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Buoyancy scale effects in large-eddy simulations
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In this paper large-eddy simulations (LES) of forced stratified turbulence using two
common subgrid scale (SGS) models, the Kraichnan and Smagorinsky models, are
studied. As found in previous studies using regular and hyper-viscosity, vorticity
contours show elongated horizontal motions, which are layered in the vertical
direction, along with intermittent Kelvin–Helmholtz (KH) instabilities. Increased
stratification causes the layer thickness to collapse towards the dissipation scale,
ultimately suppressing these instabilities. The vertical energy spectra are relatively
flat out to a local maximum, which varies with the buoyancy frequency N. The
horizontal energy spectra depend on the grid spacing ∆; if the resolution is fine
enough, the horizontal spectrum shows an approximately −5/3 slope along with a
bump at the buoyancy wavenumber kb = N/urms, where urms is the root-mean-square
(r.m.s.) velocity. Our results show that there is a critical value of the grid spacing
∆, below which dynamics of stratified turbulence are well-captured in LES. This
critical ∆ depends on the buoyancy scale Lb and varies with different SGS models:
the Kraichnan model requires ∆ < 0.47Lb, while the Smagorinsky model requires
∆< 0.17Lb. In other words, the Smagorinsky model is significantly more costly than
the Kraichnan approach, as it requires three times the resolution to adequately capture
stratified turbulence.

Key words: stratified turbulence, turbulence modelling, turbulence simulation

1. Introduction

Stratified turbulence is characterized by very large Reynolds number Re= urmslh/ν

and sufficiently small horizontal Froude number Frh=urms/Nlh, such that the buoyancy
Reynolds number

Reb = ReFr2
h, (1.1)

is also high (Brethouwer et al. 2007). Here, urms and lh are the root-mean-square
(r.m.s.) velocity and horizontal length scale, respectively; ν is the molecular viscosity
and N is the buoyancy frequency. According to Taylor’s hypothesis, lh∼ (urms)

3/ε, and
so (1.1) yields

Reb ∼ ε

νN2
, (1.2)
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where ε is the kinetic energy dissipation rate (the use of Taylor’s hypothesis for
stratified turbulence is common, but may be questionable; see e.g. Hebert & de
Bruyn Kops 2006b; Khani & Waite 2013). The Ozmidov scale (e.g. Lumley 1964)

Lo = 2π
( ε

N3

)1/2
, (1.3)

is the smallest scale for which buoyancy effects are important. (We include the
2π factor in (1.3) and for other characteristic length scales because it is often the
corresponding wavenumber ko = 2π/Lo that appears in applications; e.g. Gargett,
Osborn & Nasmyth 1984; Waite 2011.) Based on the stratified turbulence hypothesis
(Lindborg 2006), the Ozmidov scale divides the inertial subrange into two parts: an
anisotropic part, from large scales down to the Ozmidov scale; and an isotropic part,
for smaller scales down to the Kolmogorov scale η = 2π(ν3/ε)1/4. The dynamical
picture of stratified turbulence is described by flat horizontal motions and suppressed
the vertical velocity, in which the vertical structure is characterized by layers of
thickness

Lb = 2π
urms

N
, (1.4)

which is named the buoyancy scale (e.g. Riley & de Bruyn Kops 2003; Waite &
Bartello 2004; Lindborg 2006). Previous work (e.g. Waite & Bartello 2004; Lindborg
2006; Brethouwer et al. 2007; Waite 2011, 2014) shows that the resolution of Lb is
necessary to capture the stratified turbulence cascade.

Direct numerical simulation (DNS) of stratified turbulence is very challenging
because the ratio of the Ozmidov to Kolmogorov scales depends on the buoyancy
Reynolds number as follows

Lo

η
=
( ε

νN2

)3/4 ∼ Re(3/4)b . (1.5)

Since stratified turbulence has Reb � 1, and DNS requires resolution of the
Kolmogorov scale, it is necessary that the grid spacing be much smaller than the
Ozmidov scale. An alternative approach is large-eddy simulation (LES), for which
large scales are resolved but subgrid scale (SGS) motions, including the small-scale
end of the inertial subrange, are modelled. Owing to the computational costs, we are
interested in performing LES of stratified turbulence, in which the grid spacing ∆
may be larger than the Ozmidov scale Lo. However, previous numerical studies with
hyperviscosity suggest that resolution of the buoyancy scale may be important (e.g.
Waite & Bartello 2004; Lindborg 2006; Waite 2011). In this paper, we investigate the
performance of two common LES schemes, the Smagorinsky (1963) and Kraichnan
(1976) models, in simulations of stratified turbulence. For both schemes, we determine
the extent to which the buoyancy scale needs to be resolved for the LES to capture
the dynamics of stratified turbulence properly.

In § 2, we review the literature of stratified turbulence, the LES approach, and the
classical SGS models. The methodology including numerical approach is outlined in
§ 3. Section 4 includes results and their interpretations. Concluding remarks are given
in § 5.

