential equations with one hundred parameters (Levins 1968, 5).

Second, even if the equations are empirically meaningful to biologists,
there are far too many parameters to measure, each of which would require
the careers of many scientists to estimate (Levins 1968, 5). In order to see
the difficulties, consider a caricature of the work ecologists must perform.
Suppose we want to represent the dynamics of an ecological community of
twenty species with a Lotka-Volterra multispecies model. We must de-
termine the intrinsic rates of growth and carrying capacities for each of the
twenty species. Likewise, we would have to estimate all of the interaction
coefficients that would minimally generate a 20 � 20 matrix describing
how each species affects every other species. If the interactions between
pairs of species are affected by the other species in the community—there
are higher-order effects—then matters would only be made worse since the
matrix will become larger. This problem is even more astonishing in light
of the fact that most ecological studies are performed over the course of, at
most, a decade or two (Pimm 1991). The observational and experimental
work to be done to evaluate a ‘‘photographically exact’’ model would be
practically impossible to carry out.

Third, even if the first two worries can be resolved, the equations will
probably have no analytic solutions. Scientists want more than a model
that tells us how a system changes over time. We do not want only to
change the system’s variables in small increments of time over and over
again with these ‘‘evolution equations’’ to determine what state the system
will be in at a future time. Moreover, this incremental investigation of a
system ignores important questions concerning the stability of those
systems. Suppose a system starts in an initial state and at some later time
is in some other state. Do other systems that start in states near the initial
one also end up near this later state? If the differential equations cannot be
solved analytically, then they must be simulated on computers and thus
their manageability is crucially dependent on the available technology.

Notice that each of these difficulties is empirical in nature. The com-
plexity of the systems and the resulting limitations of the scientists are
determined by the way the world is. The limitations on scientists are of two
sorts. First, there are the limitations that arise from our inability to
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manipulate and investigate empirical systems as directly as we would like
in the field and in the lab. Second, there are limitations in our ability to use
our mathematical representations of the systems of interest. Our psycho-
logical capacities for storing and retrieving information, carrying out var-
ious inferences, and abstracting from details, can make it difficult for us to
use certain types of mathematical formalisms for the tasks of interest. Both
of these limitations are empirical in nature. Levins (1966, 423) suggests
that population biologists have arrived at three strategies (at least) of
building models to cope with these complexities and avoid the pitfalls of a
‘‘Wattian’’ approach.

First, one can build a Type I model where generality is sacrificed for
precision and realism. Levins suggests that some fisheries biologists have
offered these sorts of models where the parameters concern the short-term
behavior of populations, relatively accurate observations can be made, the
equations can be dealt with by computers, and testable predictions relevant
to particular situations can be derived (1968, 7). Second, one can build a
Type II model where realism is sacrificed for generality and precision.
Levins suggests that physicists who enter ecology often build models,
which are highly idealized, but they hope that the idealizations will result
in small deviations from the true equations, will cancel out, or corrections
can be made piecemeal (Levins 1968, 7; MacArthur 1972, 33). Third, one
can build a Type III model where precision is sacrificed for generality and
realism. Here one builds graphical models where a functional form is not
specified but is assumed to be convex or concave, increasing or decreasing,
greater or less than some value, and so forth. The predictions that follow
from the model are in the form of inequalities. This is the strategy of model
building that Levins himself prefers.

According to Levins, ‘‘[t]here is no single, best all-purpose model’’
(1968, 7). We can continuously improve generality, realism, and precision
but only in a pairwise fashion. His argument is composed of essentially
two parts.2 An optimally general, precise, and realistic model would re-
quire using a very large number of parameters in a very large number of
simultaneous partial differential equations. If the model was of this form,
then the equations would be analytically insoluble, uninterpretable, and
unmeasurable. If the model was of this form, then clearly the model is of
little use to scientists. Therefore, there is an unavoidable trade-off between
the generality, precision, and realism of the mathematical models if they
are to be of any use to evolutionists and ecologists. Modeling practice in
ecology and evolutionary biology does indicate that although the three di-
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mensions cannot be continuously maximized over time, two dimensions can
be. If Levins’s argument is sound, then it shows the eminent possibility of
such trade-offs in theoretical population biology and their ultimate even-
tuality. As biologists try to devise increasingly more general, realistic, and
precise models, they will eventually arrive at ‘‘Levins’s impasse.’’ I now
want to examine Steven Orzack and Elliott Sober’s arguments against
Levins’s claims.