2. Background
2.1. Stratified turbulence

Most previous numerical studies in stratified turbulence are DNS and hyperviscosity
simulations. Hyperviscosity simulations are performed in the same spirit as DNS:
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Buoyancy scale effects in LES of stratified turbulence 77

the viscosity and diffusion operators are modified to extend the inertial range, but
the associated dissipation scale is resolved (e.g. Waite & Bartello 2004). Recent
advances in the study of stratified turbulence show that a layerwise structure emerges,
in which the horizontal length scale is much larger than the vertical one (e.g. Billant
& Chomaz 2001; Riley & de Bruyn Kops 2003; Hebert & de Bruyn Kops 2006b;
Brethouwer et al. 2007). In addition, there is a forward energy transfer mechanism
from large to small horizontal scales (e.g. Waite & Bartello 2004; Lindborg 2006;
Brethouwer et al. 2007). For scales larger than Lo, different kinetic energy spectral
slopes have been proposed in the horizontal and vertical directions. Lindborg (2006)
argued that −5/3 in kh and −3 in kv are expected, where kh =

√
k2

x + k2
y is the

horizontal wavenumber, kv = |kz| is the vertical wavenumber, and k = (kx, ky, kz) is
the three-dimensional wavevector. When Lb is not resolved in the vertical direction, a
steeper horizontal spectrum, with a slope as large as −5, results (e.g. Waite & Bartello
2004). Even when Lb is resolved, deviations from the −5/3 slope have been reported;
e.g. Waite (2011) and Kimura & Herring (2012) found slopes closer to −2. Moreover,
a priori testing shows that the horizontal and vertical effective eddy viscosities are
very different when the test cutoff wavenumber kc is smaller than ko (Khani & Waite
2013). Finally, a non-local horizontal energy transfer from large horizontal scale to
the buoyancy scale, associated with Kelvin–Helmholtz (KH) instabilities, has been
found in forced stratified turbulence (Waite 2011, 2014), the breakdown of columnar
vortices (Augier, Chomaz & Billant 2012), and decaying stratified turbulence (Khani
& Waite 2013). All of the results described above have been found when DNS or
hyperviscosity simulation is the adopted numerical approach. Despite the emphasis
on hyperviscosity and DNS, some LES studies have been investigated (e.g. Siegel
& Domaradzki 1994; Carnevale, Briscolini & Orlandi 2001; Smith & Waleffe 2002;
Remmler & Hickel 2012; Paoli et al. 2013). We are interested in studying LES
of stratified turbulence and determining the dependence of the results on the grid
spacing ∆.

2.2. Large-eddy simulations
LES is based on the filtered equations of motion, where the filter applied to a variable
q is given by (e.g. Leonard 1974; Pope 2000)

q̄(x, t)=
∫

D
G(x− x́, x)q(x́, t)dx́, (2.1)

where q̄(x, t) is the filtered quantity, G is a filtering function, which generally depends
on x and the distance between two correlation points, i.e. r = x − x́, and D is the
spatial domain. In practice, it is customary to work with homogeneous and isotropic
filter functions that are independent of x and r, and just depend on r= |r|. There are
a few applicable homogeneous filter functions (see e.g. Pope 2000). For the spectral
transform numerical method, it is convenient to work with the sharp spectral filter (as
applied in e.g. Germano et al. 1991; Moin et al. 1991; Piomelli et al. 1991; Kang,
Chester & Meneveau 2003), which is defined as follows

Ĝ(k)=
{

1 : |k|6 kc

0 : |k|> kc,
(2.2)
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78 S. Khani and M. L. Waite

where Ĝ is the Fourier coefficient of G, k is the wavenumber vector, and kc is the
cutoff wavenumber. By applying the filter function Ĝ to variable q, we get

q̄(x, t)=
∑

k

q̂(k, t)Ĝ(k)eik·x =
∑
|k|6kc

q̂(k, t)eik·x, (2.3)

where Fourier modes with wavenumbers smaller than kc are maintained and the larger
modes are killed. The LES grid spacing ∆ and filter cutoff kc are related by

∆≡ π

kc
. (2.4)

2.2.1. Physical space
Applying the sharp spectral filter to the Navier–Stokes equations under the

Boussinesq approximation, which is non-dimensionalized with a velocity scale u
and length scale `, yields (following the notation of Pope 2000)

∂ ūi

∂t
+ ∂

∂xj
(ūiūj) = − ∂ p̄

∂xi
− 1

Fr`2 ρ̄ez −
∂τ r

ij

∂xj
+ f̄i, (2.5)

∂ ūj

∂xj
= 0, (2.6)

∂ρ̄

∂t
+ ∂

∂xj
(ρ̄ūj)− w̄ = −∂hj

∂xj
, (2.7)

where u, p, ρ and f are the velocity, perturbation pressure, perturbation density and
forcing fields, respectively; and Fr` = u/N` is the Froude number. Since we assume
large Reynolds numbers and that ∆ is much larger than the Kolmogorov scale, viscous
dissipation and diffusion are neglected. The subgrid momentum flux τ and the subgrid
density flux h are given as follows

τij = uiuj − ūiūj, (2.8)
hj = ujρ − ūjρ̄. (2.9)

The deviatoric part of τ is defined as

τ r
ij = τij − 1

3τrrδij, (2.10)

where the modified pressure p̄ absorbs the isotropic part of the subgrid momentum
flux. The filtered momentum and energy (2.5) and (2.7) are not closed because τ r

and h are not known in terms of the filtered velocity and density fields. We need to
model these unknown fluxes using the SGS models.

2.2.2. Wavenumber space
Similar to physical space, we could work in Fourier space to perform LES of

stratified turbulence. Applying the sharp spectral filter Ĝ(k) to the Navier–Stokes
equations under the Boussinesq approximation in Fourier space yields

∂

∂t
ˆ̄uj(k, t)+ 1

Fr`2
ˆ̄ρ(k, t)ez = −ikmPjr(k)

∑
p+q=k,
|k|<kc

ûr( p, t)ûm(q, t)+ ˆ̄fj, (2.11)
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Buoyancy scale effects in LES of stratified turbulence 79

kj ˆ̄uj(k, t) = 0, (2.12)
∂

∂t
ˆ̄ρ(k, t)− ˆ̄w(k, t) = −ikm

∑
p+q=k,
|k|<kc

ûm(p, t)ρ̂(q, t), (2.13)

where Pij= δij− kikj/k2 is the projection tensor, and k2= k · k. Like in physical space,
nonlinear terms in the right-hand side of (2.11) and (2.13), i.e.

Fj(k, t) = −ikmPjr(k)
∑

p+q=k,
|k|<kc

ûr( p, t)ûm(q, t), (2.14)

J(k, t) = −ikm

∑
p+q=k,
|k|<kc

ûm( p, t)ρ̂(q, t), (2.15)

are not known in terms of the filtered Fourier coefficients ˆ̄u and ˆ̄ρ. Based on the
definition of the cutoff wavenumber kc, we could divide (2.14) into a filtered term F̄
and a subgrid term Fs, such that

F̄j(k, t) = −ikmPjr(k)
∑

p+q=k,
|k|<kc

ˆ̄ur(p, t) ˆ̄um(q, t), (2.16)

Fs
j (k, t) = −ikmPjr(k)

∑
p+q=k,

|k|<kc,max{|p|,|q|}>kc

ûr(p, t)ûm(q, t), (2.17)

in which Fs is unknown and needs to be modelled using SGS models. In a similar
way, (2.15) could be divided into the filtered term J̄ and the subgrid term Js, for which
the latter is unknown and should be modelled to close the problem.

2.3. SGS models
Most SGS models are based on the eddy viscosity assumption, which is based
on the turbulent-viscosity hypothesis (e.g. Pope 2000). In this point of view, the
nonlinear subgrid terms are related to the filtered physical variables or the filtered
Fourier coefficients through an eddy viscosity term in physical or wavenumber space,
respectively. We consider two SGS models here: the Smagorinsky (1963) model,
which is local in physical space and damps resolved regions with strong rate of
strain; and the Kraichnan (1976) model, which is spectrally local and damps mainly
the smallest resolved length scales.

2.3.1. The Smagorinsky model (physical space)
The deviatoric part of the subgrid flux τ r is related to the filtered rate of strain

s̄ij = 1/2(∂ ūi/∂xj + ∂ ūj/∂xi) using the eddy viscosity coefficient νr, as

τ r
ij(x, t)=−2νr(x, t)s̄ij(x, t). (2.18)

Similarly, the subgrid density flux h is modelled by

hj(x, t)=− 2
Prt
νr(x, t)

∂

∂xj
ρ̄(x, t), (2.19)
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where Prt is the turbulent Prandtl number. Smagorinsky (1963) suggested a model for
the eddy viscosity coefficient for which νr is related to the grid spacing ∆ and the
characteristic filtered rate of strain S̄= (2s̄ijs̄ij)

1/2, through the relation

νr(x, t)= (cs∆)
2S̄(x, t), (2.20)

where cs is the Smagorinsky coefficient. Lilly (1967) has shown that (2.20) is an
applicable model for LES of three-dimensional turbulence. An estimate of cs ≈ 0.17
was made (Lilly 1967; Meneveau & Katz 2000; Pope 2000) for a Kolmogorov
isotropic inertial subrange with a sharp spectral filter.

2.3.2. The Kraichnan model (wavenumber space)
Kraichnan (1976) suggested the spectral eddy viscosity idea to model the nonlinear

subgrid term Fs as (using the notation of Pope 2000)

Fs
j (k, t)=−νe(k|kc)k2 ˆ̄uj(k, t), (2.21)

where νe(k|kc) is the spectral eddy viscosity function. Similarly, the subgrid term Js

is related to the filtered Fourier coefficient ˆ̄ρ as follows

Js(k, t)=− 1
Prt
νe(k|kc)k2 ˆ̄ρ(k, t). (2.22)

Lesieur & Rogallo (1989) proposed the following equation for νe(k|kc)

νe(k|kc)= (0.15+ 5e−3.03kc/k)

√
E(kc, t)

kc
, (2.23)

where E(kc, t) is the kinetic energy spectrum at the cutoff wavenumber kc. It is
important to note that for k� kc,

νe(k|kc)∼ 0.15

√
E(kc, t)

kc
. (2.24)

Hence, the eddy viscosity coefficient νe(k|kc) is independent of k for small
wavenumbers. By contrast with the Smagorinsky approach, the Kraichnan model
has the advantage that it preferentially damps small length scales; however, it is only
practical for idealized simulations with triply periodic spectral codes.

The turbulent Prandtl number Prt is usually assumed to be constant (e.g. Lesieur
1990; Batchelor, Canuto & Chasnov 1992; Siegel & Domaradzki 1994). This
assumption along with the assumption of constant buoyancy frequency N (e.g. Riley
& de Bruyn Kops 2003; Waite & Bartello 2004; Brethouwer et al. 2007; Waite 2011;
Khani & Waite 2013; Waite 2014) will also be employed in current study.

3. Methodology
LES of forced stratified turbulence is studied in this paper. Idealized simulations

of vortically-forced stratified turbulence in a cubic domain with length L = 2π
is considered. Random forcing of barotropic vortical modes in the wavenumber
band |kh − kf | 6 1 is applied, where kf is the forcing wavenumber (following e.g.
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Buoyancy scale effects in LES of stratified turbulence 81

Herring & Métais 1989; Waite & Bartello 2004; Waite 2011). The forcing is AR(1)
red noise, uncorrelated in k, and with a correlation time scale of 10 timesteps. The
forcing amplitude is a quadratic function of the horizontal wavenumber kh centred
in the forcing band. The forcing amplitude is the same for all simulations, apart
from a factor of 1t−1/2, which leads to an approximately fixed average forcing power
in all cases. The spectral transform method with cubic truncation is applied for
discretization in space. The two-thirds rule (e.g. Durran 2010) is applied to eliminate
aliasing errors, meaning that the cutoff wavenumber kc is

kc =π
2n
3L
, (3.1)

where n is the number of grid points in the x, y and z directions. We get the effective
resolution ∆ = 1.5L/n by using (3.1) in (2.4). The third-order Adams–Bashforth
scheme is employed for time stepping.