3. The Semantics of Modeling? To recap, Levins claims that model
building in population biology involves a necessary trade-off among
modeling desiderata (1993, 533). Since no model of any use can con-
tinually maximize all of these properties, we must settle for Type I, Type II,
and Type III models. Let us call these claims Levins’s thesis,

(LT ) There is a necessary trade-off between the generality, precision,
and realism of evolutionary and ecological models such that at
most two of these model properties can be maximized per model.

In order to examine this claim, Orzack and Sober rightly argue that the
crucial terms of Levins’s analysis must be clarified since he does not define
them. Orzack and Sober offer the following characterization of the
concepts of generality, realism, and precision:

(G) If one model applies to more real-world systems than another, it is
more general,

(R) If one model takes account of more independent variables known
to have an effect than another model, it is more realistic,

(P) If a model generates point predictions for output parameters, it is
precise (1993, 534).

Orzack and Sober also make an important distinction in assessing Levins’s
claims. A model’s parameters and variables can either be unspecified or
specified, where a model is specified if all of its parameters and variables
are instantiated with particular values. This distinction is important since
an uninstantiated model will always be more general than the instantiated
model on Orzack and Sober’s account. Hence, we should only compare
models that are both instantiated or both uninstantiated.

Orzack and Sober offer several arguments to demonstrate that Levins’s
thesis (LT ) is false. Consider their argument that in some cases, generality
and realism are necessarily associated. Orzack and Sober utilize the expo-
nential and logistic-growth models from population ecology as examples.

dN=dt ¼ rN

dN=dt ¼ rNð1� N=KÞ
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As N ! 0, the logistic growth equation reduces to the exponential-growth
equation. In other words, the exponential model is a limiting case of the
logistic-growth model as the population size goes to zero. By Orzack and
Sober’s definitions of generality and realism, the logistic-growth model is
more general than the exponential-growth model since any system to
which the latter applies, the former applies as well. Moreover, the logistic-
growth model is more realistic than the exponential-growth model since
the logistic has one more independent variable (or rather the parameter K)
which presumably has an effect on the dependent variables. As Orzack and
Sober write, ‘‘In this case, the two properties are necessarily associated;
generality and realism are not model attributes that may be altered
independently’’ (1993, 536). More generally, if one model is a limiting
case of another model, then the second is more realistic and general than
the first is. So, it appears that Levins is incorrect realism and generality
cannot always be altered independently.

Orzack and Sober also argue that sometimes realism, generality and
precision cannot be traded off with respect to one another. Take any precise
and uninstantiated model with n independent variables. Suppose we add an
n + 1 independent variable to the previous model. The second model is
more general than the first, since for any system to which the first applies
the second must also apply, but not vice versa. The second model is also
more realistic by hypothesis, since it has one more independent variable
that has a relevant effect on the dependent variables. However, since the
first model was assumed to be precise, the second must also be. If the first
model generates point predictions, then the second must also. Therefore,
there are some models in which generality, realism, and precision can be
all maximized simultaneously and there can be no trade-offs among them.
Hence, (LT ) is false.

More generally, Orzack and Sober’s argumentative strategy employs the
following claim:

For any two models, if the first is a special case of the second, then
necessarily the second is at least as general, realistic, and precise as the
first.

This claim follows from their (G), (P), and (R) and the fact that one
model entails the other under appropriate conditions. If the above thesis is
true, then the following thesis must also be true,

(OS) If a model is a special case of another model, then there can be
no trade-off between the generality, precision, and realism of the
former and the latter.

In this sort of case, one cannot separate the model features as Levins’s
strategies require. Hence, for some models, there can be no trade-off
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between model properties and (LT ) must be false. If one is to show that
Orzack and Sober’s counterargument is fallacious, then one must show that
(OS) and (LT ) are consistent given the fact that there are nested models in
theoretical biology.