We compare our LES results with those obtained using hyperviscosity and
hyperdiffusivity, which are commonly employed to mimic large Reynolds number
flows in place of traditional LES schemes. These dissipation operators are of forms

Du = νm(−1)m+1∇2m, (3.2)
Db = κm(−1)m+1∇2m, (3.3)

respectively, where νm and κm are the hyperviscosity and hyperdiffusivity coefficients
(see e.g. Waite & Bartello 2004). We set νm = κm, and use m = 4 (as in e.g.
Bartello, Métais & Lesieur 1996; Waite & Bartello 2004; Waite 2011). The modified
Kolmogorov wavenumber in the hyperviscosity case is as follows

kd =
(
ε

ν3
4

)1/22

. (3.4)

For a given resolution, the hyperviscosity coefficient is chosen to be as small as
possible while still adequately resolving kd. The implicit trapezoidal method is applied
for time stepping of the dissipation term in the hyperviscosity and hyperdiffusivity
simulations.

Following previous studies of forced stratified turbulence (e.g. Waite & Bartello
2004; Waite 2011) we spin up our simulations with relatively low resolution
(n = 256) and hyperviscosity from time 0 to 300 (corresponding to around 30
forcing time scales; see below), and then use these low-resolution results as initial
conditions for higher-resolution LES from time 300 to 450. Resolutions from n= 256
to n= 768 are considered.

The Buoyancy frequency N ranges from 2 to 6, which are chosen to be strongly
stratified; indeed, the corresponding Froude numbers ranges from 0.0024 to 0.014, as
will be presented in the next section. Similar ranges for Froude numbers have been
considered in previous numerical studies of stratified turbulence (e.g. Riley & de
Bruyn Kops 2003; Hebert & de Bruyn Kops 2006a,b; Khani & Waite 2013). These
Froude numbers are a little larger than typical values of the atmospheric mesoscale
(∼10−4; e.g. Brune & Becker 2013) but meet the criteria for strongly stratified
turbulence (Lindborg 2006). The corresponding Ozmidov scales are not resolved
in these experiments; however, previous hyperviscosity simulations have shown and
argued that it is sufficient to resolve the buoyancy scale (e.g. Waite & Bartello
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2004; Lindborg 2006; Brethouwer et al. 2007). The forcing amplitude gives a typical
dissipation rate of 10−4 which, when combined with the forcing wavenumber kf , gives
a forcing time scale tf ∼ 10. We use

√〈E(t)〉 in place of urms since the vertical kinetic
energy is much smaller than the horizontal. The turbulent Prandtl number Prt = 1 for
LES and the forcing wavenumber kf = 3 are also considered in this study. Tables 1
and 2 show a list of parameters and averaged variables for hyperviscosity simulations
and LES, respectively.

4. Results and discussion
4.1. Overview of simulations

Figure 1 shows time series of kinetic energy and dissipation rates for the hyperviscosity
simulations (a,b), the Smagorinsky LES (c,d), and the Kraichnan LES (e,f ), when
0 6 t 6 450. The simulations appear to have reached statistical stationarity for
375 6 t 6 450, which is the time period for averaging of the results that follow.
The time series of the kinetic energy dissipation rates ε(t) exhibit a discontinuity at
t=300, due to the change in resolution and SGS mechanism at this time. Interestingly,
the Smagorinsky and Kraichnan dissipation rates are similar, and are both close to
the lower-resolution hyperviscosity case (tables 1 and 2, where the angle brackets 〈·〉
denote time averaging). We will discuss this dependence on SGS scheme in § 4.2.
In addition, increasing the stratification increases kinetic energy and urms (tables 1
and 2).

4.2. Energy spectra
In this section, we study effects of the grid spacing in different SGS models
on the energy and dissipation spectra. In figure 2, averaged total, horizontal and
vertical wavenumber kinetic energy are shown for the highest-resolution simulations.
Kinetic energy spectra in terms of total, horizontal and vertical wavenumbers k, kh
and kv are computed by binning over wavevectors in the usual way (e.g. Waite
& Bartello 2004; Waite 2011; Kimura & Herring 2012; Khani & Waite 2013).
Hyperviscosity simulations (i.e. figure 2a,b) have long tails for k, kh, kv & 100,
showing the hyperviscous dissipation range. The total wavenumber energy spectra are
very similar to the vertical spectra except for the peak around the forcing wavenumber
kf , hence we will focus on 〈E(kh)〉 and 〈E(kv)〉.

The averaged vertical wavenumber spectra in all cases are peaked at kv ≈ 20 for
N = 2 and kv ≈ 40 for N = 6, illustrating that the peak location changes with N.
This behaviour is consistent with previous results which show that the characteristic
vertical wavenumber is the buoyancy wavenumber kb = N/urms, provided it is not in
the dissipation range (e.g. Waite & Bartello 2004; Waite 2011; kb is denoted by arrows
in figure 2). The averaged vertical wavenumber spectrum is approximately flat up to
the wavenumber at which the spectrum is peaked (as also seen in e.g. Herring &
Métais 1989; Waite & Bartello 2004), beyond which it decays with a slope of around
−2.4, −3.4 and −2.8 for the hyperviscosity simulation, the Smagorinsky LES and the
Kraichnan LES, respectively, when N=2. Similarly, the vertical wavenumber spectrum
decays with a slope of around −1.2, −3.8 and −2 for the hyperviscosity simulation,
the Smagorinsky LES and the Kraichnan LES, respectively, when N = 6. We use the
least-squares method to measure spectral slopes over 40 6 kv 6 100.

The averaged horizontal wavenumber energy spectra are peaked around the forcing
wavenumber kf = 3. With hyperviscosity, the slope is around −1 for N= 2 and −2 for
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FIGURE 1. (Colour online) Time series of kinetic energy (a,c,e) and the kinetic energy
dissipation rate (b,d,f ) for (a,b) the hyperviscosity simulations, (c,d) the Smagorinsky LES
and (e,f ) the Kraichnan LES. The grey curves over 0 6 t 6 300 are the low-resolution
hyperviscosity simulations with the corresponding buoyancy frequency N.

N = 6 (over 10 6 kh 6 30 and 10 6 kh 6 50, respectively). For the same ranges of kh,
the spectral slopes in the Smagorinsky LES are approximately −1.5 for N= 2 and −4
for N = 6 (figure 2c,d). Similarly, the Kraichnan LES gives slopes of −1.4 and −1.9
for N = 2 and N = 6, respectively (figure 2e,f ). As a result, increased stratification
steepens the spectra in the hyperviscosity simulations and the LES. In addition, at
fixed resolution and N, different SGS models give different slopes; the Smagorinsky
simulations are consistently steeper than those using the Kraichnan model. Overall,
hyperviscosity and LES give slopes that are shallower than −5/3 for N = 2. For
N = 6 however, slopes are steeper than −5/3. In addition, the averaged horizontal
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FIGURE 2. (Colour online) The averaged total, horizontal and vertical wavenumber
energy spectra with resolution n= 768 for (a,b) the hyperviscosity simulations, (c,d) the
Smagorinsky LES, and (e,f ) the Kraichnan LES, for N = 2 (a,c,e) and N = 6 (b,d,f ).
Spectra are averaged over 3756 t 6 450. Arrows correspond to the buoyancy wavenumber
kb and the forcing wavenumber is k= 3. The black solid line segments show −5/3 and
−3 slopes.

wavenumber energy spectra exhibit a bump at around the buoyancy wavenumber kb
(see arrows in figure 2) except for the Smagorinsky LES with N = 6 (figure 2d).

Figure 3 shows the horizontal and vertical wavenumber spectra of SGS energy
transfer (i.e. eddy dissipation spectra) for the low- and high-resolution Kraichnan
and Smagorinsky LES at t = 450. Interestingly, for both SGS models, the maximum
dissipation happens at large horizontal and small vertical scales, which show an
anisotropic energy transfer from resolved scales towards SGS motions (similar trends
are seen in the stratified SGS energy transfer spectra in DNS of Khani & Waite 2013).
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FIGURE 3. (Colour online) The horizontal and vertical wavenumber spectra of SGS energy
transfer for the Smagorinsky and Kraichnan LES at t = 450. Low- and high-resolution
cases are shown in (a) and (b), respectively. The spectra are multiplied by wavenumber
in order to preserve area on the log-linear axes.

As a result, although the Smagorinsky and Kraichnan eddy viscosities are defined
isotropically, the SGS energy transfer spectra inherit the anisotropy of the resolved
motions. For both high- and low-resolution cases, the Smagorinsky LES shows a
larger peak in the horizontal wavenumber SGS energy transfer spectra, implying
that the Smagorinsky model is much more dissipative than the Kraichnan model
(figure 3). The same conclusions hold for the vertical wavenumber SGS energy
transfer spectra as well. Meanwhile, the Kraichnan LES shows a cusp around kc
in the vertical SGS energy spectra and the high-resolution horizontal SGS spectra,
implying that the Kraichnan model is more consistent with the DNS of Khani &
Waite (2013). In addition, the horizontal and vertical SGS energy transfer spectra
for the low-resolution Kraichnan case with N = 2 are remarkably similar to those of
the corresponding high-resolution Smagorinsky LES far from the cutoff wavenumber
kc. As a result, the non-local horizontal and vertical SGS energy transfers in the
high-resolution Smagorinsky LES are very similar to those of the low-resolution
Kraichnan model.

To make a quantitative comparison of the SGS terms from the two LES approaches,
the effective spectral eddy viscosity of the Smagorinsky LES at t = 450 is shown
in figure 4. We compute νr(k) by diving the absolute value of the spherical SGS
energy transfer Tr(k) of the Smagorinsky LES by 2k2E(k). There is a broad range
of k/kc with a plateau of almost constant νr(k), and no cusp is seen around k = kc.
The effective spectral eddy viscosity from the Smagorinsky model is quite different
from actual effective eddy viscosity measured in high-resolution DNS of stratified
turbulence, in which a cusp around the cutoff wavenumber kc is a dominant feature
(Khani & Waite 2013). For comparison, the Kraichnan eddy viscosity νe(k) for the
case with n = 256 and N = 2 is also shown in figure 4; it exhibits a lower plateau
and a large cusp, in better agreement with DNS of Khani & Waite (2013). The
plateau in the low-resolution Smagorinsky case is almost three times larger than
the Kraichnan plateau. Interestingly, the low-resolution Kraichnan plateau is very
close to the plateaus of the high-resolution Smagorinsky simulations. These results
are consistent with the energy and eddy dissipation spectra, which show that the
Smagorinsky model is much more dissipative than the Kraichnan model.