4. The Strategy of Model Building Defended. Orzack and Sober sur-
veyed and examined most of the citations of Levin’s 1966 paper in the
Science Citation Index and Social Sciences Citation Index. They conclude
that ‘‘[o]ur impression from this survey is that Levins’s arguments have
been widely misinterpreted’’ (1993, 534). I argue below that it is Orzack
and Sober who misinterpret Levins’s arguments. Levins was not
attempting to classify the attributes of models per se, but only insofar as
they are relevant to devising strategies for model building. Orzack and
Sober argue that in at least some cases there can be no trade-off between
the generality, precision, and realism of biological models. Using their
recommended definitions, they show that sometimes the three model
properties are necessarily connected.

Levins’s arguments, however, do not concern that point at all. Even if
all three of those properties cannot be varied independently of one another,
still there may still be reasons why we could not use such models where
formal trade-offs cannot occur. Levins writes,

The multiplicity of models is imposed by the contradictory demands of
a complex, heterogeneous nature and a mind that can only cope with
few variables at a time; by the contradictory desiderata of generality,
realism, and precision; by the need to understand and also to control;
even by the aesthetic standards which emphasize the stark simplicity
and power of a general theorem as against the richness and the diversity
of living nature. These conflicts are irreconcilable. (1966, 431)

Levins claims that there are ‘‘contradictory demands’’ between a complex
nature and human minds. Likewise, he claims that there is the ‘‘contra-
dictory desiderata’’ of generality, realism, and precision of mathematical
models. Hence, one might think that Levins is claiming some sort of
logical inconsistency in maximizing the three model properties. However,
this view is in opposition to the very nature of Levins’s arguments. He
claims that the ‘‘contradiction’’ is the result of the complexity of nature and
our attempt to understand that complexity, but nowhere does he claim the
conflict concerns models alone.3 Here is Levins again:

#03170 UCP: PHOS article # 700553
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The attempt to consider genetic, demographic, environmental, and in-
terspecific differences simultaneously immediately runs into technical
difficulties. A precise mathematical description may involve hundreds
of parameters, many of which are difficult to measure, and the solution
of many simultaneous non-linear partial differential equations, which
are usually insoluble, to get answers that are complicated expressions
of the parameters which are uninterpretable. (1968, 5)

Thus, Levins argues that the conflict concerns our ability to understand
nature. The pragmatic conflicts in model building could be present even if
Orzack and Sober are right. If Levins’s arguments are correct, then these
conflicts can be present even when there are cases where necessarily there
can be no trade-off between generality, precision, and realism.

Let us consider a useful graphical format for representing (LT ) and (OS)
(see Levins 1993, 550). Consider a space with the dimensions generality
G, realism R, and precision P. Each point in this space represents a model.
Thus, we can compare models with respect to how general, realistic, and
precise they are. Likewise, suppose that there is a boundary demarcating
the set of possible models. I will examine what this boundary represents
below. Since it is difficult to visualize a three-dimensional space with a
boundary, let us first consider just two dimensions at a time, generality G
and realism R (Figure 1). However, nothing of importance hangs on the
choice of dimensions since any two of the three will yield the same result.

We want to provide a graphical representation (a meta-model of sorts) in
which there is a model that is maximally general and realistic but is such

#03170 UCP: PHOS article # 700553
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that any increase in either property leads to a decrease in the other. That is,
we will suppose that Levins’s thesis is reformulated as

(LT*) There is a necessary trade-off between generality, precision, and
realism such that at most one of these model properties can be
maximized per model.

(LT*) is distinct from (LT ), but examining the former easier case will shed
light on the more difficult one. To find such a graphical model that satisfies
(LT*), the shapeof the boundary is crucial andmust be convex. Suppose there
is a model M* that is maximally general and realistic and is such that there
can be no increase in bothG andR (though they can be increased separately).

Now consider models M1, M2, M*, and M3 in Figure 1. We can see that
M2 is more general and realistic than M1, and there is no trade-off in
moving from M1 to M2. Likewise, there is no trade-off in moving from
model M2 to model M*. However, there is a trade-off at the boundary for
M*. Any increase of G or R along the boundary leads to a decrease on the
other axis. This follows from the assumption that the boundary is convex
and that M* is maximally G and R. Now consider the sequence of four
models. From Figure 1, we see that as we move from the origin of the
space each model becomes successively more general and realistic. Sup-
pose further that M1 is a special case ofM2,M2 is a special case ofM*, and
M* is a special case of M3. This sequence of models satisfies the ante-
cedent of Orzack and Sober’s (OS ). Hence, it follows that there can be no
trade-offs between the models in the sequence with respect to their model
properties. Granted, this case is different from those that concern Levins
since it concerns two model properties at a time. Nonetheless, it appears
the above case is inconsistent with (LT*). So, in order to begin to answer
Orzack and Sober in the more complex case let us determine whether
(LT*) is inconsistent with this scenario.