Figure 5 shows compensated horizontal energy spectra (in which the horizontal
spectra are normalized by k−5/3

h 〈ε〉2/3) for the hyperviscosity simulations and LES
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FIGURE 4. (Colour online) Effective spectral eddy viscosity for the Smagorinsky cases
along with the Kraichnan eddy viscosity νe for the low-resolution case with N = 2. For
computing eddy viscosities, results at t= 450 are used; the horizontal axis is normalized
by the cutoff wavenumber kc.

when N = 2, 4 and 6. As in figure 2, arrows show the location of the buoyancy
wavenumber kb. In figure 5(a), the compensated horizontal wavenumber energy
spectrum for the high-resolution hyperviscosity case is almost constant for 6. kh . 30,
which is consistent with an inertial subrange with a slope close to −5/3. A bump is
visible at kh≈ 30, which is around the buoyancy wavenumber kb. Similar bumps have
been investigated in recent hyperviscosity simulations and DNS (Laval, McWilliams
& Dubrulle 2003; Waite 2011; Augier et al. 2012; Waite 2014). A similar constant
inertial subrange and bump at kh ∼ kb are also seen in the other simulations
in figure 5(a) except for the low-resolution Smagorinsky LES. Interestingly, the
Smagorinsky spectrum with n = 768 looks very similar to the Kraichnan spectrum
with n = 256; the inertial range slope and amplitude, and the bump near kb, are
nearly identical. In other words, the low-resolution Kraichnan simulation reproduces
the higher-resolution Smagorinsky simulation, despite having a grid spacing three
times as coarse.

The results with higher stratification are similar. For N= 4 (figure 5b) an almost flat
inertial subrange over 6 . kh . 50 is seen for the high-resolution hyperviscosity case,
which is followed by a bump at around kh = 60 (very close to kb). Other simulations
in this panel, except the low-resolution hyperviscosity case (i.e. h2N4) and the
middle-resolution Smagorinsky case (i.e. S5N4), show a very short inertial subrange
along with a little bump at around kb. Once again, the high-resolution Smagorinsky
spectrum looks like the low-resolution Kraichnan up to kh ≈ 30. In figure 5(c), the
high-resolution hyperviscosity and Kraichnan cases with N = 6 show the constant
inertial subrange at 6. kh . 60 and a bump at kh∼ kb. However, other simulations in
this panel show a very steep compensated spectrum. Like in figure 5(a, b), figure 5(c)
demonstrates that the low-resolution Kraichnan LES looks like the high-resolution
Smagorinsky LES. In addition, the hyperviscous simulation is more dissipative than
the Kraichnan LES at very large wavenumbers (figure 5). At large wavenumbers, i.e.
k & 100, the effective eddy viscosity given by the hyperviscosity νmk2m−2 is larger
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FIGURE 5. (Colour online) The averaged compensated horizontal energy spectra: (a) N=
2, (b) N = 4 and (c) N = 6. Spectra are averaged over 375 6 t 6 450. Arrows correspond
to the buoyancy wavenumber kb and the forcing wavenumber is at k= 3.

than νe, hence the hyperviscosity simulation is more strongly damped at large k. As
a result, the Kraichnan LES seems to give more reasonable results compared with
hyperviscosity at very large wavenumbers. In addition, the potential energy spectra
(not shown here) also show peaks and bumps around kb in the vertical and horizontal
wavenumber spectra, respectively.

4.3. KH instabilities and the Richardson number
Figure 6 shows the y-component of vorticity ω̄y= (∂ ū/∂z− ∂w̄/∂x) on the x− z plane
at y= 0.25 and t= 450 for the high-resolution Kraichnan LES. Vortices are lengthened
in the horizontal direction and layered in the vertical. For the lower stratification
(figure 6a), intermittent instabilities and KH billows are visible between the layers.
Stronger stratification (figure 6b) shows a more strongly layered structure with fewer
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FIGURE 6. (Colour online) Vorticity field in y direction ω̄y on the x–z plane at y= 0.25
and t = 450 for the high-resolution Kraichnan LES: (a) N = 2 and (b) N = 6. Vorticity
fields are normalized by the corresponding buoyancy frequency N.

regions of KH instability. Figure 7 shows ω̄y for the high-resolution Smagorinsky LES.
As in the Kraichnan LES, the lower stratification (figure 7a) shows a layered vertical
structures with KH instabilities. No instabilities are visible in the more strongly
stratified case (figure 7b). According to figures 6 and 7, increased stratification at
fixed resolution and SGS scheme inhibits KH instabilities, since the thinner layers
in the more strongly stratified case are more influenced by dissipation (Hebert &
de Bruyn Kops 2006a; Brethouwer et al. 2007). In addition, KH instabilities are
inhibited in the Smagorinsky simulation relative to the Kraichnan and hyperviscosity
cases at the same stratification and resolution, suggesting that the Smagorinsky case
is the most dissipative.

The above results suggest that there is a bump around kb in the horizontal
wavenumber energy spectrum only when KH instabilities are visible in the vorticity
plots. This hypothesis has been proposed in several studies (Laval et al. 2003; Waite
2011; Augier et al. 2012; Waite 2014). To further investigate this relationship in LES
and to investigate the influence of different SGS models, we consider the Richardson
number in our simulation. The Richardson number shows the competition between
stratification, which stabilizes flow, and the vertical shear of horizontal motions, which
excites instabilities. The local Richardson number is given as follows
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FIGURE 7. (Colour online) Vorticity field in y direction ω̄y on the x–z plane at y= 0.25
and t= 450 for the high-resolution Smagorinsky LES: (a) N = 2 and (b) N = 6. Vorticity
fields are normalized by the corresponding buoyancy frequency N.

Ri=
N2 − g

ρ0

∂ρ̄

∂z(
∂ ū
∂z

)2

+
(
∂v̄

∂z

)2 , (4.1)

in which the numerator is the buoyancy frequency squared from the total (background
plus perturbation) density; and g and ρ0 are gravity and the reference density,
respectively. The classical necessary condition for instability Ri < 1/4 is strictly
applicable only for parallel shear flow, but is nevertheless commonly employed to
diagnose regions of KH instabilities in more complicated flows (e.g. Riley & de Bruyn
Kops 2003; Augier & Billant 2011, which considered decaying stratified turbulence
and breakdown of vortex, respectively). As a result, we consider the structure and
distribution of Ri, with the understanding that more points with Ri < 1/4 might
suggest more regions with KH instabilities. Furthermore, Ri < 0 implies overturning.
The vorticity plot shows a large-scale layered structure with intermittent smaller-scale
structures (e.g. figure 7a). Small-scale vorticity structures correspond to regions with
small Ri, < 0.25 and in many cases < 0 (see the Ri field in figure 8), consistent
with KH instabilities in different stages of evolution, as has been discussed elsewhere
(e.g. Riley & de Bruyn Kops 2003). Figure 8 shows the local Richardson number
in x–z plane for the high-resolution Smagorinsky simulation with N = 2 (where the
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FIGURE 8. The local Richardson number Ri field on the x–z plane at y= 0.25 and t= 450
for the Smagorinsky case with N = 2 and n = 768. The Richardson number values are
restricted between −0.25 and 1.
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FIGURE 9. (Colour online) Histograms of the local Richardson number Ri at t = 450.
Only the segment −10 6 Ri 6 30 is shown. Histograms are normalized by bin size to
give probability distributions, and are computed with 1000 bins over −50 < Ri < 200
(1Ri= 0.25).

vorticity plot for that is shown in figure 7a). We have shown only Ri values between
−1/4 to 1. Intermittent spots with darker colours correspond to regions with Ri< 1/4,
which show high shear between the layers. This figure shows that the small-scale
disturbances in the vorticity field, many of which resemble KH instabilities, are
colocated with regions of small Ri< 1/4, including many points with Ri< 0.

For an overview of the Richardson number in all simulations, figure 9 shows
histograms of Ri for the LES at t= 450. For clarity, only the range −106Ri6 30 is
shown. Figure 9 presents results for different resolutions, SGS models and buoyancy
frequencies. Decreasing the resolution from n= 768 to 256 causes the histograms drop
off rapidly for negative Ri and causes the peak around Ri= 0 to decrease. In addition,
the Richardson number histogram show a long positive tail. Figure 9 shows that at
fixed resolution, increased stratification reduces the numbers of points with negative
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FIGURE 10. (Colour online) The fraction of the domain with Ri< 0 as a function of the
ratio kc/kb for the Smagorinsky and Kraichnan LES at different resolutions.

Ri and decreases the peak around Ri= 0, e.g. see the high-resolution Kraichnan case
with N = 2 (the solid green line) versus that with N = 6 (the solid brown line), or
the high-resolution Smagorinsky case with N = 2 (the dashed green line) versus that
with N = 6 (the dash dotted blue line). Furthermore, in the low-resolution Kraichnan
case with N = 6 (i.e. K2N6), overturning is completely suppressed because there are
no points with negative Ri. As a result, by decreasing the resolution or increasing
the stratification, the number of points with negative Ri decreases, and regions of
small-scale instability and overturning are eliminated (e.g. figure 7b). In addition, at
fixed resolution and buoyancy frequency, different SGS models result in different
Richardson number histograms. For example, the high-resolution Kraichnan case with
N = 2 has a larger numbers of negative Ri and a smaller numbers of positive Ri
compared with the high-resolution Smagorinsky case with N = 2, implying that the
latter case is more stabilizing than the former one. Similar behaviours are seen in
low-resolution cases with N=2 or high-resolution cases with N=6. It is interesting to
mention that the Ri histograms of the low-resolution Kraichnan case with N = 2 and
n= 256 are very similar to the higher-resolution Smagorinsky cases with N = 2 and
n= 512. Similarly, the Ri histogram of Kraichnan cases with N = 6 and n= 256 are
very close to that of Smagorinsky with N = 6 and n= 768. Overall, the Smagorinsky
LES seems much more dissipative than the Kraichnan model, since small-scale
instabilities and overturning is suppressed significantly.

Figure 10 shows the fraction of the domain with Ri < 0 as a function of kc/kb

for the Smagorinsky and Kraichnan cases. Increased kc/kb at fixed resolution leads
to more grid points with negative Richardson numbers (similar trends are also
seen for the number of grid points with 0 < Ri < 0.25; not shown). As a result,
increased resolution at fixed stratification or decreased stratification at fixed resolution
generates more overturning regions and small-scale instabilities. Even at fixed kc/kb,
the overturning fractions depends on resolution, with higher resolution yielding smaller
fractions. In addition, figure 10 also demonstrates that the fraction of the domain with
Ri< 0 is higher for the Kraichnan LES comparing with the Smagorinsky case at the
same resolution.
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4.4. Discussion
In this section, we discuss the LES results inferred from §§ 4.1–4.3. First, we
summarize the important points from the previous sections.

(i) The horizontal vorticity field shows regions of small-scale instabilities and
turbulence for the high-resolution Kraichnan and Smagorinsky cases with N = 2
(figures 6a and 7a). Increased stratification stabilizes the flows, such that no
instabilities are seen in for example the high-resolution Smagorinsky simulation
with N = 6 (figure 7b). In addition, these regions of instabilities correspond to
regions with small or negative Ri (figure 8).