Levins’s thesis (LT*) only concerns those cases where we have a sys-
tem which is too complex for a mathematical model to usefully represent it
in both a general and realistic way. The cognitive limitations of the sci-
entists involved prevent the model from being of any use because it is un-
interpretable, unmeasurable, or insoluble. This is what the boundary repre-
sents. Hence, the models M1 and M2 are irrelevant they are not at the
boundary where trade-offs occur. However, M* is on the boundary and M3

is outside of it. In our example, there does exist a model M3 that is neces-
sarily at least as general and realistic as M*. However, M3 is cognitively
inaccessible. By hypothesis, the third model cannot be used by scientists.
Hence, any useful model above the boundary must trade-off generality or
realism. Therefore, there is a ‘‘necessary’’ trade-off between generality and
realism. Since this is true of any two of the model properties, then there is a
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‘‘necessary’’ trade-off between model properties. Thus, (OS), (LT*), and
the assumption that there are evolutionary and ecological models which are
limiting cases of each other are mutually consistent.

This graphical example and (LT*) concerns only two model properties.
However, we can revise the graphical example given so that (LT) applies
to it. Again, it is difficult to visualize the three-dimensional space with a
boundary.4 Informally however, it amounts to the following. Suppose we
have a three-dimensional space with generality G, realism R, and precision
P as the dimensions and that there is a modelM* that is maximally general,
precise, and realistic. Now we must think of the boundary as a three-
dimensional surface. Essentially, this surface is a ‘‘hill’’ in this space. On
this surface, there is a peak where model M* rests. Let us further suppose
that if we increase in any two dimensions from M*, then there must be a
decrease in the third. So, for example, if we increase along G and R, then
we must decrease in P. Thus, there is a necessary trade-off between gen-
erality, precision, and realism, and at most two of these properties can be
increased beyond M*.

Now consider the argument above concerning the sequence of models
M1, M2, M*, M3. Suppose that we have a space that satisfies the assump-
tions above. Likewise suppose the sequence of models M1, M2, M*, M3 is
situated in the space as in our previous example and that M1 is a special
case of M2, M2 is a special case of M*, and M* is a special case of M3.
Hence, it follows from these assumptions and (OS) that there can be no
trade-offs among these models with respect to their generality, precision,
and realism. As before, we need only concern ourselves with M* and M3.
M* is on our surface that represents the ‘‘boundary of complexity’’ and M3

is above it. True enough, we cannot trade off the generality, precision, and
realism of M* as we move to M3; however, M3 is cognitively inaccessible
to us. Hence, it cannot be used by us. Likewise, if we are to move from M*
to increase the generality, precision, or realism of a usable model, then we
can do this for two dimensions as most. Hence, Orzack and Sober’s argu-
ment fails with respect to (LT ).

The fundamental problem with Orzack and Sober’s analysis is that their
notion of a ‘‘necessary trade-off’’ concerns the logical or semantical re-
lations between model properties. However, Levins’s notion of a ‘‘neces-
sary trade-off’’ concerns our cognitive limitations and use of mathematical
representations and not the logical or semantic properties of models alone.

#03170 UCP: PHOS article # 700553
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The boundary in our graphical representations depicts the difference
between those models that can be used and those that cannot. Thus,
(OS) is consistent with (LT ) even when there are models that are limiting
cases of each other. Levins’s strategy of model building is left unscathed.

5. Conclusion. I have presented the views of Richard Levins on model
building and have defended them against the arguments of Steven Orzack
and Elliott Sober. Orzack and Sober misunderstand the nature of Levins’s
concerns. Levins is interested in the trade-offs that occur as biologists
fallibly inquire into extremely complex systems and not in the logical
independence of various properties of models themselves. Thus, Orzack
and Sober’s arguments do not threaten Levins’s claims.
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