(ii) The compensated horizontal energy spectra show an approximately −5/3 inertial
subrange along with a bump at kh ∼ kb in the high-resolution Kraichnan and
Smagorinsky simulations with N= 2 and the high-resolution Kraichnan case with
N = 2, but not for the high-resolution Smagorinsky case with N = 6 (figure 5).
Increasing the grid spacing shortens the inertial subrange and seems to suppress
the bump at kb.

(iii) Larger numbers of negative Ri are seen in histograms of the local Richardson
number in the high-resolution Kraichnan and Smagorinsky simulations with N =
2 (figures 9 and 10). Increased stratification causes a rapid drop in points with
negative Ri, e.g. the high-resolution Smagorinsky case with N= 6. Increasing the
grid spacing also leads to a significant decrease in the histogram of negative Ri.

Our numerical experiments show that if the grid spacing is fine enough to capture
the bump in the horizontal wavenumber spectrum, then KH instabilities and small
and negative Ri are more likely to happen in physical space. This critical resolution
seems to depend on Lb and is different for the different SGS models. Table 2 shows
the ratio of kc/kb and ∆/Lb for the Smagorinsky and Kraichnan SGS simulations.
According to the energy spectra in figures 2 and 5 and the Ri histograms in figure 9,
the Smagorinsky LES captures small-scale KH instabilities, indicated by a spectral
bump near kh ∼ kb and points with small and negative Ri, for all cases except
for the low-resolution case with N = 2, the middle resolution case with N = 4,
and the high-resolution case with N = 6. By contrast, the Kraichnan simulations
capture this behaviour for all cases except the low-resolution case with N = 6.
For the low-resolution Kraichnan case with N = 4, there is a visible bump in
figure 5(b), but very few points with small and negative Ri are seen in figure 9.
This discrepancy could be due to sampling, since the spectra in figure 5(b) are
averaged over 375 6 t 6 450, while this histogram of Ri is instantaneous at t = 450.
As a result, the minimum resolution for the Smagorinsky simulations is inside the
range 0.12Lb 6 ∆ < 0.17Lb and for the Kraichnan simulations is inside the range
0.34Lb 6∆< 0.47Lb. Hence, the Smagorinsky LES needs to have kc/kb almost three
times larger than Kraichnan to resolve KH instabilities. We emphasize that both
SGS models have to resolve Lb to capture the dynamics of stratified turbulence, but
the Smagorinsky model must resolve Lb almost three times better than Kraichnan.
Of course, the Kraichnan model only works with spectral methods, but for such
simulations, it is a much better choice than the Smagorinsky model.

5. Conclusion
LES of forced stratified turbulence with different resolutions, buoyancy frequencies

and SGS models are studied in this paper. The averaged dissipation rates are almost
identical for the Smagorinsky and Kraichnan LES, confirming that 〈ε〉 depends on
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the large scales. The averaged vertical energy spectra are flat up to a certain vertical
wavenumber, which depends on the buoyancy frequency N. The averaged horizontal
energy spectra depends on the grid spacing and if ∆ is small enough, the spectra
have an almost −5/3 slope along with a bump at kh ∼ kb. These spectra are in
line with previous work on stratified turbulence using regular or hyper-viscosity (e.g.
Waite & Bartello 2004; Lindborg 2006; Brethouwer et al. 2007; Waite 2011; Augier
et al. 2012; Waite 2014). Increased resolution or decreased stratification promotes
KH instabilities between vertical layers. Stronger stratification or smaller kc inhibits
these instabilities by shrinking the layer thickness towards the dissipation scale
or by increasing the dissipation scale, respectively. These findings are reminiscent
of the Reb criterion for DNS: stronger stratification requires higher resolution, and
hence larger effective Reynolds number, to fully capture the dynamics of stratified
turbulence.

We present a threshold on the grid spacing ∆ for which dynamics of stratified
turbulence are captured in LES. Our results show that the Smagorinsky LES needs
much smaller (three times) ∆/Lb compared with the Kraichnan simulations, in
order to reproduce the bump in the horizontal wavenumber spectrum and the
associated regions of small and negative Ri. In addition, at large wavenumbers,
the hyperviscosity simulation is more dissipative than the Kraichnan LES with the
same resolution. Therefore, for kb close to kmax and kc, the Kraichnan LES seems
to get reasonable results compared to hyperviscosity, where the former captures the
bump in the horizontal energy spectrum but the latter does not (e.g. low-resolution
hyperviscosity with N = 4 versus low-resolution Kraichnan with N = 4 in figure 5b).
These SGS models are isotropic and they clearly fail when ∆ > Lb where the
turbulence is strongly anisotropic. Interestingly, classical theory predicts isotropy
below the Ozmidov scale Lo rather than the buoyancy scale Lb, but nevertheless,
these isotropic SGS models work well for ∆ sufficiently less than Lb but still greater
than Lo.

For future work, the performance of LES models beyond the Smagorinsky and
Kraichnan schemes should be investigated for stratified turbulence. In particular, the
dynamic Smagorinsky model (Germano et al. 1991), in which cs is not constant, has
the potential to improve the disappointing performance of the Smagorinsky model
seen in this study. Since the dynamics model determines cs locally and with respect
to the dynamics of the structures of flows, it might show better performance than the
Smagorinsky model at low resolution, and hence decrease the computational costs.
Meanwhile, considering anisotropic eddy viscosity terms, in which the horizontal
and vertical deformations are considered separately, is another potential avenue for
further work. In addition, we need to ultimately perform very high-resolution DNS
of stratified turbulence that resolves a large inertial subrange to obtain a more
fundamental understanding of the energy transfer between large and small scales.
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